Signing the commitment transaction is almost always followed by signing the attached HTLC transactions, so fold the signing operations into a single method.
// TODO: Document the things someone using this interface should enforce before signing.
fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
- /// Create a signature for a holder's commitment transaction. This will only ever be called with
- /// the same commitment_tx (or a copy thereof), though there are currently no guarantees
- /// that it will not be called multiple times.
+ /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
+ /// This will only ever be called with a non-revoked commitment_tx. This will be called with the
+ /// latest commitment_tx when we initiate a force-close.
+ /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
+ /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
+ /// the latest.
+ /// This may be called multiple times for the same transaction.
+ ///
/// An external signer implementation should check that the commitment has not been revoked.
+ ///
+ /// May return Err if key derivation fails. Callers, such as ChannelMonitor, will panic in such a case.
//
// TODO: Document the things someone using this interface should enforce before signing.
- fn sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
+ // TODO: Key derivation failure should panic rather than Err
+ fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
/// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
/// transactions which will be broadcasted later, after the channel has moved on to a newer
#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
fn unsafe_sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
- /// Create a signature for each HTLC transaction spending a holder's commitment transaction.
- ///
- /// Unlike sign_holder_commitment, this may be called multiple times with *different*
- /// commitment_tx values. While this will never be called with a revoked
- /// commitment_tx, it is possible that it is called with the second-latest
- /// commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
- /// ChannelMonitor decided to broadcast before it had been updated to the latest.
- ///
- /// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
- /// commitment_tx.
- fn sign_holder_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Signature>, ()>;
-
/// Create a signature for the given input in a transaction spending an HTLC or commitment
/// transaction output when our counterparty broadcasts an old state.
///
Ok((commitment_sig, htlc_sigs))
}
- fn sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
+ fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
let sig = commitment_tx.trust().built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
- Ok(sig)
+ let channel_parameters = self.get_channel_parameters();
+ let trusted_tx = commitment_tx.trust();
+ let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
+ Ok((sig, htlc_sigs))
}
#[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
Ok(commitment_tx.trust().built_transaction().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
}
- fn sign_holder_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Signature>, ()> {
- let channel_parameters = self.get_channel_parameters();
- let trusted_tx = commitment_tx.trust();
- trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)
- }
-
fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
Ok(revocation_key) => revocation_key,
&chan.holder_keys.pubkeys().funding_pubkey,
chan.counterparty_funding_pubkey()
);
- let holder_sig = chan_keys.sign_holder_commitment(&holder_commitment_tx, &secp_ctx).unwrap();
+ let (holder_sig, htlc_sigs) = chan_keys.sign_holder_commitment_and_htlcs(&holder_commitment_tx, &secp_ctx).unwrap();
assert_eq!(Signature::from_der(&hex::decode($sig_hex).unwrap()[..]).unwrap(), holder_sig, "holder_sig");
let funding_redeemscript = chan.get_funding_redeemscript();
let tx = holder_commitment_tx.add_holder_sig(&funding_redeemscript, holder_sig);
assert_eq!(serialize(&tx)[..], hex::decode($tx_hex).unwrap()[..], "tx");
- let htlc_sigs = chan_keys.sign_holder_commitment_htlc_transactions(&holder_commitment_tx, &secp_ctx).unwrap();
-
// ((htlc, counterparty_sig), (index, holder_sig))
let mut htlc_sig_iter = holder_commitment_tx.htlcs().iter().zip(&holder_commitment_tx.counterparty_htlc_sigs).zip(htlc_sigs.iter().enumerate());
/// Lightning security model (i.e being able to redeem/timeout HTLC or penalize coutnerparty onchain) lays on the assumption of claim transactions getting confirmed before timelock expiration
/// (CSV or CLTV following cases). In case of high-fee spikes, claim tx may stuck in the mempool, so you need to bump its feerate quickly using Replace-By-Fee or Child-Pay-For-Parent.
+ /// Panics if there are signing errors, because signing operations in reaction to on-chain events
+ /// are not expected to fail, and if they do, we may lose funds.
fn generate_claim_tx<F: Deref, L: Deref>(&mut self, height: u32, cached_claim_datas: &ClaimTxBumpMaterial, fee_estimator: &F, logger: &L) -> Option<(Option<u32>, u32, Transaction)>
where F::Target: FeeEstimator,
L::Target: Logger,
pub(crate) fn provide_latest_holder_tx(&mut self, tx: HolderCommitmentTransaction) {
self.prev_holder_commitment = self.holder_commitment.take();
+ self.holder_htlc_sigs = None;
self.holder_commitment = Some(tx);
}
+ // Normally holder HTLCs are signed at the same time as the holder commitment tx. However,
+ // in some configurations, the holder commitment tx has been signed and broadcast by a
+ // ChannelMonitor replica, so we handle that case here.
