]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/ln/channelmanager.rs
1b26e1032bc150e953a0d6c4bfa6773448dcdce5
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
28
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
32
33 use crate::chain;
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
38 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
39 // construct one themselves.
40 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
41 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
42 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
43 #[cfg(any(feature = "_test_utils", test))]
44 use crate::ln::features::InvoiceFeatures;
45 use crate::routing::gossip::NetworkGraph;
46 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
47 use crate::routing::scoring::ProbabilisticScorer;
48 use crate::ln::msgs;
49 use crate::ln::onion_utils;
50 use crate::ln::onion_utils::HTLCFailReason;
51 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
52 #[cfg(test)]
53 use crate::ln::outbound_payment;
54 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
55 use crate::ln::wire::Encode;
56 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
57 use crate::util::config::{UserConfig, ChannelConfig};
58 use crate::util::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
59 use crate::util::events;
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
63 use crate::util::logger::{Level, Logger};
64 use crate::util::errors::APIError;
65
66 use alloc::collections::BTreeMap;
67
68 use crate::io;
69 use crate::prelude::*;
70 use core::{cmp, mem};
71 use core::cell::RefCell;
72 use crate::io::Read;
73 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
74 use core::sync::atomic::{AtomicUsize, Ordering};
75 use core::time::Duration;
76 use core::ops::Deref;
77
78 // Re-export this for use in the public API.
79 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure};
80
81 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
82 //
83 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
84 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
85 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
86 //
87 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
88 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
89 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
90 // before we forward it.
91 //
92 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
93 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
94 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
95 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
96 // our payment, which we can use to decode errors or inform the user that the payment was sent.
97
98 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
99 pub(super) enum PendingHTLCRouting {
100         Forward {
101                 onion_packet: msgs::OnionPacket,
102                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
103                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
104                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
105         },
106         Receive {
107                 payment_data: msgs::FinalOnionHopData,
108                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
109                 phantom_shared_secret: Option<[u8; 32]>,
110         },
111         ReceiveKeysend {
112                 payment_preimage: PaymentPreimage,
113                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
114         },
115 }
116
117 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
118 pub(super) struct PendingHTLCInfo {
119         pub(super) routing: PendingHTLCRouting,
120         pub(super) incoming_shared_secret: [u8; 32],
121         payment_hash: PaymentHash,
122         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
123         pub(super) outgoing_amt_msat: u64,
124         pub(super) outgoing_cltv_value: u32,
125 }
126
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) enum HTLCFailureMsg {
129         Relay(msgs::UpdateFailHTLC),
130         Malformed(msgs::UpdateFailMalformedHTLC),
131 }
132
133 /// Stores whether we can't forward an HTLC or relevant forwarding info
134 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
135 pub(super) enum PendingHTLCStatus {
136         Forward(PendingHTLCInfo),
137         Fail(HTLCFailureMsg),
138 }
139
140 pub(super) struct PendingAddHTLCInfo {
141         pub(super) forward_info: PendingHTLCInfo,
142
143         // These fields are produced in `forward_htlcs()` and consumed in
144         // `process_pending_htlc_forwards()` for constructing the
145         // `HTLCSource::PreviousHopData` for failed and forwarded
146         // HTLCs.
147         //
148         // Note that this may be an outbound SCID alias for the associated channel.
149         prev_short_channel_id: u64,
150         prev_htlc_id: u64,
151         prev_funding_outpoint: OutPoint,
152         prev_user_channel_id: u128,
153 }
154
155 pub(super) enum HTLCForwardInfo {
156         AddHTLC(PendingAddHTLCInfo),
157         FailHTLC {
158                 htlc_id: u64,
159                 err_packet: msgs::OnionErrorPacket,
160         },
161 }
162
163 /// Tracks the inbound corresponding to an outbound HTLC
164 #[derive(Clone, Hash, PartialEq, Eq)]
165 pub(crate) struct HTLCPreviousHopData {
166         // Note that this may be an outbound SCID alias for the associated channel.
167         short_channel_id: u64,
168         htlc_id: u64,
169         incoming_packet_shared_secret: [u8; 32],
170         phantom_shared_secret: Option<[u8; 32]>,
171
172         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
173         // channel with a preimage provided by the forward channel.
174         outpoint: OutPoint,
175 }
176
177 enum OnionPayload {
178         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
179         Invoice {
180                 /// This is only here for backwards-compatibility in serialization, in the future it can be
181                 /// removed, breaking clients running 0.0.106 and earlier.
182                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
183         },
184         /// Contains the payer-provided preimage.
185         Spontaneous(PaymentPreimage),
186 }
187
188 /// HTLCs that are to us and can be failed/claimed by the user
189 struct ClaimableHTLC {
190         prev_hop: HTLCPreviousHopData,
191         cltv_expiry: u32,
192         /// The amount (in msats) of this MPP part
193         value: u64,
194         onion_payload: OnionPayload,
195         timer_ticks: u8,
196         /// The sum total of all MPP parts
197         total_msat: u64,
198 }
199
200 /// A payment identifier used to uniquely identify a payment to LDK.
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentId(pub [u8; 32]);
204
205 impl Writeable for PaymentId {
206         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
207                 self.0.write(w)
208         }
209 }
210
211 impl Readable for PaymentId {
212         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
213                 let buf: [u8; 32] = Readable::read(r)?;
214                 Ok(PaymentId(buf))
215         }
216 }
217
218 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
219 /// (C-not exported) as we just use [u8; 32] directly
220 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
221 pub struct InterceptId(pub [u8; 32]);
222
223 impl Writeable for InterceptId {
224         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
225                 self.0.write(w)
226         }
227 }
228
229 impl Readable for InterceptId {
230         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
231                 let buf: [u8; 32] = Readable::read(r)?;
232                 Ok(InterceptId(buf))
233         }
234 }
235
236 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
237 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
238 pub(crate) enum SentHTLCId {
239         PreviousHopData { short_channel_id: u64, htlc_id: u64 },
240         OutboundRoute { session_priv: SecretKey },
241 }
242 impl SentHTLCId {
243         pub(crate) fn from_source(source: &HTLCSource) -> Self {
244                 match source {
245                         HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
246                                 short_channel_id: hop_data.short_channel_id,
247                                 htlc_id: hop_data.htlc_id,
248                         },
249                         HTLCSource::OutboundRoute { session_priv, .. } =>
250                                 Self::OutboundRoute { session_priv: *session_priv },
251                 }
252         }
253 }
254 impl_writeable_tlv_based_enum!(SentHTLCId,
255         (0, PreviousHopData) => {
256                 (0, short_channel_id, required),
257                 (2, htlc_id, required),
258         },
259         (2, OutboundRoute) => {
260                 (0, session_priv, required),
261         };
262 );
263
264
265 /// Tracks the inbound corresponding to an outbound HTLC
266 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
267 #[derive(Clone, PartialEq, Eq)]
268 pub(crate) enum HTLCSource {
269         PreviousHopData(HTLCPreviousHopData),
270         OutboundRoute {
271                 path: Vec<RouteHop>,
272                 session_priv: SecretKey,
273                 /// Technically we can recalculate this from the route, but we cache it here to avoid
274                 /// doing a double-pass on route when we get a failure back
275                 first_hop_htlc_msat: u64,
276                 payment_id: PaymentId,
277                 payment_secret: Option<PaymentSecret>,
278                 /// Note that this is now "deprecated" - we write it for forwards (and read it for
279                 /// backwards) compatibility reasons, but prefer to use the data in the
280                 /// [`super::outbound_payment`] module, which stores per-payment data once instead of in
281                 /// each HTLC.
282                 payment_params: Option<PaymentParameters>,
283         },
284 }
285 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
286 impl core::hash::Hash for HTLCSource {
287         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
288                 match self {
289                         HTLCSource::PreviousHopData(prev_hop_data) => {
290                                 0u8.hash(hasher);
291                                 prev_hop_data.hash(hasher);
292                         },
293                         HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
294                                 1u8.hash(hasher);
295                                 path.hash(hasher);
296                                 session_priv[..].hash(hasher);
297                                 payment_id.hash(hasher);
298                                 payment_secret.hash(hasher);
299                                 first_hop_htlc_msat.hash(hasher);
300                                 payment_params.hash(hasher);
301                         },
302                 }
303         }
304 }
305 #[cfg(not(feature = "grind_signatures"))]
306 #[cfg(test)]
307 impl HTLCSource {
308         pub fn dummy() -> Self {
309                 HTLCSource::OutboundRoute {
310                         path: Vec::new(),
311                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
312                         first_hop_htlc_msat: 0,
313                         payment_id: PaymentId([2; 32]),
314                         payment_secret: None,
315                         payment_params: None,
316                 }
317         }
318 }
319
320 struct ReceiveError {
321         err_code: u16,
322         err_data: Vec<u8>,
323         msg: &'static str,
324 }
325
326 /// This enum is used to specify which error data to send to peers when failing back an HTLC
327 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
328 ///
329 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
330 #[derive(Clone, Copy)]
331 pub enum FailureCode {
332         /// We had a temporary error processing the payment. Useful if no other error codes fit
333         /// and you want to indicate that the payer may want to retry.
334         TemporaryNodeFailure             = 0x2000 | 2,
335         /// We have a required feature which was not in this onion. For example, you may require
336         /// some additional metadata that was not provided with this payment.
337         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
338         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
339         /// the HTLC is too close to the current block height for safe handling.
340         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
341         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
342         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
343 }
344
345 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
346
347 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
348 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
349 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
350 /// peer_state lock. We then return the set of things that need to be done outside the lock in
351 /// this struct and call handle_error!() on it.
