//! The provided output descriptors follow a custom LDK data format and are currently not fully
//! compatible with Bitcoin Core output descriptors.
+use bitcoin::bip32::{ChildNumber, ExtendedPrivKey, ExtendedPubKey};
use bitcoin::blockdata::locktime::absolute::LockTime;
-use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn};
-use bitcoin::blockdata::script::{Script, ScriptBuf, Builder};
use bitcoin::blockdata::opcodes;
+use bitcoin::blockdata::script::{Builder, Script, ScriptBuf};
+use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut};
use bitcoin::ecdsa::Signature as EcdsaSignature;
use bitcoin::network::constants::Network;
use bitcoin::psbt::PartiallySignedTransaction;
-use bitcoin::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
use bitcoin::sighash;
use bitcoin::sighash::EcdsaSighashType;
use bitcoin::bech32::u5;
-use bitcoin::hashes::{Hash, HashEngine};
+use bitcoin::hash_types::WPubkeyHash;
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hashes::sha256d::Hash as Sha256dHash;
-use bitcoin::hash_types::WPubkeyHash;
+use bitcoin::hashes::{Hash, HashEngine};
-#[cfg(taproot)]
-use bitcoin::secp256k1::All;
-use bitcoin::secp256k1::{KeyPair, PublicKey, Scalar, Secp256k1, SecretKey, Signing};
use bitcoin::secp256k1::ecdh::SharedSecret;
use bitcoin::secp256k1::ecdsa::{RecoverableSignature, Signature};
use bitcoin::secp256k1::schnorr;
-use bitcoin::{secp256k1, Sequence, Witness, Txid};
+#[cfg(taproot)]
+use bitcoin::secp256k1::All;
+use bitcoin::secp256k1::{KeyPair, PublicKey, Scalar, Secp256k1, SecretKey, Signing};
+use bitcoin::{secp256k1, Sequence, Txid, Witness};
-use crate::util::transaction_utils;
-use crate::crypto::utils::{hkdf_extract_expand_twice, sign, sign_with_aux_rand};
-use crate::util::ser::{Writeable, Writer, Readable, ReadableArgs};
use crate::chain::transaction::OutPoint;
+use crate::crypto::utils::{hkdf_extract_expand_twice, sign, sign_with_aux_rand};
+use crate::ln::chan_utils::{
+ make_funding_redeemscript, ChannelPublicKeys, ChannelTransactionParameters, ClosingTransaction,
+ CommitmentTransaction, HTLCOutputInCommitment, HolderCommitmentTransaction,
+};
use crate::ln::channel::ANCHOR_OUTPUT_VALUE_SATOSHI;
-use crate::ln::{chan_utils, PaymentPreimage};
-use crate::ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
-use crate::ln::channel_keys::{DelayedPaymentBasepoint, DelayedPaymentKey, HtlcKey, HtlcBasepoint, RevocationKey, RevocationBasepoint};
-use crate::ln::msgs::{UnsignedChannelAnnouncement, UnsignedGossipMessage};
+use crate::ln::channel_keys::{
+ DelayedPaymentBasepoint, DelayedPaymentKey, HtlcBasepoint, HtlcKey, RevocationBasepoint,
+ RevocationKey,
+};
#[cfg(taproot)]
use crate::ln::msgs::PartialSignatureWithNonce;
+use crate::ln::msgs::{UnsignedChannelAnnouncement, UnsignedGossipMessage};
use crate::ln::script::ShutdownScript;
+use crate::ln::{chan_utils, PaymentPreimage};
use crate::offers::invoice::UnsignedBolt12Invoice;
use crate::offers::invoice_request::UnsignedInvoiceRequest;
+use crate::util::ser::{Readable, ReadableArgs, Writeable, Writer};
+use crate::util::transaction_utils;
-use crate::prelude::*;
-use core::ops::Deref;
-use core::sync::atomic::{AtomicUsize, Ordering};
-#[cfg(taproot)]
-use musig2::types::{PartialSignature, PublicNonce};
+use crate::crypto::chacha20::ChaCha20;
use crate::io::{self, Error};
use crate::ln::features::ChannelTypeFeatures;
use crate::ln::msgs::{DecodeError, MAX_VALUE_MSAT};
+use crate::prelude::*;
use crate::sign::ecdsa::{EcdsaChannelSigner, WriteableEcdsaChannelSigner};
#[cfg(taproot)]
use crate::sign::taproot::TaprootChannelSigner;
use crate::util::atomic_counter::AtomicCounter;
-use crate::crypto::chacha20::ChaCha20;
use crate::util::invoice::construct_invoice_preimage;
+use core::ops::Deref;
+use core::sync::atomic::{AtomicUsize, Ordering};
+#[cfg(taproot)]
+use musig2::types::{PartialSignature, PublicNonce};
pub(crate) mod type_resolver;
/// shorter.
// Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
// redeemscript push length.
- pub const MAX_WITNESS_LENGTH: u64 = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH as u64 + 1;
+ pub const MAX_WITNESS_LENGTH: u64 =
+ 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH as u64 + 1;
}
impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
/// Note that this will only return `Some` for [`StaticPaymentOutputDescriptor`]s that
/// originated from an anchor outputs channel, as they take the form of a P2WSH script.
pub fn witness_script(&self) -> Option<ScriptBuf> {
- self.channel_transaction_parameters.as_ref()
- .and_then(|channel_params|
- if channel_params.supports_anchors() {
- let payment_point = channel_params.holder_pubkeys.payment_point;
- Some(chan_utils::get_to_countersignatory_with_anchors_redeemscript(&payment_point))
- } else {
- None
- }
- )
+ self.channel_transaction_parameters.as_ref().and_then(|channel_params| {
+ if channel_params.supports_anchors() {
+ let payment_point = channel_params.holder_pubkeys.payment_point;
+ Some(chan_utils::get_to_countersignatory_with_anchors_redeemscript(&payment_point))
+ } else {
+ None
+ }
+ })
}
/// The maximum length a well-formed witness spending one of these should have.
/// Note: If you have the grind_signatures feature enabled, this will be at least 1 byte
/// shorter.
pub fn max_witness_length(&self) -> u64 {
- if self.channel_transaction_parameters.as_ref().map_or(false, |p| p.supports_anchors())
- {
+ if self.channel_transaction_parameters.as_ref().map_or(false, |p| p.supports_anchors()) {
let witness_script_weight = 1 /* pubkey push */ + 33 /* pubkey */ +
1 /* OP_CHECKSIGVERIFY */ + 1 /* OP_1 */ + 1 /* OP_CHECKSEQUENCEVERIFY */;
1 /* num witness items */ + 1 /* sig push */ + 73 /* sig including sighash flag */ +
///
/// For channels which were generated prior to LDK 0.0.119, no such argument existed,
/// however this field may still be filled in if such data is available.
- channel_keys_id: Option<[u8; 32]>
+ channel_keys_id: Option<[u8; 32]>,
},
/// An output to a P2WSH script which can be spent with a single signature after an `OP_CSV`
/// delay.
match self {
SpendableOutputDescriptor::StaticOutput { output, .. } => {
// Is a standard P2WPKH, no need for witness script
- bitcoin::psbt::Input {
- witness_utxo: Some(output.clone()),
- ..Default::default()
- }
+ bitcoin::psbt::Input { witness_utxo: Some(output.clone()), ..Default::default() }
},
SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
// TODO we could add the witness script as well
/// does not match the one we can spend.