fn sign_latest_holder_htlcs(&mut self) {
- if let Some(ref holder_commitment) = self.holder_commitment {
- if let Ok(sigs) = self.key_storage.sign_holder_commitment_htlc_transactions(holder_commitment, &self.secp_ctx) {
+ if self.holder_htlc_sigs.is_none() {
+ if let Some(ref holder_commitment) = self.holder_commitment {
+ let (_sig, sigs) = self.key_storage.sign_holder_commitment_and_htlcs(holder_commitment, &self.secp_ctx).expect("sign holder commitment");
self.holder_htlc_sigs = Some(Self::extract_holder_sigs(holder_commitment, sigs));
}
}
}
+ // Normally only the latest commitment tx and HTLCs need to be signed. However, in some
+ // configurations we may have updated our holder commtiment but a replica of the ChannelMonitor
+ // broadcast the previous one before we sync with it. We handle that case here.
fn sign_prev_holder_htlcs(&mut self) {
- if let Some(ref holder_commitment) = self.prev_holder_commitment {
- if let Ok(sigs) = self.key_storage.sign_holder_commitment_htlc_transactions(holder_commitment, &self.secp_ctx) {
+ if self.prev_holder_htlc_sigs.is_none() {
+ if let Some(ref holder_commitment) = self.prev_holder_commitment {
+ let (_sig, sigs) = self.key_storage.sign_holder_commitment_and_htlcs(holder_commitment, &self.secp_ctx).expect("sign previous holder commitment");
self.prev_holder_htlc_sigs = Some(Self::extract_holder_sigs(holder_commitment, sigs));
}
}
// to monitor before.
pub(crate) fn get_fully_signed_holder_tx(&mut self, funding_redeemscript: &Script) -> Option<Transaction> {
if let Some(ref mut holder_commitment) = self.holder_commitment {
- match self.key_storage.sign_holder_commitment(&holder_commitment, &self.secp_ctx) {
- Ok(sig) => {
+ match self.key_storage.sign_holder_commitment_and_htlcs(holder_commitment, &self.secp_ctx) {
+ Ok((sig, htlc_sigs)) => {
+ self.holder_htlc_sigs = Some(Self::extract_holder_sigs(holder_commitment, htlc_sigs));
Some(holder_commitment.add_holder_sig(funding_redeemscript, sig))
},
Err(_) => return None,
#[cfg(any(test, feature="unsafe_revoked_tx_signing"))]
pub(crate) fn get_fully_signed_copy_holder_tx(&mut self, funding_redeemscript: &Script) -> Option<Transaction> {
if let Some(ref mut holder_commitment) = self.holder_commitment {
- match self.key_storage.sign_holder_commitment(holder_commitment, &self.secp_ctx) {
- Ok(sig) => {
+ match self.key_storage.sign_holder_commitment_and_htlcs(holder_commitment, &self.secp_ctx) {
+ Ok((sig, htlc_sigs)) => {
+ self.holder_htlc_sigs = Some(Self::extract_holder_sigs(holder_commitment, htlc_sigs));
Some(holder_commitment.add_holder_sig(funding_redeemscript, sig))
},
Err(_) => return None,
}
}
}
- if self.prev_holder_commitment.is_some() {
+ if htlc_tx.is_none() && self.prev_holder_commitment.is_some() {
let commitment_txid = self.prev_holder_commitment.as_ref().unwrap().trust().txid();
if commitment_txid == outp.txid {
self.sign_prev_holder_htlcs();
// licenses.
use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, HolderCommitmentTransaction, CommitmentTransaction, ChannelTransactionParameters, TrustedCommitmentTransaction};
-use ln::{chan_utils, msgs};
+use ln::{msgs, chan_utils};
use chain::keysinterface::{ChannelKeys, InMemoryChannelKeys};
use std::cmp;
Ok(self.inner.sign_counterparty_commitment(commitment_tx, secp_ctx).unwrap())
}
- fn sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
- self.verify_holder_commitment_tx(commitment_tx, secp_ctx);
-
- // TODO: enforce the ChannelKeys contract - error if this commitment was already revoked
- // TODO: need the commitment number
- Ok(self.inner.sign_holder_commitment(commitment_tx, secp_ctx).unwrap())
- }
-
- #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
- fn unsafe_sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
- Ok(self.inner.unsafe_sign_holder_commitment(commitment_tx, secp_ctx).unwrap())
- }
-
- fn sign_holder_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Signature>, ()> {
+ fn sign_holder_commitment_and_htlcs<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
let trusted_tx = self.verify_holder_commitment_tx(commitment_tx, secp_ctx);
let commitment_txid = trusted_tx.txid();
let holder_csv = self.inner.counterparty_selected_contest_delay();
secp_ctx.verify(&sighash, sig, &keys.countersignatory_htlc_key).unwrap();
}
- Ok(self.inner.sign_holder_commitment_htlc_transactions(commitment_tx, secp_ctx).unwrap())
+ // TODO: enforce the ChannelKeys contract - error if this commitment was already revoked
+ // TODO: need the commitment number
+ Ok(self.inner.sign_holder_commitment_and_htlcs(commitment_tx, secp_ctx).unwrap())
+ }
+
+ #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
+ fn unsafe_sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
+ Ok(self.inner.unsafe_sign_holder_commitment(commitment_tx, secp_ctx).unwrap())
}
fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {