//!
//! Designed to be as simple as possible, the high-level usage is almost as simple as "hand over a
//! TcpStream and a reference to a PeerManager and the rest is handled", except for the
-//! [Event](../lightning/util/events/enum.Event.html) handlng mechanism, see below.
+//! [Event](../lightning/util/events/enum.Event.html) handling mechanism; see example below.
//!
//! The PeerHandler, due to the fire-and-forget nature of this logic, must be an Arc, and must use
//! the SocketDescriptor provided here as the PeerHandler's SocketDescriptor.
//!
-//! Three methods are exposed to register a new connection for handling in tokio::spawn calls, see
-//! their individual docs for more. All three take a
-//! [mpsc::Sender<()>](../tokio/sync/mpsc/struct.Sender.html) which is sent into every time
-//! something occurs which may result in lightning [Events](../lightning/util/events/enum.Event.html).
-//! The call site should, thus, look something like this:
+//! Three methods are exposed to register a new connection for handling in tokio::spawn calls; see
+//! their individual docs for details.
+//!
+//! # Example
//! ```
-//! use tokio::sync::mpsc;
//! use std::net::TcpStream;
//! use bitcoin::secp256k1::key::PublicKey;
//! use lightning::util::events::{Event, EventHandler, EventsProvider};
//!
//! // Connect to node with pubkey their_node_id at addr:
//! async fn connect_to_node(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, their_node_id: PublicKey, addr: SocketAddr) {
-//! let (sender, mut receiver) = mpsc::channel(2);
-//! lightning_net_tokio::connect_outbound(peer_manager, sender, their_node_id, addr).await;
-//! loop {
-//! receiver.recv().await;
-//! channel_manager.process_pending_events(&|event| {
-//! // Handle the event!
-//! });
-//! chain_monitor.process_pending_events(&|event| {
-//! // Handle the event!
-//! });
-//! }
+//! lightning_net_tokio::connect_outbound(peer_manager, their_node_id, addr).await;
+//! loop {
+//! channel_manager.await_persistable_update();
+//! channel_manager.process_pending_events(&|event| {
+//! // Handle the event!
+//! });
+//! chain_monitor.process_pending_events(&|event| {
+//! // Handle the event!
+//! });
+//! }
//! }
//!
//! // Begin reading from a newly accepted socket and talk to the peer:
//! async fn accept_socket(peer_manager: PeerManager, chain_monitor: Arc<ChainMonitor>, channel_manager: ChannelManager, socket: TcpStream) {
-//! let (sender, mut receiver) = mpsc::channel(2);
-//! lightning_net_tokio::setup_inbound(peer_manager, sender, socket);
-//! loop {
-//! receiver.recv().await;
-//! channel_manager.process_pending_events(&|event| {
-//! // Handle the event!
-//! });
-//! chain_monitor.process_pending_events(&|event| {
-//! // Handle the event!
-//! });
-//! }
+//! lightning_net_tokio::setup_inbound(peer_manager, socket);
+//! loop {
+//! channel_manager.await_persistable_update();
+//! channel_manager.process_pending_events(&|event| {
+//! // Handle the event!
+//! });
+//! chain_monitor.process_pending_events(&|event| {
+//! // Handle the event!
+//! });
+//! }
//! }
//! ```
use std::{task, thread};
use std::net::SocketAddr;
use std::net::TcpStream as StdTcpStream;
-use std::sync::{Arc, Mutex, MutexGuard};
+use std::sync::{Arc, Mutex};
use std::sync::atomic::{AtomicU64, Ordering};
use std::time::Duration;
use std::hash::Hash;
/// read future (which is returned by schedule_read).
struct Connection {
writer: Option<io::WriteHalf<TcpStream>>,
- event_notify: mpsc::Sender<()>,
// Because our PeerManager is templated by user-provided types, and we can't (as far as I can
// tell) have a const RawWakerVTable built out of templated functions, we need some indirection
// between being woken up with write-ready and calling PeerManager::write_buffer_space_avail.
id: u64,
}
impl Connection {
- fn event_trigger(us: &mut MutexGuard<Self>) {
- match us.event_notify.try_send(()) {
- Ok(_) => {},
- Err(mpsc::error::TrySendError::Full(_)) => {
- // Ignore full errors as we just need the user to poll after this point, so if they
- // haven't received the last send yet, it doesn't matter.