352
353 struct MsgHandleErrInternal {
354         err: msgs::LightningError,
355         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
356         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
357 }
358 impl MsgHandleErrInternal {
359         #[inline]
360         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
361                 Self {
362                         err: LightningError {
363                                 err: err.clone(),
364                                 action: msgs::ErrorAction::SendErrorMessage {
365                                         msg: msgs::ErrorMessage {
366                                                 channel_id,
367                                                 data: err
368                                         },
369                                 },
370                         },
371                         chan_id: None,
372                         shutdown_finish: None,
373                 }
374         }
375         #[inline]
376         fn from_no_close(err: msgs::LightningError) -> Self {
377                 Self { err, chan_id: None, shutdown_finish: None }
378         }
379         #[inline]
380         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
381                 Self {
382                         err: LightningError {
383                                 err: err.clone(),
384                                 action: msgs::ErrorAction::SendErrorMessage {
385                                         msg: msgs::ErrorMessage {
386                                                 channel_id,
387                                                 data: err
388                                         },
389                                 },
390                         },
391                         chan_id: Some((channel_id, user_channel_id)),
392                         shutdown_finish: Some((shutdown_res, channel_update)),
393                 }
394         }
395         #[inline]
396         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
397                 Self {
398                         err: match err {
399                                 ChannelError::Warn(msg) =>  LightningError {
400                                         err: msg.clone(),
401                                         action: msgs::ErrorAction::SendWarningMessage {
402                                                 msg: msgs::WarningMessage {
403                                                         channel_id,
404                                                         data: msg
405                                                 },
406                                                 log_level: Level::Warn,
407                                         },
408                                 },
409                                 ChannelError::Ignore(msg) => LightningError {
410                                         err: msg,
411                                         action: msgs::ErrorAction::IgnoreError,
412                                 },
413                                 ChannelError::Close(msg) => LightningError {
414                                         err: msg.clone(),
415                                         action: msgs::ErrorAction::SendErrorMessage {
416                                                 msg: msgs::ErrorMessage {
417                                                         channel_id,
418                                                         data: msg
419                                                 },
420                                         },
421                                 },
422                         },
423                         chan_id: None,
424                         shutdown_finish: None,
425                 }
426         }
427 }
428
429 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
430 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
431 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
432 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
433 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
434
435 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
436 /// be sent in the order they appear in the return value, however sometimes the order needs to be
437 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
438 /// they were originally sent). In those cases, this enum is also returned.
439 #[derive(Clone, PartialEq)]
440 pub(super) enum RAACommitmentOrder {
441         /// Send the CommitmentUpdate messages first
442         CommitmentFirst,
443         /// Send the RevokeAndACK message first
444         RevokeAndACKFirst,
445 }
446
447 /// Information about a payment which is currently being claimed.
448 struct ClaimingPayment {
449         amount_msat: u64,
450         payment_purpose: events::PaymentPurpose,
451         receiver_node_id: PublicKey,
452 }
453 impl_writeable_tlv_based!(ClaimingPayment, {
454         (0, amount_msat, required),
455         (2, payment_purpose, required),
456         (4, receiver_node_id, required),
457 });
458
459 /// Information about claimable or being-claimed payments
460 struct ClaimablePayments {
461         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
462         /// failed/claimed by the user.
463         ///
464         /// Note that, no consistency guarantees are made about the channels given here actually
465         /// existing anymore by the time you go to read them!
466         ///
467         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
468         /// we don't get a duplicate payment.
469         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
470
471         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
472         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
473         /// as an [`events::Event::PaymentClaimed`].
474         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
475 }
476
477 /// Events which we process internally but cannot be procsesed immediately at the generation site
478 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
479 /// quite some time lag.
480 enum BackgroundEvent {
481         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
482         /// commitment transaction.
483         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
484 }
485
486 #[derive(Debug)]
487 pub(crate) enum MonitorUpdateCompletionAction {
488         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
489         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
490         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
491         /// event can be generated.
492         PaymentClaimed { payment_hash: PaymentHash },
493         /// Indicates an [`events::Event`] should be surfaced to the user.
494         EmitEvent { event: events::Event },
495 }
496
497 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
498         (0, PaymentClaimed) => { (0, payment_hash, required) },
499         (2, EmitEvent) => { (0, event, upgradable_required) },
500 );
501
502 /// State we hold per-peer.
503 pub(super) struct PeerState<Signer: ChannelSigner> {
504         /// `temporary_channel_id` or `channel_id` -> `channel`.
505         ///
506         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
507         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
508         /// `channel_id`.
509         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
510         /// The latest `InitFeatures` we heard from the peer.
511         latest_features: InitFeatures,
512         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
513         /// for broadcast messages, where ordering isn't as strict).
514         pub(super) pending_msg_events: Vec<MessageSendEvent>,
515         /// Map from a specific channel to some action(s) that should be taken when all pending
516         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
517         ///
518         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
519         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
520         /// channels with a peer this will just be one allocation and will amount to a linear list of
521         /// channels to walk, avoiding the whole hashing rigmarole.
522         ///
523         /// Note that the channel may no longer exist. For example, if a channel was closed but we
524         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
525         /// for a missing channel. While a malicious peer could construct a second channel with the
526         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
527         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
528         /// duplicates do not occur, so such channels should fail without a monitor update completing.
529         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
530         /// The peer is currently connected (i.e. we've seen a
531         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
532         /// [`ChannelMessageHandler::peer_disconnected`].
533         is_connected: bool,
534 }
535
536 impl <Signer: ChannelSigner> PeerState<Signer> {
537         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
538         /// If true is passed for `require_disconnected`, the function will return false if we haven't
539         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
540         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
541                 if require_disconnected && self.is_connected {
542                         return false
543                 }
544                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
545         }
546 }
547
548 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
549 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
550 ///
551 /// For users who don't want to bother doing their own payment preimage storage, we also store that
552 /// here.
553 ///
554 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
555 /// and instead encoding it in the payment secret.
556 struct PendingInboundPayment {
557         /// The payment secret that the sender must use for us to accept this payment
558         payment_secret: PaymentSecret,
559         /// Time at which this HTLC expires - blocks with a header time above this value will result in
560         /// this payment being removed.
561         expiry_time: u64,
562         /// Arbitrary identifier the user specifies (or not)
563         user_payment_id: u64,
564         // Other required attributes of the payment, optionally enforced:
565         payment_preimage: Option<PaymentPreimage>,
566         min_value_msat: Option<u64>,
567 }
568
569 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
570 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
571 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
572 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
573 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
574 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
575 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
576 ///
577 /// (C-not exported) as Arcs don't make sense in bindings
578 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
579         Arc<M>,
580         Arc<T>,
581         Arc<KeysManager>,
582         Arc<KeysManager>,
583         Arc<KeysManager>,
584         Arc<F>,
585         Arc<DefaultRouter<
586                 Arc<NetworkGraph<Arc<L>>>,
587                 Arc<L>,
588                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
589         >>,
590         Arc<L>
591 >;
592
593 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
594 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
595 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
596 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
597 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
598 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
599 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
600 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
601 ///
602 /// (C-not exported) as Arcs don't make sense in bindings
603 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
604
605 /// Manager which keeps track of a number of channels and sends messages to the appropriate
606 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
607 ///
608 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
609 /// to individual Channels.
610 ///
611 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
612 /// all peers during write/read (though does not modify this instance, only the instance being
613 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
614 /// called funding_transaction_generated for outbound channels).
615 ///
616 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
617 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
618 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
619 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
620 /// the serialization process). If the deserialized version is out-of-date compared to the
621 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
622 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
623 ///
624 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
625 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
626 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
627 /// block_connected() to step towards your best block) upon deserialization before using the
628 /// object!
629 ///
630 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
631 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
632 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
633 /// offline for a full minute. In order to track this, you must call
634 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
635 ///
636 /// To avoid trivial DoS issues, ChannelManager limits the number of inbound connections and
637 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
638 /// not have a channel with being unable to connect to us or open new channels with us if we have
639 /// many peers with unfunded channels.
640 ///
641 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
642 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
643 /// never limited. Please ensure you limit the count of such channels yourself.
644 ///
645 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
646 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
647 /// essentially you should default to using a SimpleRefChannelManager, and use a
648 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
649 /// you're using lightning-net-tokio.
650 //
651 // Lock order:
652 // The tree structure below illustrates the lock order requirements for the different locks of the
653 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
654 // and should then be taken in the order of the lowest to the highest level in the tree.
655 // Note that locks on different branches shall not be taken at the same time, as doing so will
656 // create a new lock order for those specific locks in the order they were taken.
657 //
658 // Lock order tree:
659 //
660 // `total_consistency_lock`
661 //  |
662 //  |__`forward_htlcs`
663 //  |   |
664 //  |   |__`pending_intercepted_htlcs`
665 //  |
666 //  |__`per_peer_state`
667 //  |   |
668 //  |   |__`pending_inbound_payments`
669 //  |       |
670 //  |       |__`claimable_payments`
671 //  |       |
672 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
673 //  |           |
674 //  |           |__`peer_state`
675 //  |               |
676 //  |               |__`id_to_peer`
677 //  |               |
678 //  |               |__`short_to_chan_info`
679 //  |               |
680 //  |               |__`outbound_scid_aliases`
681 //  |               |
682 //  |               |__`best_block`
683 //  |               |
684 //  |               |__`pending_events`
685 //  |                   |
686 //  |                   |__`pending_background_events`
687 //
688 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
689 where
690         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
691         T::Target: BroadcasterInterface,
692         ES::Target: EntropySource,
693         NS::Target: NodeSigner,
694         SP::Target: SignerProvider,
695         F::Target: FeeEstimator,
696         R::Target: Router,
697         L::Target: Logger,
698 {
699         default_configuration: UserConfig,
700         genesis_hash: BlockHash,
701         fee_estimator: LowerBoundedFeeEstimator<F>,
702         chain_monitor: M,
703         tx_broadcaster: T,
704         #[allow(unused)]
705         router: R,
706
707         /// See `ChannelManager` struct-level documentation for lock order requirements.
708         #[cfg(test)]
709         pub(super) best_block: RwLock<BestBlock>,
710         #[cfg(not(test))]
711         best_block: RwLock<BestBlock>,
712         secp_ctx: Secp256k1<secp256k1::All>,
713
714         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
715         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
716         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
717         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
718         ///
719         /// See `ChannelManager` struct-level documentation for lock order requirements.
720         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
721
722         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
723         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
724         /// (if the channel has been force-closed), however we track them here to prevent duplicative
725         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
726         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
727         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
728         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
729         /// after reloading from disk while replaying blocks against ChannelMonitors.
730         ///
731         /// See `PendingOutboundPayment` documentation for more info.
732         ///
733         /// See `ChannelManager` struct-level documentation for lock order requirements.
