use chain::channelmonitor::ChannelMonitor;
use chain::transaction::OutPoint;
use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
-use ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs, RAACommitmentOrder, PaymentSendFailure};
+use ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs, RAACommitmentOrder, PaymentSendFailure, PaymentId};
use routing::network_graph::{NetGraphMsgHandler, NetworkGraph};
use routing::router::{Route, get_route};
use routing::scorer::Scorer;
}
}
-pub fn send_along_route_with_secret<'a, 'b, 'c>(origin_node: &Node<'a, 'b, 'c>, route: Route, expected_paths: &[&[&Node<'a, 'b, 'c>]], recv_value: u64, our_payment_hash: PaymentHash, our_payment_secret: PaymentSecret) {
- origin_node.node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap();
+pub fn send_along_route_with_secret<'a, 'b, 'c>(origin_node: &Node<'a, 'b, 'c>, route: Route, expected_paths: &[&[&Node<'a, 'b, 'c>]], recv_value: u64, our_payment_hash: PaymentHash, our_payment_secret: PaymentSecret) -> PaymentId {
+ let payment_id = origin_node.node.send_payment(&route, our_payment_hash, &Some(our_payment_secret)).unwrap();
check_added_monitors!(origin_node, expected_paths.len());
pass_along_route(origin_node, expected_paths, recv_value, our_payment_hash, our_payment_secret);
+ payment_id
}
pub fn pass_along_path<'a, 'b, 'c>(origin_node: &Node<'a, 'b, 'c>, expected_path: &[&Node<'a, 'b, 'c>], recv_value: u64, our_payment_hash: PaymentHash, our_payment_secret: Option<PaymentSecret>, ev: MessageSendEvent, payment_received_expected: bool, expected_preimage: Option<PaymentPreimage>) {
}
}
-pub fn send_along_route<'a, 'b, 'c>(origin_node: &Node<'a, 'b, 'c>, route: Route, expected_route: &[&Node<'a, 'b, 'c>], recv_value: u64) -> (PaymentPreimage, PaymentHash, PaymentSecret) {
+pub fn send_along_route<'a, 'b, 'c>(origin_node: &Node<'a, 'b, 'c>, route: Route, expected_route: &[&Node<'a, 'b, 'c>], recv_value: u64) -> (PaymentPreimage, PaymentHash, PaymentSecret, PaymentId) {
let (our_payment_preimage, our_payment_hash, our_payment_secret) = get_payment_preimage_hash!(expected_route.last().unwrap());
- send_along_route_with_secret(origin_node, route, &[expected_route], recv_value, our_payment_hash, our_payment_secret);
- (our_payment_preimage, our_payment_hash, our_payment_secret)
+ let payment_id = send_along_route_with_secret(origin_node, route, &[expected_route], recv_value, our_payment_hash, our_payment_secret);
+ (our_payment_preimage, our_payment_hash, our_payment_secret, payment_id)
}
pub fn claim_payment_along_route<'a, 'b, 'c>(origin_node: &Node<'a, 'b, 'c>, expected_paths: &[&[&Node<'a, 'b, 'c>]], skip_last: bool, our_payment_preimage: PaymentPreimage) {
assert_eq!(hop.pubkey, node.node.get_our_node_id());
}
- send_along_route(origin_node, route, expected_route, recv_value)
+ let res = send_along_route(origin_node, route, expected_route, recv_value);
+ (res.0, res.1, res.2)
}
pub fn route_over_limit<'a, 'b, 'c>(origin_node: &Node<'a, 'b, 'c>, expected_route: &[&Node<'a, 'b, 'c>], recv_value: u64) {
nodes[0].net_graph_msg_handler.handle_channel_update(&as_update).unwrap();
let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
- let (payment_preimage, _, _) = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000);
+ let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
// Check that after deserialization and reconnection we can still generate an identical
send_payment(&nodes[0], &[&nodes[1]], 1000000);
}
-fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool) {
+fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
// When a Channel is closed, any outbound HTLCs which were relayed through it are simply
// dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
// having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
// Route a payment, but force-close the channel before the HTLC fulfill message arrives at
// nodes[0].
