X-Git-Url: http://git.bitcoin.ninja/index.cgi?a=blobdiff_plain;f=c_sharp%2Fsrc%2Forg%2Fldk%2Fstructs%2FChannelManager.cs;fp=c_sharp%2Fsrc%2Forg%2Fldk%2Fstructs%2FChannelManager.cs;h=afb6d30b9e715c8adbb8f38cec6ab12038d78c1e;hb=810f7404202e04f70db946ced7363b64ddaf4ce4;hp=0000000000000000000000000000000000000000;hpb=fa130da4108815a8b17c3c093a91fc3d83754a0f;p=ldk-java diff --git a/c_sharp/src/org/ldk/structs/ChannelManager.cs b/c_sharp/src/org/ldk/structs/ChannelManager.cs new file mode 100644 index 00000000..afb6d30b --- /dev/null +++ b/c_sharp/src/org/ldk/structs/ChannelManager.cs @@ -0,0 +1,1089 @@ +using org.ldk.impl; +using org.ldk.enums; +using org.ldk.util; +using System; + +namespace org { namespace ldk { namespace structs { + + +/** + * Manager which keeps track of a number of channels and sends messages to the appropriate + * channel, also tracking HTLC preimages and forwarding onion packets appropriately. + * + * Implements ChannelMessageHandler, handling the multi-channel parts and passing things through + * to individual Channels. + * + * Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for + * all peers during write/read (though does not modify this instance, only the instance being + * serialized). This will result in any channels which have not yet exchanged funding_created (ie + * called funding_transaction_generated for outbound channels). + * + * Note that you can be a bit lazier about writing out ChannelManager than you can be with + * ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before + * returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates + * happens out-of-band (and will prevent any other ChannelManager operations from occurring during + * the serialization process). If the deserialized version is out-of-date compared to the + * ChannelMonitors passed by reference to read(), those channels will be force-closed based on the + * ChannelMonitor state and no funds will be lost (mod on-chain transaction fees). + * + * Note that the deserializer is only implemented for (BlockHash, ChannelManager), which + * tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along + * the \"reorg path\" (ie call block_disconnected() until you get to a common block and then call + * block_connected() to step towards your best block) upon deserialization before using the + * object! + * + * Note that ChannelManager is responsible for tracking liveness of its channels and generating + * ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid + * spam due to quick disconnection/reconnection, updates are not sent until the channel has been + * offline for a full minute. In order to track this, you must call + * timer_tick_occurred roughly once per minute, though it doesn't have to be perfect. + * + * Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager + * a SimpleRefChannelManager, for conciseness. See their documentation for more details, but + * essentially you should default to using a SimpleRefChannelManager, and use a + * SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when + * you're using lightning-net-tokio. + */ +public class ChannelManager : CommonBase { + internal ChannelManager(object _dummy, long ptr) : base(ptr) { } + ~ChannelManager() { + if (ptr != 0) { bindings.ChannelManager_free(ptr); } + } + + /** + * Constructs a new ChannelManager to hold several channels and route between them. + * + * This is the main \"logic hub\" for all channel-related actions, and implements + * ChannelMessageHandler. + * + * Non-proportional fees are fixed according to our risk using the provided fee estimator. + * + * Users need to notify the new ChannelManager when a new block is connected or + * disconnected using its `block_connected` and `block_disconnected` methods, starting + * from after `params.latest_hash`. + */ + public static ChannelManager of(org.ldk.structs.FeeEstimator fee_est, org.ldk.structs.Watch chain_monitor, org.ldk.structs.BroadcasterInterface tx_broadcaster, org.ldk.structs.Logger logger, org.ldk.structs.KeysInterface keys_manager, org.ldk.structs.UserConfig config, org.ldk.structs.ChainParameters _params) { + long ret = bindings.ChannelManager_new(fee_est == null ? 0 : fee_est.ptr, chain_monitor == null ? 0 : chain_monitor.ptr, tx_broadcaster == null ? 0 : tx_broadcaster.ptr, logger == null ? 0 : logger.ptr, keys_manager == null ? 0 : keys_manager.ptr, config == null ? 0 : config.ptr, _params == null ? 0 : _params.ptr); + GC.KeepAlive(fee_est); + GC.KeepAlive(chain_monitor); + GC.KeepAlive(tx_broadcaster); + GC.KeepAlive(logger); + GC.KeepAlive(keys_manager); + GC.KeepAlive(config); + GC.KeepAlive(_params); + if (ret >= 0 && ret <= 4096) { return null; } + org.ldk.structs.ChannelManager ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.ChannelManager(null, ret); } + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(ret_hu_conv); }; + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(fee_est); }; + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(chain_monitor); }; + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(tx_broadcaster); }; + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(logger); }; + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(keys_manager); }; + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(config); }; + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(_params); }; + return ret_hu_conv; + } + + /** + * Gets the current configuration applied to all new channels. + */ + public UserConfig get_current_default_configuration() { + long ret = bindings.ChannelManager_get_current_default_configuration(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + org.ldk.structs.UserConfig ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.UserConfig(null, ret); } + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Creates a new outbound channel to the given remote node and with the given value. + * + * `user_channel_id` will be provided back as in + * [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events + * correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a + * randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it + * is simply copied to events and otherwise ignored. + * + * Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is + * greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`. + * + * Note