/// Writes out a C-callable concrete Result<A, B> struct and utility methods
pub fn write_result_block<W: std::io::Write>(w: &mut W, mangled_container: &str, ok_type: &str, err_type: &str, clonable: bool) {
writeln!(w, "#[repr(C)]").unwrap();
+ writeln!(w, "/// The contents of {}", mangled_container).unwrap();
writeln!(w, "pub union {}Ptr {{", mangled_container).unwrap();
if ok_type != "()" {
+ writeln!(w, "\t/// A pointer to the contents in the success state.").unwrap();
+ writeln!(w, "\t/// Reading from this pointer when `result_ok` is not set is undefined.").unwrap();
writeln!(w, "\tpub result: *mut {},", ok_type).unwrap();
} else {
writeln!(w, "\t/// Note that this value is always NULL, as there are no contents in the OK variant").unwrap();
writeln!(w, "\tpub result: *mut std::ffi::c_void,").unwrap();
}
if err_type != "()" {
+ writeln!(w, "\t/// A pointer to the contents in the error state.").unwrap();
+ writeln!(w, "\t/// Reading from this pointer when `result_ok` is set is undefined.").unwrap();
writeln!(w, "\tpub err: *mut {},", err_type).unwrap();
} else {
writeln!(w, "\t/// Note that this value is always NULL, as there are no contents in the Err variant").unwrap();
}
writeln!(w, "}}").unwrap();
writeln!(w, "#[repr(C)]").unwrap();
+ writeln!(w, "/// A {} represents the result of a fallible operation,", mangled_container).unwrap();
+ writeln!(w, "/// containing a {} on success and a {} on failure.", ok_type, err_type).unwrap();
+ writeln!(w, "/// `result_ok` indicates the overall state, and the contents are provided via `contents`.").unwrap();
writeln!(w, "pub struct {} {{", mangled_container).unwrap();
+ writeln!(w, "\t/// The contents of this {}, accessible via either", mangled_container).unwrap();
+ writeln!(w, "\t/// `err` or `result` depending on the state of `result_ok`.").unwrap();
writeln!(w, "\tpub contents: {}Ptr,", mangled_container).unwrap();
+ writeln!(w, "\t/// Whether this {} represents a success state.", mangled_container).unwrap();
writeln!(w, "\tpub result_ok: bool,").unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
if ok_type != "()" {
+ writeln!(w, "/// Creates a new {} in the success state.", mangled_container).unwrap();
writeln!(w, "pub extern \"C\" fn {}_ok(o: {}) -> {} {{", mangled_container, ok_type, mangled_container).unwrap();
} else {
+ writeln!(w, "/// Creates a new {} in the success state.", mangled_container).unwrap();
writeln!(w, "pub extern \"C\" fn {}_ok() -> {} {{", mangled_container, mangled_container).unwrap();
}
writeln!(w, "\t{} {{", mangled_container).unwrap();
writeln!(w, "#[no_mangle]").unwrap();
if err_type != "()" {
+ writeln!(w, "/// Creates a new {} in the error state.", mangled_container).unwrap();
writeln!(w, "pub extern \"C\" fn {}_err(e: {}) -> {} {{", mangled_container, err_type, mangled_container).unwrap();
} else {
+ writeln!(w, "/// Creates a new {} in the error state.", mangled_container).unwrap();
writeln!(w, "pub extern \"C\" fn {}_err() -> {} {{", mangled_container, mangled_container).unwrap();
}
writeln!(w, "\t{} {{", mangled_container).unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Frees any resources used by the {}.", mangled_container).unwrap();
writeln!(w, "pub extern \"C\" fn {}_free(_res: {}) {{ }}", mangled_container, mangled_container).unwrap();
writeln!(w, "impl Drop for {} {{", mangled_container).unwrap();
writeln!(w, "\tfn drop(&mut self) {{").unwrap();
writeln!(w, "\t}}").unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Creates a new {} which has the same data as `orig`", mangled_container).unwrap();
+ writeln!(w, "/// but with all dynamically-allocated buffers duplicated in new buffers.").unwrap();
writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{ orig.clone() }}", mangled_container, mangled_container, mangled_container).unwrap();
}
}
/// Writes out a C-callable concrete Vec<A> struct and utility methods
pub fn write_vec_block<W: std::io::Write>(w: &mut W, mangled_container: &str, inner_type: &str, clonable: bool) {
writeln!(w, "#[repr(C)]").unwrap();
+ writeln!(w, "/// A dynamically-allocated array of {}s of arbitrary size.", inner_type).unwrap();
+ writeln!(w, "/// This corresponds to std::vector in C++").unwrap();