///
/// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
- pub fn create_spendable_outputs_psbt(descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32, locktime: Option<LockTime>) -> Result<(PartiallySignedTransaction, u64), ()> {
+ pub fn create_spendable_outputs_psbt(
+ descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>,
+ change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32,
+ locktime: Option<LockTime>,
+ ) -> Result<(PartiallySignedTransaction, u64), ()> {
let mut input = Vec::with_capacity(descriptors.len());
let mut input_value = 0;
let mut witness_weight = 0;
for outp in descriptors {
match outp {
SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
- if !output_set.insert(descriptor.outpoint) { return Err(()); }
- let sequence =
- if descriptor.channel_transaction_parameters.as_ref()
- .map_or(false, |p| p.supports_anchors())
- {
- Sequence::from_consensus(1)
- } else {
- Sequence::ZERO
- };
+ if !output_set.insert(descriptor.outpoint) {
+ return Err(());
+ }
+ let sequence = if descriptor
+ .channel_transaction_parameters
+ .as_ref()
+ .map_or(false, |p| p.supports_anchors())
+ {
+ Sequence::from_consensus(1)
+ } else {
+ Sequence::ZERO
+ };
input.push(TxIn {
previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
script_sig: ScriptBuf::new(),
});
witness_weight += descriptor.max_witness_length();
#[cfg(feature = "grind_signatures")]
- { // Guarantees a low R signature
+ {
+ // Guarantees a low R signature
witness_weight -= 1;
}
input_value += descriptor.output.value;
},
SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
- if !output_set.insert(descriptor.outpoint) { return Err(()); }
+ if !output_set.insert(descriptor.outpoint) {
+ return Err(());
+ }
input.push(TxIn {
previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
script_sig: ScriptBuf::new(),
});
witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
#[cfg(feature = "grind_signatures")]
- { // Guarantees a low R signature
+ {
+ // Guarantees a low R signature
witness_weight -= 1;
}
input_value += descriptor.output.value;
},
SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output, .. } => {
- if !output_set.insert(*outpoint) { return Err(()); }
+ if !output_set.insert(*outpoint) {
+ return Err(());
+ }
input.push(TxIn {
previous_output: outpoint.into_bitcoin_outpoint(),
script_sig: ScriptBuf::new(),
});
witness_weight += 1 + 73 + 34;
#[cfg(feature = "grind_signatures")]
- { // Guarantees a low R signature
+ {
+ // Guarantees a low R signature
witness_weight -= 1;
}
input_value += output.value;
- }
+ },
+ }
+ if input_value > MAX_VALUE_MSAT / 1000 {
+ return Err(());
}
- if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
}
let mut tx = Transaction {
version: 2,
input,
output: outputs,
};
- let expected_max_weight =
- transaction_utils::maybe_add_change_output(&mut tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
+ let expected_max_weight = transaction_utils::maybe_add_change_output(
+ &mut tx,
+ input_value,
+ witness_weight,
+ feerate_sat_per_1000_weight,
+ change_destination_script,
+ )?;
let psbt_inputs = descriptors.iter().map(|d| d.to_psbt_input()).collect::<Vec<_>>();
let psbt = PartiallySignedTransaction {
}
impl_writeable_tlv_based!(ChannelDerivationParameters, {
- (0, value_satoshis, required),
- (2, keys_id, required),
- (4, transaction_parameters, required),
+ (0, value_satoshis, required),
+ (2, keys_id, required),
+ (4, transaction_parameters, required),
});
/// A descriptor used to sign for a commitment transaction's HTLC output.
/// taken.
pub preimage: Option<PaymentPreimage>,
/// The counterparty's signature required to spend the HTLC output.
- pub counterparty_sig: Signature
+ pub counterparty_sig: Signature,
}
impl_writeable_tlv_based!(HTLCDescriptor, {
/// Returns the UTXO to be spent by the HTLC input, which can be obtained via
/// [`Self::unsigned_tx_input`].
- pub fn previous_utxo<C: secp256k1::Signing + secp256k1::Verification>(&self, secp: &Secp256k1<C>) -> TxOut {
+ pub fn previous_utxo<C: secp256k1::Signing + secp256k1::Verification>(
+ &self, secp: &Secp256k1<C>,
+ ) -> TxOut {
TxOut {
script_pubkey: self.witness_script(secp).to_v0_p2wsh(),
value: self.htlc.amount_msat / 1000,
/// transaction.
pub fn unsigned_tx_input(&self) -> TxIn {
chan_utils::build_htlc_input(
- &self.commitment_txid, &self.htlc, &self.channel_derivation_parameters.transaction_parameters.channel_type_features
+ &self.commitment_txid,
+ &self.htlc,
+ &self.channel_derivation_parameters.transaction_parameters.channel_type_features,
)
}
/// Returns the delayed output created as a result of spending the HTLC output in the commitment
/// transaction.
- pub fn tx_output<C: secp256k1::Signing + secp256k1::Verification>(&self, secp: &Secp256k1<C>) -> TxOut {
- let channel_params = self.channel_derivation_parameters.transaction_parameters.as_holder_broadcastable();
+ pub fn tx_output<C: secp256k1::Signing + secp256k1::Verification>(
+ &self, secp: &Secp256k1<C>,
+ ) -> TxOut {
+ let channel_params =
+ self.channel_derivation_parameters.transaction_parameters.as_holder_broadcastable();
let broadcaster_keys = channel_params.broadcaster_pubkeys();
let counterparty_keys = channel_params.countersignatory_pubkeys();
let broadcaster_delayed_key = DelayedPaymentKey::from_basepoint(
- secp, &broadcaster_keys.delayed_payment_basepoint, &self.per_commitment_point
+ secp,
+ &broadcaster_keys.delayed_payment_basepoint,
+ &self.per_commitment_point,
+ );
+ let counterparty_revocation_key = &RevocationKey::from_basepoint(
+ &secp,
+ &counterparty_keys.revocation_basepoint,
+ &self.per_commitment_point,
);
- let counterparty_revocation_key = &RevocationKey::from_basepoint(&secp, &counterparty_keys.revocation_basepoint, &self.per_commitment_point);
chan_utils::build_htlc_output(
- self.feerate_per_kw, channel_params.contest_delay(), &self.htlc,
- channel_params.channel_type_features(), &broadcaster_delayed_key, &counterparty_revocation_key
+ self.feerate_per_kw,
+ channel_params.contest_delay(),
+ &self.htlc,
+ channel_params.channel_type_features(),
+ &broadcaster_delayed_key,
+ &counterparty_revocation_key,
)
}
/// Returns the witness script of the HTLC output in the commitment transaction.
- pub fn witness_script<C: secp256k1::Signing + secp256k1::Verification>(&self, secp: &Secp256k1<C>) -> ScriptBuf {
- let channel_params = self.channel_derivation_parameters.transaction_parameters.as_holder_broadcastable();
+ pub fn witness_script<C: secp256k1::Signing + secp256k1::Verification>(
+ &self, secp: &Secp256k1<C>,
+ ) -> ScriptBuf {
+ let channel_params =
+ self.channel_derivation_parameters.transaction_parameters.as_holder_broadcastable();
let broadcaster_keys = channel_params.broadcaster_pubkeys();
let counterparty_keys = channel_params.countersignatory_pubkeys();
let broadcaster_htlc_key = HtlcKey::from_basepoint(
- secp, &broadcaster_keys.htlc_basepoint, &self.per_commitment_point
+ secp,
+ &broadcaster_keys.htlc_basepoint,
+ &self.per_commitment_point,
);
let counterparty_htlc_key = HtlcKey::from_basepoint(
- secp, &counterparty_keys.htlc_basepoint, &self.per_commitment_point,
+ secp,
+ &counterparty_keys.htlc_basepoint,
+ &self.per_commitment_point,
+ );
+ let counterparty_revocation_key = &RevocationKey::from_basepoint(
+ &secp,
+ &counterparty_keys.revocation_basepoint,
+ &self.per_commitment_point,
);
- let counterparty_revocation_key = &RevocationKey::from_basepoint(&secp, &counterparty_keys.revocation_basepoint, &self.per_commitment_point);
chan_utils::get_htlc_redeemscript_with_explicit_keys(
- &self.htlc, channel_params.channel_type_features(), &broadcaster_htlc_key, &counterparty_htlc_key,
+ &self.htlc,
+ channel_params.channel_type_features(),
+ &broadcaster_htlc_key,
+ &counterparty_htlc_key,
&counterparty_revocation_key,
)
}
/// transaction.
pub fn tx_input_witness(&self, signature: &Signature, witness_script: &Script) -> Witness {
chan_utils::build_htlc_input_witness(
- signature, &self.counterparty_sig, &self.preimage, witness_script,
- &self.channel_derivation_parameters.transaction_parameters.channel_type_features
+ signature,
+ &self.counterparty_sig,
+ &self.preimage,
+ witness_script,
+ &self.channel_derivation_parameters.transaction_parameters.channel_type_features,
)
}
/// Derives the channel signer required to sign the HTLC input.