that we do not check if you are currently connected to the given peer. If no + * connection is available, the outbound `open_channel` message may fail to send, resulting in + * the channel eventually being silently forgotten (dropped on reload). + * + * Returns the new Channel's temporary `channel_id`. This ID will appear as + * [`Event::FundingGenerationReady::temporary_channel_id`] and in + * [`ChannelDetails::channel_id`] until after + * [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for + * one derived from the funding transaction's TXID. If the counterparty rejects the channel + * immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`]. + * + * [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id + * [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id + * [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id + * + * Note that override_config (or a relevant inner pointer) may be NULL or all-0s to represent None + */ + public Result__u832APIErrorZ create_channel(byte[] their_network_key, long channel_value_satoshis, long push_msat, org.ldk.util.UInt128 user_channel_id, org.ldk.structs.UserConfig override_config) { + long ret = bindings.ChannelManager_create_channel(this.ptr, InternalUtils.check_arr_len(their_network_key, 33), channel_value_satoshis, push_msat, user_channel_id.getLEBytes(), override_config == null ? 0 : override_config.ptr); + GC.KeepAlive(this); + GC.KeepAlive(their_network_key); + GC.KeepAlive(channel_value_satoshis); + GC.KeepAlive(push_msat); + GC.KeepAlive(user_channel_id); + GC.KeepAlive(override_config); + if (ret >= 0 && ret <= 4096) { return null; } + Result__u832APIErrorZ ret_hu_conv = Result__u832APIErrorZ.constr_from_ptr(ret); + if (this != null) { this.ptrs_to.AddLast(override_config); }; + return ret_hu_conv; + } + + /** + * Gets the list of open channels, in random order. See ChannelDetail field documentation for + * more information. + */ + public ChannelDetails[] list_channels() { + long[] ret = bindings.ChannelManager_list_channels(this.ptr); + GC.KeepAlive(this); + int ret_conv_16_len = ret.Length; + ChannelDetails[] ret_conv_16_arr = new ChannelDetails[ret_conv_16_len]; + for (int q = 0; q < ret_conv_16_len; q++) { + long ret_conv_16 = ret[q]; + org.ldk.structs.ChannelDetails ret_conv_16_hu_conv = null; if (ret_conv_16 < 0 || ret_conv_16 > 4096) { ret_conv_16_hu_conv = new org.ldk.structs.ChannelDetails(null, ret_conv_16); } + if (ret_conv_16_hu_conv != null) { ret_conv_16_hu_conv.ptrs_to.AddLast(this); }; + ret_conv_16_arr[q] = ret_conv_16_hu_conv; + } + return ret_conv_16_arr; + } + + /** + * Gets the list of usable channels, in random order. Useful as an argument to [`find_route`] + * to ensure non-announced channels are used. + * + * These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the + * documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria + * are. + * + * [`find_route`]: crate::routing::router::find_route + */ + public ChannelDetails[] list_usable_channels() { + long[] ret = bindings.ChannelManager_list_usable_channels(this.ptr); + GC.KeepAlive(this); + int ret_conv_16_len = ret.Length; + ChannelDetails[] ret_conv_16_arr = new ChannelDetails[ret_conv_16_len]; + for (int q = 0; q < ret_conv_16_len; q++) { + long ret_conv_16 = ret[q]; + org.ldk.structs.ChannelDetails ret_conv_16_hu_conv = null; if (ret_conv_16 < 0 || ret_conv_16 > 4096) { ret_conv_16_hu_conv = new org.ldk.structs.ChannelDetails(null, ret_conv_16); } + if (ret_conv_16_hu_conv != null) { ret_conv_16_hu_conv.ptrs_to.AddLast(this); }; + ret_conv_16_arr[q] = ret_conv_16_hu_conv; + } + return ret_conv_16_arr; + } + + /** + * Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs + * will be accepted on the given channel, and after additional timeout/the closing of all + * pending HTLCs, the channel will be closed on chain. + * + * If we are the channel initiator, we will pay between our [`Background`] and + * [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee + * estimate. + * If our counterparty is the channel initiator, we will require a channel closing + * transaction feerate of at least our [`Background`] feerate or the feerate which + * would appear on a force-closure transaction, whichever is lower. We will allow our + * counterparty to pay as much fee as they'd like, however. + * + * May generate a SendShutdown message event on success, which should be relayed. + * + * [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis + * [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background + * [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal + */ + public Result_NoneAPIErrorZ close_channel(byte[] channel_id, byte[] counterparty_node_id) { + long ret = bindings.ChannelManager_close_channel(this.ptr, InternalUtils.check_arr_len(channel_id, 32), InternalUtils.check_arr_len(counterparty_node_id, 33)); + GC.KeepAlive(this); + GC.KeepAlive(channel_id); + GC.KeepAlive(counterparty_node_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs + * will be accepted on the given channel, and after additional timeout/the closing of all + * pending HTLCs, the channel will be closed on chain. + * + * `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated + * the channel being closed or not: + * If we are the channel initiator, we will pay at least this feerate on the closing + * transaction. The upper-bound is set by + * [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee + * estimate (or `target_feerate_sat_per_1000_weight`, if it is greater). + * If our counterparty is the channel initiator, we will refuse to accept a channel closure + * transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which + * will appear on a force-closure transaction, whichever is lower). + * + * May generate a SendShutdown message event on success, which should be relayed. + * + * [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis + * [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background + * [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal + */ + public Result_NoneAPIErrorZ close_channel_with_target_feerate(byte[] channel_id, byte[] counterparty_node_id, int target_feerate_sats_per_1000_weight) { + long ret = bindings.ChannelManager_close_channel_with_target_feerate(this.ptr, InternalUtils.check_arr_len(channel_id, 