From: Jeffrey Czyz Date: Thu, 1 Oct 2020 16:35:05 +0000 (-0700) Subject: Merge branch '2020-06-refactor-chain-listener-move-chainmonitor' into 2020-06-refacto... X-Git-Tag: v0.0.12~21^2 X-Git-Url: http://git.bitcoin.ninja/?a=commitdiff_plain;h=6cd6816cd7efce593ef487d07adfff66cee0daa2;p=rust-lightning Merge branch '2020-06-refactor-chain-listener-move-chainmonitor' into 2020-06-refactor-chain-listener --- 6cd6816cd7efce593ef487d07adfff66cee0daa2 diff --cc fuzz/src/chanmon_consistency.rs index b1cdd66fb,86265dfe3..1650e2e25 --- a/fuzz/src/chanmon_consistency.rs +++ b/fuzz/src/chanmon_consistency.rs @@@ -29,8 -29,8 +29,9 @@@ use bitcoin::hashes::sha256::Hash as Sh use bitcoin::hash_types::{BlockHash, WPubkeyHash}; use lightning::chain; + use lightning::chain::chainmonitor; -use lightning::chain::chainmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, MonitorEvent}; +use lightning::chain::channelmonitor; +use lightning::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, MonitorEvent}; use lightning::chain::transaction::OutPoint; use lightning::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator}; use lightning::chain::keysinterface::{KeysInterface, InMemoryChannelKeys}; @@@ -83,8 -83,8 +84,8 @@@ impl Writer for VecWriter struct TestChainMonitor { pub logger: Arc, - pub chain_monitor: Arc, Arc, Arc, Arc>>, + pub chain_monitor: Arc, Arc, Arc, Arc>>, - pub update_ret: Mutex>, + pub update_ret: Mutex>, // If we reload a node with an old copy of ChannelMonitors, the ChannelManager deserialization // logic will automatically force-close our channels for us (as we don't have an up-to-date // monitor implying we are not able to punish misbehaving counterparties). Because this test diff --cc fuzz/src/full_stack.rs index 978302944,1ad79e2ed..1ed17b9ea --- a/fuzz/src/full_stack.rs +++ b/fuzz/src/full_stack.rs @@@ -27,9 -27,9 +27,9 @@@ use bitcoin::hash_types::{Txid, BlockHa use lightning::chain; use lightning::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator}; - use lightning::chain::channelmonitor; ++use lightning::chain::chainmonitor; use lightning::chain::transaction::OutPoint; use lightning::chain::keysinterface::{InMemoryChannelKeys, KeysInterface}; -use lightning::chain::chainmonitor; use lightning::ln::channelmanager::{ChannelManager, PaymentHash, PaymentPreimage, PaymentSecret}; use lightning::ln::peer_handler::{MessageHandler,PeerManager,SocketDescriptor}; use lightning::routing::router::get_route; diff --cc lightning/src/chain/chainmonitor.rs index 000000000,8578b9f1c..d858c1267 mode 000000,100644..100644 --- a/lightning/src/chain/chainmonitor.rs +++ b/lightning/src/chain/chainmonitor.rs @@@ -1,0 -1,2843 +1,227 @@@ + // This file is Copyright its original authors, visible in version control + // history. + // + // This file is licensed under the Apache License, Version 2.0 or the MIT license + // , at your option. + // You may not use this file except in accordance with one or both of these + // licenses. + -//! The logic to monitor for on-chain transactions and create the relevant claim responses lives -//! here. ++//! Logic to connect off-chain channel management with on-chain transaction monitoring. + //! -//! ChannelMonitor objects are generated by ChannelManager in response to relevant -//! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can -//! be made in responding to certain messages, see [`chain::Watch`] for more. ++//! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to ++//! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will ++//! make those available as [`MonitorEvent`]s to be consumed. + //! -//! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the -//! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date -//! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other -//! security-domain-separated system design, you should consider having multiple paths for -//! ChannelMonitors to get out of the HSM and onto monitoring devices. ++//! `ChainMonitor` is parameterized by an optional chain source, which must implement the ++//! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light ++//! clients, such that transactions spending those outputs are included in block data. + //! -//! [`chain::Watch`]: ../../chain/trait.Watch.html ++//! `ChainMonitor` may be used directly to monitor channels locally or as a part of a distributed ++//! setup to monitor channels remotely. In the latter case, a custom `chain::Watch` implementation ++//! would be responsible for routing each update to a remote server and for retrieving monitor ++//! events. The remote server would make use of `ChainMonitor` for block processing and for ++//! servicing `ChannelMonitor` updates from the client. ++//! ++//! [`ChainMonitor`]: struct.ChainMonitor.html ++//! [`chain::Filter`]: ../trait.Filter.html ++//! [`chain::Watch`]: ../trait.Watch.html ++//! [`ChannelMonitor`]: ../channelmonitor/struct.ChannelMonitor.html ++//! [`MonitorEvent`]: ../channelmonitor/enum.MonitorEvent.html + + use bitcoin::blockdata::block::BlockHeader; -use bitcoin::blockdata::transaction::{TxOut,Transaction}; -use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint; -use bitcoin::blockdata::script::{Script, Builder}; -use bitcoin::blockdata::opcodes; -use bitcoin::consensus::encode; - -use bitcoin::hashes::Hash; -use bitcoin::hashes::sha256::Hash as Sha256; -use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash}; + -use bitcoin::secp256k1::{Secp256k1,Signature}; -use bitcoin::secp256k1::key::{SecretKey,PublicKey}; -use bitcoin::secp256k1; - -use ln::msgs::DecodeError; -use ln::chan_utils; -use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HolderCommitmentTransaction, HTLCType}; -use ln::channelmanager::{HTLCSource, PaymentPreimage, PaymentHash}; -use ln::onchaintx::{OnchainTxHandler, InputDescriptors}; + use chain; + use chain::Filter; + use chain::chaininterface::{BroadcasterInterface, FeeEstimator}; ++use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateErr, MonitorEvent, MonitorUpdateError}; + use chain::transaction::{OutPoint, TransactionData}; -use chain::keysinterface::{SpendableOutputDescriptor, ChannelKeys}; ++use chain::keysinterface::ChannelKeys; + use util::logger::Logger; -use util::ser::{Readable, MaybeReadable, Writer, Writeable, U48}; -use util::{byte_utils, events}; ++use util::events; + use util::events::Event; + -use std::collections::{HashMap, HashSet, hash_map}; ++use std::collections::{HashMap, hash_map}; + use std::sync::Mutex; -use std::{cmp, mem}; + use std::ops::Deref; -use std::io::Error; - -/// An update generated by the underlying Channel itself which contains some new information the -/// ChannelMonitor should be made aware of. -#[cfg_attr(test, derive(PartialEq))] -#[derive(Clone)] -#[must_use] -pub struct ChannelMonitorUpdate { - pub(crate) updates: Vec, - /// The sequence number of this update. Updates *must* be replayed in-order according to this - /// sequence number (and updates may panic if they are not). The update_id values are strictly - /// increasing and increase by one for each new update. - /// - /// This sequence number is also used to track up to which points updates which returned - /// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given - /// ChannelMonitor when ChannelManager::channel_monitor_updated is called. - pub update_id: u64, -} - -impl Writeable for ChannelMonitorUpdate { - fn write(&self, w: &mut W) -> Result<(), ::std::io::Error> { - self.update_id.write(w)?; - (self.updates.len() as u64).write(w)?; - for update_step in self.updates.iter() { - update_step.write(w)?; - } - Ok(()) - } -} -impl Readable for ChannelMonitorUpdate { - fn read(r: &mut R) -> Result { - let update_id: u64 = Readable::read(r)?; - let len: u64 = Readable::read(r)?; - let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::std::mem::size_of::())); - for _ in 0..len { - updates.push(Readable::read(r)?); - } - Ok(Self { update_id, updates }) - } -} - -/// An error enum representing a failure to persist a channel monitor update. -#[derive(Clone)] -pub enum ChannelMonitorUpdateErr { - /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of - /// our state failed, but is expected to succeed at some point in the future). - /// - /// Such a failure will "freeze" a channel, preventing us from revoking old states or - /// submitting new commitment transactions to the counterparty. Once the update(s) which failed - /// have been successfully applied, ChannelManager::channel_monitor_updated can be used to - /// restore the channel to an operational state. - /// - /// Note that a given ChannelManager will *never* re-generate a given ChannelMonitorUpdate. If - /// you return a TemporaryFailure you must ensure that it is written to disk safely before - /// writing out the latest ChannelManager state. - /// - /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur - /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting - /// to claim it on this channel) and those updates must be applied wherever they can be. At - /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should - /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to - /// the channel which would invalidate previous ChannelMonitors are not made when a channel has - /// been "frozen". - /// - /// Note that even if updates made after TemporaryFailure succeed you must still call - /// channel_monitor_updated to ensure you have the latest monitor and re-enable normal channel - /// operation. - /// - /// Note that the update being processed here will not be replayed for you when you call - /// ChannelManager::channel_monitor_updated, so you must store the update itself along - /// with the persisted ChannelMonitor on your own local disk prior to returning a - /// TemporaryFailure. You may, of course, employ a journaling approach, storing only the - /// ChannelMonitorUpdate on disk without updating the monitor itself, replaying the journal at - /// reload-time. - /// - /// For deployments where a copy of ChannelMonitors and other local state are backed up in a - /// remote location (with local copies persisted immediately), it is anticipated that all - /// updates will return TemporaryFailure until the remote copies could be updated. - TemporaryFailure, - /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a - /// different watchtower and cannot update with all watchtowers that were previously informed - /// of this channel). - /// - /// At reception of this error, ChannelManager will force-close the channel and return at - /// least a final ChannelMonitorUpdate::ChannelForceClosed which must be delivered to at - /// least one ChannelMonitor copy. Revocation secret MUST NOT be released and offchain channel - /// update must be rejected. - /// - /// This failure may also signal a failure to update the local persisted copy of one of - /// the channel monitor instance. - /// - /// Note that even when you fail a holder commitment transaction update, you must store the - /// update to ensure you can claim from it in case of a duplicate copy of this ChannelMonitor - /// broadcasts it (e.g distributed channel-monitor deployment) - /// - /// In case of distributed watchtowers deployment, the new version must be written to disk, as - /// state may have been stored but rejected due to a block forcing a commitment broadcast. This - /// storage is used to claim outputs of rejected state confirmed onchain by another watchtower, - /// lagging behind on block processing. - PermanentFailure, -} - -/// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is -/// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::update_monitor this -/// means you tried to update a monitor for a different channel or the ChannelMonitorUpdate was -/// corrupted. -/// Contains a human-readable error message. -#[derive(Debug)] -pub struct MonitorUpdateError(pub &'static str); - -/// An event to be processed by the ChannelManager. -#[derive(PartialEq)] -pub enum MonitorEvent { - /// A monitor event containing an HTLCUpdate. - HTLCEvent(HTLCUpdate), - - /// A monitor event that the Channel's commitment transaction was broadcasted. - CommitmentTxBroadcasted(OutPoint), -} - -/// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on -/// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the -/// preimage claim backward will lead to loss of funds. -/// -/// [`chain::Watch`]: ../../chain/trait.Watch.html -#[derive(Clone, PartialEq)] -pub struct HTLCUpdate { - pub(crate) payment_hash: PaymentHash, - pub(crate) payment_preimage: Option, - pub(crate) source: HTLCSource -} -impl_writeable!