734         pending_outbound_payments: OutboundPayments,
735
736         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
737         ///
738         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
739         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
740         /// and via the classic SCID.
741         ///
742         /// Note that no consistency guarantees are made about the existence of a channel with the
743         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
744         ///
745         /// See `ChannelManager` struct-level documentation for lock order requirements.
746         #[cfg(test)]
747         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
748         #[cfg(not(test))]
749         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
750         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
751         /// until the user tells us what we should do with them.
752         ///
753         /// See `ChannelManager` struct-level documentation for lock order requirements.
754         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
755
756         /// The sets of payments which are claimable or currently being claimed. See
757         /// [`ClaimablePayments`]' individual field docs for more info.
758         ///
759         /// See `ChannelManager` struct-level documentation for lock order requirements.
760         claimable_payments: Mutex<ClaimablePayments>,
761
762         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
763         /// and some closed channels which reached a usable state prior to being closed. This is used
764         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
765         /// active channel list on load.
766         ///
767         /// See `ChannelManager` struct-level documentation for lock order requirements.
768         outbound_scid_aliases: Mutex<HashSet<u64>>,
769
770         /// `channel_id` -> `counterparty_node_id`.
771         ///
772         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
773         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
774         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
775         ///
776         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
777         /// the corresponding channel for the event, as we only have access to the `channel_id` during
778         /// the handling of the events.
779         ///
780         /// Note that no consistency guarantees are made about the existence of a peer with the
781         /// `counterparty_node_id` in our other maps.
782         ///
783         /// TODO:
784         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
785         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
786         /// would break backwards compatability.
787         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
788         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
789         /// required to access the channel with the `counterparty_node_id`.
790         ///
791         /// See `ChannelManager` struct-level documentation for lock order requirements.
792         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
793
794         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
795         ///
796         /// Outbound SCID aliases are added here once the channel is available for normal use, with
797         /// SCIDs being added once the funding transaction is confirmed at the channel's required
798         /// confirmation depth.
799         ///
800         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
801         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
802         /// channel with the `channel_id` in our other maps.
803         ///
804         /// See `ChannelManager` struct-level documentation for lock order requirements.
805         #[cfg(test)]
806         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
807         #[cfg(not(test))]
808         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
809
810         our_network_pubkey: PublicKey,
811
812         inbound_payment_key: inbound_payment::ExpandedKey,
813
814         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
815         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
816         /// we encrypt the namespace identifier using these bytes.
817         ///
818         /// [fake scids]: crate::util::scid_utils::fake_scid
819         fake_scid_rand_bytes: [u8; 32],
820
821         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
822         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
823         /// keeping additional state.
824         probing_cookie_secret: [u8; 32],
825
826         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
827         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
828         /// very far in the past, and can only ever be up to two hours in the future.
829         highest_seen_timestamp: AtomicUsize,
830
831         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
832         /// basis, as well as the peer's latest features.
833         ///
834         /// If we are connected to a peer we always at least have an entry here, even if no channels
835         /// are currently open with that peer.
836         ///
837         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
838         /// operate on the inner value freely. This opens up for parallel per-peer operation for
839         /// channels.
840         ///
841         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
842         ///
843         /// See `ChannelManager` struct-level documentation for lock order requirements.
844         #[cfg(not(any(test, feature = "_test_utils")))]
845         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
846         #[cfg(any(test, feature = "_test_utils"))]
847         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
848
849         /// See `ChannelManager` struct-level documentation for lock order requirements.
850         pending_events: Mutex<Vec<events::Event>>,
851         /// See `ChannelManager` struct-level documentation for lock order requirements.
852         pending_background_events: Mutex<Vec<BackgroundEvent>>,
853         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
854         /// Essentially just when we're serializing ourselves out.
855         /// Taken first everywhere where we are making changes before any other locks.
856         /// When acquiring this lock in read mode, rather than acquiring it directly, call
857         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
858         /// Notifier the lock contains sends out a notification when the lock is released.
859         total_consistency_lock: RwLock<()>,
860
861         persistence_notifier: Notifier,
862
863         entropy_source: ES,
864         node_signer: NS,
865         signer_provider: SP,
866
867         logger: L,
868 }
869
870 /// Chain-related parameters used to construct a new `ChannelManager`.
871 ///
872 /// Typically, the block-specific parameters are derived from the best block hash for the network,
873 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
874 /// are not needed when deserializing a previously constructed `ChannelManager`.
875 #[derive(Clone, Copy, PartialEq)]
876 pub struct ChainParameters {
877         /// The network for determining the `chain_hash` in Lightning messages.
878         pub network: Network,
879
880         /// The hash and height of the latest block successfully connected.
881         ///
882         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
883         pub best_block: BestBlock,
884 }
885
886 #[derive(Copy, Clone, PartialEq)]
887 enum NotifyOption {
888         DoPersist,
889         SkipPersist,
890 }
891
892 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
893 /// desirable to notify any listeners on `await_persistable_update_timeout`/
894 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
895 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
896 /// sending the aforementioned notification (since the lock being released indicates that the
897 /// updates are ready for persistence).
898 ///
899 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
900 /// notify or not based on whether relevant changes have been made, providing a closure to
901 /// `optionally_notify` which returns a `NotifyOption`.
902 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
903         persistence_notifier: &'a Notifier,
904         should_persist: F,
905         // We hold onto this result so the lock doesn't get released immediately.
906         _read_guard: RwLockReadGuard<'a, ()>,
907 }
908
909 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
910         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
911                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
912         }
913
914         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
915                 let read_guard = lock.read().unwrap();
916
917                 PersistenceNotifierGuard {
918                         persistence_notifier: notifier,
919                         should_persist: persist_check,
920                         _read_guard: read_guard,
921                 }
922         }
923 }
924
925 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
926         fn drop(&mut self) {
927                 if (self.should_persist)() == NotifyOption::DoPersist {
928                         self.persistence_notifier.notify();
929                 }
930         }
931 }
932
933 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
934 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
935 ///
936 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
937 ///
938 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
939 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
940 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
941 /// the maximum required amount in lnd as of March 2021.
942 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
943
944 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
945 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
946 ///
947 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
948 ///
949 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
950 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
951 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
952 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
953 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
954 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
955 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
956 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
957 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
958 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
959 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
960 // routing failure for any HTLC sender picking up an LDK node among the first hops.
961 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
962
963 /// Minimum CLTV difference between the current block height and received inbound payments.
964 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
965 /// this value.
966 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
967 // any payments to succeed. Further, we don't want payments to fail if a block was found while
968 // a payment was being routed, so we add an extra block to be safe.
969 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
970
971 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
972 // ie that if the next-hop peer fails the HTLC within
973 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
974 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
975 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
976 // LATENCY_GRACE_PERIOD_BLOCKS.
977 #[deny(const_err)]
978 #[allow(dead_code)]
979 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
980
981 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
982 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
983 #[deny(const_err)]
984 #[allow(dead_code)]
985 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
986
987 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
988 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
989
990 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
991 /// idempotency of payments by [`PaymentId`]. See
992 /// [`OutboundPayments::remove_stale_resolved_payments`].
993 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
994
995 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
996 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
997 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
998 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
999
1000 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1001 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1002 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1003
1004 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1005 /// many peers we reject new (inbound) connections.
1006 const MAX_NO_CHANNEL_PEERS: usize = 250;
1007
1008 /// Information needed for constructing an invoice route hint for this channel.
1009 #[derive(Clone, Debug, PartialEq)]
1010 pub struct CounterpartyForwardingInfo {
1011         /// Base routing fee in millisatoshis.
1012         pub fee_base_msat: u32,
1013         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1014         pub fee_proportional_millionths: u32,
1015         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1016         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1017         /// `cltv_expiry_delta` for more details.
1018         pub cltv_expiry_delta: u16,
1019 }
1020
1021 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1022 /// to better separate parameters.
1023 #[derive(Clone, Debug, PartialEq)]
1024 pub struct ChannelCounterparty {
1025         /// The node_id of our counterparty
1026         pub node_id: PublicKey,
1027         /// The Features the channel counterparty provided upon last connection.
1028         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1029         /// many routing-relevant features are present in the init context.
1030         pub features: InitFeatures,
1031         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1032         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1033         /// claiming at least this value on chain.
1034         ///
1035         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1036         ///
1037         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1038         pub unspendable_punishment_reserve: u64,
1039         /// Information on the fees and requirements that the counterparty requires when forwarding
1040         /// payments to us through this channel.
1041         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1042         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1043         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1044         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1045         pub outbound_htlc_minimum_msat: Option<u64>,
1046         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1047         pub outbound_htlc_maximum_msat: Option<u64>,
1048 }
1049
1050 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
1051 #[derive(Clone, Debug, PartialEq)]
1052 pub struct ChannelDetails {
1053         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1054         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1055         /// Note that this means this value is *not* persistent - it can change once during the
1056         /// lifetime of the channel.
1057         pub channel_id: [u8; 32],
1058         /// Parameters which apply to our counterparty. See individual fields for more information.
1059         pub counterparty: ChannelCounterparty,
1060         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1061         /// our counterparty already.
1062         ///
1063         /// Note that, if this has been set, `channel_id` will be equivalent to
1064         /// `funding_txo.unwrap().to_channel_id()`.
1065         pub funding_txo: Option<OutPoint>,
1066         /// The features which this channel operates with. See individual features for more info.
1067         ///
1068         /// `None` until negotiation completes and the channel type is finalized.
1069         pub channel_type: Option<ChannelTypeFeatures>,
1070         /// The position of the funding transaction in the chain. None if the funding transaction has
1071         /// not yet been confirmed and the channel fully opened.
1072         ///
1073         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1074         /// payments instead of this. See [`get_inbound_payment_scid`].
1075         ///
1076         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1077         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1078         ///
1079         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1080         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1081         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1082         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1083         /// [`confirmations_required`]: Self::confirmations_required
1084         pub short_channel_id: Option<u64>,
1085         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1086         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1087         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1088         /// `Some(0)`).
1089         ///
1090         /// This will be `None` as long as the channel is not available for routing outbound payments.
1091         ///
1092         /// [`short_channel_id`]: Self::short_channel_id
1093         /// [`confirmations_required`]: Self::confirmations_required
1094         pub outbound_scid_alias: Option<u64>,
1095         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1096         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1097         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1098         /// when they see a payment to be routed to us.
