Implement the ability to block on multiple futures at once
[rust-lightning] / lightning / src / util / wakers.rs
index 82e2dfc335ce95c2723cbba059a6c0d052bdd6a7..834721fd4aa3abf207e70405774f29958f743bf4 100644 (file)
 
 use alloc::sync::Arc;
 use core::mem;
-use crate::sync::{Condvar, Mutex, MutexGuard};
+use crate::sync::{Condvar, Mutex};
 
 use crate::prelude::*;
 
 #[cfg(any(test, feature = "std"))]
-use std::time::{Duration, Instant};
+use std::time::Duration;
 
 use core::future::Future as StdFuture;
 use core::task::{Context, Poll};
@@ -30,75 +30,22 @@ use core::pin::Pin;
 /// Used to signal to one of many waiters that the condition they're waiting on has happened.
 pub(crate) struct Notifier {
        notify_pending: Mutex<(bool, Option<Arc<Mutex<FutureState>>>)>,
-       condvar: Condvar,
-}
-
-macro_rules! check_woken {
-       ($guard: expr, $retval: expr) => { {
-               if $guard.0 {
-                       $guard.0 = false;
-                       if $guard.1.as_ref().map(|l| l.lock().unwrap().complete).unwrap_or(false) {
-                               // If we're about to return as woken, and the future state is marked complete, wipe
-                               // the future state and let the next future wait until we get a new notify.
-                               $guard.1.take();
-                       }
-                       return $retval;
-               }
-       } }
 }
 
 impl Notifier {
        pub(crate) fn new() -> Self {
                Self {
                        notify_pending: Mutex::new((false, None)),
-                       condvar: Condvar::new(),
-               }
-       }
-
-       fn propagate_future_state_to_notify_flag(&self) -> MutexGuard<(bool, Option<Arc<Mutex<FutureState>>>)> {
-               let mut lock = self.notify_pending.lock().unwrap();
-               if let Some(existing_state) = &lock.1 {
-                       if existing_state.lock().unwrap().callbacks_made {
-                               // If the existing `FutureState` has completed and actually made callbacks,
-                               // consider the notification flag to have been cleared and reset the future state.
-                               lock.1.take();
-                               lock.0 = false;
-                       }
                }
-               lock
        }
 
        pub(crate) fn wait(&self) {
-               loop {
-                       let mut guard = self.propagate_future_state_to_notify_flag();
-                       check_woken!(guard, ());
-                       guard = self.condvar.wait(guard).unwrap();
-                       check_woken!(guard, ());
-               }
+               Sleeper::from_single_future(self.get_future()).wait();
        }
 
        #[cfg(any(test, feature = "std"))]
        pub(crate) fn wait_timeout(&self, max_wait: Duration) -> bool {
-               let current_time = Instant::now();
-               loop {
-                       let mut guard = self.propagate_future_state_to_notify_flag();
-                       check_woken!(guard, true);
-                       guard = self.condvar.wait_timeout(guard, max_wait).unwrap().0;
-                       check_woken!(guard, true);
-                       // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
-                       // desired wait time has actually passed, and if not then restart the loop with a reduced wait
-                       // time. Note that this logic can be highly simplified through the use of
-                       // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
-                       // 1.42.0.
-                       let elapsed = current_time.elapsed();
-                       if elapsed >= max_wait {
-                               return false;
-                       }
-                       match max_wait.checked_sub(elapsed) {
-                               None => return false,
-                               Some(_) => continue
-                       }
-               }
+               Sleeper::from_single_future(self.get_future()).wait_timeout(max_wait)
        }
 
        /// Wake waiters, tracking that wake needs to occur even if there are currently no waiters.
@@ -111,13 +58,19 @@ impl Notifier {
                        }
                }
                lock.0 = true;
-               mem::drop(lock);
-               self.condvar.notify_all();
        }
 