(HTLCUpdate, 0, { payment_hash, payment_preimage, source }); + + /// An implementation of [`chain::Watch`] for monitoring channels. + /// + /// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by + /// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally -/// or used independently to monitor channels remotely. ++/// or used independently to monitor channels remotely. See the [module-level documentation] for ++/// details. + /// -/// [`chain::Watch`]: ../../chain/trait.Watch.html -/// [`ChannelManager`]: ../channelmanager/struct.ChannelManager.html ++/// [`chain::Watch`]: ../trait.Watch.html ++/// [`ChannelManager`]: ../../ln/channelmanager/struct.ChannelManager.html ++/// [module-level documentation]: index.html + pub struct ChainMonitor + where C::Target: chain::Filter, + T::Target: BroadcasterInterface, + F::Target: FeeEstimator, + L::Target: Logger, + { + /// The monitors + pub monitors: Mutex>>, + chain_source: Option, + broadcaster: T, + logger: L, + fee_estimator: F + } + + impl ChainMonitor + where C::Target: chain::Filter, + T::Target: BroadcasterInterface, + F::Target: FeeEstimator, + L::Target: Logger, + { + /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view + /// of a channel and reacting accordingly based on transactions in the connected block. See + /// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will + /// be returned by [`chain::Watch::release_pending_monitor_events`]. + /// + /// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch, returning + /// `true` if so. Subsequent calls must not exclude any transactions matching the new outputs + /// nor any in-block descendants of such transactions. It is not necessary to re-fetch the block + /// to obtain updated `txdata`. + /// - /// [`ChannelMonitor::block_connected`]: struct.ChannelMonitor.html#method.block_connected - /// [`chain::Watch::release_pending_monitor_events`]: ../../chain/trait.Watch.html#tymethod.release_pending_monitor_events - /// [`chain::Filter`]: ../../chain/trait.Filter.html ++ /// [`ChannelMonitor::block_connected`]: ../channelmonitor/struct.ChannelMonitor.html#method.block_connected ++ /// [`chain::Watch::release_pending_monitor_events`]: ../trait.Watch.html#tymethod.release_pending_monitor_events ++ /// [`chain::Filter`]: ../trait.Filter.html + pub fn block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) -> bool { + let mut has_new_outputs_to_watch = false; + { + let mut monitors = self.monitors.lock().unwrap(); + for monitor in monitors.values_mut() { + let mut txn_outputs = monitor.block_connected(header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger); + has_new_outputs_to_watch |= !txn_outputs.is_empty(); + + if let Some(ref chain_source) = self.chain_source { + for (txid, outputs) in txn_outputs.drain(..) { + for (idx, output) in outputs.iter().enumerate() { + chain_source.register_output(&OutPoint { txid, index: idx as u16 }, &output.script_pubkey); + } + } + } + } + } + has_new_outputs_to_watch + } + + /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view + /// of a channel based on the disconnected block. See [`ChannelMonitor::block_disconnected`] for + /// details. + /// - /// [`ChannelMonitor::block_disconnected`]: struct.ChannelMonitor.html#method.block_disconnected ++ /// [`ChannelMonitor::block_disconnected`]: ../channelmonitor/struct.ChannelMonitor.html#method.block_disconnected + pub fn block_disconnected(&self, header: &BlockHeader, disconnected_height: u32) { + let mut monitors = self.monitors.lock().unwrap(); + for monitor in monitors.values_mut() { + monitor.block_disconnected(header, disconnected_height, &*self.broadcaster, &*self.fee_estimator, &*self.logger); + } + } + + /// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels. + /// + /// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor + /// will call back to it indicating transactions and outputs of interest. This allows clients to + /// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may + /// always need to fetch full blocks absent another means for determining which blocks contain + /// transactions relevant to the watched channels. + /// - /// [`chain::Filter`]: ../../chain/trait.Filter.html ++ /// [`chain::Filter`]: ../trait.Filter.html + pub fn new(chain_source: Option, broadcaster: T, logger: L, feeest: F) -> Self { + Self { + monitors: Mutex::new(HashMap::new()), + chain_source, + broadcaster, + logger, + fee_estimator: feeest, + } + } + + /// Adds the monitor that watches the channel referred to by the given outpoint. + /// + /// Calls back to [`chain::Filter`] with the funding transaction and outputs to watch. + /// - /// [`chain::Filter`]: ../../chain/trait.Filter.html ++ /// [`chain::Filter`]: ../trait.Filter.html + fn add_monitor(&self, outpoint: OutPoint, monitor: ChannelMonitor) -> Result<(), MonitorUpdateError> { + let mut monitors = self.monitors.lock().unwrap(); + let entry = match monitors.entry(outpoint) { + hash_map::Entry::Occupied(_) => return Err(MonitorUpdateError("Channel monitor for given outpoint is already present")), + hash_map::Entry::Vacant(e) => e, + }; + { + let funding_txo = monitor.get_funding_txo(); + log_trace!(self.logger, "Got new Channel Monitor for channel {}", log_bytes!(funding_txo.0.to_channel_id()[..])); + + if let Some(ref chain_source) = self.chain_source { + chain_source.register_tx(&funding_txo.0.txid, &funding_txo.1); + for (txid, outputs) in monitor.get_outputs_to_watch().iter() { + for (idx, script_pubkey) in outputs.iter().enumerate() { + chain_source.register_output(&OutPoint { txid: *txid, index: idx as u16 }, &script_pubkey); + } + } + } + } + entry.insert(monitor); + Ok(()) + } + + /// Updates the monitor that watches the channel referred to by the given outpoint. + fn update_monitor(&self, outpoint: OutPoint, update: ChannelMonitorUpdate) -> Result<(), MonitorUpdateError> { + let mut monitors = self.monitors.lock().unwrap(); + match monitors.get_mut(&outpoint) { + Some(orig_monitor) => { + log_trace!(self.logger, "Updating Channel Monitor for channel {}", log_funding_info!(orig_monitor)); + orig_monitor.update_monitor(update, &self.broadcaster, &self.logger) + }, + None => Err(MonitorUpdateError("No such monitor registered")) + } + } + } + + impl chain::Watch for ChainMonitor + where C::Target: chain::Filter, + T::Target: BroadcasterInterface, + F::Target: FeeEstimator, + L::Target: Logger, + { + type Keys = ChanSigner; + + fn watch_channel(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr> { + match self.add_monitor(funding_txo, monitor) { + Ok(_) => Ok(()), + Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure), + } + } + + fn update_channel(&self, funding_txo: OutPoint, update: ChannelMonitorUpdate) -> Result<(), ChannelMonitorUpdateErr> { + match self.update_monitor(funding_txo, update) { + Ok(_) => Ok(()), + Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure), + } + } + + fn release_pending_monitor_events(&self) -> Vec { + let mut pending_monitor_events = Vec::new(); + for chan in self.monitors.lock().unwrap().values_mut() { + pending_monitor_events.append(&mut chan.get_and_clear_pending_monitor_events()); + } + pending_monitor_events + } + } + + impl events::EventsProvider for ChainMonitor + where C::Target: chain::Filter, + T::Target: BroadcasterInterface, + F::Target: FeeEstimator, + L::Target: Logger, + { + fn get_and_clear_pending_events(&self) -> Vec { + let mut pending_events = Vec::new(); + for chan in self.monitors.lock().unwrap().values_mut() { + pending_events.append(&mut chan.get_and_clear_pending_events()); + } + pending_events + } + } - -/// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction, -/// instead claiming it in its own individual transaction. -pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12; -/// If an HTLC expires within this many blocks, force-close the channel to broadcast the -/// HTLC-Success transaction. -/// In other words, this is an upper bound on how many blocks we think it can take us to get a -/// transaction confirmed (and we use it in a few more, equivalent, places). -pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6; -/// Number of blocks by which point we expect our counterparty to have seen new blocks on the -/// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our -/// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing -/// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he -/// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our -/// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures -/// due to expiration but increase the cost of funds being locked longuer in case of failure. -/// This delay also cover a low-power peer being slow to process blocks and so being behind us on -/// accurate block height. -/// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY -/// with at worst this delay, so we are not only using this value as a mercy for them but also -/// us as a safeguard to delay with enough time. -pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3; -/// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound -/// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money. -/// We use also this delay to be sure we can remove our in-flight claim txn from bump candidates buffer. -/// It may cause spurrious generation of bumped claim txn but that's allright given the outpoint is already -/// solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not -/// keeping bumping another claim tx to solve the outpoint. -pub(crate) const ANTI_REORG_DELAY: u32 = 6; -/// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we -/// refuse to accept a new HTLC. -/// -/// This is used for a few separate purposes: -/// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are -/// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will -/// fail this HTLC, -/// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race -/// condition with the above), we will fail this HTLC without telling the user we received it, -/// 3) if we are waiting on a connection or a channel state update to send an HTLC to a peer, and -/// that HTLC expires within this many blocks, we will simply fail the HTLC instead. -/// -/// (1) is all about protecting us - we need enough time to update the channel state before we hit -/// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage. -/// -/// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately -/// in a race condition between the user connecting a block (which would fail it) and the user -/// providing us the preimage (which would claim it). -/// -/// (3) is about our counterparty - we don't want to relay an HTLC to a counterparty when they may -/// end up force-closing the channel on us to claim it. -pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS; - -#[derive(Clone, PartialEq)] -struct HolderSignedTx { - /// txid of the transaction in tx, just used to make comparison faster - txid: Txid, - revocation_key: PublicKey, - a_htlc_key: PublicKey, - b_htlc_key: PublicKey, - delayed_payment_key: PublicKey, - per_commitment_point: PublicKey, - feerate_per_kw: u32, - htlc_outputs: Vec<(HTLCOutputInCommitment, Option, Option)>, -} - -/// We use this to track counterparty commitment transactions and htlcs outputs and -/// use it to generate any justice or 2nd-stage preimage/timeout transactions. -#[derive(PartialEq)] -struct CounterpartyCommitmentTransaction { - counterparty_delayed_payment_base_key: PublicKey, - counterparty_htlc_base_key: PublicKey, - on_counterparty_tx_csv: u16, - per_htlc: HashMap> -} - -impl Writeable for CounterpartyCommitmentTransaction { - fn write(&self, w: &mut W) -> Result<(), ::std::io::Error> { - self.counterparty_delayed_payment_base_key.write(w)?; - self.counterparty_htlc_base_key.write(w)?; - w.write_all(&byte_utils::be16_to_array(self.on_counterparty_tx_csv))?; - w.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?; - for (ref txid, ref htlcs) in self.per_htlc.iter() { - w.write_all(&txid[..])?; - w.write_all(&byte_utils::be64_to_array(htlcs.len() as u64))?; - for &ref htlc in htlcs.iter() { - htlc.write(w)?; - } - } - Ok(()) - } -} -impl Readable for CounterpartyCommitmentTransaction { - fn read(r: &mut R) -> Result { - let counterparty_commitment_transaction = { - let counterparty_delayed_payment_base_key = Readable::read(r)?; - let counterparty_htlc_base_key = Readable::read(r)?; - let on_counterparty_tx_csv: u16 = Readable::read(r)?; - let per_htlc_len: u64 = Readable::read(r)?; - let mut per_htlc = HashMap::with_capacity(cmp::min(per_htlc_len as usize, MAX_ALLOC_SIZE / 64)); - for _ in 0..per_htlc_len { - let txid: Txid = Readable::read(r)?; - let htlcs_count: u64 = Readable::read(r)?; - let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32)); - for _ in 0..htlcs_count { - let htlc = Readable::read(r)?; - htlcs.push(htlc); - } - if let Some(_) = per_htlc.insert(txid, htlcs) { - return Err(DecodeError::InvalidValue); - } - } - CounterpartyCommitmentTransaction { - counterparty_delayed_payment_base_key, - counterparty_htlc_base_key, - on_counterparty_tx_csv, - per_htlc, - } - }; - Ok(counterparty_commitment_transaction) - } -} - -/// When ChannelMonitor discovers an onchain outpoint being a step of a channel and that it needs -/// to generate a tx to push channel state forward, we cache outpoint-solving tx material to build -/// a new bumped one in case of lenghty confirmation delay -#[derive(Clone, PartialEq)] -pub(crate) enum InputMaterial { - Revoked { - per_commitment_point: PublicKey, - counterparty_delayed_payment_base_key: PublicKey, - counterparty_htlc_base_key: PublicKey, - per_commitment_key: SecretKey, - input_descriptor: InputDescriptors, - amount: u64, - htlc: Option, - on_counterparty_tx_csv: u16, - }, - CounterpartyHTLC { - per_commitment_point: PublicKey, - counterparty_delayed_payment_base_key: PublicKey, - counterparty_htlc_base_key: PublicKey, - preimage: Option, - htlc: HTLCOutputInCommitment - }, - HolderHTLC { - preimage: Option, - amount: u64, - }, - Funding { - funding_redeemscript: Script, - } -} - -impl Writeable for InputMaterial { - fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { - match self { - &InputMaterial::Revoked { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref per_commitment_key, ref input_descriptor, ref amount, ref htlc, ref on_counterparty_tx_csv} => { - writer.write_all(&[0; 1])?; - per_commitment_point.write(writer)?; - counterparty_delayed_payment_base_key.write(writer)?; - counterparty_htlc_base_key.write(writer)?; - writer.write_all(&per_commitment_key[..])