1099         ///
1100         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1101         /// previous values for inbound payment forwarding.
1102         ///
1103         /// [`short_channel_id`]: Self::short_channel_id
1104         pub inbound_scid_alias: Option<u64>,
1105         /// The value, in satoshis, of this channel as appears in the funding output
1106         pub channel_value_satoshis: u64,
1107         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1108         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1109         /// this value on chain.
1110         ///
1111         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1112         ///
1113         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1114         ///
1115         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1116         pub unspendable_punishment_reserve: Option<u64>,
1117         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1118         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1119         /// 0.0.113.
1120         pub user_channel_id: u128,
1121         /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1122         /// which is applied to commitment and HTLC transactions.
1123         ///
1124         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1125         pub feerate_sat_per_1000_weight: Option<u32>,
1126         /// Our total balance.  This is the amount we would get if we close the channel.
1127         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1128         /// amount is not likely to be recoverable on close.
1129         ///
1130         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1131         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1132         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1133         /// This does not consider any on-chain fees.
1134         ///
1135         /// See also [`ChannelDetails::outbound_capacity_msat`]
1136         pub balance_msat: u64,
1137         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1138         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1139         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1140         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1141         ///
1142         /// See also [`ChannelDetails::balance_msat`]
1143         ///
1144         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1145         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1146         /// should be able to spend nearly this amount.
1147         pub outbound_capacity_msat: u64,
1148         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1149         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1150         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1151         /// to use a limit as close as possible to the HTLC limit we can currently send.
1152         ///
1153         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1154         pub next_outbound_htlc_limit_msat: u64,
1155         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1156         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1157         /// available for inclusion in new inbound HTLCs).
1158         /// Note that there are some corner cases not fully handled here, so the actual available
1159         /// inbound capacity may be slightly higher than this.
1160         ///
1161         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1162         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1163         /// However, our counterparty should be able to spend nearly this amount.
1164         pub inbound_capacity_msat: u64,
1165         /// The number of required confirmations on the funding transaction before the funding will be
1166         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1167         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1168         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1169         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1170         ///
1171         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1172         ///
1173         /// [`is_outbound`]: ChannelDetails::is_outbound
1174         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1175         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1176         pub confirmations_required: Option<u32>,
1177         /// The current number of confirmations on the funding transaction.
1178         ///
1179         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1180         pub confirmations: Option<u32>,
1181         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1182         /// until we can claim our funds after we force-close the channel. During this time our
1183         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1184         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1185         /// time to claim our non-HTLC-encumbered funds.
1186         ///
1187         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1188         pub force_close_spend_delay: Option<u16>,
1189         /// True if the channel was initiated (and thus funded) by us.
1190         pub is_outbound: bool,
1191         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1192         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1193         /// required confirmation count has been reached (and we were connected to the peer at some
1194         /// point after the funding transaction received enough confirmations). The required
1195         /// confirmation count is provided in [`confirmations_required`].
1196         ///
1197         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1198         pub is_channel_ready: bool,
1199         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1200         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1201         ///
1202         /// This is a strict superset of `is_channel_ready`.
1203         pub is_usable: bool,
1204         /// True if this channel is (or will be) publicly-announced.
1205         pub is_public: bool,
1206         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1207         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1208         pub inbound_htlc_minimum_msat: Option<u64>,
1209         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1210         pub inbound_htlc_maximum_msat: Option<u64>,
1211         /// Set of configurable parameters that affect channel operation.
1212         ///
1213         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1214         pub config: Option<ChannelConfig>,
1215 }
1216
1217 impl ChannelDetails {
1218         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1219         /// This should be used for providing invoice hints or in any other context where our
1220         /// counterparty will forward a payment to us.
1221         ///
1222         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1223         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1224         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1225                 self.inbound_scid_alias.or(self.short_channel_id)
1226         }
1227
1228         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1229         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1230         /// we're sending or forwarding a payment outbound over this channel.
1231         ///
1232         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1233         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1234         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1235                 self.short_channel_id.or(self.outbound_scid_alias)
1236         }
1237
1238         fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
1239                 best_block_height: u32, latest_features: InitFeatures) -> Self {
1240
1241                 let balance = channel.get_available_balances();
1242                 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1243                         channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1244                 ChannelDetails {
1245                         channel_id: channel.channel_id(),
1246                         counterparty: ChannelCounterparty {
1247                                 node_id: channel.get_counterparty_node_id(),
1248                                 features: latest_features,
1249                                 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1250                                 forwarding_info: channel.counterparty_forwarding_info(),
1251                                 // Ensures that we have actually received the `htlc_minimum_msat` value
1252                                 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1253                                 // message (as they are always the first message from the counterparty).
1254                                 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1255                                 // default `0` value set by `Channel::new_outbound`.
1256                                 outbound_htlc_minimum_msat: if channel.have_received_message() {
1257                                         Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1258                                 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1259                         },
1260                         funding_txo: channel.get_funding_txo(),
1261                         // Note that accept_channel (or open_channel) is always the first message, so
1262                         // `have_received_message` indicates that type negotiation has completed.
1263                         channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1264                         short_channel_id: channel.get_short_channel_id(),
1265                         outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1266                         inbound_scid_alias: channel.latest_inbound_scid_alias(),
1267                         channel_value_satoshis: channel.get_value_satoshis(),
1268                         feerate_sat_per_1000_weight: Some(channel.get_feerate_sat_per_1000_weight()),
1269                         unspendable_punishment_reserve: to_self_reserve_satoshis,
1270                         balance_msat: balance.balance_msat,
1271                         inbound_capacity_msat: balance.inbound_capacity_msat,
1272                         outbound_capacity_msat: balance.outbound_capacity_msat,
1273                         next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1274                         user_channel_id: channel.get_user_id(),
1275                         confirmations_required: channel.minimum_depth(),
1276                         confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1277                         force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1278                         is_outbound: channel.is_outbound(),
1279                         is_channel_ready: channel.is_usable(),
1280                         is_usable: channel.is_live(),
1281                         is_public: channel.should_announce(),
1282                         inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1283                         inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1284                         config: Some(channel.config()),
1285                 }
1286         }
1287 }
1288
1289 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1290 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1291 #[derive(Debug, PartialEq)]
1292 pub enum RecentPaymentDetails {
1293         /// When a payment is still being sent and awaiting successful delivery.
1294         Pending {
1295                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1296                 /// abandoned.
1297                 payment_hash: PaymentHash,
1298                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1299                 /// not just the amount currently inflight.
1300                 total_msat: u64,
1301         },
1302         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1303         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1304         /// payment is removed from tracking.
1305         Fulfilled {
1306                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1307                 /// made before LDK version 0.0.104.
1308                 payment_hash: Option<PaymentHash>,
1309         },
1310         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1311         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1312         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1313         Abandoned {
1314                 /// Hash of the payment that we have given up trying to send.
1315                 payment_hash: PaymentHash,
1316         },
1317 }
1318
1319 /// Route hints used in constructing invoices for [phantom node payents].
1320 ///
1321 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1322 #[derive(Clone)]
1323 pub struct PhantomRouteHints {
1324         /// The list of channels to be included in the invoice route hints.
1325         pub channels: Vec<ChannelDetails>,
1326         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1327         /// route hints.
1328         pub phantom_scid: u64,
1329         /// The pubkey of the real backing node that would ultimately receive the payment.
1330         pub real_node_pubkey: PublicKey,
1331 }
1332
1333 macro_rules! handle_error {
1334         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1335                 match $internal {
1336                         Ok(msg) => Ok(msg),
1337                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1338                                 // In testing, ensure there are no deadlocks where the lock is already held upon
1339                                 // entering the macro.
1340                                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1341                                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1342
1343                                 let mut msg_events = Vec::with_capacity(2);
1344
1345                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1346                                         $self.finish_force_close_channel(shutdown_res);
1347                                         if let Some(update) = update_option {
1348                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1349                                                         msg: update
1350                                                 });
1351                                         }
1352                                         if let Some((channel_id, user_channel_id)) = chan_id {
1353                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1354                                                         channel_id, user_channel_id,
1355                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1356                                                 });
1357                                         }
1358                                 }
1359
1360                                 log_error!($self.logger, "{}", err.err);
1361                                 if let msgs::ErrorAction::IgnoreError = err.action {
1362                                 } else {
1363                                         msg_events.push(events::MessageSendEvent::HandleError {
1364                                                 node_id: $counterparty_node_id,
1365                                                 action: err.action.clone()
1366                                         });
1367                                 }
1368
1369                                 if !msg_events.is_empty() {
1370                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1371                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1372                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1373                                                 peer_state.pending_msg_events.append(&mut msg_events);
1374                                         }
1375                                 }
1376
1377                                 // Return error in case higher-API need one
1378                                 Err(err)
1379                         },
1380                 }
1381         }
1382 }
1383
1384 macro_rules! update_maps_on_chan_removal {
1385         ($self: expr, $channel: expr) => {{
1386                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1387                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1388                 if let Some(short_id) = $channel.get_short_channel_id() {
1389                         short_to_chan_info.remove(&short_id);
1390                 } else {
1391                         // If the channel was never confirmed on-chain prior to its closure, remove the
1392                         // outbound SCID alias we used for it from the collision-prevention set. While we
1393                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1394                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1395                         // opening a million channels with us which are closed before we ever reach the funding
1396                         // stage.