- pub fn derive_channel_signer<S: WriteableEcdsaChannelSigner, SP: Deref>(&self, signer_provider: &SP) -> S
+ pub fn derive_channel_signer<S: WriteableEcdsaChannelSigner, SP: Deref>(
+ &self, signer_provider: &SP,
+ ) -> S
where
- SP::Target: SignerProvider<EcdsaSigner= S>
+ SP::Target: SignerProvider<EcdsaSigner = S>,
{
let mut signer = signer_provider.derive_channel_signer(
self.channel_derivation_parameters.value_satoshis,
self.channel_derivation_parameters.keys_id,
);
- signer.provide_channel_parameters(&self.channel_derivation_parameters.transaction_parameters);
+ signer
+ .provide_channel_parameters(&self.channel_derivation_parameters.transaction_parameters);
signer
}
}
/// Gets the per-commitment point for a specific commitment number
///
/// Note that the commitment number starts at `(1 << 48) - 1` and counts backwards.
- fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
+ fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>)
+ -> PublicKey;
/// Gets the commitment secret for a specific commitment number as part of the revocation process
///
///
/// Note that all the relevant preimages will be provided, but there may also be additional
/// irrelevant or duplicate preimages.
- fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction,
- outbound_htlc_preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
+ fn validate_holder_commitment(
+ &self, holder_tx: &HolderCommitmentTransaction,
+ outbound_htlc_preimages: Vec<PaymentPreimage>,
+ ) -> Result<(), ()>;
/// Validate the counterparty's revocation.
///
/// should be resolved to allow LDK to resume forwarding HTLCs.
///
/// Errors if the [`Recipient`] variant is not supported by the implementation.
- fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()>;
+ fn ecdh(
+ &self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>,
+ ) -> Result<SharedSecret, ()>;
/// Sign an invoice.
///
/// The secret key used to sign the invoice is dependent on the [`Recipient`].
///
/// Errors if the [`Recipient`] variant is not supported by the implementation.
- fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()>;
+ fn sign_invoice(
+ &self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient,
+ ) -> Result<RecoverableSignature, ()>;
/// Signs the [`TaggedHash`] of a BOLT 12 invoice request.
///
///
/// [`TaggedHash`]: crate::offers::merkle::TaggedHash
fn sign_bolt12_invoice_request(
- &self, invoice_request: &UnsignedInvoiceRequest
+ &self, invoice_request: &UnsignedInvoiceRequest,
) -> Result<schnorr::Signature, ()>;
/// Signs the [`TaggedHash`] of a BOLT 12 invoice.
///
/// [`TaggedHash`]: crate::offers::merkle::TaggedHash
fn sign_bolt12_invoice(
- &self, invoice: &UnsignedBolt12Invoice
+ &self, invoice: &UnsignedBolt12Invoice,
) -> Result<schnorr::Signature, ()>;
/// Sign a gossip message.
#[cfg(taproot)]
#[doc(hidden)]
#[deprecated(note = "Remove once taproot cfg is removed")]
-pub type DynSignerProvider = dyn SignerProvider<EcdsaSigner = InMemorySigner, TaprootSigner = InMemorySigner>;
+pub type DynSignerProvider =
+ dyn SignerProvider<EcdsaSigner = InMemorySigner, TaprootSigner = InMemorySigner>;
/// A dynamic [`SignerProvider`] temporarily needed for doc tests.
#[cfg(not(taproot))]
/// `channel_keys_id`.
///
/// This method must return a different value each time it is called.
- fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32];
+ fn generate_channel_keys_id(
+ &self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128,
+ ) -> [u8; 32];
/// Derives the private key material backing a `Signer`.
///
/// [`SignerProvider::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be
/// re-derived from its `channel_keys_id`, which can be obtained through its trait method
/// [`ChannelSigner::channel_keys_id`].
- fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::EcdsaSigner;
+ fn derive_channel_signer(
+ &self, channel_value_satoshis: u64, channel_keys_id: [u8; 32],
+ ) -> Self::EcdsaSigner;
/// Reads a [`Signer`] for this [`SignerProvider`] from the given input stream.
/// This is only called during deserialization of other objects which contain
impl PartialEq for InMemorySigner {
fn eq(&self, other: &Self) -> bool {
- self.funding_key == other.funding_key &&
- self.revocation_base_key == other.revocation_base_key &&
- self.payment_key == other.payment_key &&
- self.delayed_payment_base_key == other.delayed_payment_base_key &&
- self.htlc_base_key == other.htlc_base_key &&
- self.commitment_seed == other.commitment_seed &&
- self.holder_channel_pubkeys == other.holder_channel_pubkeys &&
- self.channel_parameters == other.channel_parameters &&
- self.channel_value_satoshis == other.channel_value_satoshis &&
- self.channel_keys_id == other.channel_keys_id
+ self.funding_key == other.funding_key
+ && self.revocation_base_key == other.revocation_base_key
+ && self.payment_key == other.payment_key
+ && self.delayed_payment_base_key == other.delayed_payment_base_key
+ && self.htlc_base_key == other.htlc_base_key
+ && self.commitment_seed == other.commitment_seed
+ && self.holder_channel_pubkeys == other.holder_channel_pubkeys
+ && self.channel_parameters == other.channel_parameters
+ && self.channel_value_satoshis == other.channel_value_satoshis
+ && self.channel_keys_id == other.channel_keys_id
}
}
impl InMemorySigner {
/// Creates a new [`InMemorySigner`].
pub fn new<C: Signing>(
- secp_ctx: &Secp256k1<C>,
- funding_key: SecretKey,
- revocation_base_key: SecretKey,
- payment_key: SecretKey,
- delayed_payment_base_key: SecretKey,
- htlc_base_key: SecretKey,
- commitment_seed: [u8; 32],
- channel_value_satoshis: u64,
- channel_keys_id: [u8; 32],
+ secp_ctx: &Secp256k1<C>, funding_key: SecretKey, revocation_base_key: SecretKey,
+ payment_key: SecretKey, delayed_payment_base_key: SecretKey, htlc_base_key: SecretKey,
+ commitment_seed: [u8; 32], channel_value_satoshis: u64, channel_keys_id: [u8; 32],
rand_bytes_unique_start: [u8; 32],
) -> InMemorySigner {
- let holder_channel_pubkeys =
- InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
- &payment_key, &delayed_payment_base_key,
- &htlc_base_key);
+ let holder_channel_pubkeys = InMemorySigner::make_holder_keys(
+ secp_ctx,
+ &funding_key,
+ &revocation_base_key,
+ &payment_key,
+ &delayed_payment_base_key,
+ &htlc_base_key,
+ );
InMemorySigner {
funding_key,
revocation_base_key,
}
}
- fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
- funding_key: &SecretKey,
- revocation_base_key: &SecretKey,
- payment_key: &SecretKey,
- delayed_payment_base_key: &SecretKey,
- htlc_base_key: &SecretKey) -> ChannelPublicKeys {
+ fn make_holder_keys<C: Signing>(
+ secp_ctx: &Secp256k1<C>, funding_key: &SecretKey, revocation_base_key: &SecretKey,
+ payment_key: &SecretKey, delayed_payment_base_key: &SecretKey, htlc_base_key: &SecretKey,
+ ) -> ChannelPublicKeys {
let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
ChannelPublicKeys {
funding_pubkey: from_secret(&funding_key),
revocation_basepoint: RevocationBasepoint::from(from_secret(&revocation_base_key)),
payment_point: from_secret(&payment_key),
- delayed_payment_basepoint: DelayedPaymentBasepoint::from(from_secret(&delayed_payment_base_key)),
+ delayed_payment_basepoint: DelayedPaymentBasepoint::from(from_secret(
+ &delayed_payment_base_key,
+ )),
htlc_basepoint: HtlcBasepoint::from(from_secret(&htlc_base_key)),
}
}
/// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
/// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
pub fn counterparty_pubkeys(&self) -> Option<&ChannelPublicKeys> {
- self.get_channel_parameters()
- .and_then(|params| params.counterparty_parameters.as_ref().map(|params| ¶ms.pubkeys))
+ self.get_channel_parameters().and_then(|params| {
+ params.counterparty_parameters.as_ref().map(|params| ¶ms.pubkeys)
+ })
}
/// Returns the `contest_delay` value specified by our counterparty and applied on holder-broadcastable
/// Will return `None` if [`ChannelSigner::provide_channel_parameters`] has not been called.