?; - input_descriptor.write(writer)?; - writer.write_all(&byte_utils::be64_to_array(*amount))?; - htlc.write(writer)?; - on_counterparty_tx_csv.write(writer)?; - }, - &InputMaterial::CounterpartyHTLC { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref preimage, ref htlc} => { - writer.write_all(&[1; 1])?; - per_commitment_point.write(writer)?; - counterparty_delayed_payment_base_key.write(writer)?; - counterparty_htlc_base_key.write(writer)?; - preimage.write(writer)?; - htlc.write(writer)?; - }, - &InputMaterial::HolderHTLC { ref preimage, ref amount } => { - writer.write_all(&[2; 1])?; - preimage.write(writer)?; - writer.write_all(&byte_utils::be64_to_array(*amount))?; - }, - &InputMaterial::Funding { ref funding_redeemscript } => { - writer.write_all(&[3; 1])?; - funding_redeemscript.write(writer)?; - } - } - Ok(()) - } -} - -impl Readable for InputMaterial { - fn read(reader: &mut R) -> Result { - let input_material = match ::read(reader)? { - 0 => { - let per_commitment_point = Readable::read(reader)?; - let counterparty_delayed_payment_base_key = Readable::read(reader)?; - let counterparty_htlc_base_key = Readable::read(reader)?; - let per_commitment_key = Readable::read(reader)?; - let input_descriptor = Readable::read(reader)?; - let amount = Readable::read(reader)?; - let htlc = Readable::read(reader)?; - let on_counterparty_tx_csv = Readable::read(reader)?; - InputMaterial::Revoked { - per_commitment_point, - counterparty_delayed_payment_base_key, - counterparty_htlc_base_key, - per_commitment_key, - input_descriptor, - amount, - htlc, - on_counterparty_tx_csv - } - }, - 1 => { - let per_commitment_point = Readable::read(reader)?; - let counterparty_delayed_payment_base_key = Readable::read(reader)?; - let counterparty_htlc_base_key = Readable::read(reader)?; - let preimage = Readable::read(reader)?; - let htlc = Readable::read(reader)?; - InputMaterial::CounterpartyHTLC { - per_commitment_point, - counterparty_delayed_payment_base_key, - counterparty_htlc_base_key, - preimage, - htlc - } - }, - 2 => { - let preimage = Readable::read(reader)?; - let amount = Readable::read(reader)?; - InputMaterial::HolderHTLC { - preimage, - amount, - } - }, - 3 => { - InputMaterial::Funding { - funding_redeemscript: Readable::read(reader)?, - } - } - _ => return Err(DecodeError::InvalidValue), - }; - Ok(input_material) - } -} - -/// ClaimRequest is a descriptor structure to communicate between detection -/// and reaction module. They are generated by ChannelMonitor while parsing -/// onchain txn leaked from a channel and handed over to OnchainTxHandler which -/// is responsible for opportunistic aggregation, selecting and enforcing -/// bumping logic, building and signing transactions. -pub(crate) struct ClaimRequest { - // Block height before which claiming is exclusive to one party, - // after reaching it, claiming may be contentious. - pub(crate) absolute_timelock: u32, - // Timeout tx must have nLocktime set which means aggregating multiple - // ones must take the higher nLocktime among them to satisfy all of them. - // Sadly it has few pitfalls, a) it takes longuer to get fund back b) CLTV_DELTA - // of a sooner-HTLC could be swallowed by the highest nLocktime of the HTLC set. - // Do simplify we mark them as non-aggregable. - pub(crate) aggregable: bool, - // Basic bitcoin outpoint (txid, vout) - pub(crate) outpoint: BitcoinOutPoint, - // Following outpoint type, set of data needed to generate transaction digest - // and satisfy witness program. - pub(crate) witness_data: InputMaterial -} - -/// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it -/// once they mature to enough confirmations (ANTI_REORG_DELAY) -#[derive(Clone, PartialEq)] -enum OnchainEvent { - /// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve - /// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can - /// only win from it, so it's never an OnchainEvent - HTLCUpdate { - htlc_update: (HTLCSource, PaymentHash), - }, - MaturingOutput { - descriptor: SpendableOutputDescriptor, - }, -} - -const SERIALIZATION_VERSION: u8 = 1; -const MIN_SERIALIZATION_VERSION: u8 = 1; - -#[cfg_attr(test, derive(PartialEq))] -#[derive(Clone)] -pub(crate) enum ChannelMonitorUpdateStep { - LatestHolderCommitmentTXInfo { - commitment_tx: HolderCommitmentTransaction, - htlc_outputs: Vec<(HTLCOutputInCommitment, Option, Option)>, - }, - LatestCounterpartyCommitmentTXInfo { - unsigned_commitment_tx: Transaction, // TODO: We should actually only need the txid here - htlc_outputs: Vec<(HTLCOutputInCommitment, Option>)>, - commitment_number: u64, - their_revocation_point: PublicKey, - }, - PaymentPreimage { - payment_preimage: PaymentPreimage, - }, - CommitmentSecret { - idx: u64, - secret: [u8; 32], - }, - /// Used to indicate that the no future updates will occur, and likely that the latest holder - /// commitment transaction(s) should be broadcast, as the channel has been force-closed. - ChannelForceClosed { - /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we - /// think we've fallen behind! - should_broadcast: bool, - }, -} - -impl Writeable for ChannelMonitorUpdateStep { - fn write(&self, w: &mut W) -> Result<(), ::std::io::Error> { - match self { - &ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { ref commitment_tx, ref htlc_outputs } => { - 0u8.write(w)?; - commitment_tx.write(w)?; - (htlc_outputs.len() as u64).write(w)?; - for &(ref output, ref signature, ref source) in htlc_outputs.iter() { - output.write(w)?; - signature.write(w)?; - source.write(w)?; - } - } - &ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { ref unsigned_commitment_tx, ref htlc_outputs, ref commitment_number, ref their_revocation_point } => { - 1u8.write(w)?; - unsigned_commitment_tx.write(w)?; - commitment_number.write(w)?; - their_revocation_point.write(w)?; - (htlc_outputs.len() as u64).write(w)?; - for &(ref output, ref source) in htlc_outputs.iter() { - output.write(w)?; - source.as_ref().map(|b| b.as_ref()).write(w)?; - } - }, - &ChannelMonitorUpdateStep::PaymentPreimage { ref payment_preimage } => { - 2u8.write(w)?; - payment_preimage.write(w)?; - }, - &ChannelMonitorUpdateStep::CommitmentSecret { ref idx, ref secret } => { - 3u8.write(w)?; - idx.write(w)?; - secret.write(w)?; - }, - &ChannelMonitorUpdateStep::ChannelForceClosed { ref should_broadcast } => { - 4u8.write(w)?; - should_broadcast.write(w)?; - }, - } - Ok(()) - } -} -impl Readable for ChannelMonitorUpdateStep { - fn read(r: &mut R) -> Result { - match Readable::read(r)? { - 0u8 => { - Ok(ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { - commitment_tx: Readable::read(r)?, - htlc_outputs: { - let len: u64 = Readable::read(r)?; - let mut res = Vec::new(); - for _ in 0..len { - res.push((Readable::read(r)?, Readable::read(r)?, Readable::read(r)?)); - } - res - }, - }) - }, - 1u8 => { - Ok(ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { - unsigned_commitment_tx: Readable::read(r)?, - commitment_number: Readable::read(r)?, - their_revocation_point: Readable::read(r)?, - htlc_outputs: { - let len: u64 = Readable::read(r)?; - let mut res = Vec::new(); - for _ in 0..len { - res.push((Readable::read(r)?, as Readable>::read(r)?.map(|o| Box::new(o)))); - } - res - }, - }) - }, - 2u8 => { - Ok(ChannelMonitorUpdateStep::PaymentPreimage { - payment_preimage: Readable::read(r)?, - }) - }, - 3u8 => { - Ok(ChannelMonitorUpdateStep::CommitmentSecret { - idx: Readable::read(r)?, - secret: Readable::read(r)?, - }) - }, - 4u8 => { - Ok(ChannelMonitorUpdateStep::ChannelForceClosed { - should_broadcast: Readable::read(r)? - }) - }, - _ => Err(DecodeError::InvalidValue), - } - } -} - -/// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates -/// on-chain transactions to ensure no loss of funds occurs. -/// -/// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date -/// information and are actively monitoring the chain. -/// -/// Pending Events or updated HTLCs which have not yet been read out by -/// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and -/// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events -/// gotten are fully handled before re-serializing the new state. -pub struct ChannelMonitor { - latest_update_id: u64, - commitment_transaction_number_obscure_factor: u64, - - destination_script: Script, - broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>, - counterparty_payment_script: Script, - shutdown_script: Script, - - keys: ChanSigner, - funding_info: (OutPoint, Script), - current_counterparty_commitment_txid: Option, - prev_counterparty_commitment_txid: Option, - - counterparty_tx_cache: CounterpartyCommitmentTransaction, - funding_redeemscript: Script, - channel_value_satoshis: u64, - // first is the idx of the first of the two revocation points - their_cur_revocation_points: Option<(u64, PublicKey, Option)>, - - on_holder_tx_csv: u16, - - commitment_secrets: CounterpartyCommitmentSecrets, - counterparty_claimable_outpoints: HashMap>)>>, - /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain. - /// Nor can we figure out their commitment numbers without the commitment transaction they are - /// spending. Thus, in order to claim them via revocation key, we track all the counterparty - /// commitment transactions which we find on-chain, mapping them to the commitment number which - /// can be used to derive the revocation key and claim the transactions. - counterparty_commitment_txn_on_chain: HashMap)>, - /// Cache used to make pruning of payment_preimages faster. - /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked - /// counterparty transactions (ie should remain pretty small). - /// Serialized to disk but should generally not be sent to Watchtowers. - counterparty_hash_commitment_number: HashMap, - - // We store two holder commitment transactions to avoid any race conditions where we may update - // some monitors (potentially on watchtowers) but then fail to update others, resulting in the - // various monitors for one channel being out of sync, and us broadcasting a holder - // transaction for which we have deleted claim information on some watchtowers. - prev_holder_signed_commitment_tx: Option, - current_holder_commitment_tx: HolderSignedTx, - - // Used just for ChannelManager to make sure it has the latest channel data during - // deserialization - current_counterparty_commitment_number: u64, - // Used just for ChannelManager to make sure it has the latest channel data during - // deserialization - current_holder_commitment_number: u64, - - payment_preimages: HashMap, - - pending_monitor_events: Vec, - pending_events: Vec, - - // Used to track onchain events, i.e transactions parts of channels confirmed on chain, on which - // we have to take actions once they reach enough confs. Key is a block height timer, i.e we enforce - // actions when we receive a block with given height. Actions depend on OnchainEvent type. - onchain_events_waiting_threshold_conf: HashMap>, - - // If we get serialized out and re-read, we need to make sure that the chain monitoring - // interface knows about the TXOs that we want to be notified of spends of. We could probably - // be smart and derive them from the above storage fields, but its much simpler and more - // Obviously Correct (tm) if we just keep track of them explicitly. - outputs_to_watch: HashMap>, - - #[cfg(test)] - pub onchain_tx_handler: OnchainTxHandler, - #[cfg(not(test))] - onchain_tx_handler: OnchainTxHandler, - - // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the - // channel has been force-closed. After this is set, no further holder commitment transaction - // updates may occur, and we panic!