32), InternalUtils.check_arr_len(counterparty_node_id, 33), target_feerate_sats_per_1000_weight); + GC.KeepAlive(this); + GC.KeepAlive(channel_id); + GC.KeepAlive(counterparty_node_id); + GC.KeepAlive(target_feerate_sats_per_1000_weight); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Force closes a channel, immediately broadcasting the latest local transaction(s) and + * rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to + * the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding + * channel. + */ + public Result_NoneAPIErrorZ force_close_broadcasting_latest_txn(byte[] channel_id, byte[] counterparty_node_id) { + long ret = bindings.ChannelManager_force_close_broadcasting_latest_txn(this.ptr, InternalUtils.check_arr_len(channel_id, 32), InternalUtils.check_arr_len(counterparty_node_id, 33)); + GC.KeepAlive(this); + GC.KeepAlive(channel_id); + GC.KeepAlive(counterparty_node_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting + * the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the + * `counterparty_node_id` isn't the counterparty of the corresponding channel. + * + * You can always get the latest local transaction(s) to broadcast from + * [`ChannelMonitor::get_latest_holder_commitment_txn`]. + */ + public Result_NoneAPIErrorZ force_close_without_broadcasting_txn(byte[] channel_id, byte[] counterparty_node_id) { + long ret = bindings.ChannelManager_force_close_without_broadcasting_txn(this.ptr, InternalUtils.check_arr_len(channel_id, 32), InternalUtils.check_arr_len(counterparty_node_id, 33)); + GC.KeepAlive(this); + GC.KeepAlive(channel_id); + GC.KeepAlive(counterparty_node_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Force close all channels, immediately broadcasting the latest local commitment transaction + * for each to the chain and rejecting new HTLCs on each. + */ + public void force_close_all_channels_broadcasting_latest_txn() { + bindings.ChannelManager_force_close_all_channels_broadcasting_latest_txn(this.ptr); + GC.KeepAlive(this); + } + + /** + * Force close all channels rejecting new HTLCs on each but without broadcasting the latest + * local transaction(s). + */ + public void force_close_all_channels_without_broadcasting_txn() { + bindings.ChannelManager_force_close_all_channels_without_broadcasting_txn(this.ptr); + GC.KeepAlive(this); + } + + /** + * Sends a payment along a given route. + * + * Value parameters are provided via the last hop in route, see documentation for RouteHop + * fields for more info. + * + * If a pending payment is currently in-flight with the same [`PaymentId`] provided, this + * method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment + * is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an + * [`Event::PaymentSent`]) LDK will not stop you from sending a second payment with the same + * [`PaymentId`]. + * + * Thus, in order to ensure duplicate payments are not sent, you should implement your own + * tracking of payments, including state to indicate once a payment has completed. Because you + * should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should + * consider using the [`PaymentHash`] as the key for tracking payments. In that case, the + * [`PaymentId`] should be a copy of the [`PaymentHash`] bytes. + * + * May generate SendHTLCs message(s) event on success, which should be relayed (e.g. via + * [`PeerManager::process_events`]). + * + * Each path may have a different return value, and PaymentSendValue may return a Vec with + * each entry matching the corresponding-index entry in the route paths, see + * PaymentSendFailure for more info. + * + * In general, a path may raise: + * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee, + * node public key) is specified. + * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates + * (including due to previous monitor update failure or new permanent monitor update + * failure). + * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the + * relevant updates. + * + * Note that depending on the type of the PaymentSendFailure the HTLC may have been + * irrevocably committed to on our end. In such a case, do NOT retry the payment with a + * different route unless you intend to pay twice! + * + * payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate + * the sender to the recipient and prevent payment-probing (deanonymization) attacks. For + * newer nodes, it will be provided to you in the invoice. If you do not have one, the Route + * must not contain multiple paths as multi-path payments require a recipient-provided + * payment_secret. + * + * If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature + * bit set (either as required or as available). If multiple paths are present in the Route, + * we assume the invoice had the basic_mpp feature set. + * + * [`Event::PaymentSent`]: events::Event::PaymentSent + * [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events + * + * Note that payment_secret (or a relevant inner pointer) may be NULL or all-0s to represent None + */ + public Result_NonePaymentSendFailureZ send_payment(org.ldk.structs.Route route, byte[] payment_hash, byte[] payment_secret, byte[] payment_id) { + long ret = bindings.ChannelManager_send_payment(this.ptr, route == null ? 0 : route.ptr, InternalUtils.check_arr_len(payment_hash, 32), InternalUtils.check_arr_len(payment_secret, 32), InternalUtils.check_arr_len(payment_id, 32)); + GC.KeepAlive(this); + GC.KeepAlive(route); + GC.KeepAlive(payment_hash); + GC.KeepAlive(payment_secret); + GC.KeepAlive(payment_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NonePaymentSendFailureZ ret_hu_conv = Result_NonePaymentSendFailureZ.constr_from_ptr(ret); + if (this != null) { this.ptrs_to.AddLast(route); }; + return ret_hu_conv; + } + + /** + * Retries a payment along the given [`Route`]. + * + * Errors returned are a superset of those returned from [`send_payment`], so see + * [`send_payment`] documentation for more details on errors. This method will also error if the + * retry amount puts the payment more than 10% over the payment's total amount, if the payment + * for the given `payment_id` cannot be found (likely due to timeout or success), or if + * further retries have been disabled with [`abandon_payment`]. + * + * [`send_payment`]: [`ChannelManager::send_payment`] + * [`abandon_payment`]: [`ChannelManager::abandon_payment`] + */ + public Result_NonePaymentSendFailureZ retry_payment(org.ldk.structs.Route route, byte[] payment_id) { + long ret = bindings.ChannelManager_retry_payment(this.ptr, route == null ? 