1397                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1398                         debug_assert!(alias_removed);
1399                 }
1400                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1401         }}
1402 }
1403
1404 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1405 macro_rules! convert_chan_err {
1406         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1407                 match $err {
1408                         ChannelError::Warn(msg) => {
1409                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1410                         },
1411                         ChannelError::Ignore(msg) => {
1412                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1413                         },
1414                         ChannelError::Close(msg) => {
1415                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1416                                 update_maps_on_chan_removal!($self, $channel);
1417                                 let shutdown_res = $channel.force_shutdown(true);
1418                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1419                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1420                         },
1421                 }
1422         }
1423 }
1424
1425 macro_rules! break_chan_entry {
1426         ($self: ident, $res: expr, $entry: expr) => {
1427                 match $res {
1428                         Ok(res) => res,
1429                         Err(e) => {
1430                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1431                                 if drop {
1432                                         $entry.remove_entry();
1433                                 }
1434                                 break Err(res);
1435                         }
1436                 }
1437         }
1438 }
1439
1440 macro_rules! try_chan_entry {
1441         ($self: ident, $res: expr, $entry: expr) => {
1442                 match $res {
1443                         Ok(res) => res,
1444                         Err(e) => {
1445                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1446                                 if drop {
1447                                         $entry.remove_entry();
1448                                 }
1449                                 return Err(res);
1450                         }
1451                 }
1452         }
1453 }
1454
1455 macro_rules! remove_channel {
1456         ($self: expr, $entry: expr) => {
1457                 {
1458                         let channel = $entry.remove_entry().1;
1459                         update_maps_on_chan_removal!($self, channel);
1460                         channel
1461                 }
1462         }
1463 }
1464
1465 macro_rules! send_channel_ready {
1466         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1467                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1468                         node_id: $channel.get_counterparty_node_id(),
1469                         msg: $channel_ready_msg,
1470                 });
1471                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1472                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1473                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1474                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1475                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1476                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1477                 if let Some(real_scid) = $channel.get_short_channel_id() {
1478                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1479                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1480                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1481                 }
1482         }}
1483 }
1484
1485 macro_rules! emit_channel_ready_event {
1486         ($self: expr, $channel: expr) => {
1487                 if $channel.should_emit_channel_ready_event() {
1488                         {
1489                                 let mut pending_events = $self.pending_events.lock().unwrap();
1490                                 pending_events.push(events::Event::ChannelReady {
1491                                         channel_id: $channel.channel_id(),
1492                                         user_channel_id: $channel.get_user_id(),
1493                                         counterparty_node_id: $channel.get_counterparty_node_id(),
1494                                         channel_type: $channel.get_channel_type().clone(),
1495                                 });
1496                         }
1497                         $channel.set_channel_ready_event_emitted();
1498                 }
1499         }
1500 }
1501
1502 macro_rules! handle_monitor_update_completion {
1503         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1504                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1505                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1506                         $self.best_block.read().unwrap().height());
1507                 let counterparty_node_id = $chan.get_counterparty_node_id();
1508                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1509                         // We only send a channel_update in the case where we are just now sending a
1510                         // channel_ready and the channel is in a usable state. We may re-send a
1511                         // channel_update later through the announcement_signatures process for public
1512                         // channels, but there's no reason not to just inform our counterparty of our fees
1513                         // now.
1514                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1515                                 Some(events::MessageSendEvent::SendChannelUpdate {
1516                                         node_id: counterparty_node_id,
1517                                         msg,
1518                                 })
1519                         } else { None }
1520                 } else { None };
1521
1522                 let update_actions = $peer_state.monitor_update_blocked_actions
1523                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1524
1525                 let htlc_forwards = $self.handle_channel_resumption(
1526                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1527                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1528                         updates.funding_broadcastable, updates.channel_ready,
1529                         updates.announcement_sigs);
1530                 if let Some(upd) = channel_update {
1531                         $peer_state.pending_msg_events.push(upd);
1532                 }
1533
1534                 let channel_id = $chan.channel_id();
1535                 core::mem::drop($peer_state_lock);
1536                 core::mem::drop($per_peer_state_lock);
1537
1538                 $self.handle_monitor_update_completion_actions(update_actions);
1539
1540                 if let Some(forwards) = htlc_forwards {
1541                         $self.forward_htlcs(&mut [forwards][..]);
1542                 }
1543                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1544                 for failure in updates.failed_htlcs.drain(..) {
1545                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1546                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1547                 }
1548         } }
1549 }
1550
1551 macro_rules! handle_new_monitor_update {
1552         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1553                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1554                 // any case so that it won't deadlock.
1555                 debug_assert!($self.id_to_peer.try_lock().is_ok());
1556                 match $update_res {
1557                         ChannelMonitorUpdateStatus::InProgress => {
1558                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1559                                         log_bytes!($chan.channel_id()[..]));
1560                                 Ok(())
1561                         },
1562                         ChannelMonitorUpdateStatus::PermanentFailure => {
1563                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1564                                         log_bytes!($chan.channel_id()[..]));
1565                                 update_maps_on_chan_removal!($self, $chan);
1566                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1567                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1568                                         $chan.get_user_id(), $chan.force_shutdown(false),
1569                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1570                                 $remove;
1571                                 res
1572                         },
1573                         ChannelMonitorUpdateStatus::Completed => {
1574                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1575                                         .expect("We can't be processing a monitor update if it isn't queued")
1576                                         .update_id == $update_id) &&
1577                                         $chan.get_latest_monitor_update_id() == $update_id
1578                                 {
1579                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1580                                 }
1581                                 Ok(())
1582                         },
1583                 }
1584         } };
1585         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1586                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1587         }
1588 }
1589
1590 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1591 where
1592         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1593         T::Target: BroadcasterInterface,
1594         ES::Target: EntropySource,
1595         NS::Target: NodeSigner,
1596         SP::Target: SignerProvider,
1597         F::Target: FeeEstimator,
1598         R::Target: Router,
1599         L::Target: Logger,
1600 {
1601         /// Constructs a new ChannelManager to hold several channels and route between them.
1602         ///
1603         /// This is the main "logic hub" for all channel-related actions, and implements
1604         /// ChannelMessageHandler.
1605         ///
1606         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1607         ///
1608         /// Users need to notify the new ChannelManager when a new block is connected or
1609         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1610         /// from after `params.latest_hash`.
1611         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1612                 let mut secp_ctx = Secp256k1::new();
1613                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1614                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1615                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1616                 ChannelManager {
1617                         default_configuration: config.clone(),
1618                         genesis_hash: genesis_block(params.network).header.block_hash(),
1619                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1620                         chain_monitor,
1621                         tx_broadcaster,
1622                         router,
1623
1624                         best_block: RwLock::new(params.best_block),
1625
1626                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1627                         pending_inbound_payments: Mutex::new(HashMap::new()),
1628                         pending_outbound_payments: OutboundPayments::new(),
1629                         forward_htlcs: Mutex::new(HashMap::new()),
1630                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1631                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1632                         id_to_peer: Mutex::new(HashMap::new()),
1633                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1634
1635                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1636                         secp_ctx,
1637
1638                         inbound_payment_key: expanded_inbound_key,
1639                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1640
1641                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1642
1643                         highest_seen_timestamp: AtomicUsize::new(0),
1644
1645                         per_peer_state: FairRwLock::new(HashMap::new()),
1646
1647                         pending_events: Mutex::new(Vec::new()),
1648                         pending_background_events: Mutex::new(Vec::new()),
1649                         total_consistency_lock: RwLock::new(()),
1650                         persistence_notifier: Notifier::new(),
1651
1652                         entropy_source,
1653                         node_signer,
1654                         signer_provider,
1655
1656                         logger,
1657                 }
1658         }
1659
1660         /// Gets the current configuration applied to all new channels.
1661         pub fn get_current_default_configuration(&self) -> &UserConfig {
1662                 &self.default_configuration
1663         }
1664
1665         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1666                 let height = self.best_block.read().unwrap().height();
1667                 let mut outbound_scid_alias = 0;
1668                 let mut i = 0;
1669                 loop {
1670                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1671                                 outbound_scid_alias += 1;
1672                         } else {
1673                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1674                         }
1675                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1676                                 break;
1677                         }
1678                         i += 1;
1679                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1680                 }
1681                 outbound_scid_alias
1682         }
1683
1684         /// Creates a new outbound channel to the given remote node and with the given value.
1685         ///
1686         /// `user_channel_id` will be provided back as in
1687         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1688         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1689         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1690         /// is simply copied to events and otherwise ignored.
1691         ///
1692         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1693         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1694         ///
1695         /// Note that we do not check if you are currently connected to the given peer. If no
1696         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1697         /// the channel eventually being silently forgotten (dropped on reload).
1698         ///
1699         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1700         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1701         /// [`ChannelDetails::channel_id`] until after
1702         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1703         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1704         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1705         ///
1706         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1707         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1708         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1709         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1710                 if channel_value_satoshis < 1000 {
1711                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1712                 }
1713
1714                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1715                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1716                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1717
1718                 let per_peer_state = self.per_peer_state.read().unwrap();
1719
1720                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1721                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1722
1723                 let mut peer_state = peer_state_mutex.lock().unwrap();
1724                 let channel = {
1725                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1726                         let their_features = &peer_state.latest_features;
1727                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1728                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1729                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1730                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1731                         {
1732                                 Ok(res) => res,
1733                                 Err(e) => {
1734                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1735                                         return Err(e);
1736                                 },
1737                         }
1738                 };
1739                 let res = channel.get_open_channel(self.genesis_hash.clone());
1740
1741                 let temporary_channel_id = channel.channel_id();
1742                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1743                         hash_map::Entry::Occupied(_) => {
1744                                 if cfg!(fuzzing) {
1745                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1746                                 } else {
1747                                         panic!("RNG is bad???");
1748                                 }
1749                         },
1750                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1751                 }
1752
1753                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1754                         node_id: their_network_key,
1755                         msg: res,
1756                 });
1757                 Ok(temporary_channel_id)
1758         }
1759
1760         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1761                 // Allocate our best estimate of the number of channels we have in the `res`
1762                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1763                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1764                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1765                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1766                 // the same channel.
1767                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1768                 {
1769                         let best_block_height = self.best_block.read().unwrap().height();
1770                         let per_peer_state = self.per_peer_state.read().unwrap();
1771                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1772                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1773                                 let peer_state = &mut *peer_state_lock;
1774                                 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1775                                         let details = ChannelDetails::from_channel(channel, best_block_height,
1776                                                 peer_state.latest_features.clone());
1777                                         res.push(details);
1778                                 }
1779                         }
1780                 }
1781                 res
1782         }
1783
1784         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1785         /// more information.
1786         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1787                 self.list_channels_with_filter(|_| true)
1788         }
1789
1790         /// Gets the list of usable channels, in random order. Useful as an argument to
1791         /// [`Router::find_route`] to ensure non-announced channels are used.
1792         ///
1793         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1794         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1795         /// are.