() if one is provided. - lockdown_from_offchain: bool, - - // Set once we've signed a holder commitment transaction and handed it over to our - // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions - // may occur, and we fail any such monitor updates. - // - // In case of update rejection due to a locally already signed commitment transaction, we - // nevertheless store update content to track in case of concurrent broadcast by another - // remote monitor out-of-order with regards to the block view. - holder_tx_signed: bool, - - // We simply modify last_block_hash in Channel's block_connected so that serialization is - // consistent but hopefully the users' copy handles block_connected in a consistent way. - // (we do *not*, however, update them in update_monitor to ensure any local user copies keep - // their last_block_hash from its state and not based on updated copies that didn't run through - // the full block_connected). - last_block_hash: BlockHash, - secp_ctx: Secp256k1, //TODO: dedup this a bit... -} - -#[cfg(any(test, feature = "fuzztarget"))] -/// Used only in testing and fuzztarget to check serialization roundtrips don't change the -/// underlying object -impl PartialEq for ChannelMonitor { - fn eq(&self, other: &Self) -> bool { - if self.latest_update_id != other.latest_update_id || - self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor || - self.destination_script != other.destination_script || - self.broadcasted_holder_revokable_script != other.broadcasted_holder_revokable_script || - self.counterparty_payment_script != other.counterparty_payment_script || - self.keys.pubkeys() != other.keys.pubkeys() || - self.funding_info != other.funding_info || - self.current_counterparty_commitment_txid != other.current_counterparty_commitment_txid || - self.prev_counterparty_commitment_txid != other.prev_counterparty_commitment_txid || - self.counterparty_tx_cache != other.counterparty_tx_cache || - self.funding_redeemscript != other.funding_redeemscript || - self.channel_value_satoshis != other.channel_value_satoshis || - self.their_cur_revocation_points != other.their_cur_revocation_points || - self.on_holder_tx_csv != other.on_holder_tx_csv || - self.commitment_secrets != other.commitment_secrets || - self.counterparty_claimable_outpoints != other.counterparty_claimable_outpoints || - self.counterparty_commitment_txn_on_chain != other.counterparty_commitment_txn_on_chain || - self.counterparty_hash_commitment_number != other.counterparty_hash_commitment_number || - self.prev_holder_signed_commitment_tx != other.prev_holder_signed_commitment_tx || - self.current_counterparty_commitment_number != other.current_counterparty_commitment_number || - self.current_holder_commitment_number != other.current_holder_commitment_number || - self.current_holder_commitment_tx != other.current_holder_commitment_tx || - self.payment_preimages != other.payment_preimages || - self.pending_monitor_events != other.pending_monitor_events || - self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly - self.onchain_events_waiting_threshold_conf != other.onchain_events_waiting_threshold_conf || - self.outputs_to_watch != other.outputs_to_watch || - self.lockdown_from_offchain != other.lockdown_from_offchain || - self.holder_tx_signed != other.holder_tx_signed - { - false - } else { - true - } - } -} - -impl ChannelMonitor { - /// Writes this monitor into the given writer, suitable for writing to disk. - /// - /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which - /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along - /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the - /// returned block hash and the the current chain and then reconnecting blocks to get to the - /// best chain) upon deserializing the object! - pub fn write_for_disk(&self, writer: &mut W) -> Result<(), Error> { - //TODO: We still write out all the serialization here manually instead of using the fancy - //serialization framework we have, we should migrate things over to it. - writer.write_all(&[SERIALIZATION_VERSION; 1])?; - writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?; - - self.latest_update_id.write(writer)?; - - // Set in initial Channel-object creation, so should always be set by now: - U48(self.commitment_transaction_number_obscure_factor).write(writer)?; - - self.destination_script.write(writer)?; - if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script { - writer.write_all(&[0; 1])?; - broadcasted_holder_revokable_script.0.write(writer)?; - broadcasted_holder_revokable_script.1.write(writer)?; - broadcasted_holder_revokable_script.2.write(writer)?; - } else { - writer.write_all(&[1; 1])?; - } - - self.counterparty_payment_script.write(writer)?; - self.shutdown_script.write(writer)?; - - self.keys.write(writer)?; - writer.write_all(&self.funding_info.0.txid[..])?; - writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?; - self.funding_info.1.write(writer)?; - self.current_counterparty_commitment_txid.write(writer)?; - self.prev_counterparty_commitment_txid.write(writer)?; - - self.counterparty_tx_cache.write(writer)?; - self.funding_redeemscript.write(writer)?; - self.channel_value_satoshis.write(writer)?; - - match self.their_cur_revocation_points { - Some((idx, pubkey, second_option)) => { - writer.write_all(&byte_utils::be48_to_array(idx))?; - writer.write_all(&pubkey.serialize())?; - match second_option { - Some(second_pubkey) => { - writer.write_all(&second_pubkey.serialize())?; - }, - None => { - writer.write_all(&[0; 33])?; - }, - } - }, - None => { - writer.write_all(&byte_utils::be48_to_array(0))?; - }, - } - - writer.write_all(&byte_utils::be16_to_array(self.on_holder_tx_csv))?; - - self.commitment_secrets.write(writer)?; - - macro_rules! serialize_htlc_in_commitment { - ($htlc_output: expr) => { - writer.write_all(&[$htlc_output.offered as u8; 1])?; - writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?; - writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?; - writer.write_all(&$htlc_output.payment_hash.0[..])?; - $htlc_output.transaction_output_index.write(writer)?; - } - } - - writer.write_all(&byte_utils::be64_to_array(self.counterparty_claimable_outpoints.len() as u64))?; - for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() { - writer.write_all(&txid[..])?; - writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?; - for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() { - serialize_htlc_in_commitment!(htlc_output); - htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?; - } - } - - writer.write_all(&byte_utils::be64_to_array(self.counterparty_commitment_txn_on_chain.len() as u64))?; - for (ref txid, &(commitment_number, ref txouts)) in self.counterparty_commitment_txn_on_chain.iter() { - writer.write_all(&txid[..])?; - writer.write_all(&byte_utils::be48_to_array(commitment_number))?; - (txouts.len() as u64).write(writer)?; - for script in txouts.iter() { - script.write(writer)?; - } - } - - writer.write_all(&byte_utils::be64_to_array(self.counterparty_hash_commitment_number.len() as u64))?; - for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() { - writer.write_all(&payment_hash.0[..])?; - writer.write_all(&byte_utils::be48_to_array(*commitment_number))?; - } - - macro_rules! serialize_holder_tx { - ($holder_tx: expr) => { - $holder_tx.txid.write(writer)?; - writer.write_all(&$holder_tx.revocation_key.serialize())?; - writer.write_all(&$holder_tx.a_htlc_key.serialize())?; - writer.write_all(&$holder_tx.b_htlc_key.serialize())?; - writer.write_all(&$holder_tx.delayed_payment_key.serialize())?; - writer.write_all(&$holder_tx.per_commitment_point.serialize())?; - - writer.write_all(&byte_utils::be32_to_array($holder_tx.feerate_per_kw))?; - writer.write_all(&byte_utils::be64_to_array($holder_tx.htlc_outputs.len() as u64))?; - for &(ref htlc_output, ref sig, ref htlc_source) in $holder_tx.htlc_outputs.iter() { - serialize_htlc_in_commitment!(htlc_output); - if let &Some(ref their_sig) = sig { - 1u8.write(writer)?; - writer.write_all(&their_sig.serialize_compact())?; - } else { - 0u8.write(writer)?; - } - htlc_source.write(writer)?; - } - } - } - - if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx { - writer.write_all(&[1; 1])?; - serialize_holder_tx!(prev_holder_tx); - } else { - writer.write_all(&[0; 1])?; - } - - serialize_holder_tx!(self.current_holder_commitment_tx); - - writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?; - writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?; - - writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?; - for payment_preimage in self.payment_preimages.values() { - writer.write_all(&payment_preimage.0[..])?; - } - - writer.write_all(&byte_utils::be64_to_array(self.pending_monitor_events.len() as u64))?; - for event in self.pending_monitor_events.iter() { - match event { - MonitorEvent::HTLCEvent(upd) => { - 0u8.write(writer)?; - upd.write(writer)?; - }, - MonitorEvent::CommitmentTxBroadcasted(_) => 1u8.write(writer)? - } - } - - writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?; - for event in self.pending_events.iter() { - event.write(writer)?; - } - - self.last_block_hash.write(writer)?; - - writer.write_all(&byte_utils::be64_to_array(self.onchain_events_waiting_threshold_conf.len() as u64))?; - for (ref target, ref events) in self.onchain_events_waiting_threshold_conf.iter() { - writer.write_all(&byte_utils::be32_to_array(**target))?; - writer.write_all(&byte_utils::be64_to_array(events.len() as u64))?; - for ev in events.iter() { - match *ev { - OnchainEvent::HTLCUpdate { ref htlc_update } => { - 0u8.write(writer)?; - htlc_update.0.write(writer)?; - htlc_update.1.write(writer)?; - }, - OnchainEvent::MaturingOutput { ref descriptor } => { - 1u8.write(writer)?; - descriptor.write(writer)?; - }, - } - } - } - - (self.outputs_to_watch.len() as u64).write(writer)?; - for (txid, output_scripts) in self.outputs_to_watch.iter() { - txid.write(writer)?; - (output_scripts.len() as u64).write(writer)?; - for script in output_scripts.iter() { - script.write(writer)?; - } - } - self.onchain_tx_handler.write(writer)?; - - self.lockdown_from_offchain.write(writer)?; - self.holder_tx_signed.write(writer)?; - - Ok(()) - } -} - -impl ChannelMonitor { - pub(crate) fn new(keys: ChanSigner, shutdown_pubkey: &PublicKey, - on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script), - counterparty_htlc_base_key: &PublicKey, counterparty_delayed_payment_base_key: &PublicKey, - on_holder_tx_csv: u16, funding_redeemscript: Script, channel_value_satoshis: u64, - commitment_transaction_number_obscure_factor: u64, - initial_holder_commitment_tx: HolderCommitmentTransaction) -> ChannelMonitor { - - assert!(commitment_transaction_number_obscure_factor <= (1 << 48)); - let our_channel_close_key_hash = WPubkeyHash::hash(&shutdown_pubkey.serialize()); - let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script(); - let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize()); - let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script(); - - let counterparty_tx_cache = CounterpartyCommitmentTransaction { counterparty_delayed_payment_base_key: *counterparty_delayed_payment_base_key, counterparty_htlc_base_key: *counterparty_htlc_base_key, on_counterparty_tx_csv, per_htlc: HashMap::new() }; - - let mut onchain_tx_handler = OnchainTxHandler::new(destination_script.clone(), keys.clone(), on_holder_tx_csv); - - let holder_tx_sequence = initial_holder_commitment_tx.unsigned_tx.input[0].sequence as u64; - let holder_tx_locktime = initial_holder_commitment_tx.unsigned_tx.lock_time as u64; - let holder_commitment_tx = HolderSignedTx { - txid: initial_holder_commitment_tx.txid(), - revocation_key: initial_holder_commitment_tx.keys.revocation_key, - a_htlc_key: initial_holder_commitment_tx.keys.broadcaster_htlc_key, - b_htlc_key: initial_holder_commitment_tx.keys.countersignatory_htlc_key, - delayed_payment_key: initial_holder_commitment_tx.keys.broadcaster_delayed_payment_key, - per_commitment_point: initial_holder_commitment_tx.keys.per_commitment_point, - feerate_per_kw: initial_holder_commitment_tx.feerate_per_kw, - htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions - }; - onchain_tx_handler.provide_latest_holder_tx(initial_holder_commitment_tx); - - let mut outputs_to_watch = HashMap::new(); - outputs_to_watch.insert(funding_info.0.txid, vec![funding_info.1.clone()]); - - ChannelMonitor { - latest_update_id: 0, - commitment_transaction_number_obscure_factor, - - destination_script: destination_script.clone(), - broadcasted_holder_revokable_script: None, - counterparty_payment_script, - shutdown_script, - - keys, - funding_info, - current_counterparty_commitment_txid: None, - prev_counterparty_commitment_txid: None, - - counterparty_tx_cache, - funding_redeemscript, - channel_value_satoshis: channel_value_satoshis, - their_cur_revocation_points: None, - - on_holder_tx_csv, - - commitment_secrets: CounterpartyCommitmentSecrets::new(), - counterparty_claimable_outpoints: HashMap::new(), - counterparty_commitment_txn_on_chain: HashMap::new(), - counterparty_hash_commitment_number: HashMap::new(), - - prev_holder_signed_commitment_tx: None, - current_holder_commitment_tx: holder_commitment_tx, - current_counterparty_commitment_number: 1 << 48, - current_holder_commitment_number: 0xffff_ffff_ffff - ((((holder_tx_sequence & 0xffffff) << 3*8) | (holder_tx_locktime as u64 & 0xffffff)) ^ commitment_transaction_number_obscure_factor), - - payment_preimages: HashMap::new(), - pending_monitor_events: Vec::new(), - pending_events: Vec::new(), - - onchain_events_waiting_threshold_conf: HashMap::new(), - outputs_to_watch, - - onchain_tx_handler, - - lockdown_from_offchain: false, - holder_tx_signed: false, - - last_block_hash: Default::default(), - secp_ctx: Secp256k1::new(), - } - } - - /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither - /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen - /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key). - pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> { - if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) { - return Err(MonitorUpdateError("Previous secret did not match new one")); - } - - // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill - // events for now-revoked/fulfilled HTLCs. - if let Some(txid) = self.prev_counterparty_commitment_txid.take() { - for &mut (_, ref mut source) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() { - *source = None; - } - } - - if !self.payment_preimages.is_empty() { - let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx; - let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref(); - let min_idx = self.get_min_seen_secret(); - let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number; - - self.payment_preimages.retain(|&k, _| { - for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() { - if k == htlc.payment_hash { - return true - } - } - if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx { - for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() { - if k == htlc.payment_hash { - return true - } - } - } - let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) { - if *cn < min_idx { - return true - } - true - } else { false }; - if contains { - counterparty_hash_commitment_number.remove(&k); - } - false - }); - } - - Ok(()) - } - - /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction. - /// The monitor watches for it to be broadcasted and then uses the HTLC information (and - /// possibly future revocation/preimage information) to claim outputs where possible. - /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers. - pub(crate) fn provide_latest_counterparty_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option>)>, commitment_number: u64, their_revocation_point: PublicKey, logger: &L) where L::Target: Logger { - // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction - // so that a remote monitor doesn't learn anything unless there is a malicious close. - // (only maybe, sadly we cant do the same for local info, as we need to be aware of - // timeouts) - for &(ref htlc, _) in &htlc_outputs { - self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number); - } - - let new_txid = unsigned_commitment_tx.txid(); - log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", new_txid, commitment_number, htlc_outputs.len()); - log_trace!