0 : route.ptr, InternalUtils.check_arr_len(payment_id, 32)); + GC.KeepAlive(this); + GC.KeepAlive(route); + GC.KeepAlive(payment_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NonePaymentSendFailureZ ret_hu_conv = Result_NonePaymentSendFailureZ.constr_from_ptr(ret); + if (this != null) { this.ptrs_to.AddLast(route); }; + return ret_hu_conv; + } + + /** + * Signals that no further retries for the given payment will occur. + * + * After this method returns, no future calls to [`retry_payment`] for the given `payment_id` + * are allowed. If no [`Event::PaymentFailed`] event had been generated before, one will be + * generated as soon as there are no remaining pending HTLCs for this payment. + * + * Note that calling this method does *not* prevent a payment from succeeding. You must still + * wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to + * determine the ultimate status of a payment. + * + * If an [`Event::PaymentFailed`] event is generated and we restart without this + * [`ChannelManager`] having been persisted, the payment may still be in the pending state + * upon restart. This allows further calls to [`retry_payment`] (and requiring a second call + * to [`abandon_payment`] to mark the payment as failed again). Otherwise, future calls to + * [`retry_payment`] will fail with [`PaymentSendFailure::ParameterError`]. + * + * [`abandon_payment`]: Self::abandon_payment + * [`retry_payment`]: Self::retry_payment + * [`Event::PaymentFailed`]: events::Event::PaymentFailed + * [`Event::PaymentSent`]: events::Event::PaymentSent + */ + public void abandon_payment(byte[] payment_id) { + bindings.ChannelManager_abandon_payment(this.ptr, InternalUtils.check_arr_len(payment_id, 32)); + GC.KeepAlive(this); + GC.KeepAlive(payment_id); + } + + /** + * Send a spontaneous payment, which is a payment that does not require the recipient to have + * generated an invoice. Optionally, you may specify the preimage. If you do choose to specify + * the preimage, it must be a cryptographically secure random value that no intermediate node + * would be able to guess -- otherwise, an intermediate node may claim the payment and it will + * never reach the recipient. + * + * See [`send_payment`] documentation for more details on the return value of this function + * and idempotency guarantees provided by the [`PaymentId`] key. + * + * Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See + * [`send_payment`] for more information about the risks of duplicate preimage usage. + * + * Note that `route` must have exactly one path. + * + * [`send_payment`]: Self::send_payment + * + * Note that payment_preimage (or a relevant inner pointer) may be NULL or all-0s to represent None + */ + public Result_PaymentHashPaymentSendFailureZ send_spontaneous_payment(org.ldk.structs.Route route, byte[] payment_preimage, byte[] payment_id) { + long ret = bindings.ChannelManager_send_spontaneous_payment(this.ptr, route == null ? 0 : route.ptr, InternalUtils.check_arr_len(payment_preimage, 32), InternalUtils.check_arr_len(payment_id, 32)); + GC.KeepAlive(this); + GC.KeepAlive(route); + GC.KeepAlive(payment_preimage); + GC.KeepAlive(payment_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_PaymentHashPaymentSendFailureZ ret_hu_conv = Result_PaymentHashPaymentSendFailureZ.constr_from_ptr(ret); + if (this != null) { this.ptrs_to.AddLast(route); }; + return ret_hu_conv; + } + + /** + * Send a payment that is probing the given route for liquidity. We calculate the + * [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows + * us to easily discern them from real payments. + */ + public Result_C2Tuple_PaymentHashPaymentIdZPaymentSendFailureZ send_probe(RouteHop[] hops) { + long ret = bindings.ChannelManager_send_probe(this.ptr, hops != null ? InternalUtils.mapArray(hops, hops_conv_10 => hops_conv_10 == null ? 0 : hops_conv_10.ptr) : null); + GC.KeepAlive(this); + GC.KeepAlive(hops); + if (ret >= 0 && ret <= 4096) { return null; } + Result_C2Tuple_PaymentHashPaymentIdZPaymentSendFailureZ ret_hu_conv = Result_C2Tuple_PaymentHashPaymentIdZPaymentSendFailureZ.constr_from_ptr(ret); + foreach (RouteHop hops_conv_10 in hops) { if (this != null) { this.ptrs_to.AddLast(hops_conv_10); }; }; + return ret_hu_conv; + } + + /** + * Call this upon creation of a funding transaction for the given channel. + * + * Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs + * or if no output was found which matches the parameters in [`Event::FundingGenerationReady`]. + * + * Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation + * across the p2p network. + * + * Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided + * for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`]. + * + * May panic if the output found in the funding transaction is duplicative with some other + * channel (note that this should be trivially prevented by using unique funding transaction + * keys per-channel). + * + * Do NOT broadcast the funding transaction yourself. When we have safely received our + * counterparty's signature the funding transaction will automatically be broadcast via the + * [`BroadcasterInterface`] provided when this `ChannelManager` was constructed. + * + * Note that this includes RBF or similar transaction replacement strategies - lightning does + * not currently support replacing a funding transaction on an existing channel. Instead, + * create a new channel with a conflicting funding transaction. + * + * Note to keep the miner incentives aligned in moving the blockchain forward, we recommend + * the wallet software generating the funding transaction to apply anti-fee sniping as + * implemented by Bitcoin Core wallet. See + * for more details. + * + * [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady + * [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed + */ + public Result_NoneAPIErrorZ funding_transaction_generated(byte[] temporary_channel_id, byte[] counterparty_node_id, byte[] funding_transaction) { + long ret = bindings.ChannelManager_funding_transaction_generated(this.ptr, InternalUtils.check_arr_len(temporary_channel_id, 32), InternalUtils.check_arr_len(counterparty_node_id, 33), funding_transaction); + GC.KeepAlive(this); + GC.KeepAlive(temporary_channel_id); + GC.KeepAlive(counterparty_node_id); + GC.KeepAlive(funding_transaction); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Atomically updates the [`ChannelConfig`] for the given channels. + * + * Once the updates are applied, each eligible channel (advertised with a known short channel + * ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`], + * or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated + * containing the new [`ChannelUpdate`] message which should be broadcast to the network. + * + * Returns [`ChannelUnavailable`] when a channel is not found or an incorrect + * `counterparty_node_id` is provided. + * + * Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value + * below [`MIN_CLTV_EXPIRY_DELTA`]. + * + * If an error is returned, none of the updates should be considered applied. + * + * [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths + * [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat + * [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta + * [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate + * [`ChannelUpdate`]: msgs::ChannelUpdate + * [`ChannelUnavailable`]: APIError::ChannelUnavailable + * [`APIMisuseError`]: APIError::APIMisuseError + */ + public Result_NoneAPIErrorZ update_channel_config(byte[] counterparty_node_id, byte[][] channel_ids, org.ldk.structs.ChannelConfig config) { + long ret = bindings.ChannelManager_update_channel_config(this.ptr, InternalUtils.check_arr_len(counterparty_node_id, 33), channel_ids != null ? InternalUtils.mapArray(channel_ids, channel_ids_conv_8 => InternalUtils.check_arr_len(channel_ids_conv_8, 32)) : null, config == null ? 0 : config.ptr); + GC.KeepAlive(this); + GC.KeepAlive(counterparty_node_id); + GC.KeepAlive(channel_ids); + GC.KeepAlive(config); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + if (this != null) { this.ptrs_to.AddLast(config); }; + return ret_hu_conv; + } + + /** + * Attempts to forward an intercepted HTLC over the provided channel id and with the provided + * amount to forward. Should only be called in response to an [`HTLCIntercepted`] event. + * + * Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time + * channel to a receiving node if the node lacks sufficient inbound liquidity. + * + * To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use + * [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the + * receiver's invoice route hints. These route hints will signal to LDK to generate an + * [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or + * [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event. + * + * Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop + * you from forwarding more than you received. + * + * Errors if the event was not handled in time, in which case the HTLC was automatically failed + * backwards. + * + * [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs + * [`HTLCIntercepted`]: events::Event::HTLCIntercepted + */ + public Result_NoneAPIErrorZ forward_intercepted_htlc(byte[] intercept_id, byte[] next_hop_channel_id, byte[] _next_node_id, long amt_to_forward_msat) { + long ret = bindings.ChannelManager_forward_intercepted_htlc(this.ptr, InternalUtils.check_arr_len(intercept_id, 32), InternalUtils.check_arr_len(next_hop_channel_id, 32), InternalUtils.check_arr_len(_next_node_id, 33), amt_to_forward_msat); + GC.KeepAlive(this); + GC.KeepAlive(intercept_id); + GC.KeepAlive(next_hop_channel_id); + GC.KeepAlive(_next_node_id); + GC.KeepAlive(amt_to_forward_msat); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to + * an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`]. + * + * Errors if the event was not handled in time, in which case the HTLC was automatically failed + * backwards. + * + * [`HTLCIntercepted`]: events::Event::HTLCIntercepted + */ + public Result_NoneAPIErrorZ fail_intercepted_htlc(byte[] intercept_id) { + long ret = bindings.ChannelManager_fail_intercepted_htlc(this.ptr, InternalUtils.check_arr_len(intercept_id, 32)); + GC.KeepAlive(this); + GC.KeepAlive(intercept_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Processes HTLCs which are pending waiting on random forward delay. + * + * Should only really ever be called in response to a PendingHTLCsForwardable event. + * Will likely generate further events. + */ + public void process_pending_htlc_forwards() { + bindings.ChannelManager_process_pending_htlc_forwards(this.ptr); + GC.KeepAlive(this); + } + + /** + * Performs actions which should happen on startup and roughly once per minute thereafter. + * + * This currently includes: + * Increasing or decreasing the on-chain feerate estimates for our outbound channels, + * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more + * than a minute, informing the network that they should no longer attempt to route over + * the channel. + * Expiring a channel's previous `ChannelConfig` if necessary to only allow forwarding HTLCs + * with the current `ChannelConfig`. + * + * Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate + * estimate fetches. + */ + public void timer_tick_occurred() { + bindings.ChannelManager_timer_tick_occurred(this.ptr); + GC.KeepAlive(this); + } + + /** + * Indicates that the preimage for payment_hash is unknown or the received amount is incorrect + * after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources + * along the path (including in our own channel on which we received it). + * + * Note that in some cases around unclean shutdown, it is possible the payment may have + * already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a + * second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment + * may have already been failed automatically by LDK if it was nearing its expiration time. + * + * While LDK will never claim a payment automatically on your behalf (i.e. without you calling + * [`ChannelManager::claim_funds`]), you should still monitor for + * [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on + * startup during which time claims that were in-progress at shutdown may be replayed. + */ + public void fail_htlc_backwards(byte[] payment_hash) { + bindings.ChannelManager_fail_htlc_backwards(this.ptr, InternalUtils.check_arr_len(payment_hash, 