1796         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1797                 // Note we use is_live here instead of usable which leads to somewhat confused
1798                 // internal/external nomenclature, but that's ok cause that's probably what the user
1799                 // really wanted anyway.
1800                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1801         }
1802
1803         /// Gets the list of channels we have with a given counterparty, in random order.
1804         pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
1805                 let best_block_height = self.best_block.read().unwrap().height();
1806                 let per_peer_state = self.per_peer_state.read().unwrap();
1807
1808                 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
1809                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1810                         let peer_state = &mut *peer_state_lock;
1811                         let features = &peer_state.latest_features;
1812                         return peer_state.channel_by_id
1813                                 .iter()
1814                                 .map(|(_, channel)|
1815                                         ChannelDetails::from_channel(channel, best_block_height, features.clone()))
1816                                 .collect();
1817                 }
1818                 vec![]
1819         }
1820
1821         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1822         /// successful path, or have unresolved HTLCs.
1823         ///
1824         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1825         /// result of a crash. If such a payment exists, is not listed here, and an
1826         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1827         ///
1828         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1829         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1830                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1831                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1832                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1833                                         Some(RecentPaymentDetails::Pending {
1834                                                 payment_hash: *payment_hash,
1835                                                 total_msat: *total_msat,
1836                                         })
1837                                 },
1838                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1839                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1840                                 },
1841                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1842                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1843                                 },
1844                                 PendingOutboundPayment::Legacy { .. } => None
1845                         })
1846                         .collect()
1847         }
1848
1849         /// Helper function that issues the channel close events
1850         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1851                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1852                 match channel.unbroadcasted_funding() {
1853                         Some(transaction) => {
1854                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1855                         },
1856                         None => {},
1857                 }
1858                 pending_events_lock.push(events::Event::ChannelClosed {
1859                         channel_id: channel.channel_id(),
1860                         user_channel_id: channel.get_user_id(),
1861                         reason: closure_reason
1862                 });
1863         }
1864
1865         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1866                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1867
1868                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1869                 let result: Result<(), _> = loop {
1870                         let per_peer_state = self.per_peer_state.read().unwrap();
1871
1872                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1873                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
1874
1875                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1876                         let peer_state = &mut *peer_state_lock;
1877                         match peer_state.channel_by_id.entry(channel_id.clone()) {
1878                                 hash_map::Entry::Occupied(mut chan_entry) => {
1879                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
1880                                         let their_features = &peer_state.latest_features;
1881                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
1882                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
1883                                         failed_htlcs = htlcs;
1884
1885                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
1886                                         // here as we don't need the monitor update to complete until we send a
1887                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
1888                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1889                                                 node_id: *counterparty_node_id,
1890                                                 msg: shutdown_msg,
1891                                         });
1892
1893                                         // Update the monitor with the shutdown script if necessary.
1894                                         if let Some(monitor_update) = monitor_update_opt.take() {
1895                                                 let update_id = monitor_update.update_id;
1896                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
1897                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
1898                                         }
1899
1900                                         if chan_entry.get().is_shutdown() {
1901                                                 let channel = remove_channel!(self, chan_entry);
1902                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1903                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1904                                                                 msg: channel_update
1905                                                         });
1906                                                 }
1907                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1908                                         }
1909                                         break Ok(());
1910                                 },
1911                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
1912                         }
1913                 };
1914
1915                 for htlc_source in failed_htlcs.drain(..) {
1916                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1917                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1918                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
1919                 }
1920
1921                 let _ = handle_error!(self, result, *counterparty_node_id);
1922                 Ok(())
1923         }
1924
1925         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1926         /// will be accepted on the given channel, and after additional timeout/the closing of all
1927         /// pending HTLCs, the channel will be closed on chain.
1928         ///
1929         ///  * If we are the channel initiator, we will pay between our [`Background`] and
1930         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1931         ///    estimate.
1932         ///  * If our counterparty is the channel initiator, we will require a channel closing
1933         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
1934         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
1935         ///    counterparty to pay as much fee as they'd like, however.
1936         ///
1937         /// May generate a SendShutdown message event on success, which should be relayed.
1938         ///
1939         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1940         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1941         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1942         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1943                 self.close_channel_internal(channel_id, counterparty_node_id, None)
1944         }
1945
1946         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1947         /// will be accepted on the given channel, and after additional timeout/the closing of all
1948         /// pending HTLCs, the channel will be closed on chain.
1949         ///
1950         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1951         /// the channel being closed or not:
1952         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
1953         ///    transaction. The upper-bound is set by
1954         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1955         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1956         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1957         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1958         ///    will appear on a force-closure transaction, whichever is lower).
1959         ///
1960         /// May generate a SendShutdown message event on success, which should be relayed.
1961         ///
1962         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1963         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1964         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1965         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1966                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1967         }
1968
1969         #[inline]
1970         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1971                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1972                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1973                 for htlc_source in failed_htlcs.drain(..) {
1974                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
1975                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1976                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1977                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
1978                 }
1979                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1980                         // There isn't anything we can do if we get an update failure - we're already
1981                         // force-closing. The monitor update on the required in-memory copy should broadcast
1982                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1983                         // ignore the result here.
1984                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
1985                 }
1986         }
1987
1988         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1989         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1990         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
1991         -> Result<PublicKey, APIError> {
1992                 let per_peer_state = self.per_peer_state.read().unwrap();
1993                 let peer_state_mutex = per_peer_state.get(peer_node_id)
1994                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
1995                 let mut chan = {
1996                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1997                         let peer_state = &mut *peer_state_lock;
1998                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
1999                                 if let Some(peer_msg) = peer_msg {
2000                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
2001                                 } else {
2002                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
2003                                 }
2004                                 remove_channel!(self, chan)
2005                         } else {
2006                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2007                         }
2008                 };
2009                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2010                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2011                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2012                         let mut peer_state = peer_state_mutex.lock().unwrap();
2013                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2014                                 msg: update
2015                         });
2016                 }
2017
2018                 Ok(chan.get_counterparty_node_id())
2019         }
2020
2021         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2022                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2023                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2024                         Ok(counterparty_node_id) => {
2025                                 let per_peer_state = self.per_peer_state.read().unwrap();
2026                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2027                                         let mut peer_state = peer_state_mutex.lock().unwrap();
2028                                         peer_state.pending_msg_events.push(
2029                                                 events::MessageSendEvent::HandleError {
2030                                                         node_id: counterparty_node_id,
2031                                                         action: msgs::ErrorAction::SendErrorMessage {
2032                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2033                                                         },
2034                                                 }
2035                                         );
2036                                 }
2037                                 Ok(())
2038                         },
2039                         Err(e) => Err(e)
2040                 }
2041         }
2042
2043         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2044         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2045         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2046         /// channel.
2047         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2048         -> Result<(), APIError> {
2049                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2050         }
2051
2052         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2053         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2054         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2055         ///
2056         /// You can always get the latest local transaction(s) to broadcast from
2057         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2058         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2059         -> Result<(), APIError> {
2060                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2061         }
2062
2063         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2064         /// for each to the chain and rejecting new HTLCs on each.
2065         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2066                 for chan in self.list_channels() {
2067                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2068                 }
2069         }
2070
2071         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2072         /// local transaction(s).
2073         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2074                 for chan in self.list_channels() {
2075                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2076                 }
2077         }
2078
2079         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2080                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2081         {
2082                 // final_incorrect_cltv_expiry
2083                 if hop_data.outgoing_cltv_value != cltv_expiry {
2084                         return Err(ReceiveError {
2085                                 msg: "Upstream node set CLTV to the wrong value",
2086                                 err_code: 18,
2087                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2088                         })
2089                 }
2090                 // final_expiry_too_soon
2091                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2092                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2093                 //
2094                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2095                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2096                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2097                 let current_height: u32 = self.best_block.read().unwrap().height();
2098                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2099                         let mut err_data = Vec::with_capacity(12);
2100                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2101                         err_data.extend_from_slice(&current_height.to_be_bytes());
2102                         return Err(ReceiveError {
2103                                 err_code: 0x4000 | 15, err_data,
2104                                 msg: "The final CLTV expiry is too soon to handle",
2105                         });
2106                 }
2107                 if hop_data.amt_to_forward > amt_msat {
2108                         return Err(ReceiveError {
2109                                 err_code: 19,
2110                                 err_data: amt_msat.to_be_bytes().to_vec(),
2111                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2112                         });
2113                 }
2114
2115                 let routing = match hop_data.format {
2116                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2117                                 return Err(ReceiveError {
2118                                         err_code: 0x4000|22,
2119                                         err_data: Vec::new(),
2120                                         msg: "Got non final data with an HMAC of 0",
2121                                 });
2122                         },
2123                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2124                                 if payment_data.is_some() && keysend_preimage.is_some() {
2125                                         return Err(ReceiveError {
2126                                                 err_code: 0x4000|22,
2127                                                 err_data: Vec::new(),
2128                                                 msg: "We don't support MPP keysend payments",
2129                                         });
2130                                 } else if let Some(data) = payment_data {
2131                                         PendingHTLCRouting::Receive {
2132                                                 payment_data: data,
2133                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2134                                                 phantom_shared_secret,
2135                                         }
2136                                 } else if let Some(payment_preimage) = keysend_preimage {
2137                                         // We need to check that the sender knows the keysend preimage before processing this
2138                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2139                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2140                                         // with a keysend payment of identical payment hash to X and observing the processing
2141                                         // time discrepancies due to a hash collision with X.