(logger, "New potential counterparty commitment transaction: {}", encode::serialize_hex(unsigned_commitment_tx)); - self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take(); - self.current_counterparty_commitment_txid = Some(new_txid); - self.counterparty_claimable_outpoints.insert(new_txid, htlc_outputs.clone()); - self.current_counterparty_commitment_number = commitment_number; - //TODO: Merge this into the other per-counterparty-transaction output storage stuff - match self.their_cur_revocation_points { - Some(old_points) => { - if old_points.0 == commitment_number + 1 { - self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point))); - } else if old_points.0 == commitment_number + 2 { - if let Some(old_second_point) = old_points.2 { - self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point))); - } else { - self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None)); - } - } else { - self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None)); - } - }, - None => { - self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None)); - } - } - let mut htlcs = Vec::with_capacity(htlc_outputs.len()); - for htlc in htlc_outputs { - if htlc.0.transaction_output_index.is_some() { - htlcs.push(htlc.0); - } - } - self.counterparty_tx_cache.per_htlc.insert(new_txid, htlcs); - } - - /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The - /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it - /// is important that any clones of this channel monitor (including remote clones) by kept - /// up-to-date as our holder commitment transaction is updated. - /// Panics if set_on_holder_tx_csv has never been called. - pub(super) fn provide_latest_holder_commitment_tx_info(&mut self, commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option, Option)>) -> Result<(), MonitorUpdateError> { - let txid = commitment_tx.txid(); - let sequence = commitment_tx.unsigned_tx.input[0].sequence as u64; - let locktime = commitment_tx.unsigned_tx.lock_time as u64; - let mut new_holder_commitment_tx = HolderSignedTx { - txid, - revocation_key: commitment_tx.keys.revocation_key, - a_htlc_key: commitment_tx.keys.broadcaster_htlc_key, - b_htlc_key: commitment_tx.keys.countersignatory_htlc_key, - delayed_payment_key: commitment_tx.keys.broadcaster_delayed_payment_key, - per_commitment_point: commitment_tx.keys.per_commitment_point, - feerate_per_kw: commitment_tx.feerate_per_kw, - htlc_outputs: htlc_outputs, - }; - self.onchain_tx_handler.provide_latest_holder_tx(commitment_tx); - self.current_holder_commitment_number = 0xffff_ffff_ffff - ((((sequence & 0xffffff) << 3*8) | (locktime as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor); - mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx); - self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx); - if self.holder_tx_signed { - return Err(MonitorUpdateError("Latest holder commitment signed has already been signed, update is rejected")); - } - Ok(()) - } - - /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all - /// commitment_tx_infos which contain the payment hash have been revoked. - pub(crate) fn provide_payment_preimage(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage) { - self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone()); - } - - pub(crate) fn broadcast_latest_holder_commitment_txn(&mut self, broadcaster: &B, logger: &L) - where B::Target: BroadcasterInterface, - L::Target: Logger, - { - for tx in self.get_latest_holder_commitment_txn(logger).iter() { - broadcaster.broadcast_transaction(tx); - } - self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0)); - } - - /// Updates a ChannelMonitor on the basis of some new information provided by the Channel - /// itself. - /// - /// panics if the given update is not the next update by update_id. - pub fn update_monitor(&mut self, mut updates: ChannelMonitorUpdate, broadcaster: &B, logger: &L) -> Result<(), MonitorUpdateError> - where B::Target: BroadcasterInterface, - L::Target: Logger, - { - if self.latest_update_id + 1 != updates.update_id { - panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!"); - } - for update in updates.updates.drain(..) { - match update { - ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs } => { - if self.lockdown_from_offchain { panic!(); } - self.provide_latest_holder_commitment_tx_info(commitment_tx, htlc_outputs)? - }, - ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { unsigned_commitment_tx, htlc_outputs, commitment_number, their_revocation_point } => - self.provide_latest_counterparty_commitment_tx_info(&unsigned_commitment_tx, htlc_outputs, commitment_number, their_revocation_point, logger), - ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => - self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage), - ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => - self.provide_secret(idx, secret)?, - ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => { - self.lockdown_from_offchain = true; - if should_broadcast { - self.broadcast_latest_holder_commitment_txn(broadcaster, logger); - } else { - log_error!(logger, "You have a toxic holder commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_holder_commitment_txn to be informed of manual action to take"); - } - } - } - } - self.latest_update_id = updates.update_id; - Ok(()) - } - - /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this - /// ChannelMonitor. - pub fn get_latest_update_id(&self) -> u64 { - self.latest_update_id - } - - /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for. - pub fn get_funding_txo(&self) -> &(OutPoint, Script) { - &self.funding_info - } - - /// Gets a list of txids, with their output scripts (in the order they appear in the - /// transaction), which we must learn about spends of via block_connected(). - /// - /// (C-not exported) because we have no HashMap bindings - pub fn get_outputs_to_watch(&self) -> &HashMap> { - &self.outputs_to_watch - } - - /// Gets the sets of all outpoints which this ChannelMonitor expects to hear about spends of. - /// Generally useful when deserializing as during normal operation the return values of - /// block_connected are sufficient to ensure all relevant outpoints are being monitored (note - /// that the get_funding_txo outpoint and transaction must also be monitored for!). - /// - /// (C-not exported) as there is no practical way to track lifetimes of returned values. - pub fn get_monitored_outpoints(&self) -> Vec<(Txid, u32, &Script)> { - let mut res = Vec::with_capacity(self.counterparty_commitment_txn_on_chain.len() * 2); - for (ref txid, &(_, ref outputs)) in self.counterparty_commitment_txn_on_chain.iter() { - for (idx, output) in outputs.iter().enumerate() { - res.push(((*txid).clone(), idx as u32, output)); - } - } - res - } - - /// Get the list of HTLCs who's status has been updated on chain. This should be called by - /// ChannelManager via [`chain::Watch::release_pending_monitor_events`]. - /// - /// [`chain::Watch::release_pending_monitor_events`]: ../../chain/trait.Watch.html#tymethod.release_pending_monitor_events - pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec { - let mut ret = Vec::new(); - mem::swap(&mut ret, &mut self.pending_monitor_events); - ret - } - - /// Gets the list of pending events which were generated by previous actions, clearing the list - /// in the process. - /// - /// This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to - /// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do - /// no internal locking in ChannelMonitors. - pub fn get_and_clear_pending_events(&mut self) -> Vec { - let mut ret = Vec::new(); - mem::swap(&mut ret, &mut self.pending_events); - ret - } - - /// Can only fail if idx is < get_min_seen_secret - pub(crate) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> { - self.commitment_secrets.get_secret(idx) - } - - pub(crate) fn get_min_seen_secret(&self) -> u64 { - self.commitment_secrets.get_min_seen_secret() - } - - pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 { - self.current_counterparty_commitment_number - } - - pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 { - self.current_holder_commitment_number - } - - /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and - /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a - /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for - /// HTLC-Success/HTLC-Timeout transactions. - /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of - /// revoked counterparty commitment tx - fn check_spend_counterparty_transaction(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec, (Txid, Vec)) where L::Target: Logger { - // Most secp and related errors trying to create keys means we have no hope of constructing - // a spend transaction...so we return no transactions to broadcast - let mut claimable_outpoints = Vec::new(); - let mut watch_outputs = Vec::new(); - - let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers! - let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid); - - macro_rules! ignore_error { - ( $thing : expr ) => { - match $thing { - Ok(a) => a, - Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs)) - } - }; - } - - let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor); - if commitment_number >= self.get_min_seen_secret() { - let secret = self.get_secret(commitment_number).unwrap(); - let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret)); - let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key); - let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.keys.pubkeys().revocation_basepoint)); - let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.counterparty_tx_cache.counterparty_delayed_payment_base_key)); - - let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_tx_cache.on_counterparty_tx_csv, &delayed_key); - let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh(); - - // First, process non-htlc outputs (to_holder & to_counterparty) - for (idx, outp) in tx.output.iter().enumerate() { - if outp.script_pubkey == revokeable_p2wsh { - let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: outp.value, htlc: None, on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv}; - claimable_outpoints.push(ClaimRequest { absolute_timelock: height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 }, witness_data}); - } - } - - // Then, try to find revoked htlc outputs - if let Some(ref per_commitment_data) = per_commitment_option { - for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() { - if let Some(transaction_output_index) = htlc.transaction_output_index { - if transaction_output_index as usize >= tx.output.len() || - tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 { - return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user - } - let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }, amount: tx.output[transaction_output_index as usize].value, htlc: Some(htlc.clone()), on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv}; - claimable_outpoints.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data }); - } - } - } - - // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken - if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours - // We're definitely a counterparty commitment transaction! - log_trace!