        /// Gets a [`Future`] that will get woken up with any waiters
        pub(crate) fn get_future(&self) -> Future {
-               let mut lock = self.propagate_future_state_to_notify_flag();
+               let mut lock = self.notify_pending.lock().unwrap();
+               if let Some(existing_state) = &lock.1 {
+                       if existing_state.lock().unwrap().callbacks_made {
+                               // If the existing `FutureState` has completed and actually made callbacks,
+                               // consider the notification flag to have been cleared and reset the future state.
+                               lock.1.take();
+                               lock.0 = false;
+                       }
+               }
                if let Some(existing_state) = &lock.1 {
                        Future { state: Arc::clone(&existing_state) }
                } else {
@@ -182,6 +135,9 @@ impl FutureState {
 }
 
 /// A simple future which can complete once, and calls some callback(s) when it does so.
+///
+/// Clones can be made and all futures cloned from the same source will complete at the same time.
+#[derive(Clone)]
 pub struct Future {
        state: Arc<Mutex<FutureState>>,
 }
@@ -236,6 +192,77 @@ impl<'a> StdFuture for Future {
        }
 }
 
+/// A struct which can be used to select across many [`Future`]s at once without relying on a full
+/// async context.
+pub struct Sleeper {
+       notifiers: Vec<Arc<Mutex<FutureState>>>,
+}
+
+impl Sleeper {
+       /// Constructs a new sleeper from one future, allowing blocking on it.
+       pub fn from_single_future(future: Future) -> Self {
+               Self { notifiers: vec![future.state] }
+       }
+       /// Constructs a new sleeper from two futures, allowing blocking on both at once.
+       // Note that this is the common case - a ChannelManager and ChainMonitor.
+       pub fn from_two_futures(fut_a: Future, fut_b: Future) -> Self {
+               Self { notifiers: vec![fut_a.state, fut_b.state] }
+       }
+       /// Constructs a new sleeper on many futures, allowing blocking on all at once.
+       pub fn new(futures: Vec<Future>) -> Self {
+               Self { notifiers: futures.into_iter().map(|f| f.state).collect() }
+       }
+       /// Prepares to go into a wait loop body, creating a condition variable which we can block on
+       /// and an `Arc<Mutex<Option<_>>>` which gets set to the waking `Future`'s state prior to the
+       /// condition variable being woken.
+       fn setup_wait(&self) -> (Arc<Condvar>, Arc<Mutex<Option<Arc<Mutex<FutureState>>>>>) {
+               let cv = Arc::new(Condvar::new());
+               let notified_fut_mtx = Arc::new(Mutex::new(None));
+               {
+                       for notifier_mtx in self.notifiers.iter() {
+                               let cv_ref = Arc::clone(&cv);
+                               let notified_fut_ref = Arc::clone(&notified_fut_mtx);
+                               let notifier_ref = Arc::clone(&notifier_mtx);
+                               let mut notifier = notifier_mtx.lock().unwrap();
+                               if notifier.complete {
+                                       *notified_fut_mtx.lock().unwrap() = Some(notifier_ref);
+                                       break;
+                               }
+                               notifier.callbacks.push((false, Box::new(move || {
+                                       *notified_fut_ref.lock().unwrap() = Some(Arc::clone(&notifier_ref));
+                                       cv_ref.notify_all();
+                               })));
+                       }
+               }
+               (cv, notified_fut_mtx)
+       }
+
+       /// Wait until one of the [`Future`]s registered with this [`Sleeper`] has completed.
+       pub fn wait(&self) {
+               let (cv, notified_fut_mtx) = self.setup_wait();
+               let notified_fut = cv.wait_while(notified_fut_mtx.lock().unwrap(), |fut_opt| fut_opt.is_none())
+                       .unwrap().take().expect("CV wait shouldn't have returned until the notifying future was set");
+               notified_fut.lock().unwrap().callbacks_made = true;
+       }
+
+       /// Wait until one of the [`Future`]s registered with this [`Sleeper`] has completed or the
+       /// given amount of time has elapsed. Returns true if a [`Future`] completed, false if the time
+       /// elapsed.
+       #[cfg(any(test, feature = "std"))]
+       pub fn wait_timeout(&self, max_wait: Duration) -> bool {
+               let (cv, notified_fut_mtx) = self.setup_wait();
+               let notified_fut =
+                       match cv.wait_timeout_while(notified_fut_mtx.lock().unwrap(), max_wait, |fut_opt| fut_opt.is_none()) {
