Merge pull request #1657 from TheBlueMatt/2022-08-async-man-update
[rust-lightning] / lightning / src / util / wakers.rs
diff --git a/lightning/src/util/wakers.rs b/lightning/src/util/wakers.rs
new file mode 100644 (file)
index 0000000..b81dacb
--- /dev/null
@@ -0,0 +1,334 @@
+// This file is Copyright its original authors, visible in version control
+// history.
+//
+// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
+// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
+// You may not use this file except in accordance with one or both of these
+// licenses.
+
+//! Utilities which allow users to block on some future notification from LDK. These are
+//! specifically used by [`ChannelManager`] to allow waiting until the [`ChannelManager`] needs to
+//! be re-persisted.
+//!
+//! [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
+
+use alloc::sync::Arc;
+use core::mem;
+use core::time::Duration;
+use sync::{Condvar, Mutex};
+
+use prelude::{Box, Vec};
+
+#[cfg(any(test, feature = "std"))]
+use std::time::Instant;
+
+use core::future::Future as StdFuture;
+use core::task::{Context, Poll};
+use core::pin::Pin;
+
+use prelude::*;
+
+/// Used to signal to one of many waiters that the condition they're waiting on has happened.
+pub(crate) struct Notifier {
+       notify_pending: Mutex<(bool, Option<Arc<Mutex<FutureState>>>)>,
+       condvar: Condvar,
+}
+
+impl Notifier {
+       pub(crate) fn new() -> Self {
+               Self {
+                       notify_pending: Mutex::new((false, None)),
+                       condvar: Condvar::new(),
+               }
+       }
+
+       pub(crate) fn wait(&self) {
+               loop {
+                       let mut guard = self.notify_pending.lock().unwrap();
+                       if guard.0 {
+                               guard.0 = false;
+                               return;
+                       }
+                       guard = self.condvar.wait(guard).unwrap();
+                       let result = guard.0;
+                       if result {
+                               guard.0 = false;
+                               return
+                       }
+               }
+       }
+
+       #[cfg(any(test, feature = "std"))]
+       pub(crate) fn wait_timeout(&self, max_wait: Duration) -> bool {
+               let current_time = Instant::now();
+               loop {
+                       let mut guard = self.notify_pending.lock().unwrap();
+                       if guard.0 {
+                               guard.0 = false;
+                               return true;
+                       }
+                       guard = self.condvar.wait_timeout(guard, max_wait).unwrap().0;
+                       // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
+                       // desired wait time has actually passed, and if not then restart the loop with a reduced wait
+                       // time. Note that this logic can be highly simplified through the use of
+                       // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
+                       // 1.42.0.
+                       let elapsed = current_time.elapsed();
+                       let result = guard.0;
+                       if result || elapsed >= max_wait {
+                               guard.0 = false;
+                               return result;
+                       }
+                       match max_wait.checked_sub(elapsed) {
+                               None => return result,
+                               Some(_) => continue
+                       }
+               }
+       }
+
+       /// Wake waiters, tracking that wake needs to occur even if there are currently no waiters.
+       pub(crate) fn notify(&self) {
+               let mut lock = self.notify_pending.lock().unwrap();
+               lock.0 = true;
+               if let Some(future_state) = lock.1.take() {
+                       future_state.lock().unwrap().complete();
+               }
+               mem::drop(lock);
+               self.condvar.notify_all();
+       }
+
+       /// Gets a [`Future`] that will get woken up with any waiters
+       pub(crate) fn get_future(&self) -> Future {
+               let mut lock = self.notify_pending.lock().unwrap();
+               if lock.0 {
+                       Future {
+                               state: Arc::new(Mutex::new(FutureState {
+                                       callbacks: Vec::new(),
+                                       complete: false,
+                               }))
+                       }
+               } else if let Some(existing_state) = &lock.1 {
+                       Future { state: Arc::clone(&existing_state) }
+               } else {
+                       let state = Arc::new(Mutex::new(FutureState {
+                               callbacks: Vec::new(),
+                               complete: false,
+                       }));
+                       lock.1 = Some(Arc::clone(&state));
+                       Future { state }
+               }
+       }
+
+       #[cfg(any(test, feature = "_test_utils"))]
+       pub fn notify_pending(&self) -> bool {
+               self.notify_pending.lock().unwrap().0
+       }
+}
+
+/// A callback which is called when a [`Future`] completes.
+///
+/// Note that this MUST NOT call back into LDK directly, it must instead schedule actions to be
+/// taken later. Rust users should use the [`std::future::Future`] implementation for [`Future`]
+/// instead.
+///
+/// Note that the [`std::future::Future`] implementation may only work for runtimes which schedule
+/// futures when they receive a wake, rather than immediately executing them.
+pub trait FutureCallback : Send {
+       /// The method which is called.
+       fn call(&self);
+}
+
+impl<F: Fn() + Send> FutureCallback for F {
+       fn call(&self) { (self)(); }
+}
+
+pub(crate) struct FutureState {
+       callbacks: Vec<Box<dyn FutureCallback>>,
+       complete: bool,
+}
+
+impl FutureState {
+       fn complete(&mut self) {
+               for callback in self.callbacks.drain(..) {
+                       callback.call();
+               }
+               self.complete = true;
+       }
+}
+
+/// A simple future which can complete once, and calls some callback(s) when it does so.
+pub struct Future {
+       state: Arc<Mutex<FutureState>>,
+}
+
+impl Future {
+       /// Registers a callback to be called upon completion of this future. If the future has already
+       /// completed, the callback will be called immediately.