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len()); - watch_outputs.append(&mut tx.output.clone()); - self.counterparty_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect())); - - macro_rules! check_htlc_fails { - ($txid: expr, $commitment_tx: expr) => { - if let Some(ref outpoints) = self.counterparty_claimable_outpoints.get($txid) { - for &(ref htlc, ref source_option) in outpoints.iter() { - if let &Some(ref source) = source_option { - log_info!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of revoked counterparty commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1); - match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { - hash_map::Entry::Occupied(mut entry) => { - let e = entry.get_mut(); - e.retain(|ref event| { - match **event { - OnchainEvent::HTLCUpdate { ref htlc_update } => { - return htlc_update.0 != **source - }, - _ => true - } - }); - e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}); - } - hash_map::Entry::Vacant(entry) => { - entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]); - } - } - } - } - } - } - } - if let Some(ref txid) = self.current_counterparty_commitment_txid { - check_htlc_fails!(txid, "current"); - } - if let Some(ref txid) = self.prev_counterparty_commitment_txid { - check_htlc_fails!(txid, "counterparty"); - } - // No need to check holder commitment txn, symmetric HTLCSource must be present as per-htlc data on counterparty commitment tx - } - } else if let Some(per_commitment_data) = per_commitment_option { - // While this isn't useful yet, there is a potential race where if a counterparty - // revokes a state at the same time as the commitment transaction for that state is - // confirmed, and the watchtower receives the block before the user, the user could - // upload a new ChannelMonitor with the revocation secret but the watchtower has - // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry - // not being generated by the above conditional. Thus, to be safe, we go ahead and - // insert it here. - watch_outputs.append(&mut tx.output.clone()); - self.counterparty_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect())); - - log_trace!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid); - - macro_rules! check_htlc_fails { - ($txid: expr, $commitment_tx: expr, $id: tt) => { - if let Some(ref latest_outpoints) = self.counterparty_claimable_outpoints.get($txid) { - $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() { - if let &Some(ref source) = source_option { - // Check if the HTLC is present in the commitment transaction that was - // broadcast, but not if it was below the dust limit, which we should - // fail backwards immediately as there is no way for us to learn the - // payment_preimage. - // Note that if the dust limit were allowed to change between - // commitment transactions we'd want to be check whether *any* - // broadcastable commitment transaction has the HTLC in it, but it - // cannot currently change after channel initialization, so we don't - // need to here. - for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() { - if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() { - continue $id; - } - } - log_trace!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of counterparty commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx); - match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { - hash_map::Entry::Occupied(mut entry) => { - let e = entry.get_mut(); - e.retain(|ref event| { - match **event { - OnchainEvent::HTLCUpdate { ref htlc_update } => { - return htlc_update.0 != **source - }, - _ => true - } - }); - e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}); - } - hash_map::Entry::Vacant(entry) => { - entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]); - } - } - } - } - } - } - } - if let Some(ref txid) = self.current_counterparty_commitment_txid { - check_htlc_fails!(txid, "current", 'current_loop); - } - if let Some(ref txid) = self.prev_counterparty_commitment_txid { - check_htlc_fails!(txid, "previous", 'prev_loop); - } - - if let Some(revocation_points) = self.their_cur_revocation_points { - let revocation_point_option = - if revocation_points.0 == commitment_number { Some(&revocation_points.1) } - else if let Some(point) = revocation_points.2.as_ref() { - if revocation_points.0 == commitment_number + 1 { Some(point) } else { None } - } else { None }; - if let Some(revocation_point) = revocation_point_option { - self.counterparty_payment_script = { - // Note that the Network here is ignored as we immediately drop the address for the - // script_pubkey version - let payment_hash160 = WPubkeyHash::hash(&self.keys.pubkeys().payment_point.serialize()); - Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_hash160[..]).into_script() - }; - - // Then, try to find htlc outputs - for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() { - if let Some(transaction_output_index) = htlc.transaction_output_index { - if transaction_output_index as usize >= tx.output.len() || - tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 { - return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user - } - let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None }; - let aggregable = if !htlc.offered { false } else { true }; - if preimage.is_some() || !htlc.offered { - let witness_data = InputMaterial::CounterpartyHTLC { per_commitment_point: *revocation_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, preimage, htlc: htlc.clone() }; - claimable_outpoints.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data }); - } - } - } - } - } - } - (claimable_outpoints, (commitment_txid, watch_outputs)) - } - - /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key - fn check_spend_counterparty_htlc(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec, Option<(Txid, Vec)>) where L::Target: Logger { - let htlc_txid = tx.txid(); - if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 { - return (Vec::new(), None) - } - - macro_rules! ignore_error { - ( $thing : expr ) => { - match $thing { - Ok(a) => a, - Err(_) => return (Vec::new(), None) - } - }; - } - - let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); }; - let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret)); - let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key); - - log_trace!(logger, "Counterparty HTLC broadcast {}:{}", htlc_txid, 0); - let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: tx.output[0].value, htlc: None, on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv }; - let claimable_outpoints = vec!(ClaimRequest { absolute_timelock: height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: htlc_txid, vout: 0}, witness_data }); - (claimable_outpoints, Some((htlc_txid, tx.output.clone()))) - } - - fn broadcast_by_holder_state(&self, commitment_tx: &Transaction, holder_tx: &HolderSignedTx) -> (Vec, Vec, Option<(Script, PublicKey, PublicKey)>) { - let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len()); - let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len()); - - let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key); - let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone())); - - for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() { - if let Some(transaction_output_index) = htlc.transaction_output_index { - claim_requests.push(ClaimRequest { absolute_timelock: ::std::u32::MAX, aggregable: false, outpoint: BitcoinOutPoint { txid: holder_tx.txid, vout: transaction_output_index as u32 }, - witness_data: InputMaterial::HolderHTLC { - preimage: if !htlc.offered { - if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) { - Some(preimage.clone()) - } else { - // We can't build an HTLC-Success transaction without the preimage - continue; - } - } else { None }, - amount: htlc.amount_msat, - }}); - watch_outputs.push(commitment_tx.output[transaction_output_index as usize].clone()); - } - } - - (claim_requests, watch_outputs, broadcasted_holder_revokable_script) - } - - /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet) - /// revoked using data in holder_claimable_outpoints. - /// Should not be used if check_spend_revoked_transaction succeeds. - fn check_spend_holder_transaction(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec, (Txid, Vec)) where L::Target: Logger { - let commitment_txid = tx.txid(); - let mut claim_requests = Vec::new(); - let mut watch_outputs = Vec::new(); - - macro_rules! wait_threshold_conf { - ($height: expr, $source: expr, $commitment_tx: expr, $payment_hash: expr) => { - log_trace!(logger, "Failing HTLC with payment_hash {} from {} holder commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1); - match self.onchain_events_waiting_threshold_conf.entry($height + ANTI_REORG_DELAY - 1) { - hash_map::Entry::Occupied(mut entry) => { - let e = entry.get_mut(); - e.retain(|ref event| { - match **event { - OnchainEvent::HTLCUpdate { ref htlc_update } => { - return htlc_update.0 != $source - }, - _ => true - } - }); - e.push(OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)}); - } - hash_map::Entry::Vacant(entry) => { - entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)}]); - } - } - } - } - - macro_rules! append_onchain_update { - ($updates: expr) => { - claim_requests = $updates.0; - watch_outputs.append(&mut $updates.1); - self.broadcasted_holder_revokable_script = $updates.2; - } - } - - // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward - let mut is_holder_tx = false; - - if self.current_holder_commitment_tx.txid == commitment_txid { - is_holder_tx = true; - log_trace!(logger, "Got latest holder commitment tx broadcast, searching for available HTLCs to claim"); - let mut res = self.broadcast_by_holder_state(tx, &self.current_holder_commitment_tx); - append_onchain_update!(res); - } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx { - if holder_tx.txid == commitment_txid { - is_holder_tx = true; - log_trace!(logger, "Got previous holder commitment tx broadcast, searching for available HTLCs to claim"); - let mut res = self.broadcast_by_holder_state(tx, holder_tx); - append_onchain_update!(res); - } - } - - macro_rules! fail_dust_htlcs_after_threshold_conf { - ($holder_tx: expr) => { - for &(ref htlc, _, ref source) in &$holder_tx.htlc_outputs { - if htlc.transaction_output_index.is_none() { - if let &Some(ref source) = source { - wait_threshold_conf!(height, source.clone(), "lastest", htlc.payment_hash.clone()); - } - } - } - } - } - - if is_holder_tx { - fail_dust_htlcs_after_threshold_conf!(self.current_holder_commitment_tx); - if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx { - fail_dust_htlcs_after_threshold_conf!(holder_tx); - } - } - - (claim_requests, (commitment_txid, watch_outputs)) - } - - /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of - /// the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of - /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows - /// a higher revocation secret than the holder commitment number we are aware of. Broadcasting these - /// transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to - /// broadcast them if counterparty don't close channel with his higher commitment transaction after a - /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact - /// out-of-band the other node operator to coordinate with him if option is available to you. - /// In any-case, choice is up to the user. - pub fn get_latest_holder_commitment_txn(&mut self, logger: &L) -> Vec where L::Target: Logger { - log_trace!(logger, "Getting signed latest holder commitment transaction!"); - self.holder_tx_signed = true; - if let Some(commitment_tx) = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript) { - let txid = commitment_tx.txid(); - let mut res = vec![commitment_tx]; - for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() { - if let Some(vout) = htlc.0.transaction_output_index { - let preimage = if !htlc.0.offered { - if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else { - // We can't build an HTLC-Success transaction without the preimage - continue; - } - } else { None }; - if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx( - &::bitcoin::OutPoint { txid, vout }, &preimage) { - res.push(htlc_tx); - } - } - } - // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do. - // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation. - return res - } - Vec::new() - } - - /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework - /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate - /// revoked commitment transaction. - #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))] - pub fn unsafe_get_latest_holder_commitment_txn(&mut self, logger: &L) -> Vec where L::Target: Logger { - log_trace!