2142                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2143                                         if hashed_preimage != payment_hash {
2144                                                 return Err(ReceiveError {
2145                                                         err_code: 0x4000|22,
2146                                                         err_data: Vec::new(),
2147                                                         msg: "Payment preimage didn't match payment hash",
2148                                                 });
2149                                         }
2150
2151                                         PendingHTLCRouting::ReceiveKeysend {
2152                                                 payment_preimage,
2153                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2154                                         }
2155                                 } else {
2156                                         return Err(ReceiveError {
2157                                                 err_code: 0x4000|0x2000|3,
2158                                                 err_data: Vec::new(),
2159                                                 msg: "We require payment_secrets",
2160                                         });
2161                                 }
2162                         },
2163                 };
2164                 Ok(PendingHTLCInfo {
2165                         routing,
2166                         payment_hash,
2167                         incoming_shared_secret: shared_secret,
2168                         incoming_amt_msat: Some(amt_msat),
2169                         outgoing_amt_msat: amt_msat,
2170                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2171                 })
2172         }
2173
2174         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2175                 macro_rules! return_malformed_err {
2176                         ($msg: expr, $err_code: expr) => {
2177                                 {
2178                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2179                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2180                                                 channel_id: msg.channel_id,
2181                                                 htlc_id: msg.htlc_id,
2182                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2183                                                 failure_code: $err_code,
2184                                         }));
2185                                 }
2186                         }
2187                 }
2188
2189                 if let Err(_) = msg.onion_routing_packet.public_key {
2190                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2191                 }
2192
2193                 let shared_secret = self.node_signer.ecdh(
2194                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2195                 ).unwrap().secret_bytes();
2196
2197                 if msg.onion_routing_packet.version != 0 {
2198                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2199                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2200                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2201                         //receiving node would have to brute force to figure out which version was put in the
2202                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2203                         //node knows the HMAC matched, so they already know what is there...
2204                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2205                 }
2206                 macro_rules! return_err {
2207                         ($msg: expr, $err_code: expr, $data: expr) => {
2208                                 {
2209                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2210                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2211                                                 channel_id: msg.channel_id,
2212                                                 htlc_id: msg.htlc_id,
2213                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2214                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2215                                         }));
2216                                 }
2217                         }
2218                 }
2219
2220                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2221                         Ok(res) => res,
2222                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2223                                 return_malformed_err!(err_msg, err_code);
2224                         },
2225                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2226                                 return_err!(err_msg, err_code, &[0; 0]);
2227                         },
2228                 };
2229
2230                 let pending_forward_info = match next_hop {
2231                         onion_utils::Hop::Receive(next_hop_data) => {
2232                                 // OUR PAYMENT!
2233                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2234                                         Ok(info) => {
2235                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2236                                                 // message, however that would leak that we are the recipient of this payment, so
2237                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2238                                                 // delay) once they've send us a commitment_signed!
2239                                                 PendingHTLCStatus::Forward(info)
2240                                         },
2241                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2242                                 }
2243                         },
2244                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2245                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2246                                 let outgoing_packet = msgs::OnionPacket {
2247                                         version: 0,
2248                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2249                                         hop_data: new_packet_bytes,
2250                                         hmac: next_hop_hmac.clone(),
2251                                 };
2252
2253                                 let short_channel_id = match next_hop_data.format {
2254                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2255                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2256                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2257                                         },
2258                                 };
2259
2260                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2261                                         routing: PendingHTLCRouting::Forward {
2262                                                 onion_packet: outgoing_packet,
2263                                                 short_channel_id,
2264                                         },
2265                                         payment_hash: msg.payment_hash.clone(),
2266                                         incoming_shared_secret: shared_secret,
2267                                         incoming_amt_msat: Some(msg.amount_msat),
2268                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2269                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2270                                 })
2271                         }
2272                 };
2273
2274                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2275                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2276                         // with a short_channel_id of 0. This is important as various things later assume
2277                         // short_channel_id is non-0 in any ::Forward.
2278                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2279                                 if let Some((err, mut code, chan_update)) = loop {
2280                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2281                                         let forwarding_chan_info_opt = match id_option {
2282                                                 None => { // unknown_next_peer
2283                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2284                                                         // phantom or an intercept.
2285                                                         if (self.default_configuration.accept_intercept_htlcs &&
2286                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2287                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2288                                                         {
2289                                                                 None
2290                                                         } else {
2291                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2292                                                         }
2293                                                 },
2294                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2295                                         };
2296                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2297                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2298                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2299                                                 if peer_state_mutex_opt.is_none() {
2300                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2301                                                 }
2302                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2303                                                 let peer_state = &mut *peer_state_lock;
2304                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2305                                                         None => {
2306                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2307                                                                 // have no consistency guarantees.
2308                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2309                                                         },
2310                                                         Some(chan) => chan
2311                                                 };
2312                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2313                                                         // Note that the behavior here should be identical to the above block - we
2314                                                         // should NOT reveal the existence or non-existence of a private channel if
2315                                                         // we don't allow forwards outbound over them.
2316                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2317                                                 }
2318                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2319                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2320                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2321                                                         // we don't have the channel here.
2322                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2323                                                 }
2324                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2325
2326                                                 // Note that we could technically not return an error yet here and just hope
2327                                                 // that the connection is reestablished or monitor updated by the time we get
2328                                                 // around to doing the actual forward, but better to fail early if we can and
2329                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2330                                                 // on a small/per-node/per-channel scale.
2331                                                 if !chan.is_live() { // channel_disabled
2332                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2333                                                 }
2334                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2335                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2336                                                 }
2337                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2338                                                         break Some((err, code, chan_update_opt));
2339                                                 }
2340                                                 chan_update_opt
2341                                         } else {
2342                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2343                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2344                                                         // forwarding over a real channel we can't generate a channel_update
2345                                                         // for it. Instead we just return a generic temporary_node_failure.
2346                                                         break Some((
2347                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2348                                                                 0x2000 | 2, None,
2349                                                         ));
2350                                                 }
2351                                                 None
2352                                         };
2353
2354                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2355                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2356                                         // but we want to be robust wrt to counterparty packet sanitization (see
2357                                         // HTLC_FAIL_BACK_BUFFER rationale).
2358                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2359                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2360                                         }
2361                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2362                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2363                                         }
2364                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2365                                         // counterparty. They should fail it anyway, but we don't want to bother with
2366                                         // the round-trips or risk them deciding they definitely want the HTLC and
2367                                         // force-closing to ensure they get it if we're offline.
2368                                         // We previously had a much more aggressive check here which tried to ensure
2369                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2370                                         // but there is no need to do that, and since we're a bit conservative with our
2371                                         // risk threshold it just results in failing to forward payments.
2372                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2373                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2374                                         }
2375
2376                                         break None;
2377                                 }
2378                                 {
2379                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2380                                         if let Some(chan_update) = chan_update {
2381                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2382                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2383                                                 }
2384                                                 else if code == 0x1000 | 13 {
2385                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2386                                                 }
2387                                                 else if code == 0x1000 | 20 {
2388                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2389                                                         0u16.write(&mut res).expect("Writes cannot fail");
2390                                                 }
2391                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2392                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2393                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2394                                         } else if code & 0x1000 == 0x1000 {
2395                                                 // If we're trying to return an error that requires a `channel_update` but
2396                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2397                                                 // generate an update), just use the generic "temporary_node_failure"
2398                                                 // instead.
2399                                                 code = 0x2000 | 2;
2400                                         }
2401                                         return_err!(err, code, &res.0[..]);
2402                                 }
2403                         }
2404                 }
2405
2406                 pending_forward_info
2407         }
2408
2409         /// Gets the current channel_update for the given channel. This first checks if the channel is
2410         /// public, and thus should be called whenever the result is going to be passed out in a
2411         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2412         ///
2413         /// Note that in `internal_closing_signed`, this function is called without the `peer_state`
2414         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2415         /// storage and the `peer_state` lock has been dropped.
2416         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2417                 if !chan.should_announce() {
2418                         return Err(LightningError {
2419                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2420                                 action: msgs::ErrorAction::IgnoreError
2421                         });
2422                 }
2423                 if chan.get_short_channel_id().is_none() {
2424                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2425                 }
2426                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2427                 self.get_channel_update_for_unicast(chan)
2428         }
2429
2430         /// Gets the current channel_update for the given channel. This does not check if the channel
2431         /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2432         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2433         /// provided evidence that they know about the existence of the channel.
2434         ///
2435         /// Note that through `internal_closing_signed`, this function is called without the
2436         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2437         /// removed from the storage and the `peer_state` lock has been dropped.
2438         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2439                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2440                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2441                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2442                         Some(id) => id,
2443                 };
2444
2445                 self.get_channel_update_for_onion(short_channel_id, chan)
2446         }
2447         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2448                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2449                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2450
2451                 let unsigned = msgs::UnsignedChannelUpdate {
2452                         chain_hash: self.genesis_hash,
2453                         short_channel_id,
2454                         timestamp: chan.get_update_time_counter(),
2455                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2456                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2457                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2458                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2459                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2460                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2461                         excess_data: Vec::new(),
2462                 };
2463                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2464                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2465                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2466                 // channel.
2467                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2468
2469                 Ok(msgs::ChannelUpdate {
2470                         signature: sig,
2471                         contents: unsigned
2472                 })
2473         }
2474
2475         #[cfg(test)]
2476         pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2477                 let _lck = self.total_consistency_lock.read().unwrap();
2478                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2479         }
2480
2481         fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2482                 // The top-level caller should hold the total_consistency_lock read lock.
2483                 debug_assert!(self.total_consistency_lock.try_write().is_err());
2484
2485                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2486                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2487                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2488
2489                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2490                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2491                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2492                 if onion_utils::route_size_insane(&onion_payloads) {
2493                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2494                 }
2495                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2496
2497                 let err: Result<(), _> = loop {
2498                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2499                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2500                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2501                         };
2502
2503                         let per_peer_state = self.per_peer_state.read().unwrap();
2504                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2505                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2506                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2507                         let peer_state = &mut *peer_state_lock;
2508                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2509                                 if !chan.get().is_live() {
2510                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2511                                 }
2512                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2513                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2514                                         htlc_cltv, HTLCSource::OutboundRoute {
2515                                                 path: path.clone(),
2516                                                 session_priv: session_priv.clone(),
2517                                                 first_hop_htlc_msat: htlc_msat,
2518                                                 payment_id,
2519                                                 payment_secret: payment_secret.clone(),
2520                                                 payment_params: payment_params.clone(),
2521                                         }, onion_packet, &self.logger);
2522                                 match break_chan_entry!(self, send_res, chan) {
2523                                         Some(monitor_update) => {
2524                                                 let update_id = monitor_update.update_id;
2525                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2526                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2527                                                         break Err(e);
2528                                                 }
2529                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2530                                                         // Note that MonitorUpdateInProgress here indicates (per function
2531                                                         // docs) that we will resend the commitment update once monitor
2532                                                         // updating completes. Therefore, we must return an error
2533                                                         // indicating that it is unsafe to retry the payment wholesale,
2534                                                         // which we do in the send_payment check for
2535                                                         // MonitorUpdateInProgress, below.
