//!
//! [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
+use alloc::sync::Arc;
use core::mem;
use core::time::Duration;
use sync::{Condvar, Mutex};
#[cfg(any(test, feature = "std"))]
use std::time::Instant;
+use core::future::Future as StdFuture;
+use core::task::{Context, Poll};
+use core::pin::Pin;
+
+use prelude::*;
+
/// Used to signal to one of many waiters that the condition they're waiting on has happened.
pub(crate) struct Notifier {
- /// Users won't access the lock directly, but rather wait on its bool using
- /// `wait_timeout` and `wait`.
- lock: (Mutex<bool>, Condvar),
+ notify_pending: Mutex<(bool, Option<Arc<Mutex<FutureState>>>)>,
+ condvar: Condvar,
}
impl Notifier {
pub(crate) fn new() -> Self {
Self {
- lock: (Mutex::new(false), Condvar::new()),
+ notify_pending: Mutex::new((false, None)),
+ condvar: Condvar::new(),
}
}
pub(crate) fn wait(&self) {
loop {
- let &(ref mtx, ref cvar) = &self.lock;
- let mut guard = mtx.lock().unwrap();
- if *guard {
- *guard = false;
+ let mut guard = self.notify_pending.lock().unwrap();
+ if guard.0 {
+ guard.0 = false;
return;
}
- guard = cvar.wait(guard).unwrap();
- let result = *guard;
+ guard = self.condvar.wait(guard).unwrap();
+ let result = guard.0;
if result {
- *guard = false;
+ guard.0 = false;
return
}
}
pub(crate) fn wait_timeout(&self, max_wait: Duration) -> bool {
let current_time = Instant::now();
loop {
- let &(ref mtx, ref cvar) = &self.lock;
- let mut guard = mtx.lock().unwrap();
- if *guard {
- *guard = false;
+ let mut guard = self.notify_pending.lock().unwrap();
+ if guard.0 {
+ guard.0 = false;
return true;
}
- guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
+ guard = self.condvar.wait_timeout(guard, max_wait).unwrap().0;
// Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
// desired wait time has actually passed, and if not then restart the loop with a reduced wait
// time. Note that this logic can be highly simplified through the use of
// `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
// 1.42.0.
let elapsed = current_time.elapsed();
- let result = *guard;
+ let result = guard.0;
if result || elapsed >= max_wait {
- *guard = false;
+ guard.0 = false;
return result;
}
match max_wait.checked_sub(elapsed) {
/// Wake waiters, tracking that wake needs to occur even if there are currently no waiters.
pub(crate) fn notify(&self) {
- let &(ref persist_mtx, ref cnd) = &self.lock;
- let mut lock = persist_mtx.lock().unwrap();
- *lock = true;
+ let mut lock = self.notify_pending.lock().unwrap();
+ lock.0 = true;
+ if let Some(future_state) = lock.1.take() {
+ future_state.lock().unwrap().complete();
+ }
mem::drop(lock);
- cnd.notify_all();
+ self.condvar.notify_all();
+ }
+
+ /// Gets a [`Future`] that will get woken up with any waiters
+ pub(crate) fn get_future(&self) -> Future {
+ let mut lock = self.notify_pending.lock().unwrap();
+ if lock.0 {
+ Future {
+ state: Arc::new(Mutex::new(FutureState {
+ callbacks: Vec::new(),
+ complete: false,
+ }))
+ }
+ } else if let Some(existing_state) = &lock.1 {
+ Future { state: Arc::clone(&existing_state) }
+ } else {
+ let state = Arc::new(Mutex::new(FutureState {
+ callbacks: Vec::new(),
+ complete: false,
+ }));
+ lock.1 = Some(Arc::clone(&state));
+ Future { state }
+ }
}
#[cfg(any(test, feature = "_test_utils"))]
pub fn notify_pending(&self) -> bool {
- let &(ref mtx, _) = &self.lock;
- let guard = mtx.lock().unwrap();
- *guard
+ self.notify_pending.lock().unwrap().0
+ }
+}
+
+/// A callback which is called when a [`Future`] completes.
+///
+/// Note that this MUST NOT call back into LDK directly, it must instead schedule actions to be
+/// taken later. Rust users should use the [`std::future::Future`] implementation for [`Future`]
+/// instead.
+///
+/// Note that the [`std::future::Future`] implementation may only work for runtimes which schedule
+/// futures when they receive a wake, rather than immediately executing them.
+pub trait FutureCallback : Send {
+ /// The method which is called.
+ fn call(&self);
+}
+
+impl<F: Fn() + Send> FutureCallback for F {
+ fn call(&self) { (self)(); }
+}
+
+pub(crate) struct FutureState {
+ callbacks: Vec<Box<dyn FutureCallback>>,
+ complete: bool,
+}
+
+impl FutureState {
+ fn complete(&mut self) {
+ for callback in self.callbacks.drain(..) {
+ callback.call();
+ }
+ self.complete = true;
+ }
+}
+
+/// A simple future which can complete once, and calls some callback(s) when it does so.
+pub struct Future {
+ state: Arc<Mutex<FutureState>>,
+}
+
+impl Future {
+ /// Registers a callback to be called upon completion of this future. If the future has already
+ /// completed, the callback will be called immediately.