(logger, "Getting signed copy of latest holder commitment transaction!"); - if let Some(commitment_tx) = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript) { - let txid = commitment_tx.txid(); - let mut res = vec![commitment_tx]; - for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() { - if let Some(vout) = htlc.0.transaction_output_index { - let preimage = if !htlc.0.offered { - if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else { - // We can't build an HTLC-Success transaction without the preimage - continue; - } - } else { None }; - if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx( - &::bitcoin::OutPoint { txid, vout }, &preimage) { - res.push(htlc_tx); - } - } - } - return res - } - Vec::new() - } - - /// Processes transactions in a newly connected block, which may result in any of the following: - /// - update the monitor's state against resolved HTLCs - /// - punish the counterparty in the case of seeing a revoked commitment transaction - /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration - /// - detect settled outputs for later spending - /// - schedule and bump any in-flight claims - /// - /// Returns any new outputs to watch from `txdata`; after called, these are also included in - /// [`get_outputs_to_watch`]. - /// - /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch - pub fn block_connected(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L)-> Vec<(Txid, Vec)> - where B::Target: BroadcasterInterface, - F::Target: FeeEstimator, - L::Target: Logger, - { - let txn_matched = self.filter_block(txdata); - for tx in &txn_matched { - let mut output_val = 0; - for out in tx.output.iter() { - if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); } - output_val += out.value; - if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); } - } - } - - let block_hash = header.block_hash(); - log_trace!(logger, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len()); - - let mut watch_outputs = Vec::new(); - let mut claimable_outpoints = Vec::new(); - for tx in &txn_matched { - if tx.input.len() == 1 { - // Assuming our keys were not leaked (in which case we're screwed no matter what), - // commitment transactions and HTLC transactions will all only ever have one input, - // which is an easy way to filter out any potential non-matching txn for lazy - // filters. - let prevout = &tx.input[0].previous_output; - if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 { - if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 { - let (mut new_outpoints, new_outputs) = self.check_spend_counterparty_transaction(&tx, height, &logger); - if !new_outputs.1.is_empty() { - watch_outputs.push(new_outputs); - } - if new_outpoints.is_empty() { - let (mut new_outpoints, new_outputs) = self.check_spend_holder_transaction(&tx, height, &logger); - if !new_outputs.1.is_empty() { - watch_outputs.push(new_outputs); - } - claimable_outpoints.append(&mut new_outpoints); - } - claimable_outpoints.append(&mut new_outpoints); - } - } else { - if let Some(&(commitment_number, _)) = self.counterparty_commitment_txn_on_chain.get(&prevout.txid) { - let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(&tx, commitment_number, height, &logger); - claimable_outpoints.append(&mut new_outpoints); - if let Some(new_outputs) = new_outputs_option { - watch_outputs.push(new_outputs); - } - } - } - } - // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs - // can also be resolved in a few other ways which can have more than one output. Thus, - // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check. - self.is_resolving_htlc_output(&tx, height, &logger); - - self.is_paying_spendable_output(&tx, height, &logger); - } - let should_broadcast = self.would_broadcast_at_height(height, &logger); - if should_broadcast { - claimable_outpoints.push(ClaimRequest { absolute_timelock: height, aggregable: false, outpoint: BitcoinOutPoint { txid: self.funding_info.0.txid.clone(), vout: self.funding_info.0.index as u32 }, witness_data: InputMaterial::Funding { funding_redeemscript: self.funding_redeemscript.clone() }}); - } - if should_broadcast { - self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0)); - if let Some(commitment_tx) = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript) { - self.holder_tx_signed = true; - let (mut new_outpoints, new_outputs, _) = self.broadcast_by_holder_state(&commitment_tx, &self.current_holder_commitment_tx); - if !new_outputs.is_empty() { - watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs)); - } - claimable_outpoints.append(&mut new_outpoints); - } - } - if let Some(events) = self.onchain_events_waiting_threshold_conf.remove(&height) { - for ev in events { - match ev { - OnchainEvent::HTLCUpdate { htlc_update } => { - log_trace!(logger, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!((htlc_update.1).0)); - self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate { - payment_hash: htlc_update.1, - payment_preimage: None, - source: htlc_update.0, - })); - }, - OnchainEvent::MaturingOutput { descriptor } => { - log_trace!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor)); - self.pending_events.push(Event::SpendableOutputs { - outputs: vec![descriptor] - }); - } - } - } - } - - self.onchain_tx_handler.block_connected(&txn_matched, claimable_outpoints, height, &*broadcaster, &*fee_estimator, &*logger); - self.last_block_hash = block_hash; - - // Determine new outputs to watch by comparing against previously known outputs to watch, - // updating the latter in the process. - watch_outputs.retain(|&(ref txid, ref txouts)| { - let output_scripts = txouts.iter().map(|o| o.script_pubkey.clone()).collect(); - self.outputs_to_watch.insert(txid.clone(), output_scripts).is_none() - }); - watch_outputs - } - - /// Determines if the disconnected block contained any transactions of interest and updates - /// appropriately. - pub fn block_disconnected(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L) - where B::Target: BroadcasterInterface, - F::Target: FeeEstimator, - L::Target: Logger, - { - let block_hash = header.block_hash(); - log_trace!(logger, "Block {} at height {} disconnected", block_hash, height); - - if let Some(_) = self.onchain_events_waiting_threshold_conf.remove(&(height + ANTI_REORG_DELAY - 1)) { - //We may discard: - //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected - //- maturing spendable output has transaction paying us has been disconnected - } - - self.onchain_tx_handler.block_disconnected(height, broadcaster, fee_estimator, logger); - - self.last_block_hash = block_hash; - } - - /// Filters a block's `txdata` for transactions spending watched outputs or for any child - /// transactions thereof. - fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> { - let mut matched_txn = HashSet::new(); - txdata.iter().filter(|&&(_, tx)| { - let mut matches = self.spends_watched_output(tx); - for input in tx.input.iter() { - if matches { break; } - if matched_txn.contains(&input.previous_output.txid) { - matches = true; - } - } - if matches { - matched_txn.insert(tx.txid()); - } - matches - }).map(|(_, tx)| *tx).collect() - } - - /// Checks if a given transaction spends any watched outputs. - fn spends_watched_output(&self, tx: &Transaction) -> bool { - for input in tx.input.iter() { - if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) { - for (idx, _script_pubkey) in outputs.iter().enumerate() { - if idx == input.previous_output.vout as usize { - return true; - } - } - } - } - - false - } - - fn would_broadcast_at_height(&self, height: u32, logger: &L) -> bool where L::Target: Logger { - // We need to consider all HTLCs which are: - // * in any unrevoked counterparty commitment transaction, as they could broadcast said - // transactions and we'd end up in a race, or - // * are in our latest holder commitment transaction, as this is the thing we will - // broadcast if we go on-chain. - // Note that we consider HTLCs which were below dust threshold here - while they don't - // strictly imply that we need to fail the channel, we need to go ahead and fail them back - // to the source, and if we don't fail the channel we will have to ensure that the next - // updates that peer sends us are update_fails, failing the channel if not. It's probably - // easier to just fail the channel as this case should be rare enough anyway. - macro_rules! scan_commitment { - ($htlcs: expr, $holder_tx: expr) => { - for ref htlc in $htlcs { - // For inbound HTLCs which we know the preimage for, we have to ensure we hit the - // chain with enough room to claim the HTLC without our counterparty being able to - // time out the HTLC first. - // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary - // concern is being able to claim the corresponding inbound HTLC (on another - // channel) before it expires. In fact, we don't even really care if our - // counterparty here claims such an outbound HTLC after it expired as long as we - // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the - // chain when our counterparty is waiting for expiration to off-chain fail an HTLC - // we give ourselves a few blocks of headroom after expiration before going - // on-chain for an expired HTLC. - // Note that, to avoid a potential attack whereby a node delays claiming an HTLC - // from us until we've reached the point where we go on-chain with the - // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at - // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC. - // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER - // inbound_cltv == height + CLTV_CLAIM_BUFFER - // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER - // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv - // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion) - // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA - // The final, above, condition is checked for statically in channelmanager - // with CHECK_CLTV_EXPIRY_SANITY_2. - let htlc_outbound = $holder_tx == htlc.offered; - if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) || - (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) { - log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry); - return true; - } - } - } - } - - scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true); - - if let Some(ref txid) = self.current_counterparty_commitment_txid { - if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) { - scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false); - } - } - if let Some(ref txid) = self.prev_counterparty_commitment_txid { - if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) { - scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false); - } - } - - false - } - - /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder - /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC - fn is_resolving_htlc_output(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger { - 'outer_loop: for input in &tx.input { - let mut payment_data = None; - let revocation_sig_claim = (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC) && input.witness[1].len() == 33) - || (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::AcceptedHTLC) && input.witness[1].len() == 33); - let accepted_preimage_claim = input.witness.len() == 5 && HTLCType::scriptlen_to_htlctype(input.witness[4].len()) == Some(HTLCType::AcceptedHTLC); - let offered_preimage_claim = input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC); - - macro_rules! log_claim { - ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => { - // We found the output in question, but aren't failing it backwards - // as we have no corresponding source and no valid counterparty commitment txid - // to try a weak source binding with same-hash, same-value still-valid offered HTLC. - // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction. - let outbound_htlc = $holder_tx == $htlc.offered; - if ($holder_tx && revocation_sig_claim) || - (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) { - log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!", - $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(), - if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0), - if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" }); - } else { - log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}", - $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(), - if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0), - if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" }); - } - } - } - - macro_rules! check_htlc_valid_counterparty { - ($counterparty_txid: expr, $htlc_output: expr) => { - if let Some(txid) = $counterparty_txid { - for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() { - if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat { - if let &Some(ref source) = pending_source { - log_claim!("revoked counterparty commitment tx", false, pending_htlc, true); - payment_data = Some(((**source).clone(), $htlc_output.payment_hash)); - break; - } - } - } - } - } - } - - macro_rules! scan_commitment { - ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => { - for (ref htlc_output, source_option) in $htlcs { - if Some(input.previous_output.vout) == htlc_output.transaction_output_index { - if let Some(ref source) = source_option { - log_claim!($tx_info, $holder_tx, htlc_output, true); - // We have a resolution of an HTLC either from one of our latest - // holder commitment transactions or an unrevoked counterparty commitment - // transaction. This implies we either learned a preimage, the HTLC - // has timed out, or we screwed up. In any case, we should now - // resolve the source HTLC with the original sender. - payment_data = Some(((*source).clone(), htlc_output.payment_hash)); - } else if !$holder_tx { - check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output); - if payment_data.is_none() { - check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output); - } - } - if payment_data.is_none() { - log_claim!