+                               Ok((_, e)) if e.timed_out() => return false,
+                               Ok((mut notified_fut, _)) =>
+                                       notified_fut.take().expect("CV wait shouldn't have returned until the notifying future was set"),
+                               Err(_) => panic!("Previous panic while a lock was held led to a lock panic"),
+                       };
+               notified_fut.lock().unwrap().callbacks_made = true;
+               true
+       }
+}
+
 #[cfg(test)]
 mod tests {
        use super::*;
@@ -334,10 +361,7 @@ mod tests {
                let exit_thread_clone = exit_thread.clone();
                thread::spawn(move || {
                        loop {
-                               let mut lock = thread_notifier.notify_pending.lock().unwrap();
-                               lock.0 = true;
-                               thread_notifier.condvar.notify_all();
-
+                               thread_notifier.notify();
                                if exit_thread_clone.load(Ordering::SeqCst) {
                                        break
                                }
@@ -539,4 +563,66 @@ mod tests {
                assert!(woken.load(Ordering::SeqCst));
                assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
        }
+
+       #[test]
+       fn test_multi_future_sleep() {
+               // Tests the `Sleeper` with multiple futures.
+               let notifier_a = Notifier::new();
+               let notifier_b = Notifier::new();
+
+               // Set both notifiers as woken without sleeping yet.
+               notifier_a.notify();
+               notifier_b.notify();
+               Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
+
+               // One future has woken us up, but the other should still have a pending notification.
+               Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
+
+               // However once we've slept twice, we should no longer have any pending notifications
+               assert!(!Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future())
+                       .wait_timeout(Duration::from_millis(10)));
+
+               // Test ordering somewhat more.
+               notifier_a.notify();
+               Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
+       }
+
+       #[test]
+       #[cfg(feature = "std")]
+       fn sleeper_with_pending_callbacks() {
+               // This is similar to the above `test_multi_future_sleep` test, but in addition registers
+               // "normal" callbacks which will cause the futures to assume notification has occurred,
+               // rather than waiting for a woken sleeper.
+               let notifier_a = Notifier::new();
+               let notifier_b = Notifier::new();
+
+               // Set both notifiers as woken without sleeping yet.
+               notifier_a.notify();
+               notifier_b.notify();
+
+               // After sleeping one future (not guaranteed which one, however) will have its notification
+               // bit cleared.
+               Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
+
+               // By registering a callback on the futures for both notifiers, one will complete
+               // immediately, but one will remain tied to the notifier, and will complete once the
+               // notifier is next woken, which will be considered the completion of the notification.
+               let callback_a = Arc::new(AtomicBool::new(false));
+               let callback_b = Arc::new(AtomicBool::new(false));
+               let callback_a_ref = Arc::clone(&callback_a);
+               let callback_b_ref = Arc::clone(&callback_b);
+               notifier_a.get_future().register_callback(Box::new(move || assert!(!callback_a_ref.fetch_or(true, Ordering::SeqCst))));
+               notifier_b.get_future().register_callback(Box::new(move || assert!(!callback_b_ref.fetch_or(true, Ordering::SeqCst))));
+               assert!(callback_a.load(Ordering::SeqCst) ^ callback_b.load(Ordering::SeqCst));
+
+               // If we now notify both notifiers again, the other callback will fire, completing the
+               // notification, and we'll be back to one pending notification.
+               notifier_a.notify();
+               notifier_b.notify();
+
+               assert!(callback_a.load(Ordering::SeqCst) && callback_b.load(Ordering::SeqCst));
+               Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
+               assert!(!Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future())
+                       .wait_timeout(Duration::from_millis(10)));
+       }
 }