+ pub fn register_callback(&self, callback: Box<dyn FutureCallback>) {
+ let mut state = self.state.lock().unwrap();
+ if state.complete {
+ mem::drop(state);
+ callback.call();
+ } else {
+ state.callbacks.push(callback);
+ }
+ }
+}
+
+mod std_future {
+ use core::task::Waker;
+ pub struct StdWaker(pub Waker);
+ impl super::FutureCallback for StdWaker {
+ fn call(&self) { self.0.wake_by_ref() }
+ }
+}
+
+/// (C-not exported) as Rust Futures aren't usable in language bindings.
+impl<'a> StdFuture for Future {
+ type Output = ();
+
+ fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
+ let mut state = self.state.lock().unwrap();
+ if state.complete {
+ Poll::Ready(())
+ } else {
+ let waker = cx.waker().clone();
+ state.callbacks.push(Box::new(std_future::StdWaker(waker)));
+ Poll::Pending
+ }
}
}
#[cfg(test)]
mod tests {
+ use super::*;
+ use core::sync::atomic::{AtomicBool, Ordering};
+ use core::future::Future as FutureTrait;
+ use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
+
#[cfg(feature = "std")]
#[test]
fn test_wait_timeout() {
- use super::*;
use sync::Arc;
- use core::sync::atomic::{AtomicBool, Ordering};
use std::thread;
let persistence_notifier = Arc::new(Notifier::new());
let exit_thread_clone = exit_thread.clone();
thread::spawn(move || {
loop {
- let &(ref persist_mtx, ref cnd) = &thread_notifier.lock;
- let mut lock = persist_mtx.lock().unwrap();
- *lock = true;
- cnd.notify_all();
+ let mut lock = thread_notifier.notify_pending.lock().unwrap();
+ lock.0 = true;
+ thread_notifier.condvar.notify_all();
if exit_thread_clone.load(Ordering::SeqCst) {
break
}
}
}
+
+ #[test]
+ fn test_future_callbacks() {
+ let future = Future {
+ state: Arc::new(Mutex::new(FutureState {
+ callbacks: Vec::new(),
+ complete: false,
+ }))
+ };
+ let callback = Arc::new(AtomicBool::new(false));
+ let callback_ref = Arc::clone(&callback);
+ future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
+
+ assert!(!callback.load(Ordering::SeqCst));
+ future.state.lock().unwrap().complete();
+ assert!(callback.load(Ordering::SeqCst));
+ future.state.lock().unwrap().complete();
+ }
+
+ #[test]
+ fn test_pre_completed_future_callbacks() {
+ let future = Future {
+ state: Arc::new(Mutex::new(FutureState {
+ callbacks: Vec::new(),
+ complete: false,
+ }))
+ };
+ future.state.lock().unwrap().complete();
+
+ let callback = Arc::new(AtomicBool::new(false));
+ let callback_ref = Arc::clone(&callback);
+ future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
+
+ assert!(callback.load(Ordering::SeqCst));
+ assert!(future.state.lock().unwrap().callbacks.is_empty());
+ }
+
+ // Rather annoyingly, there's no safe way in Rust std to construct a Waker despite it being
+ // totally possible to construct from a trait implementation (though somewhat less effecient
+ // compared to a raw VTable). Instead, we have to write out a lot of boilerplate to build a
+ // waker, which we do here with a trivial Arc<AtomicBool> data element to track woke-ness.
+ const WAKER_V_TABLE: RawWakerVTable = RawWakerVTable::new(waker_clone, wake, wake_by_ref, drop);
+ unsafe fn wake_by_ref(ptr: *const ()) { let p = ptr as *const Arc<AtomicBool>; assert!(!(*p).fetch_or(true, Ordering::SeqCst)); }
+ unsafe fn drop(ptr: *const ()) { let p = ptr as *mut Arc<AtomicBool>; Box::from_raw(p); }
+ unsafe fn wake(ptr: *const ()) { wake_by_ref(ptr); drop(ptr); }
+ unsafe fn waker_clone(ptr: *const ()) -> RawWaker {
+ let p = ptr as *const Arc<AtomicBool>;
+ RawWaker::new(Box::into_raw(Box::new(Arc::clone(&*p))) as *const (), &WAKER_V_TABLE)
+ }
+
+ fn create_waker() -> (Arc<AtomicBool>, Waker) {
+ let a = Arc::new(AtomicBool::new(false));
+ let waker = unsafe { Waker::from_raw(waker_clone((&a as *const Arc<AtomicBool>) as *const ())) };
+ (a, waker)
+ }
+
+ #[test]
+ fn test_future() {
+ let mut future = Future {
+ state: Arc::new(Mutex::new(FutureState {
+ callbacks: Vec::new(),
+ complete: false,
+ }))
+ };
+ let mut second_future = Future { state: Arc::clone(&future.state) };
+
+ let (woken, waker) = create_waker();
+ assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
+ assert!(!woken.load(Ordering::SeqCst));
+
+ let (second_woken, second_waker) = create_waker();
+ assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Pending);
+ assert!(!second_woken.load(Ordering::SeqCst));
+
+ future.state.lock().unwrap().complete();
+ assert!(woken.load(Ordering::SeqCst));
+ assert!(second_woken.load(Ordering::SeqCst));
+ assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
+ assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Ready(()));
+ }
}