+       pub fn register_callback(&self, callback: Box<dyn FutureCallback>) {
+               let mut state = self.state.lock().unwrap();
+               if state.complete {
+                       mem::drop(state);
+                       callback.call();
+               } else {
+                       state.callbacks.push(callback);
+               }
+       }
+}
+
+mod std_future {
+       use core::task::Waker;
+       pub struct StdWaker(pub Waker);
+       impl super::FutureCallback for StdWaker {
+               fn call(&self) { self.0.wake_by_ref() }
+       }
+}
+
+/// (C-not exported) as Rust Futures aren't usable in language bindings.
+impl<'a> StdFuture for Future {
+       type Output = ();
+
+       fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+               let mut state = self.state.lock().unwrap();
+               if state.complete {
+                       Poll::Ready(())
+               } else {
+                       let waker = cx.waker().clone();
+                       state.callbacks.push(Box::new(std_future::StdWaker(waker)));
+                       Poll::Pending
+               }
+       }
+}
+
+#[cfg(test)]
+mod tests {
+       use super::*;
+       use core::sync::atomic::{AtomicBool, Ordering};
+       use core::future::Future as FutureTrait;
+       use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
+
+       #[cfg(feature = "std")]
+       #[test]
+       fn test_wait_timeout() {
+               use sync::Arc;
+               use std::thread;
+
+               let persistence_notifier = Arc::new(Notifier::new());
+               let thread_notifier = Arc::clone(&persistence_notifier);
+
+               let exit_thread = Arc::new(AtomicBool::new(false));
+               let exit_thread_clone = exit_thread.clone();
+               thread::spawn(move || {
+                       loop {
+                               let mut lock = thread_notifier.notify_pending.lock().unwrap();
+                               lock.0 = true;
+                               thread_notifier.condvar.notify_all();
+
+                               if exit_thread_clone.load(Ordering::SeqCst) {
+                                       break
+                               }
+                       }
+               });
+
+               // Check that we can block indefinitely until updates are available.
+               let _ = persistence_notifier.wait();
+
+               // Check that the Notifier will return after the given duration if updates are
+               // available.
+               loop {
+                       if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
+                               break
+                       }
+               }
+
+               exit_thread.store(true, Ordering::SeqCst);
+
+               // Check that the Notifier will return after the given duration even if no updates
+               // are available.
+               loop {
+                       if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
+                               break
+                       }
+               }
+       }
+
+       #[test]
+       fn test_future_callbacks() {
+               let future = Future {
+                       state: Arc::new(Mutex::new(FutureState {
+                               callbacks: Vec::new(),
+                               complete: false,
+                       }))
+               };
+               let callback = Arc::new(AtomicBool::new(false));
+               let callback_ref = Arc::clone(&callback);
+               future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
+
+               assert!(!callback.load(Ordering::SeqCst));
+               future.state.lock().unwrap().complete();
+               assert!(callback.load(Ordering::SeqCst));
+               future.state.lock().unwrap().complete();
+       }
+
+       #[test]
+       fn test_pre_completed_future_callbacks() {
+               let future = Future {
+                       state: Arc::new(Mutex::new(FutureState {
+                               callbacks: Vec::new(),
+                               complete: false,
+                       }))
+               };
+               future.state.lock().unwrap().complete();
+
+               let callback = Arc::new(AtomicBool::new(false));
+               let callback_ref = Arc::clone(&callback);
+               future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
+
+               assert!(callback.load(Ordering::SeqCst));
+               assert!(future.state.lock().unwrap().callbacks.is_empty());
+       }
+
+       // Rather annoyingly, there's no safe way in Rust std to construct a Waker despite it being
+       // totally possible to construct from a trait implementation (though somewhat less effecient
+       // compared to a raw VTable). Instead, we have to write out a lot of boilerplate to build a
+       // waker, which we do here with a trivial Arc<AtomicBool> data element to track woke-ness.
+       const WAKER_V_TABLE: RawWakerVTable = RawWakerVTable::new(waker_clone, wake, wake_by_ref, drop);
+       unsafe fn wake_by_ref(ptr: *const ()) { let p = ptr as *const Arc<AtomicBool>; assert!(!(*p).fetch_or(true, Ordering::SeqCst)); }
+       unsafe fn drop(ptr: *const ()) { let p = ptr as *mut Arc<AtomicBool>; Box::from_raw(p); }
+       unsafe fn wake(ptr: *const ()) { wake_by_ref(ptr); drop(ptr); }
+       unsafe fn waker_clone(ptr: *const ()) -> RawWaker {
+               let p = ptr as *const Arc<AtomicBool>;
+               RawWaker::new(Box::into_raw(Box::new(Arc::clone(&*p))) as *const (), &WAKER_V_TABLE)
+       }
+
+       fn create_waker() -> (Arc<AtomicBool>, Waker) {
+               let a = Arc::new(AtomicBool::new(false));
+               let waker = unsafe { Waker::from_raw(waker_clone((&a as *const Arc<AtomicBool>) as *const ())) };
+               (a, waker)
+       }
+
+       #[test]
+       fn test_future() {
+               let mut future = Future {
+                       state: Arc::new(Mutex::new(FutureState {
+                               callbacks: Vec::new(),
+                               complete: false,
+                       }))
+               };
+               let mut second_future = Future { state: Arc::clone(&future.state) };
+
+               let (woken, waker) = create_waker();
+               assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
+               assert!(!woken.load(Ordering::SeqCst));
+
+               let (second_woken, second_waker) = create_waker();
+               assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Pending);
+               assert!(!second_woken.load(Ordering::SeqCst));
+
+               future.state.lock().unwrap().complete();
+               assert!(woken.load(Ordering::SeqCst));
+               assert!(second_woken.load(Ordering::SeqCst));
+               assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
+               assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Ready(()));
+       }
+}