32)); + GC.KeepAlive(this); + GC.KeepAlive(payment_hash); + } + + /** + * Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any + * [`MessageSendEvent`]s needed to claim the payment. + * + * Note that calling this method does *not* guarantee that the payment has been claimed. You + * must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be + * provided to your [`EventHandler`] when [`process_pending_events`] is next called. + * + * Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or + * [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable` + * event matches your expectation. If you fail to do so and call this method, you may provide + * the sender \"proof-of-payment\" when they did not fulfill the full expected payment. + * + * [`Event::PaymentClaimable`]: crate::util::events::Event::PaymentClaimable + * [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed + * [`process_pending_events`]: EventsProvider::process_pending_events + * [`create_inbound_payment`]: Self::create_inbound_payment + * [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash + */ + public void claim_funds(byte[] payment_preimage) { + bindings.ChannelManager_claim_funds(this.ptr, InternalUtils.check_arr_len(payment_preimage, 32)); + GC.KeepAlive(this); + GC.KeepAlive(payment_preimage); + } + + /** + * Gets the node_id held by this ChannelManager + */ + public byte[] get_our_node_id() { + byte[] ret = bindings.ChannelManager_get_our_node_id(this.ptr); + GC.KeepAlive(this); + return ret; + } + + /** + * Accepts a request to open a channel after a [`Event::OpenChannelRequest`]. + * + * The `temporary_channel_id` parameter indicates which inbound channel should be accepted, + * and the `counterparty_node_id` parameter is the id of the peer which has requested to open + * the channel. + * + * The `user_channel_id` parameter will be provided back in + * [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond + * with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call. + * + * Note that this method will return an error and reject the channel, if it requires support + * for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be + * used to accept such channels. + * + * [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest + * [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id + */ + public Result_NoneAPIErrorZ accept_inbound_channel(byte[] temporary_channel_id, byte[] counterparty_node_id, org.ldk.util.UInt128 user_channel_id) { + long ret = bindings.ChannelManager_accept_inbound_channel(this.ptr, InternalUtils.check_arr_len(temporary_channel_id, 32), InternalUtils.check_arr_len(counterparty_node_id, 33), user_channel_id.getLEBytes()); + GC.KeepAlive(this); + GC.KeepAlive(temporary_channel_id); + GC.KeepAlive(counterparty_node_id); + GC.KeepAlive(user_channel_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating + * it as confirmed immediately. + * + * The `user_channel_id` parameter will be provided back in + * [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond + * with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call. + * + * Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel + * and (if the counterparty agrees), enables forwarding of payments immediately. + * + * This fully trusts that the counterparty has honestly and correctly constructed the funding + * transaction and blindly assumes that it will eventually confirm. + * + * If it does not confirm before we decide to close the channel, or if the funding transaction + * does not pay to the correct script the correct amount, *you will lose funds*. + * + * [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest + * [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id + */ + public Result_NoneAPIErrorZ accept_inbound_channel_from_trusted_peer_0conf(byte[] temporary_channel_id, byte[] counterparty_node_id, org.ldk.util.UInt128 user_channel_id) { + long ret = bindings.ChannelManager_accept_inbound_channel_from_trusted_peer_0conf(this.ptr, InternalUtils.check_arr_len(temporary_channel_id, 32), InternalUtils.check_arr_len(counterparty_node_id, 33), user_channel_id.getLEBytes()); + GC.KeepAlive(this); + GC.KeepAlive(temporary_channel_id); + GC.KeepAlive(counterparty_node_id); + GC.KeepAlive(user_channel_id); + if (ret >= 0 && ret <= 4096) { return null; } + Result_NoneAPIErrorZ ret_hu_conv = Result_NoneAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Gets a payment secret and payment hash for use in an invoice given to a third party wishing + * to pay us. + * + * This differs from [`create_inbound_payment_for_hash`] only in that it generates the + * [`PaymentHash`] and [`PaymentPreimage`] for you. + * + * The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which + * will have the [`PaymentClaimable::payment_preimage`] field filled in. That should then be + * passed directly to [`claim_funds`]. + * + * See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements. + * + * Note that a malicious eavesdropper can intuit whether an inbound payment was created by + * `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime. + * + * # Note + * + * If you register an inbound payment with this method, then serialize the `ChannelManager`, then + * deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received. + * + * Errors if `min_value_msat` is greater than total bitcoin supply. + * + * [`claim_funds`]: Self::claim_funds + * [`PaymentClaimable`]: events::Event::PaymentClaimable + * [`PaymentClaimable::payment_preimage`]: events::Event::PaymentClaimable::payment_preimage + * [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash + */ + public Result_C2Tuple_PaymentHashPaymentSecretZNoneZ create_inbound_payment(org.ldk.structs.Option_u64Z min_value_msat, int invoice_expiry_delta_secs) { + long ret = bindings.ChannelManager_create_inbound_payment(this.ptr, min_value_msat.ptr, invoice_expiry_delta_secs); + GC.KeepAlive(this); + GC.KeepAlive(min_value_msat); + GC.KeepAlive(invoice_expiry_delta_secs); + if (ret >= 0 && ret <= 4096) { return null; } + Result_C2Tuple_PaymentHashPaymentSecretZNoneZ ret_hu_conv = Result_C2Tuple_PaymentHashPaymentSecretZNoneZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Legacy version of [`create_inbound_payment`]. Use this method