/// In general, this is safe to `unwrap` only in [`ChannelSigner`] implementation.
pub fn counterparty_selected_contest_delay(&self) -> Option<u16> {
- self.get_channel_parameters()
- .and_then(|params| params.counterparty_parameters.as_ref().map(|params| params.selected_contest_delay))
+ self.get_channel_parameters().and_then(|params| {
+ params.counterparty_parameters.as_ref().map(|params| params.selected_contest_delay)
+ })
}
/// Returns the `contest_delay` value specified by us and applied on transactions broadcastable
/// or if an output descriptor `script_pubkey` does not match the one we can spend.
///
/// [`descriptor.outpoint`]: StaticPaymentOutputDescriptor::outpoint
- pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Witness, ()> {
+ pub fn sign_counterparty_payment_input<C: Signing>(
+ &self, spend_tx: &Transaction, input_idx: usize,
+ descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>,
+ ) -> Result<Witness, ()> {
// TODO: We really should be taking the SigHashCache as a parameter here instead of
// spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
// so that we can check them. This requires upstream rust-bitcoin changes (as well as
// bindings updates to support SigHashCache objects).
- if spend_tx.input.len() <= input_idx { return Err(()); }
- if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
- if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
+ if spend_tx.input.len() <= input_idx {
+ return Err(());
+ }
+ if !spend_tx.input[input_idx].script_sig.is_empty() {
+ return Err(());
+ }
+ if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint()
+ {
+ return Err(());
+ }
let remotepubkey = bitcoin::PublicKey::new(self.pubkeys().payment_point);
// We cannot always assume that `channel_parameters` is set, so can't just call
// `self.channel_parameters()` or anything that relies on it
- let supports_anchors_zero_fee_htlc_tx = self.channel_type_features()
+ let supports_anchors_zero_fee_htlc_tx = self
+ .channel_type_features()
.map(|features| features.supports_anchors_zero_fee_htlc_tx())
.unwrap_or(false);
} else {
ScriptBuf::new_p2pkh(&remotepubkey.pubkey_hash())
};
- let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
+ let sighash = hash_to_message!(
+ &sighash::SighashCache::new(spend_tx)
+ .segwit_signature_hash(
+ input_idx,
+ &witness_script,
+ descriptor.output.value,
+ EcdsaSighashType::All
+ )
+ .unwrap()[..]
+ );
let remotesig = sign_with_aux_rand(secp_ctx, &sighash, &self.payment_key, &self);
let payment_script = if supports_anchors_zero_fee_htlc_tx {
witness_script.to_v0_p2wsh()
ScriptBuf::new_v0_p2wpkh(&remotepubkey.wpubkey_hash().unwrap())
};
- if payment_script != descriptor.output.script_pubkey { return Err(()); }
+ if payment_script != descriptor.output.script_pubkey {
+ return Err(());
+ }
let mut witness = Vec::with_capacity(2);
witness.push(remotesig.serialize_der().to_vec());
///
/// [`descriptor.outpoint`]: DelayedPaymentOutputDescriptor::outpoint
/// [`descriptor.to_self_delay`]: DelayedPaymentOutputDescriptor::to_self_delay
- pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Witness, ()> {
+ pub fn sign_dynamic_p2wsh_input<C: Signing>(
+ &self, spend_tx: &Transaction, input_idx: usize,
+ descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>,
+ ) -> Result<Witness, ()> {
// TODO: We really should be taking the SigHashCache as a parameter here instead of
// spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
// so that we can check them. This requires upstream rust-bitcoin changes (as well as
// bindings updates to support SigHashCache objects).
- if spend_tx.input.len() <= input_idx { return Err(()); }
- if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
- if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
- if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
-
- let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key);
- let delayed_payment_pubkey = DelayedPaymentKey::from_secret_key(&secp_ctx, &delayed_payment_key);
- let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
- let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
+ if spend_tx.input.len() <= input_idx {
+ return Err(());
+ }
+ if !spend_tx.input[input_idx].script_sig.is_empty() {
+ return Err(());
+ }
+ if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint()
+ {
+ return Err(());
+ }
+ if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 {
+ return Err(());
+ }
+
+ let delayed_payment_key = chan_utils::derive_private_key(
+ &secp_ctx,
+ &descriptor.per_commitment_point,
+ &self.delayed_payment_base_key,
+ );
+ let delayed_payment_pubkey =
+ DelayedPaymentKey::from_secret_key(&secp_ctx, &delayed_payment_key);
+ let witness_script = chan_utils::get_revokeable_redeemscript(
+ &descriptor.revocation_pubkey,
+ descriptor.to_self_delay,
+ &delayed_payment_pubkey,
+ );
+ let sighash = hash_to_message!(
+ &sighash::SighashCache::new(spend_tx)
+ .segwit_signature_hash(
+ input_idx,
+ &witness_script,
+ descriptor.output.value,
+ EcdsaSighashType::All
+ )
+ .unwrap()[..]
+ );
let local_delayedsig = EcdsaSignature {
sig: sign_with_aux_rand(secp_ctx, &sighash, &delayed_payment_key, &self),
hash_ty: EcdsaSighashType::All,
};
- let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
+ let payment_script =
+ bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
- if descriptor.output.script_pubkey != payment_script { return Err(()); }
+ if descriptor.output.script_pubkey != payment_script {
+ return Err(());
+ }
Ok(Witness::from_slice(&[
&local_delayedsig.serialize()[..],
}
impl ChannelSigner for InMemorySigner {
- fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
- let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
+ fn get_per_commitment_point(
+ &self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>,
+ ) -> PublicKey {
+ let commitment_secret =
+ SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx))
+ .unwrap();
PublicKey::from_secret_key(secp_ctx, &commitment_secret)
}
chan_utils::build_commitment_secret(&self.commitment_seed, idx)
}
- fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _outbound_htlc_preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
+ fn validate_holder_commitment(
+ &self, _holder_tx: &HolderCommitmentTransaction,
+ _outbound_htlc_preimages: Vec<PaymentPreimage>,
+ ) -> Result<(), ()> {
Ok(())
}
Ok(())
}
- fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
+ fn pubkeys(&self) -> &ChannelPublicKeys {
+ &self.holder_channel_pubkeys
+ }
- fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
+ fn channel_keys_id(&self) -> [u8; 32] {
+ self.channel_keys_id
+ }
fn provide_channel_parameters(&mut self, channel_parameters: &ChannelTransactionParameters) {
- assert!(self.channel_parameters.is_none() || self.channel_parameters.as_ref().unwrap() == channel_parameters);
+ assert!(
+ self.channel_parameters.is_none()
+ || self.channel_parameters.as_ref().unwrap() == channel_parameters
+ );
if self.channel_parameters.is_some() {
// The channel parameters were already set and they match, return early.
return;
}
}
-const MISSING_PARAMS_ERR: &'static str = "ChannelSigner::provide_channel_parameters must be called before signing operations";
+const MISSING_PARAMS_ERR: &'static str =
+ "ChannelSigner::provide_channel_parameters must be called before signing operations";
impl EcdsaChannelSigner for InMemorySigner {
- fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _inbound_htlc_preimages: Vec<PaymentPreimage>, _outbound_htlc_preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
+ fn sign_counterparty_commitment(
+ &self, commitment_tx: &CommitmentTransaction,
+ _inbound_htlc_preimages: Vec<PaymentPreimage>,
+ _outbound_htlc_preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>,
+ ) -> Result<(Signature, Vec<Signature>), ()> {
let trusted_tx = commitment_tx.trust();
let keys = trusted_tx.keys();
let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
- let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
+ let channel_funding_redeemscript =
+ make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
let built_tx = trusted_tx.built_transaction();
- let commitment_sig = built_tx.sign_counterparty_commitment(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
+ let commitment_sig = built_tx.sign_counterparty_commitment(
+ &self.funding_key,
+ &channel_funding_redeemscript,
+ self.channel_value_satoshis,
+ secp_ctx,
+ );
let commitment_txid = built_tx.txid;
let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
let holder_selected_contest_delay =
self.holder_selected_contest_delay().expect(MISSING_PARAMS_ERR);
let chan_type = &channel_parameters.channel_type_features;
- let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), holder_selected_contest_delay, htlc, chan_type, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
+ let htlc_tx = chan_utils::build_htlc_transaction(
+ &commitment_txid,
+ commitment_tx.feerate_per_kw(),
+ holder_selected_contest_delay,
+ htlc,
+ chan_type,
+ &keys.broadcaster_delayed_payment_key,
+ &keys.revocation_key,
+ );
let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, chan_type, &keys);
- let htlc_sighashtype = if chan_type.supports_anchors_zero_fee_htlc_tx() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
- let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
- let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key);
+ let htlc_sighashtype = if chan_type.supports_anchors_zero_fee_htlc_tx() {
+ EcdsaSighashType::SinglePlusAnyoneCanPay
+ } else {
+ EcdsaSighashType::All
+ };
+ let htlc_sighash = hash_to_message!(
+ &sighash::SighashCache::new(&htlc_tx)
+ .segwit_signature_hash(
+ 0,
+ &htlc_redeemscript,
+ htlc.amount_msat / 1000,
+ htlc_sighashtype
+ )
+ .unwrap()[..]