writeln!(w, "pub struct {} {{", mangled_container).unwrap();
+ writeln!(w, "\t/// The elements in the array.").unwrap();
+ writeln!(w, "\t/// If datalen is non-0 this must be a valid, non-NULL pointer allocated by malloc().").unwrap();
writeln!(w, "\tpub data: *mut {},", inner_type).unwrap();
+ writeln!(w, "\t/// The number of elements pointed to by `data`.").unwrap();
writeln!(w, "\tpub datalen: usize").unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Frees the buffer pointed to by `data` if `datalen` is non-0.").unwrap();
writeln!(w, "pub extern \"C\" fn {}_free(_res: {}) {{ }}", mangled_container, mangled_container).unwrap();
writeln!(w, "impl Drop for {} {{", mangled_container).unwrap();
writeln!(w, "\tfn drop(&mut self) {{").unwrap();
/// Writes out a C-callable concrete (A, B, ...) struct and utility methods
pub fn write_tuple_block<W: std::io::Write>(w: &mut W, mangled_container: &str, types: &[String], clonable: bool) {
writeln!(w, "#[repr(C)]").unwrap();
+ writeln!(w, "/// A tuple of {} elements. See the individual fields for the types contained.", types.len()).unwrap();
writeln!(w, "pub struct {} {{", mangled_container).unwrap();
for (idx, ty) in types.iter().enumerate() {
+ writeln!(w, "\t/// The element at position {}", idx).unwrap();
writeln!(w, "\tpub {}: {},", ('a' as u8 + idx as u8) as char, ty).unwrap();
}
writeln!(w, "}}").unwrap();
writeln!(w, "\t}}").unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Creates a new tuple which has the same data as `orig`").unwrap();
+ writeln!(w, "/// but with all dynamically-allocated buffers duplicated in new buffers.").unwrap();
writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{ orig.clone() }}", mangled_container, mangled_container, mangled_container).unwrap();
}
+ writeln!(w, "/// Creates a new {} from the contained elements.", mangled_container).unwrap();
write!(w, "#[no_mangle]\npub extern \"C\" fn {}_new(", mangled_container).unwrap();
for (idx, gen) in types.iter().enumerate() {
write!(w, "{}{}: ", if idx != 0 { ", " } else { "" }, ('a' as u8 + idx as u8) as char).unwrap();
writeln!(w, "}}\n}}\n").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Frees any resources used by the {}.", mangled_container).unwrap();
writeln!(w, "pub extern \"C\" fn {}_free(_res: {}) {{ }}", mangled_container, mangled_container).unwrap();
}
if clonable {
writeln!(w, "#[derive(Clone)]").unwrap();
}
+ writeln!(w, "/// An enum which can either contain a {} or not", inner_type).unwrap();
writeln!(w, "pub enum {} {{", mangled_container).unwrap();
+ writeln!(w, "\t/// When we're in this state, this {} contains a {}", mangled_container, inner_type).unwrap();
writeln!(w, "\tSome({}),", inner_type).unwrap();
+ writeln!(w, "\t/// When we're in this state, this {} contains nothing", mangled_container).unwrap();
writeln!(w, "\tNone").unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Constructs a new {} containing a {}", mangled_container, inner_type).unwrap();
writeln!(w, "pub extern \"C\" fn {}_some(o: {}) -> {} {{", mangled_container, inner_type, mangled_container).unwrap();
writeln!(w, "\t{}::Some(o)", mangled_container).unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Constructs a new {} containing nothing", mangled_container).unwrap();
writeln!(w, "pub extern \"C\" fn {}_none() -> {} {{", mangled_container, mangled_container).unwrap();
writeln!(w, "\t{}::None", mangled_container).unwrap();
writeln!(w, "}}").unwrap();
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Frees any resources associated with the {}, if we are in the Some state", inner_type).unwrap();
writeln!(w, "pub extern \"C\" fn {}_free(_res: {}) {{ }}", mangled_container, mangled_container).unwrap();
if clonable {
writeln!(w, "#[no_mangle]").unwrap();
+ writeln!(w, "/// Creates a new {} which has the same data as `orig`", mangled_container).unwrap();
+ writeln!(w, "/// but with all dynamically-allocated buffers duplicated in new buffers.").unwrap();
writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{ orig.clone() }}", mangled_container, mangled_container, mangled_container).unwrap();
}
}
+//! This module contains standard C-mapped types for types not in the original crate.