if you wish to share + * serialized state with LDK node(s) running 0.0.103 and earlier. + * + * May panic if `invoice_expiry_delta_secs` is greater than one year. + * + * # Note + * This method is deprecated and will be removed soon. + * + * [`create_inbound_payment`]: Self::create_inbound_payment + */ + public Result_C2Tuple_PaymentHashPaymentSecretZAPIErrorZ create_inbound_payment_legacy(org.ldk.structs.Option_u64Z min_value_msat, int invoice_expiry_delta_secs) { + long ret = bindings.ChannelManager_create_inbound_payment_legacy(this.ptr, min_value_msat.ptr, invoice_expiry_delta_secs); + GC.KeepAlive(this); + GC.KeepAlive(min_value_msat); + GC.KeepAlive(invoice_expiry_delta_secs); + if (ret >= 0 && ret <= 4096) { return null; } + Result_C2Tuple_PaymentHashPaymentSecretZAPIErrorZ ret_hu_conv = Result_C2Tuple_PaymentHashPaymentSecretZAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is + * stored external to LDK. + * + * A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a + * payment secret fetched via this method or [`create_inbound_payment`], and which is at least + * the `min_value_msat` provided here, if one is provided. + * + * The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though + * note that LDK will not stop you from registering duplicate payment hashes for inbound + * payments. + * + * `min_value_msat` should be set if the invoice being generated contains a value. Any payment + * received for the returned [`PaymentHash`] will be required to be at least `min_value_msat` + * before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the + * sender \"proof-of-payment\" unless they have paid the required amount. + * + * `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for + * in excess of the current time. This should roughly match the expiry time set in the invoice. + * After this many seconds, we will remove the inbound payment, resulting in any attempts to + * pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for + * invoices when no timeout is set. + * + * Note that we use block header time to time-out pending inbound payments (with some margin + * to compensate for the inaccuracy of block header timestamps). Thus, in practice we will + * accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry. + * If you need exact expiry semantics, you should enforce them upon receipt of + * [`PaymentClaimable`]. + * + * Note that invoices generated for inbound payments should have their `min_final_cltv_expiry` + * set to at least [`MIN_FINAL_CLTV_EXPIRY`]. + * + * Note that a malicious eavesdropper can intuit whether an inbound payment was created by + * `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime. + * + * # Note + * + * If you register an inbound payment with this method, then serialize the `ChannelManager`, then + * deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received. + * + * Errors if `min_value_msat` is greater than total bitcoin supply. + * + * [`create_inbound_payment`]: Self::create_inbound_payment + * [`PaymentClaimable`]: events::Event::PaymentClaimable + */ + public Result_PaymentSecretNoneZ create_inbound_payment_for_hash(byte[] payment_hash, org.ldk.structs.Option_u64Z min_value_msat, int invoice_expiry_delta_secs) { + long ret = bindings.ChannelManager_create_inbound_payment_for_hash(this.ptr, InternalUtils.check_arr_len(payment_hash, 32), min_value_msat.ptr, invoice_expiry_delta_secs); + GC.KeepAlive(this); + GC.KeepAlive(payment_hash); + GC.KeepAlive(min_value_msat); + GC.KeepAlive(invoice_expiry_delta_secs); + if (ret >= 0 && ret <= 4096) { return null; } + Result_PaymentSecretNoneZ ret_hu_conv = Result_PaymentSecretNoneZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share + * serialized state with LDK node(s) running 0.0.103 and earlier. + * + * May panic if `invoice_expiry_delta_secs` is greater than one year. + * + * # Note + * This method is deprecated and will be removed soon. + * + * [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash + */ + public Result_PaymentSecretAPIErrorZ create_inbound_payment_for_hash_legacy(byte[] payment_hash, org.ldk.structs.Option_u64Z min_value_msat, int invoice_expiry_delta_secs) { + long ret = bindings.ChannelManager_create_inbound_payment_for_hash_legacy(this.ptr, InternalUtils.check_arr_len(payment_hash, 32), min_value_msat.ptr, invoice_expiry_delta_secs); + GC.KeepAlive(this); + GC.KeepAlive(payment_hash); + GC.KeepAlive(min_value_msat); + GC.KeepAlive(invoice_expiry_delta_secs); + if (ret >= 0 && ret <= 4096) { return null; } + Result_PaymentSecretAPIErrorZ ret_hu_conv = Result_PaymentSecretAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Gets an LDK-generated payment preimage from a payment hash and payment secret that were + * previously returned from [`create_inbound_payment`]. + * + * [`create_inbound_payment`]: Self::create_inbound_payment + */ + public Result_PaymentPreimageAPIErrorZ get_payment_preimage(byte[] payment_hash, byte[] payment_secret) { + long ret = bindings.ChannelManager_get_payment_preimage(this.ptr, InternalUtils.check_arr_len(payment_hash, 32), InternalUtils.check_arr_len(payment_secret, 32)); + GC.KeepAlive(this); + GC.KeepAlive(payment_hash); + GC.KeepAlive(payment_secret); + if (ret >= 0 && ret <= 4096) { return null; } + Result_PaymentPreimageAPIErrorZ ret_hu_conv = Result_PaymentPreimageAPIErrorZ.constr_from_ptr(ret); + return ret_hu_conv; + } + + /** + * Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids + * are used when constructing the phantom invoice's route hints. + * + * [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager + */ + public long get_phantom_scid() { + long ret = bindings.ChannelManager_get_phantom_scid(this.ptr); + GC.KeepAlive(this); + return ret; + } + + /** + * Gets route hints for use in receiving [phantom node payments]. + * + * [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager + */ + public PhantomRouteHints get_phantom_route_hints() { + long ret = bindings.ChannelManager_get_phantom_route_hints(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + org.ldk.structs.PhantomRouteHints ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.PhantomRouteHints(null, ret); } + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Gets a fake short channel id for use in receiving intercepted payments. These fake