+ );
+ let holder_htlc_key = chan_utils::derive_private_key(
+ &secp_ctx,
+ &keys.per_commitment_point,
+ &self.htlc_base_key,
+ );
htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
}
Ok((commitment_sig, htlc_sigs))
}
- fn sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
+ fn sign_holder_commitment(
+ &self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>,
+ ) -> Result<Signature, ()> {
let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
- let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
+ let funding_redeemscript =
+ make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
let trusted_tx = commitment_tx.trust();
- Ok(trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx))
- }
-
- #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
- fn unsafe_sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
+ Ok(trusted_tx.built_transaction().sign_holder_commitment(
+ &self.funding_key,
+ &funding_redeemscript,
+ self.channel_value_satoshis,
+ &self,
+ secp_ctx,
+ ))
+ }
+
+ #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
+ fn unsafe_sign_holder_commitment(
+ &self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>,
+ ) -> Result<Signature, ()> {
let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
- let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
+ let funding_redeemscript =
+ make_funding_redeemscript(&funding_pubkey, &counterparty_keys.funding_pubkey);
let trusted_tx = commitment_tx.trust();
- Ok(trusted_tx.built_transaction().sign_holder_commitment(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, &self, secp_ctx))
- }
-
- fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
- let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
+ Ok(trusted_tx.built_transaction().sign_holder_commitment(
+ &self.funding_key,
+ &funding_redeemscript,
+ self.channel_value_satoshis,
+ &self,
+ secp_ctx,
+ ))
+ }
+
+ fn sign_justice_revoked_output(
+ &self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey,
+ secp_ctx: &Secp256k1<secp256k1::All>,
+ ) -> Result<Signature, ()> {
+ let revocation_key = chan_utils::derive_private_revocation_key(
+ &secp_ctx,
+ &per_commitment_key,
+ &self.revocation_base_key,
+ );
let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
let revocation_pubkey = RevocationKey::from_basepoint(
- &secp_ctx, &self.pubkeys().revocation_basepoint, &per_commitment_point,
+ &secp_ctx,
+ &self.pubkeys().revocation_basepoint,
+ &per_commitment_point,
);
let witness_script = {
let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
let holder_selected_contest_delay =
self.holder_selected_contest_delay().expect(MISSING_PARAMS_ERR);
- let counterparty_delayedpubkey = DelayedPaymentKey::from_basepoint(&secp_ctx, &counterparty_keys.delayed_payment_basepoint, &per_commitment_point);
- chan_utils::get_revokeable_redeemscript(&revocation_pubkey, holder_selected_contest_delay, &counterparty_delayedpubkey)
+ let counterparty_delayedpubkey = DelayedPaymentKey::from_basepoint(
+ &secp_ctx,
+ &counterparty_keys.delayed_payment_basepoint,
+ &per_commitment_point,
+ );
+ chan_utils::get_revokeable_redeemscript(
+ &revocation_pubkey,
+ holder_selected_contest_delay,
+ &counterparty_delayedpubkey,
+ )
};
let mut sighash_parts = sighash::SighashCache::new(justice_tx);
- let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
- return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
+ let sighash = hash_to_message!(
+ &sighash_parts
+ .segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All)
+ .unwrap()[..]
+ );
+ return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self));
}
- fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
- let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key);
+ fn sign_justice_revoked_htlc(
+ &self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey,
+ htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>,
+ ) -> Result<Signature, ()> {
+ let revocation_key = chan_utils::derive_private_revocation_key(
+ &secp_ctx,
+ &per_commitment_key,
+ &self.revocation_base_key,
+ );
let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
let revocation_pubkey = RevocationKey::from_basepoint(
- &secp_ctx, &self.pubkeys().revocation_basepoint, &per_commitment_point,
+ &secp_ctx,
+ &self.pubkeys().revocation_basepoint,
+ &per_commitment_point,
);
let witness_script = {
let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
let counterparty_htlcpubkey = HtlcKey::from_basepoint(
- &secp_ctx, &counterparty_keys.htlc_basepoint, &per_commitment_point,
+ &secp_ctx,
+ &counterparty_keys.htlc_basepoint,
+ &per_commitment_point,
);
let holder_htlcpubkey = HtlcKey::from_basepoint(
- &secp_ctx, &self.pubkeys().htlc_basepoint, &per_commitment_point,
+ &secp_ctx,
+ &self.pubkeys().htlc_basepoint,
+ &per_commitment_point,
);
let chan_type = self.channel_type_features().expect(MISSING_PARAMS_ERR);
- chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, chan_type, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
+ chan_utils::get_htlc_redeemscript_with_explicit_keys(
+ &htlc,
+ chan_type,
+ &counterparty_htlcpubkey,
+ &holder_htlcpubkey,
+ &revocation_pubkey,
+ )
};
let mut sighash_parts = sighash::SighashCache::new(justice_tx);
- let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
- return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self))
+ let sighash = hash_to_message!(
+ &sighash_parts
+ .segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All)
+ .unwrap()[..]
+ );
+ return Ok(sign_with_aux_rand(secp_ctx, &sighash, &revocation_key, &self));
}
fn sign_holder_htlc_transaction(
&self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
- secp_ctx: &Secp256k1<secp256k1::All>
+ secp_ctx: &Secp256k1<secp256k1::All>,
) -> Result<Signature, ()> {
let witness_script = htlc_descriptor.witness_script(secp_ctx);
- let sighash = &sighash::SighashCache::new(&*htlc_tx).segwit_signature_hash(
- input, &witness_script, htlc_descriptor.htlc.amount_msat / 1000, EcdsaSighashType::All
- ).map_err(|_| ())?;
+ let sighash = &sighash::SighashCache::new(&*htlc_tx)
+ .segwit_signature_hash(
+ input,
+ &witness_script,
+ htlc_descriptor.htlc.amount_msat / 1000,
+ EcdsaSighashType::All,
+ )
+ .map_err(|_| ())?;
let our_htlc_private_key = chan_utils::derive_private_key(
- &secp_ctx, &htlc_descriptor.per_commitment_point, &self.htlc_base_key
+ &secp_ctx,
+ &htlc_descriptor.per_commitment_point,
+ &self.htlc_base_key,
);
let sighash = hash_to_message!(sighash.as_byte_array());
Ok(sign_with_aux_rand(&secp_ctx, &sighash, &our_htlc_private_key, &self))
}
- fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
- let htlc_key = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key);
+ fn sign_counterparty_htlc_transaction(
+ &self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey,
+ htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>,
+ ) -> Result<Signature, ()> {
+ let htlc_key =
+ chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key);
let revocation_pubkey = RevocationKey::from_basepoint(
- &secp_ctx, &self.pubkeys().revocation_basepoint, &per_commitment_point,
+ &secp_ctx,
+ &self.pubkeys().revocation_basepoint,
+ &per_commitment_point,
);
let counterparty_keys = self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR);
let counterparty_htlcpubkey = HtlcKey::from_basepoint(
- &secp_ctx, &counterparty_keys.htlc_basepoint, &per_commitment_point,
+ &secp_ctx,
+ &counterparty_keys.htlc_basepoint,
+ &per_commitment_point,
);
let htlc_basepoint = self.pubkeys().htlc_basepoint;
let htlcpubkey = HtlcKey::from_basepoint(&secp_ctx, &htlc_basepoint, &per_commitment_point);
let chan_type = self.channel_type_features().expect(MISSING_PARAMS_ERR);
- let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, chan_type, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey);
+ let witness_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(
+ &htlc,
+ chan_type,
+ &counterparty_htlcpubkey,
+ &htlcpubkey,
+ &revocation_pubkey,
+ );
let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
- let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
+ let sighash = hash_to_message!(
+ &sighash_parts
+ .segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All)
+ .unwrap()[..]