($tx_info, $holder_tx, htlc_output, false); - continue 'outer_loop; - } - } - } - } - } - - if input.previous_output.txid == self.current_holder_commitment_tx.txid { - scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())), - "our latest holder commitment tx", true); - } - if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx { - if input.previous_output.txid == prev_holder_signed_commitment_tx.txid { - scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())), - "our previous holder commitment tx", true); - } - } - if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) { - scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))), - "counterparty commitment tx", false); - } - - // Check that scan_commitment, above, decided there is some source worth relaying an - // HTLC resolution backwards to and figure out whether we learned a preimage from it. - if let Some((source, payment_hash)) = payment_data { - let mut payment_preimage = PaymentPreimage([0; 32]); - if accepted_preimage_claim { - if !self.pending_monitor_events.iter().any( - |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) { - payment_preimage.0.copy_from_slice(&input.witness[3]); - self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate { - source, - payment_preimage: Some(payment_preimage), - payment_hash - })); - } - } else if offered_preimage_claim { - if !self.pending_monitor_events.iter().any( - |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { - upd.source == source - } else { false }) { - payment_preimage.0.copy_from_slice(&input.witness[1]); - self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate { - source, - payment_preimage: Some(payment_preimage), - payment_hash - })); - } - } else { - log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height{})", log_bytes!(payment_hash.0), height + ANTI_REORG_DELAY - 1); - match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { - hash_map::Entry::Occupied(mut entry) => { - let e = entry.get_mut(); - e.retain(|ref event| { - match **event { - OnchainEvent::HTLCUpdate { ref htlc_update } => { - return htlc_update.0 != source - }, - _ => true - } - }); - e.push(OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)}); - } - hash_map::Entry::Vacant(entry) => { - entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)}]); - } - } - } - } - } - } - - /// Check if any transaction broadcasted is paying fund back to some address we can assume to own - fn is_paying_spendable_output(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger { - let mut spendable_output = None; - for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us - if i > ::std::u16::MAX as usize { - // While it is possible that an output exists on chain which is greater than the - // 2^16th output in a given transaction, this is only possible if the output is not - // in a lightning transaction and was instead placed there by some third party who - // wishes to give us money for no reason. - // Namely, any lightning transactions which we pre-sign will never have anywhere - // near 2^16 outputs both because such transactions must have ~2^16 outputs who's - // scripts are not longer than one byte in length and because they are inherently - // non-standard due to their size. - // Thus, it is completely safe to ignore such outputs, and while it may result in - // us ignoring non-lightning fund to us, that is only possible if someone fills - // nearly a full block with garbage just to hit this case. - continue; - } - if outp.script_pubkey == self.destination_script { - spendable_output = Some(SpendableOutputDescriptor::StaticOutput { - outpoint: OutPoint { txid: tx.txid(), index: i as u16 }, - output: outp.clone(), - }); - break; - } else if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script { - if broadcasted_holder_revokable_script.0 == outp.script_pubkey { - spendable_output = Some(SpendableOutputDescriptor::DynamicOutputP2WSH { - outpoint: OutPoint { txid: tx.txid(), index: i as u16 }, - per_commitment_point: broadcasted_holder_revokable_script.1, - to_self_delay: self.on_holder_tx_csv, - output: outp.clone(), - key_derivation_params: self.keys.key_derivation_params(), - revocation_pubkey: broadcasted_holder_revokable_script.2.clone(), - }); - break; - } - } else if self.counterparty_payment_script == outp.script_pubkey { - spendable_output = Some(SpendableOutputDescriptor::StaticOutputCounterpartyPayment { - outpoint: OutPoint { txid: tx.txid(), index: i as u16 }, - output: outp.clone(), - key_derivation_params: self.keys.key_derivation_params(), - }); - break; - } else if outp.script_pubkey == self.shutdown_script { - spendable_output = Some(SpendableOutputDescriptor::StaticOutput { - outpoint: OutPoint { txid: tx.txid(), index: i as u16 }, - output: outp.clone(), - }); - } - } - if let Some(spendable_output) = spendable_output { - log_trace!(logger, "Maturing {} until {}", log_spendable!(spendable_output), height + ANTI_REORG_DELAY - 1); - match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) { - hash_map::Entry::Occupied(mut entry) => { - let e = entry.get_mut(); - e.push(OnchainEvent::MaturingOutput { descriptor: spendable_output }); - } - hash_map::Entry::Vacant(entry) => { - entry.insert(vec![OnchainEvent::MaturingOutput { descriptor: spendable_output }]); - } - } - } - } -} - -const MAX_ALLOC_SIZE: usize = 64*1024; - -impl Readable for (BlockHash, ChannelMonitor) { - fn read(reader: &mut R) -> Result { - macro_rules! unwrap_obj { - ($key: expr) => { - match $key { - Ok(res) => res, - Err(_) => return Err(DecodeError::InvalidValue), - } - } - } - - let _ver: u8 = Readable::read(reader)?; - let min_ver: u8 = Readable::read(reader)?; - if min_ver > SERIALIZATION_VERSION { - return Err(DecodeError::UnknownVersion); - } - - let latest_update_id: u64 = Readable::read(reader)?; - let commitment_transaction_number_obscure_factor = ::read(reader)?.0; - - let destination_script = Readable::read(reader)?; - let broadcasted_holder_revokable_script = match ::read(reader)? { - 0 => { - let revokable_address = Readable::read(reader)?; - let per_commitment_point = Readable::read(reader)?; - let revokable_script = Readable::read(reader)?; - Some((revokable_address, per_commitment_point, revokable_script)) - }, - 1 => { None }, - _ => return Err(DecodeError::InvalidValue), - }; - let counterparty_payment_script = Readable::read(reader)?; - let shutdown_script = Readable::read(reader)?; - - let keys = Readable::read(reader)?; - // Technically this can fail and serialize fail a round-trip, but only for serialization of - // barely-init'd ChannelMonitors that we can't do anything with. - let outpoint = OutPoint { - txid: Readable::read(reader)?, - index: Readable::read(reader)?, - }; - let funding_info = (outpoint, Readable::read(reader)?); - let current_counterparty_commitment_txid = Readable::read(reader)?; - let prev_counterparty_commitment_txid = Readable::read(reader)?; - - let counterparty_tx_cache = Readable::read(reader)?; - let funding_redeemscript = Readable::read(reader)?; - let channel_value_satoshis = Readable::read(reader)?; - - let their_cur_revocation_points = { - let first_idx = ::read(reader)?.0; - if first_idx == 0 { - None - } else { - let first_point = Readable::read(reader)?; - let second_point_slice: [u8; 33] = Readable::read(reader)?; - if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 { - Some((first_idx, first_point, None)) - } else { - Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice))))) - } - } - }; - - let on_holder_tx_csv: u16 = Readable::read(reader)?; - - let commitment_secrets = Readable::read(reader)?; - - macro_rules! read_htlc_in_commitment { - () => { - { - let offered: bool = Readable::read(reader)?; - let amount_msat: u64 = Readable::read(reader)?; - let cltv_expiry: u32 = Readable::read(reader)?; - let payment_hash: PaymentHash = Readable::read(reader)?; - let transaction_output_index: Option = Readable::read(reader)?; - - HTLCOutputInCommitment { - offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index - } - } - } - } - - let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?; - let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64)); - for _ in 0..counterparty_claimable_outpoints_len { - let txid: Txid = Readable::read(reader)?; - let htlcs_count: u64 = Readable::read(reader)?; - let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32)); - for _ in 0..htlcs_count { - htlcs.push((read_htlc_in_commitment!(), as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o)))); - } - if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) { - return Err(DecodeError::InvalidValue); - } - } - - let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?; - let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32)); - for _ in 0..counterparty_commitment_txn_on_chain_len { - let txid: Txid = Readable::read(reader)?; - let commitment_number = ::read(reader)?.0; - let outputs_count = ::read(reader)?; - let mut outputs = Vec::with_capacity(cmp::min(outputs_count as usize, MAX_ALLOC_SIZE / 8)); - for _ in 0..outputs_count { - outputs.push(Readable::read(reader)?); - } - if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, (commitment_number, outputs)) { - return Err(DecodeError::InvalidValue); - } - } - - let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?; - let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32)); - for _ in 0..counterparty_hash_commitment_number_len { - let payment_hash: PaymentHash = Readable::read(reader)?; - let commitment_number = ::read(reader)?.0; - if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) { - return Err(DecodeError::InvalidValue); - } - } - - macro_rules! read_holder_tx { - () => { - { - let txid = Readable::read(reader)?; - let revocation_key = Readable::read(reader)?; - let a_htlc_key = Readable::read(reader)?; - let b_htlc_key = Readable::read(reader)?; - let delayed_payment_key = Readable::read(reader)?; - let per_commitment_point = Readable::read(reader)?; - let feerate_per_kw: u32 = Readable::read(reader)?; - - let htlcs_len: u64 = Readable::read(reader)?; - let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128)); - for _ in 0..htlcs_len { - let htlc = read_htlc_in_commitment!(); - let sigs = match ::read(reader)? { - 0 => None, - 1 => Some(Readable::read(reader)?), - _ => return Err(DecodeError::InvalidValue), - }; - htlcs.push((htlc, sigs, Readable::read(reader)?)); - } - - HolderSignedTx { - txid, - revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, per_commitment_point, feerate_per_kw, - htlc_outputs: htlcs - } - } - } - } - - let prev_holder_signed_commitment_tx = match ::read(reader)? { - 0 => None, - 1 => { - Some(read_holder_tx!()) - }, - _ => return Err(DecodeError::InvalidValue), - }; - let current_holder_commitment_tx = read_holder_tx!(); - - let current_counterparty_commitment_number = ::read(reader)?.0; - let current_holder_commitment_number = ::read(reader)?.0; - - let payment_preimages_len: u64 = Readable::read(reader)?; - let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32)); - for _ in 0..payment_preimages_len { - let preimage: PaymentPreimage = Readable::read(reader)?; - let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner()); - if let Some(_) = payment_preimages.insert(hash, preimage) { - return Err(DecodeError::InvalidValue); - } - } - - let pending_monitor_events_len: u64 = Readable::read(reader)?; - let mut pending_monitor_events = Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))); - for _ in 0..pending_monitor_events_len { - let ev = match ::read(reader)? { - 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?), - 1 => MonitorEvent::CommitmentTxBroadcasted(funding_info.0), - _ => return Err(DecodeError::InvalidValue) - }; - pending_monitor_events.push(ev); - } - - let pending_events_len: u64 = Readable::read(reader)?; - let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::())); - for _ in 0..pending_events_len { - if let Some(event) = MaybeReadable::read(reader)? { - pending_events.push(event); - } - } - - let last_block_hash: BlockHash = Readable::read(reader)?; - - let waiting_threshold_conf_len: u64 = Readable::read(reader)?; - let mut onchain_events_waiting_threshold_conf = HashMap::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128)); - for _ in 0..waiting_threshold_conf_len { - let height_target = Readable::read(reader)?; - let events_len: u64 = Readable::read(reader)?; - let mut events = Vec::with_capacity(cmp::min(events_len as usize, MAX_ALLOC_SIZE / 128)); - for _ in 0..events_len { - let ev = match ::read(reader)? { - 0 => { - let htlc_source = Readable::read(reader)?; - let hash = Readable::read(reader)?; - OnchainEvent::HTLCUpdate { - htlc_update: (htlc_source, hash) - } - }, - 1 => { - let descriptor = Readable::read(reader)?; - OnchainEvent::MaturingOutput { - descriptor - } - }, - _ => return Err(DecodeError::InvalidValue), - }; - events.push(ev); - } - onchain_events_waiting_threshold_conf.insert(height_target, events); - } - - let outputs_to_watch_len: u64 = Readable::read(reader)?; - let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::() + mem::size_of::>()))); - for _ in 0..outputs_to_watch_len { - let txid = Readable::read(reader)?; - let outputs_len: u64 = Readable::read(reader)?; - let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / mem::size_of::