- let (payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
+ let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap();
check_closed_broadcast!(nodes[0], true);
check_added_monitors!(nodes[0], 1);
assert_eq!(node_txn[0], node_txn[1]);
check_spends!(node_txn[1], funding_tx);
check_spends!(node_txn[2], node_txn[1]);
+ let timeout_txn = vec![node_txn[2].clone()];
assert!(nodes[1].node.claim_funds(payment_preimage));
check_added_monitors!(nodes[1], 1);
header.prev_blockhash = nodes[0].best_block_hash();
connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
+ if confirm_commitment_tx {
+ connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
+ }
+
+ header.prev_blockhash = nodes[0].best_block_hash();
+ let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { claim_txn } };
+
+ if payment_timeout {
+ assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
+ connect_block(&nodes[0], &claim_block);
+ connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
+ }
+
// Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
// returning TemporaryFailure. This should cause the claim event to never make its way to the
// ChannelManager.
chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
- header.prev_blockhash = nodes[0].best_block_hash();
- let claim_block = Block { header, txdata: claim_txn };
- connect_block(&nodes[0], &claim_block);
+ if payment_timeout {
+ connect_blocks(&nodes[0], 1);
+ } else {
+ connect_block(&nodes[0], &claim_block);
+ }
let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, mon_updates[0]).unwrap();
- expect_payment_sent!(nodes[0], payment_preimage);
+ if payment_timeout {
+ expect_payment_failed!(nodes[0], payment_hash, true);
+ } else {
+ expect_payment_sent!(nodes[0], payment_preimage);
+ }
// If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
// twice.
if persist_manager_post_event {
assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
+ } else if payment_timeout {
+ expect_payment_failed!(nodes[0], payment_hash, true);
} else {
expect_payment_sent!(nodes[0], payment_preimage);
}
#[test]
fn test_dup_htlc_onchain_fails_on_reload() {
- do_test_dup_htlc_onchain_fails_on_reload(true);
- do_test_dup_htlc_onchain_fails_on_reload(false);
+ do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
+ do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
+ do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
+ do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
+ do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
+ do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
}
#[test]
//! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
//! payments thereafter.
+use chain::{Confirm, Watch};
+use chain::channelmonitor::ChannelMonitor;
use ln::{PaymentPreimage, PaymentHash};
-use ln::channelmanager::{PaymentId, PaymentSendFailure};
+use ln::channelmanager::{ChannelManager, ChannelManagerReadArgs, PaymentId, PaymentSendFailure};
use ln::features::InitFeatures;
use ln::msgs;
-use ln::msgs::ChannelMessageHandler;
-use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
+use ln::msgs::{ChannelMessageHandler, ErrorAction};
+use util::events::{ClosureReason, Event, MessageSendEvent, MessageSendEventsProvider};
+use util::test_utils;
use util::errors::APIError;
+use util::enforcing_trait_impls::EnforcingSigner;
+use util::ser::{ReadableArgs, Writeable};
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::Hash;
+use bitcoin::BlockHash;
use prelude::*;
assert!(!nodes[0].node.has_pending_payments());
}
+
+fn do_retry_with_no_persist(confirm_before_reload: bool) {
+ // If we send a pending payment and `send_payment` returns success, we should always either
+ // return a payment failure event or a payment success event, and on failure the payment should
+ // be retryable.
+ //
+ // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
+ // always persisted asynchronously), the ChannelManager has to reload some payment data from
+ // ChannelMonitor(s) in some cases. This tests that reloading.
+ //
+ // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
+ // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
+ // which has separate codepaths for "commitment transaction already confirmed" and not.
+ let chanmon_cfgs = create_chanmon_cfgs(3);
+ let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
+ let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
+ let persister: test_utils::TestPersister;
+ let new_chain_monitor: test_utils::TestChainMonitor;
+ let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
+ let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
+
+ let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
+ create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
+
+ // Serialize the ChannelManager prior to sending payments
+ let nodes_0_serialized = nodes[0].node.encode();
+
+ // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
+ // out and retry.
+ let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
+ let (payment_preimage_1, _, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
+ let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
+ check_added_monitors!(nodes[0], 1);
+
+ let mut events = nodes[0].node.get_and_clear_pending_msg_events();
+ assert_eq!(events.len(), 1);
+ let payment_event = SendEvent::from_event(events.pop().unwrap());
+ assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
+
+ // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
+ // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
+ // which would prevent retry.
+ nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
+ nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
+
+ nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
+ commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
+ // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
+ let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
+
+ reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
+
+ let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
+ if confirm_before_reload {
+ mine_transaction(&nodes[0], &as_commitment_tx);
+ nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
+ }
+
+ // The ChannelMonitor should always be the latest version, as we're required to persist it
+ // during the `commitment_signed_dance!()`.