+
+/// Auto-generated C-mapped types for templated containers
pub mod derived;
use bitcoin::Script as BitcoinScript;
#[derive(Clone)]
#[repr(C)]
+/// Represents a valid secp256k1 public key serialized in "compressed form" as a 33 byte array.
pub struct PublicKey {
+ /// The bytes of the public key
pub compressed_form: [u8; 33],
}
impl PublicKey {
}
#[repr(C)]
+/// Represents a valid secp256k1 secret key serialized as a 32 byte array.
pub struct SecretKey {
+ /// The bytes of the secret key
pub bytes: [u8; 32],
}
impl SecretKey {
#[repr(C)]
#[derive(Clone)]
+/// Represents a secp256k1 signature serialized as two 32-byte numbers
pub struct Signature {
+ /// The bytes of the signature in "compact" form
pub compact_form: [u8; 64],
}
impl Signature {
}
#[repr(C)]
+/// Represents an error returned from libsecp256k1 during validation of some secp256k1 data
pub enum Secp256k1Error {
+ /// Signature failed verification
IncorrectSignature,
+ /// Badly sized message ("messages" are actually fixed-sized digests; see the MESSAGE_SIZE constant)
InvalidMessage,
+ /// Bad public key
InvalidPublicKey,
+ /// Bad signature
InvalidSignature,
+ /// Bad secret key
InvalidSecretKey,
+ /// Bad recovery id
InvalidRecoveryId,
+ /// Invalid tweak for add_assign or mul_assign
InvalidTweak,
+ /// tweak_add_check failed on an xonly public key
TweakCheckFailed,
+ /// Didn't pass enough memory to context creation with preallocated memory
NotEnoughMemory,
}
impl Secp256k1Error {
/// set. Similarly, while it may change in the future, all `Transaction`s you pass to Rust may have
/// `data_is_owned` either set or unset at your discretion.
pub struct Transaction {
+ /// The serialized transaction data.
+ ///
/// This is non-const for your convenience, an object passed to Rust is never written to.
pub data: *mut u8,
+ /// The length of the serialized transaction
pub datalen: usize,
+ /// Whether the data pointed to by `data` should be freed or not.
pub data_is_owned: bool,
}
impl Transaction {
}
}
#[no_mangle]
+/// Frees the data buffer, if data_is_owned is set and datalen > 0.
pub extern "C" fn Transaction_free(_res: Transaction) { }
pub(crate) fn bitcoin_to_C_outpoint(outpoint: ::bitcoin::blockdata::transaction::OutPoint) -> crate::chain::transaction::OutPoint {
/// A transaction output including a scriptPubKey and value.
/// This type *does* own its own memory, so must be free'd appropriately.
pub struct TxOut {
+ /// The script_pubkey in this output
pub script_pubkey: derived::CVec_u8Z,
+ /// The value, in satoshis, of this output
pub value: u64,
}
}
}
#[no_mangle]
+/// Frees the data pointed to by script_pubkey.
pub extern "C" fn TxOut_free(_res: TxOut) { }
#[no_mangle]
+/// Creates a new TxOut which has the same data as `orig` but with a new script buffer.
pub extern "C" fn TxOut_clone(orig: &TxOut) -> TxOut { orig.clone() }
#[repr(C)]
+/// A "slice" referencing some byte array. This is simply a length-tagged pointer which does not
+/// own the memory pointed to by data.
pub struct u8slice {
+ /// A pointer to the byte buffer
pub data: *const u8,
+ /// The number of bytes pointed to by `data`.
pub datalen: usize
}
impl u8slice {
/// Arbitrary 32 bytes, which could represent one of a few different things. You probably want to
/// look up the corresponding function in rust-lightning's docs.
pub struct ThirtyTwoBytes {
+ /// The thirty-two bytes
pub data: [u8; 32],
}
impl ThirtyTwoBytes {
}
#[repr(C)]
-pub struct ThreeBytes { pub data: [u8; 3], }
+/// A 3-byte byte array.
+pub struct ThreeBytes { /** The three bytes */ pub data: [u8; 3], }
#[derive(Clone)]
#[repr(C)]
-pub struct FourBytes { pub data: [u8; 4], }
+/// A 4-byte byte array.
+pub struct FourBytes { /** The four bytes */ pub data: [u8; 4], }
#[derive(Clone)]
#[repr(C)]
-pub struct TenBytes { pub data: [u8; 10], }
+/// A 10-byte byte array.
+pub struct TenBytes { /** The ten bytes */ pub data: [u8; 10], }
#[derive(Clone)]
#[repr(C)]
-pub struct SixteenBytes { pub data: [u8; 16], }
+/// A 16-byte byte array.
+pub struct SixteenBytes { /** The sixteen bytes */ pub data: [u8; 16], }
pub(crate) struct VecWriter(pub Vec<u8>);
impl lightning::util::ser::Writer for VecWriter {
/// A Rust str object, ie a reference to a UTF8-valid string.
/// This is *not* null-terminated so cannot be used directly as a C string!
pub struct Str {
+ /// A pointer to the string's bytes, in UTF8 encoding
pub chars: *const u8,
+ /// The number of bytes (not characters!) pointed to by `chars`
pub len: usize
}
impl Into<Str> for &'static str {