+ );
Ok(sign_with_aux_rand(secp_ctx, &sighash, &htlc_key, &self))
}
- fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
+ fn sign_closing_transaction(
+ &self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>,
+ ) -> Result<Signature, ()> {
let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
- let counterparty_funding_key = &self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR).funding_pubkey;
- let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, counterparty_funding_key);
- Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
+ let counterparty_funding_key =
+ &self.counterparty_pubkeys().expect(MISSING_PARAMS_ERR).funding_pubkey;
+ let channel_funding_redeemscript =
+ make_funding_redeemscript(&funding_pubkey, counterparty_funding_key);
+ Ok(closing_tx.trust().sign(
+ &self.funding_key,
+ &channel_funding_redeemscript,
+ self.channel_value_satoshis,
+ secp_ctx,
+ ))
}
fn sign_holder_anchor_input(
&self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<secp256k1::All>,
) -> Result<Signature, ()> {
- let witness_script = chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
- let sighash = sighash::SighashCache::new(&*anchor_tx).segwit_signature_hash(
- input, &witness_script, ANCHOR_OUTPUT_VALUE_SATOSHI, EcdsaSighashType::All,
- ).unwrap();
+ let witness_script =
+ chan_utils::get_anchor_redeemscript(&self.holder_channel_pubkeys.funding_pubkey);
+ let sighash = sighash::SighashCache::new(&*anchor_tx)
+ .segwit_signature_hash(
+ input,
+ &witness_script,
+ ANCHOR_OUTPUT_VALUE_SATOSHI,
+ EcdsaSighashType::All,
+ )
+ .unwrap();
Ok(sign_with_aux_rand(secp_ctx, &hash_to_message!(&sighash[..]), &self.funding_key, &self))
}
fn sign_channel_announcement_with_funding_key(
- &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>
+ &self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>,
) -> Result<Signature, ()> {
let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
Ok(secp_ctx.sign_ecdsa(&msghash, &self.funding_key))
#[cfg(taproot)]
impl TaprootChannelSigner for InMemorySigner {
- fn generate_local_nonce_pair(&self, commitment_number: u64, secp_ctx: &Secp256k1<All>) -> PublicNonce {
+ fn generate_local_nonce_pair(
+ &self, commitment_number: u64, secp_ctx: &Secp256k1<All>,
+ ) -> PublicNonce {
todo!()
}
- fn partially_sign_counterparty_commitment(&self, counterparty_nonce: PublicNonce, commitment_tx: &CommitmentTransaction, inbound_htlc_preimages: Vec<PaymentPreimage>, outbound_htlc_preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<All>) -> Result<(PartialSignatureWithNonce, Vec<schnorr::Signature>), ()> {
+ fn partially_sign_counterparty_commitment(
+ &self, counterparty_nonce: PublicNonce, commitment_tx: &CommitmentTransaction,
+ inbound_htlc_preimages: Vec<PaymentPreimage>,
+ outbound_htlc_preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<All>,
+ ) -> Result<(PartialSignatureWithNonce, Vec<schnorr::Signature>), ()> {
todo!()
}
- fn finalize_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, counterparty_partial_signature: PartialSignatureWithNonce, secp_ctx: &Secp256k1<All>) -> Result<PartialSignature, ()> {
+ fn finalize_holder_commitment(
+ &self, commitment_tx: &HolderCommitmentTransaction,
+ counterparty_partial_signature: PartialSignatureWithNonce, secp_ctx: &Secp256k1<All>,
+ ) -> Result<PartialSignature, ()> {
todo!()
}
- fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<All>) -> Result<schnorr::Signature, ()> {
+ fn sign_justice_revoked_output(
+ &self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey,
+ secp_ctx: &Secp256k1<All>,
+ ) -> Result<schnorr::Signature, ()> {
todo!()
}
- fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<All>) -> Result<schnorr::Signature, ()> {
+ fn sign_justice_revoked_htlc(
+ &self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey,
+ htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<All>,
+ ) -> Result<schnorr::Signature, ()> {
todo!()
}
- fn sign_holder_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor, secp_ctx: &Secp256k1<All>) -> Result<schnorr::Signature, ()> {
+ fn sign_holder_htlc_transaction(
+ &self, htlc_tx: &Transaction, input: usize, htlc_descriptor: &HTLCDescriptor,
+ secp_ctx: &Secp256k1<All>,
+ ) -> Result<schnorr::Signature, ()> {
todo!()
}
- fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<All>) -> Result<schnorr::Signature, ()> {
+ fn sign_counterparty_htlc_transaction(
+ &self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey,
+ htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<All>,
+ ) -> Result<schnorr::Signature, ()> {
todo!()
}
- fn partially_sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<All>) -> Result<PartialSignature, ()> {
+ fn partially_sign_closing_transaction(
+ &self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<All>,
+ ) -> Result<PartialSignature, ()> {
todo!()
}
- fn sign_holder_anchor_input(&self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<All>) -> Result<schnorr::Signature, ()> {
+ fn sign_holder_anchor_input(
+ &self, anchor_tx: &Transaction, input: usize, secp_ctx: &Secp256k1<All>,
+ ) -> Result<schnorr::Signature, ()> {
todo!()
}
}
}
}
-impl<ES: Deref> ReadableArgs<ES> for InMemorySigner where ES::Target: EntropySource {
+impl<ES: Deref> ReadableArgs<ES> for InMemorySigner
+where
+ ES::Target: EntropySource,
+{
fn read<R: io::Read>(reader: &mut R, entropy_source: ES) -> Result<Self, DecodeError> {
let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
let counterparty_channel_data = Readable::read(reader)?;
let channel_value_satoshis = Readable::read(reader)?;
let secp_ctx = Secp256k1::signing_only();
- let holder_channel_pubkeys =
- InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
- &payment_key, &delayed_payment_base_key, &htlc_base_key);
+ let holder_channel_pubkeys = InMemorySigner::make_holder_keys(
+ &secp_ctx,
+ &funding_key,
+ &revocation_base_key,
+ &payment_key,
+ &delayed_payment_base_key,
+ &htlc_base_key,
+ );
let keys_id = Readable::read(reader)?;
read_tlv_fields!(reader, {});
// Note that when we aren't serializing the key, network doesn't matter
match ExtendedPrivKey::new_master(Network::Testnet, seed) {
Ok(master_key) => {
- let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
+ let node_secret = master_key
+ .ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap())
+ .expect("Your RNG is busted")
+ .private_key;
let node_id = PublicKey::from_secret_key(&secp_ctx, &node_secret);
- let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
+ let destination_script = match master_key
+ .ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap())
+ {
Ok(destination_key) => {
- let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
- Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
+ let wpubkey_hash = WPubkeyHash::hash(
+ &ExtendedPubKey::from_priv(&secp_ctx, &destination_key)
+ .to_pub()
+ .to_bytes(),
+ );
+ Builder::new()
+ .push_opcode(opcodes::all::OP_PUSHBYTES_0)
.push_slice(&wpubkey_hash.to_byte_array())
.into_script()
},
Err(_) => panic!("Your RNG is busted"),
};
- let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
- Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
+ let shutdown_pubkey = match master_key
+ .ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap())
+ {
+ Ok(shutdown_key) => {
+ ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key
+ },
Err(_) => panic!("Your RNG is busted"),
};
- let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
- let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
+ let channel_master_key = master_key
+ .ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap())
+ .expect("Your RNG is busted");
+ let inbound_payment_key: SecretKey = master_key
+ .ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap())
+ .expect("Your RNG is busted")
+ .private_key;
let mut inbound_pmt_key_bytes = [0; 32];
inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
rand_bytes_engine.input(&starting_time_nanos.to_be_bytes());
rand_bytes_engine.input(seed);
rand_bytes_engine.input(b"LDK PRNG Seed");
- let rand_bytes_unique_start = Sha256::from_engine(rand_bytes_engine).to_byte_array();
+ let rand_bytes_unique_start =
+ Sha256::from_engine(rand_bytes_engine).to_byte_array();
let mut res = KeysManager {
secp_ctx,
}
/// Derive an old [`WriteableEcdsaChannelSigner`] containing per-channel secrets based on a key derivation parameters.
- pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
+ pub fn derive_channel_keys(
+ &self, channel_value_satoshis: u64, params: &[u8; 32],
+ ) -> InMemorySigner {
let chan_id = u64::from_be_bytes(params[0..8].try_into().unwrap());
let mut unique_start = Sha256::engine();
unique_start.input(params);
// We only seriously intend to rely on the channel_master_key for true secure
// entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
// starting_time provided in the constructor) to be unique.
- let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx,
- ChildNumber::from_hardened_idx((chan_id as u32) % (1 << 31)).expect("key space exhausted")
- ).expect("Your RNG is busted");
+ let child_privkey = self
+ .channel_master_key
+ .ckd_priv(
+ &self.secp_ctx,
+ ChildNumber::from_hardened_idx((chan_id as u32) % (1 << 31))
+ .expect("key space exhausted"),
+ )
+ .expect("Your RNG is busted");
unique_start.input(&child_privkey.private_key[..]);
let seed = Sha256::from_engine(unique_start).to_byte_array();
sha.input(&seed);
sha.input(&$prev_key[..]);
sha.input(&$info[..]);
- SecretKey::from_slice(&Sha256::from_engine(sha).to_byte_array()).expect("SHA-256 is busted")
- }}
+ SecretKey::from_slice(&Sha256::from_engine(sha).to_byte_array())
+ .expect("SHA-256 is busted")
+ }};
}
let funding_key = key_step!(b"funding key", commitment_seed);
let revocation_base_key = key_step!(b"revocation base key", funding_key);
///
/// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
/// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
- pub fn sign_spendable_outputs_psbt<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], mut psbt: PartiallySignedTransaction, secp_ctx: &Secp256k1<C>) -> Result<PartiallySignedTransaction, ()> {
+ pub fn sign_spendable_outputs_psbt<C: Signing>(
+ &self, descriptors: &[&SpendableOutputDescriptor], mut psbt: PartiallySignedTransaction,
+ secp_ctx: &Secp256k1<C>,
+ ) -> Result<PartiallySignedTransaction, ()> {
let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
for outp in descriptors {
- let get_input_idx = |outpoint: &OutPoint| psbt.unsigned_tx.input.iter().position(|i| i.previous_output == outpoint.into_bitcoin_outpoint()).ok_or(());
+ let get_input_idx = |outpoint: &OutPoint| {
+ psbt.unsigned_tx
+ .input
+ .iter()
+ .position(|i| i.previous_output == outpoint.into_bitcoin_outpoint())
+ .ok_or(())
+ };
match outp {
SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
let input_idx = get_input_idx(&descriptor.outpoint)?;
- if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
- let mut signer = self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id);
- if let Some(channel_params) = descriptor.channel_transaction_parameters.as_ref() {
+ if keys_cache.is_none()
+ || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id
+ {
+ let mut signer = self.derive_channel_keys(
+ descriptor.channel_value_satoshis,
+ &descriptor.channel_keys_id,
+ );
+ if let Some(channel_params) =
+ descriptor.channel_transaction_parameters.as_ref()
+ {
signer.provide_channel_parameters(channel_params);
}
keys_cache = Some((signer, descriptor.channel_keys_id));
}
- let witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&psbt.unsigned_tx, input_idx, &descriptor, &secp_ctx)?;
+ let witness = keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(
+ &psbt.unsigned_tx,
+ input_idx,
+ &descriptor,
+ &secp_ctx,
+ )?;
psbt.inputs[input_idx].final_script_witness = Some(witness);
},
SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
let input_idx = get_input_idx(&descriptor.outpoint)?;
- if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
+ if keys_cache.is_none()
+ || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id
+ {
keys_cache = Some((
- self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
- descriptor.channel_keys_id));
+ self.derive_channel_keys(
+ descriptor.channel_value_satoshis,
+ &descriptor.channel_keys_id,
+ ),
+ descriptor.channel_keys_id,
+ ));
}
- let witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&psbt.unsigned_tx, input_idx, &descriptor, &secp_ctx)?;
+ let witness = keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(
+ &psbt.unsigned_tx,
+ input_idx,
+ &descriptor,
+ &secp_ctx,
+ )?;
psbt.inputs[input_idx].final_script_witness = Some(witness);
},
SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output, .. } => {
let input_idx = get_input_idx(outpoint)?;
- let derivation_idx = if output.script_pubkey == self.destination_script {
- 1
- } else {
- 2
- };
+ let derivation_idx =
+ if output.script_pubkey == self.destination_script { 1 } else { 2 };
let secret = {
// Note that when we aren't serializing the key, network doesn't matter
match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
Ok(master_key) => {
- match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
+ match master_key.ckd_priv(
+ &secp_ctx,
+ ChildNumber::from_hardened_idx(derivation_idx)
+ .expect("key space exhausted"),
+ ) {
Ok(key) => key,
Err(_) => panic!("Your RNG is busted"),
}
- }
+ },
Err(_) => panic!("Your rng is busted"),
}
};
if derivation_idx == 2 {
assert_eq!(pubkey.inner, self.shutdown_pubkey);
}
- let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
- let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
-
- if payment_script != output.script_pubkey { return Err(()); };
+ let witness_script =
+ bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
+ let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet)
+ .expect("uncompressed key found")
+ .script_pubkey();
+
+ if payment_script != output.script_pubkey {
+ return Err(());
+ };
- let sighash = hash_to_message!(&sighash::SighashCache::new(&psbt.unsigned_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
+ let sighash = hash_to_message!(
+ &sighash::SighashCache::new(&psbt.unsigned_tx)
+ .segwit_signature_hash(
+ input_idx,
+ &witness_script,
+ output.value,
+ EcdsaSighashType::All
+ )
+ .unwrap()[..]
+ );
let sig = sign_with_aux_rand(secp_ctx, &sighash, &secret.private_key, &self);
let mut sig_ser = sig.serialize_der().to_vec();
sig_ser.push(EcdsaSighashType::All as u8);
- let witness = Witness::from_slice(&[&sig_ser, &pubkey.inner.serialize().to_vec()]);
+ let witness =
+ Witness::from_slice(&[&sig_ser, &pubkey.inner.serialize().to_vec()]);
psbt.inputs[input_idx].final_script_witness = Some(witness);
},
}
///
/// May panic if the [`SpendableOutputDescriptor`]s were not generated by channels which used
/// this [`KeysManager`] or one of the [`InMemorySigner`] created by this [`KeysManager`].
- pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32, locktime: Option<LockTime>, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
- let (mut psbt, expected_max_weight) = SpendableOutputDescriptor::create_spendable_outputs_psbt(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, locktime)?;
+ pub fn spend_spendable_outputs<C: Signing>(
+ &self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>,
+ change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32,
+ locktime: Option<LockTime>, secp_ctx: &Secp256k1<C>,
+ ) -> Result<Transaction, ()> {
+ let (mut psbt, expected_max_weight) =
+ SpendableOutputDescriptor::create_spendable_outputs_psbt(
+ descriptors,
+ outputs,
+ change_destination_script,
+ feerate_sat_per_1000_weight,
+ locktime,
+ )?;
psbt = self.sign_spendable_outputs_psbt(descriptors, psbt, secp_ctx)?;
let spend_tx = psbt.extract_tx();
debug_assert!(expected_max_weight >= spend_tx.weight().to_wu());
// Note that witnesses with a signature vary somewhat in size, so allow
// `expected_max_weight` to overshoot by up to 3 bytes per input.