scids are + * used when constructing the route hints for HTLCs intended to be intercepted. See + * [`ChannelManager::forward_intercepted_htlc`]. + * + * Note that this method is not guaranteed to return unique values, you may need to call it a few + * times to get a unique scid. + */ + public long get_intercept_scid() { + long ret = bindings.ChannelManager_get_intercept_scid(this.ptr); + GC.KeepAlive(this); + return ret; + } + + /** + * Gets inflight HTLC information by processing pending outbound payments that are in + * our channels. May be used during pathfinding to account for in-use channel liquidity. + */ + public InFlightHtlcs compute_inflight_htlcs() { + long ret = bindings.ChannelManager_compute_inflight_htlcs(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + org.ldk.structs.InFlightHtlcs ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.InFlightHtlcs(null, ret); } + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Constructs a new MessageSendEventsProvider which calls the relevant methods on this_arg. + * This copies the `inner` pointer in this_arg and thus the returned MessageSendEventsProvider must be freed before this_arg is + */ + public MessageSendEventsProvider as_MessageSendEventsProvider() { + long ret = bindings.ChannelManager_as_MessageSendEventsProvider(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + MessageSendEventsProvider ret_hu_conv = new MessageSendEventsProvider(null, ret); + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Constructs a new EventsProvider which calls the relevant methods on this_arg. + * This copies the `inner` pointer in this_arg and thus the returned EventsProvider must be freed before this_arg is + */ + public EventsProvider as_EventsProvider() { + long ret = bindings.ChannelManager_as_EventsProvider(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + EventsProvider ret_hu_conv = new EventsProvider(null, ret); + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Constructs a new Listen which calls the relevant methods on this_arg. + * This copies the `inner` pointer in this_arg and thus the returned Listen must be freed before this_arg is + */ + public Listen as_Listen() { + long ret = bindings.ChannelManager_as_Listen(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + Listen ret_hu_conv = new Listen(null, ret); + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Constructs a new Confirm which calls the relevant methods on this_arg. + * This copies the `inner` pointer in this_arg and thus the returned Confirm must be freed before this_arg is + */ + public Confirm as_Confirm() { + long ret = bindings.ChannelManager_as_Confirm(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + Confirm ret_hu_conv = new Confirm(null, ret); + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool + * indicating whether persistence is necessary. Only one listener on + * [`await_persistable_update`], [`await_persistable_update_timeout`], or a future returned by + * [`get_persistable_update_future`] is guaranteed to be woken up. + * + * Note that this method is not available with the `no-std` feature. + * + * [`await_persistable_update`]: Self::await_persistable_update + * [`await_persistable_update_timeout`]: Self::await_persistable_update_timeout + * [`get_persistable_update_future`]: Self::get_persistable_update_future + */ + public bool await_persistable_update_timeout(long max_wait) { + bool ret = bindings.ChannelManager_await_persistable_update_timeout(this.ptr, max_wait); + GC.KeepAlive(this); + GC.KeepAlive(max_wait); + return ret; + } + + /** + * Blocks until ChannelManager needs to be persisted. Only one listener on + * [`await_persistable_update`], `await_persistable_update_timeout`, or a future returned by + * [`get_persistable_update_future`] is guaranteed to be woken up. + * + * [`await_persistable_update`]: Self::await_persistable_update + * [`get_persistable_update_future`]: Self::get_persistable_update_future + */ + public void await_persistable_update() { + bindings.ChannelManager_await_persistable_update(this.ptr); + GC.KeepAlive(this); + } + + /** + * Gets a [`Future`] that completes when a persistable update is available. Note that + * callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and + * should instead register actions to be taken later. + */ + public Future get_persistable_update_future() { + long ret = bindings.ChannelManager_get_persistable_update_future(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + org.ldk.structs.Future ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.Future(null, ret); } + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Gets the latest best block which was connected either via the [`chain::Listen`] or + * [`chain::Confirm`] interfaces. + */ + public BestBlock current_best_block() { + long ret = bindings.ChannelManager_current_best_block(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + org.ldk.structs.BestBlock ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.BestBlock(null, ret); } + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Constructs a new ChannelMessageHandler which calls the relevant methods on this_arg. + * This copies the `inner` pointer in this_arg and thus the returned ChannelMessageHandler must be freed before this_arg is + */ + public ChannelMessageHandler as_ChannelMessageHandler() { + long ret = bindings.ChannelManager_as_ChannelMessageHandler(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + ChannelMessageHandler ret_hu_conv = new ChannelMessageHandler(null, ret); + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + + /** + * Serialize the ChannelManager object into a byte array which can be read by ChannelManager_read + */ + public byte[] write() { + byte[] ret = bindings.ChannelManager_write(this.ptr); + GC.KeepAlive(this); + return ret; + } + + /** + * Constructs a new Payer which calls the relevant methods on this_arg. + * This copies the `inner` pointer in this_arg and thus the returned Payer must be freed before this_arg is + */ + public Payer as_Payer() { + long ret = bindings.ChannelManager_as_Payer(this.ptr); + GC.KeepAlive(this); + if (ret >= 0 && ret <= 4096) { return null; } + Payer ret_hu_conv = new Payer(null, ret); + if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; + return ret_hu_conv; + } + +} +} } }