- },
- _ => panic!()
- }
- }
async fn schedule_read<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, us: Arc<Mutex<Self>>, mut reader: io::ReadHalf<TcpStream>, mut read_wake_receiver: mpsc::Receiver<()>, mut write_avail_receiver: mpsc::Receiver<()>) where
CMH: ChannelMessageHandler + 'static,
RMH: RoutingMessageHandler + 'static,
L: Logger + 'static + ?Sized {
- let peer_manager_ref = peer_manager.clone();
// 8KB is nice and big but also should never cause any issues with stack overflowing.
let mut buf = [0; 8192];
if pause_read {
us_lock.read_paused = true;
}
- Self::event_trigger(&mut us_lock);
},
Err(e) => shutdown_socket!(e, Disconnect::CloseConnection),
}
Err(e) => shutdown_socket!(e, Disconnect::PeerDisconnected),
},
}
+ peer_manager.process_events();
};
let writer_option = us.lock().unwrap().writer.take();
if let Some(mut writer) = writer_option {
let _ = writer.shutdown().await;
}
if let Disconnect::PeerDisconnected = disconnect_type {
- peer_manager_ref.socket_disconnected(&our_descriptor);
- Self::event_trigger(&mut us.lock().unwrap());
+ peer_manager.socket_disconnected(&our_descriptor);
+ peer_manager.process_events();
}
}
- fn new(event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
+ fn new(stream: StdTcpStream) -> (io::ReadHalf<TcpStream>, mpsc::Receiver<()>, mpsc::Receiver<()>, Arc<Mutex<Self>>) {
// We only ever need a channel of depth 1 here: if we returned a non-full write to the
// PeerManager, we will eventually get notified that there is room in the socket to write
// new bytes, which will generate an event. That event will be popped off the queue before
(reader, write_receiver, read_receiver,
Arc::new(Mutex::new(Self {
- writer: Some(writer), event_notify, write_avail, read_waker, read_paused: false,
+ writer: Some(writer), write_avail, read_waker, read_paused: false,
block_disconnect_socket: false, rl_requested_disconnect: false,
id: ID_COUNTER.fetch_add(1, Ordering::AcqRel)
})))
/// The returned future will complete when the peer is disconnected and associated handling
/// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
/// not need to poll the provided future in order to make progress.
-///
-/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
-pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
+pub fn setup_inbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
CMH: ChannelMessageHandler + 'static + Send + Sync,
RMH: RoutingMessageHandler + 'static + Send + Sync,
L: Logger + 'static + ?Sized + Send + Sync {
- let (reader, write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
+ let (reader, write_receiver, read_receiver, us) = Connection::new(stream);
#[cfg(debug_assertions)]
let last_us = Arc::clone(&us);
/// The returned future will complete when the peer is disconnected and associated handling
/// futures are freed, though, because all processing futures are spawned with tokio::spawn, you do
/// not need to poll the provided future in order to make progress.
-///
-/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
-pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
+pub fn setup_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, stream: StdTcpStream) -> impl std::future::Future<Output=()> where
CMH: ChannelMessageHandler + 'static + Send + Sync,
RMH: RoutingMessageHandler + 'static + Send + Sync,
L: Logger + 'static + ?Sized + Send + Sync {
- let (reader, mut write_receiver, read_receiver, us) = Connection::new(event_notify, stream);
+ let (reader, mut write_receiver, read_receiver, us) = Connection::new(stream);
#[cfg(debug_assertions)]
let last_us = Arc::clone(&us);
/// disconnected and associated handling futures are freed, though, because all processing in said
/// futures are spawned with tokio::spawn, you do not need to poll the second future in order to
/// make progress.
-///
-/// See the module-level documentation for how to handle the event_notify mpsc::Sender.
-pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, event_notify: mpsc::Sender<()>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
+pub async fn connect_outbound<CMH, RMH, L>(peer_manager: Arc<peer_handler::PeerManager<SocketDescriptor, Arc<CMH>, Arc<RMH>, Arc<L>>>, their_node_id: PublicKey, addr: SocketAddr) -> Option<impl std::future::Future<Output=()>> where
CMH: ChannelMessageHandler + 'static + Send + Sync,
RMH: RoutingMessageHandler + 'static + Send + Sync,
L: Logger + 'static + ?Sized + Send + Sync {
if let Ok(Ok(stream)) = time::timeout(Duration::from_secs(10), async { TcpStream::connect(&addr).await.map(|s| s.into_std().unwrap()) }).await {
- Some(setup_outbound(peer_manager, event_notify, their_node_id, stream))
+ Some(setup_outbound(peer_manager, their_node_id, stream))
} else { None }
}
(std::net::TcpStream::connect("127.0.0.1:46926").unwrap(), listener.accept().unwrap().0)
} else { panic!("Failed to bind to v4 localhost on common ports"); };
- let (sender, _receiver) = mpsc::channel(2);
- let fut_a = super::setup_outbound(Arc::clone(&a_manager), sender.clone(), b_pub, conn_a);
- let fut_b = super::setup_inbound(b_manager, sender, conn_b);
+ let fut_a = super::setup_outbound(Arc::clone(&a_manager), b_pub, conn_a);
+ let fut_b = super::setup_inbound(b_manager, conn_b);
tokio::time::timeout(Duration::from_secs(10), a_connected.recv()).await.unwrap();
tokio::time::timeout(Duration::from_secs(1), b_connected.recv()).await.unwrap();