- debug_assert!(expected_max_weight <= spend_tx.weight().to_wu() + descriptors.len() as u64 * 3);
+ debug_assert!(
+ expected_max_weight <= spend_tx.weight().to_wu() + descriptors.len() as u64 * 3
+ );
Ok(spend_tx)
}
fn get_node_id(&self, recipient: Recipient) -> Result<PublicKey, ()> {
match recipient {
Recipient::Node => Ok(self.node_id.clone()),
- Recipient::PhantomNode => Err(())
+ Recipient::PhantomNode => Err(()),
}
}
- fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
+ fn ecdh(
+ &self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>,
+ ) -> Result<SharedSecret, ()> {
let mut node_secret = match recipient {
Recipient::Node => Ok(self.node_secret.clone()),
- Recipient::PhantomNode => Err(())
+ Recipient::PhantomNode => Err(()),
}?;
if let Some(tweak) = tweak {
node_secret = node_secret.mul_tweak(tweak).map_err(|_| ())?;
self.inbound_payment_key.clone()
}
- fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
+ fn sign_invoice(
+ &self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient,
+ ) -> Result<RecoverableSignature, ()> {
let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
let secret = match recipient {
Recipient::Node => Ok(&self.node_secret),
- Recipient::PhantomNode => Err(())
+ Recipient::PhantomNode => Err(()),
}?;
- Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage).to_byte_array()), secret))
+ Ok(self.secp_ctx.sign_ecdsa_recoverable(
+ &hash_to_message!(&Sha256::hash(&preimage).to_byte_array()),
+ secret,
+ ))
}
fn sign_bolt12_invoice_request(
- &self, invoice_request: &UnsignedInvoiceRequest
+ &self, invoice_request: &UnsignedInvoiceRequest,
) -> Result<schnorr::Signature, ()> {
let message = invoice_request.tagged_hash().as_digest();
let keys = KeyPair::from_secret_key(&self.secp_ctx, &self.node_secret);
}
fn sign_bolt12_invoice(
- &self, invoice: &UnsignedBolt12Invoice
+ &self, invoice: &UnsignedBolt12Invoice,
) -> Result<schnorr::Signature, ()> {
let message = invoice.tagged_hash().as_digest();
let keys = KeyPair::from_secret_key(&self.secp_ctx, &self.node_secret);
#[cfg(taproot)]
type TaprootSigner = InMemorySigner;
- fn generate_channel_keys_id(&self, _inbound: bool, _channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
+ fn generate_channel_keys_id(
+ &self, _inbound: bool, _channel_value_satoshis: u64, user_channel_id: u128,
+ ) -> [u8; 32] {
let child_idx = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
// `child_idx` is the only thing guaranteed to make each channel unique without a restart
// (though `user_channel_id` should help, depending on user behavior). If it manages to
id
}
- fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::EcdsaSigner {
+ fn derive_channel_signer(
+ &self, channel_value_satoshis: u64, channel_keys_id: [u8; 32],
+ ) -> Self::EcdsaSigner {
self.derive_channel_keys(channel_value_satoshis, &channel_keys_id)
}
}
}
- fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>) -> Result<SharedSecret, ()> {
+ fn ecdh(
+ &self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&Scalar>,
+ ) -> Result<SharedSecret, ()> {
let mut node_secret = match recipient {
Recipient::Node => self.inner.node_secret.clone(),
Recipient::PhantomNode => self.phantom_secret.clone(),
self.inbound_payment_key.clone()
}
- fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
+ fn sign_invoice(
+ &self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient,
+ ) -> Result<RecoverableSignature, ()> {
let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
let secret = match recipient {
Recipient::Node => &self.inner.node_secret,
Recipient::PhantomNode => &self.phantom_secret,
};
- Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage).to_byte_array()), secret))
+ Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(
+ &hash_to_message!(&Sha256::hash(&preimage).to_byte_array()),
+ secret,
+ ))
}
fn sign_bolt12_invoice_request(
- &self, invoice_request: &UnsignedInvoiceRequest
+ &self, invoice_request: &UnsignedInvoiceRequest,
) -> Result<schnorr::Signature, ()> {
self.inner.sign_bolt12_invoice_request(invoice_request)
}
fn sign_bolt12_invoice(
- &self, invoice: &UnsignedBolt12Invoice
+ &self, invoice: &UnsignedBolt12Invoice,
) -> Result<schnorr::Signature, ()> {
self.inner.sign_bolt12_invoice(invoice)
}
#[cfg(taproot)]
type TaprootSigner = InMemorySigner;
- fn generate_channel_keys_id(&self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128) -> [u8; 32] {
+ fn generate_channel_keys_id(
+ &self, inbound: bool, channel_value_satoshis: u64, user_channel_id: u128,
+ ) -> [u8; 32] {
self.inner.generate_channel_keys_id(inbound, channel_value_satoshis, user_channel_id)
}
- fn derive_channel_signer(&self, channel_value_satoshis: u64, channel_keys_id: [u8; 32]) -> Self::EcdsaSigner {
+ fn derive_channel_signer(
+ &self, channel_value_satoshis: u64, channel_keys_id: [u8; 32],
+ ) -> Self::EcdsaSigner {
self.inner.derive_channel_signer(channel_value_satoshis, channel_keys_id)
}
/// same across restarts, or else inbound payments may fail.
///
/// [phantom node payments]: PhantomKeysManager
- pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
+ pub fn new(
+ seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32,
+ cross_node_seed: &[u8; 32],
+ ) -> Self {
let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
- let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
+ let (inbound_key, phantom_key) = hkdf_extract_expand_twice(
+ b"LDK Inbound and Phantom Payment Key Expansion",
+ cross_node_seed,
+ );
let phantom_secret = SecretKey::from_slice(&phantom_key).unwrap();
let phantom_node_id = PublicKey::from_secret_key(&inner.secp_ctx, &phantom_secret);
Self {
}
/// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
- pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32, locktime: Option<LockTime>, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
- self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, locktime, secp_ctx)
+ pub fn spend_spendable_outputs<C: Signing>(
+ &self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>,
+ change_destination_script: ScriptBuf, feerate_sat_per_1000_weight: u32,
+ locktime: Option<LockTime>, secp_ctx: &Secp256k1<C>,
+ ) -> Result<Transaction, ()> {
+ self.inner.spend_spendable_outputs(
+ descriptors,
+ outputs,
+ change_destination_script,
+ feerate_sat_per_1000_weight,
+ locktime,
+ secp_ctx,
+ )
}
/// See [`KeysManager::derive_channel_keys`] for documentation on this method.
- pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
+ pub fn derive_channel_keys(
+ &self, channel_value_satoshis: u64, params: &[u8; 32],
+ ) -> InMemorySigner {
self.inner.derive_channel_keys(channel_value_satoshis, params)
}
impl RandomBytes {
/// Creates a new instance using the given seed.
pub fn new(seed: [u8; 32]) -> Self {
- Self {
- seed,
- index: AtomicCounter::new(),
- }
+ Self { seed, index: AtomicCounter::new() }
}
}
#[cfg(ldk_bench)]
pub mod benches {
- use std::sync::{Arc, mpsc};
+ use crate::sign::{EntropySource, KeysManager};
+ use bitcoin::blockdata::constants::genesis_block;
+ use bitcoin::Network;
use std::sync::mpsc::TryRecvError;
+ use std::sync::{mpsc, Arc};
use std::thread;
use std::time::Duration;
- use bitcoin::blockdata::constants::genesis_block;
- use bitcoin::Network;
- use crate::sign::{EntropySource, KeysManager};
use criterion::Criterion;
for _ in 1..5 {
let keys_manager_clone = Arc::clone(&keys_manager);
let (stop_sender, stop_receiver) = mpsc::channel();
- let handle = thread::spawn(move || {
- loop {
- keys_manager_clone.get_secure_random_bytes();
- match stop_receiver.try_recv() {
- Ok(_) | Err(TryRecvError::Disconnected) => {
- println!("Terminating.");
- break;
- }
- Err(TryRecvError::Empty) => {}
- }
+ let handle = thread::spawn(move || loop {
+ keys_manager_clone.get_secure_random_bytes();
+ match stop_receiver.try_recv() {
+ Ok(_) | Err(TryRecvError::Disconnected) => {
+ println!("Terminating.");
+ break;
+ },
+ Err(TryRecvError::Empty) => {},
}
});
handles.push(handle);
stops.push(stop_sender);
}
- bench.bench_function("get_secure_random_bytes", |b| b.iter(||
- keys_manager.get_secure_random_bytes()));
+ bench.bench_function("get_secure_random_bytes", |b| {
+ b.iter(|| keys_manager.get_secure_random_bytes())
+ });
for stop in stops {
let _ = stop.send(());