+ let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
+ get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
+
+ persister = test_utils::TestPersister::new();
+ let keys_manager = &chanmon_cfgs[0].keys_manager;
+ new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
+ nodes[0].chain_monitor = &new_chain_monitor;
+ let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
+ let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
+ &mut chan_0_monitor_read, keys_manager).unwrap();
+ assert!(chan_0_monitor_read.is_empty());
+
+ let mut nodes_0_read = &nodes_0_serialized[..];
+ let (_, nodes_0_deserialized_tmp) = {
+ let mut channel_monitors = HashMap::new();
+ channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
+ <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
+ default_config: test_default_channel_config(),
+ keys_manager,
+ fee_estimator: node_cfgs[0].fee_estimator,
+ chain_monitor: nodes[0].chain_monitor,
+ tx_broadcaster: nodes[0].tx_broadcaster.clone(),
+ logger: nodes[0].logger,
+ channel_monitors,
+ }).unwrap()
+ };
+ nodes_0_deserialized = nodes_0_deserialized_tmp;
+ assert!(nodes_0_read.is_empty());
+
+ assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
+ nodes[0].node = &nodes_0_deserialized;
+ check_added_monitors!(nodes[0], 1);
+
+ // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
+ // force-close the channel.
+ check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
+ assert!(nodes[0].node.list_channels().is_empty());
+ assert!(nodes[0].node.has_pending_payments());
+ let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+ assert_eq!(as_broadcasted_txn.len(), 1);
+ assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
+
+ nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
+ nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()});
+ assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
+
+ // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
+ // error, as the channel has hit the chain.
+ nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()});
+ let bs_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
+ nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
+ let as_err = nodes[0].node.get_and_clear_pending_msg_events();
+ assert_eq!(as_err.len(), 1);
+ match as_err[0] {
+ MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
+ assert_eq!(node_id, nodes[1].node.get_our_node_id());
+ nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
+ check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
+ check_added_monitors!(nodes[1], 1);
+ assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
+ },
+ _ => panic!("Unexpected event"),
+ }
+ check_closed_broadcast!(nodes[1], false);
+
+ // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
+ // we close in a moment.
+ nodes[2].node.claim_funds(payment_preimage_1);
+ check_added_monitors!(nodes[2], 1);
+ let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
+ nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
+ check_added_monitors!(nodes[1], 1);
+ commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
+
+ if confirm_before_reload {
+ let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
+ nodes[0].node.best_block_updated(&best_block.0, best_block.1);
+ }
+
+ // Create a new channel on which to retry the payment before we fail the payment via the
+ // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
+ // connecting several blocks while creating the channel (implying time has passed).
+ create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
+ assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
+
+ mine_transaction(&nodes[1], &as_commitment_tx);
+ let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+ assert_eq!(bs_htlc_claim_txn.len(), 1);
+ check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
+ expect_payment_forwarded!(nodes[1], None, false);
+
+ mine_transaction(&nodes[0], &as_commitment_tx);
+ mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
+ expect_payment_sent!(nodes[0], payment_preimage_1);
+ connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
+ let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
+ check_spends!(as_htlc_timeout_txn[2], funding_tx);
+ check_spends!(as_htlc_timeout_txn[0], as_commitment_tx);
+ check_spends!(as_htlc_timeout_txn[1], as_commitment_tx);
+ assert_eq!(as_htlc_timeout_txn.len(), 3);
+ if as_htlc_timeout_txn[0].input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
+ confirm_transaction(&nodes[0], &as_htlc_timeout_txn[1]);
+ } else {
+ confirm_transaction(&nodes[0], &as_htlc_timeout_txn[0]);
+ }
+ nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
+ expect_payment_failed!(nodes[0], payment_hash, false);
+
+ // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
+ // reloaded) via a route over the new channel, which work without issue and eventually be
+ // received and claimed at the recipient just like any other payment.
+ let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
+
+ assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
+ nodes[0].node.retry_payment(&new_route, payment_id).unwrap();
+ check_added_monitors!(nodes[0], 1);
+ let mut events = nodes[0].node.get_and_clear_pending_msg_events();
+ assert_eq!(events.len(), 1);
+ pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
+ claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
+}
+
+#[test]
+fn retry_with_no_persist() {
+ do_retry_with_no_persist(true);
+ do_retry_with_no_persist(false);
+}