2536                                                         return Err(APIError::MonitorUpdateInProgress);
2537                                                 }
2538                                         },
2539                                         None => { },
2540                                 }
2541                         } else {
2542                                 // The channel was likely removed after we fetched the id from the
2543                                 // `short_to_chan_info` map, but before we successfully locked the
2544                                 // `channel_by_id` map.
2545                                 // This can occur as no consistency guarantees exists between the two maps.
2546                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2547                         }
2548                         return Ok(());
2549                 };
2550
2551                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2552                         Ok(_) => unreachable!(),
2553                         Err(e) => {
2554                                 Err(APIError::ChannelUnavailable { err: e.err })
2555                         },
2556                 }
2557         }
2558
2559         /// Sends a payment along a given route.
2560         ///
2561         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2562         /// fields for more info.
2563         ///
2564         /// May generate SendHTLCs message(s) event on success, which should be relayed (e.g. via
2565         /// [`PeerManager::process_events`]).
2566         ///
2567         /// # Avoiding Duplicate Payments
2568         ///
2569         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2570         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2571         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2572         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2573         /// second payment with the same [`PaymentId`].
2574         ///
2575         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2576         /// tracking of payments, including state to indicate once a payment has completed. Because you
2577         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2578         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2579         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2580         ///
2581         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2582         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2583         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2584         /// [`ChannelManager::list_recent_payments`] for more information.
2585         ///
2586         /// # Possible Error States on [`PaymentSendFailure`]
2587         ///
2588         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2589         /// each entry matching the corresponding-index entry in the route paths, see
2590         /// [`PaymentSendFailure`] for more info.
2591         ///
2592         /// In general, a path may raise:
2593         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2594         ///    node public key) is specified.
2595         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2596         ///    (including due to previous monitor update failure or new permanent monitor update
2597         ///    failure).
2598         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2599         ///    relevant updates.
2600         ///
2601         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2602         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2603         /// different route unless you intend to pay twice!
2604         ///
2605         /// # A caution on `payment_secret`
2606         ///
2607         /// `payment_secret` is unrelated to `payment_hash` (or [`PaymentPreimage`]) and exists to
2608         /// authenticate the sender to the recipient and prevent payment-probing (deanonymization)
2609         /// attacks. For newer nodes, it will be provided to you in the invoice. If you do not have one,
2610         /// the [`Route`] must not contain multiple paths as multi-path payments require a
2611         /// recipient-provided `payment_secret`.
2612         ///
2613         /// If a `payment_secret` *is* provided, we assume that the invoice had the payment_secret
2614         /// feature bit set (either as required or as available). If multiple paths are present in the
2615         /// [`Route`], we assume the invoice had the basic_mpp feature set.
2616         ///
2617         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2618         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2619         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2620         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2621         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2622                 let best_block_height = self.best_block.read().unwrap().height();
2623                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2624                 self.pending_outbound_payments
2625                         .send_payment_with_route(route, payment_hash, payment_secret, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2626                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2627                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2628         }
2629
2630         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2631         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2632         pub fn send_payment_with_retry(&self, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2633                 let best_block_height = self.best_block.read().unwrap().height();
2634                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2635                 self.pending_outbound_payments
2636                         .send_payment(payment_hash, payment_secret, payment_id, retry_strategy, route_params,
2637                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2638                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2639                                 &self.pending_events,
2640                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2641                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2642         }
2643
2644         #[cfg(test)]
2645         fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2646                 let best_block_height = self.best_block.read().unwrap().height();
2647                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2648                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, payment_secret, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2649                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2650                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2651         }
2652
2653         #[cfg(test)]
2654         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2655                 let best_block_height = self.best_block.read().unwrap().height();
2656                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, payment_secret, payment_id, route, None, &self.entropy_source, best_block_height)
2657         }
2658
2659
2660         /// Signals that no further retries for the given payment should occur. Useful if you have a
2661         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2662         /// retries are exhausted.
2663         ///
2664         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2665         /// as there are no remaining pending HTLCs for this payment.
2666         ///
2667         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2668         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2669         /// determine the ultimate status of a payment.
2670         ///
2671         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2672         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2673         ///
2674         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2675         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2676         pub fn abandon_payment(&self, payment_id: PaymentId) {
2677                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2678                 self.pending_outbound_payments.abandon_payment(payment_id, &self.pending_events);
2679         }
2680
2681         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2682         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2683         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2684         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2685         /// never reach the recipient.
2686         ///
2687         /// See [`send_payment`] documentation for more details on the return value of this function
2688         /// and idempotency guarantees provided by the [`PaymentId`] key.
2689         ///
2690         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2691         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2692         ///
2693         /// Note that `route` must have exactly one path.
2694         ///
2695         /// [`send_payment`]: Self::send_payment
2696         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2697                 let best_block_height = self.best_block.read().unwrap().height();
2698                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2699                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2700                         route, payment_preimage, payment_id, &self.entropy_source, &self.node_signer,
2701                         best_block_height,
2702                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2703                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2704         }
2705
2706         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2707         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2708         ///
2709         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2710         /// payments.
2711         ///
2712         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2713         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2714                 let best_block_height = self.best_block.read().unwrap().height();
2715                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2716                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, payment_id,
2717                         retry_strategy, route_params, &self.router, self.list_usable_channels(),
2718                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2719                         &self.logger, &self.pending_events,
2720                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2721                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2722         }
2723
2724         /// Send a payment that is probing the given route for liquidity. We calculate the
2725         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2726         /// us to easily discern them from real payments.
2727         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2728                 let best_block_height = self.best_block.read().unwrap().height();
2729                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2730                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2731                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2732                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2733         }
2734
2735         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2736         /// payment probe.
2737         #[cfg(test)]
2738         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2739                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2740         }
2741
2742         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2743         /// which checks the correctness of the funding transaction given the associated channel.
2744         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2745                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2746         ) -> Result<(), APIError> {
2747                 let per_peer_state = self.per_peer_state.read().unwrap();
2748                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2749                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2750
2751                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2752                 let peer_state = &mut *peer_state_lock;
2753                 let (chan, msg) = {
2754                         let (res, chan) = {
2755                                 match peer_state.channel_by_id.remove(temporary_channel_id) {
2756                                         Some(mut chan) => {
2757                                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2758
2759                                                 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2760                                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2761                                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2762                                                         } else { unreachable!(); })
2763                                                 , chan)
2764                                         },
2765                                         None => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }) },
2766                                 }
2767                         };
2768                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
2769                                 Ok(funding_msg) => {
2770                                         (chan, funding_msg)
2771                                 },
2772                                 Err(_) => { return Err(APIError::ChannelUnavailable {
2773                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2774                                 }) },
2775                         }
2776                 };
2777
2778                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2779                         node_id: chan.get_counterparty_node_id(),
2780                         msg,
2781                 });
2782                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2783                         hash_map::Entry::Occupied(_) => {
2784                                 panic!("Generated duplicate funding txid?");
2785                         },
2786                         hash_map::Entry::Vacant(e) => {
2787                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2788                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2789                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2790                                 }
2791                                 e.insert(chan);
2792                         }
2793                 }
2794                 Ok(())
2795         }
2796
2797         #[cfg(test)]
2798         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2799                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2800                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2801                 })
2802         }
2803
2804         /// Call this upon creation of a funding transaction for the given channel.
2805         ///
2806         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2807         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2808         ///
2809         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2810         /// across the p2p network.
2811         ///
2812         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2813         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2814         ///
2815         /// May panic if the output found in the funding transaction is duplicative with some other
2816         /// channel (note that this should be trivially prevented by using unique funding transaction
2817         /// keys per-channel).
2818         ///
2819         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2820         /// counterparty's signature the funding transaction will automatically be broadcast via the
2821         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2822         ///
2823         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2824         /// not currently support replacing a funding transaction on an existing channel. Instead,
2825         /// create a new channel with a conflicting funding transaction.
2826         ///
2827         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2828         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2829         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2830         /// for more details.
2831         ///
2832         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2833         /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2834         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2835                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2836
2837                 for inp in funding_transaction.input.iter() {
2838                         if inp.witness.is_empty() {
2839                                 return Err(APIError::APIMisuseError {
2840                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2841                                 });
2842                         }
2843                 }
2844                 {
2845                         let height = self.best_block.read().unwrap().height();
2846                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2847                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2848                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2849                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2850                                 return Err(APIError::APIMisuseError {
2851                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2852                                 });
2853                         }
2854                 }
2855                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2856                         let mut output_index = None;
2857                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2858                         for (idx, outp) in tx.output.iter().enumerate() {
2859                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2860                                         if output_index.is_some() {
2861                                                 return Err(APIError::APIMisuseError {
2862                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2863                                                 });
2864                                         }
2865                                         if idx > u16::max_value() as usize {
2866                                                 return Err(APIError::APIMisuseError {
2867                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2868                                                 });
2869                                         }
2870                                         output_index = Some(idx as u16);
2871                                 }
2872                         }
2873                         if output_index.is_none() {
2874                                 return Err(APIError::APIMisuseError {
2875                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2876                                 });
2877                         }
2878                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2879                 })
2880         }
2881
2882         /// Atomically updates the [`ChannelConfig`] for the given channels.
2883         ///
2884         /// Once the updates are applied, each eligible channel (advertised with a known short channel
2885         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
2886         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
2887         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
2888         ///
2889         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
2890         /// `counterparty_node_id` is provided.
2891         ///
2892         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
2893         /// below [`MIN_CLTV_EXPIRY_DELTA`].
2894         ///
2895         /// If an error is returned, none of the updates should be considered applied.
2896         ///
2897         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
2898         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
2899         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
2900         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
2901         /// [`ChannelUpdate`]: msgs::ChannelUpdate
2902         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
2903         /// [`APIMisuseError`]: APIError::APIMisuseError
2904         pub fn update_channel_config(
2905                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
2906         ) -> Result<(), APIError> {
2907                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
2908                         return Err(APIError::APIMisuseError {
2909                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
2910                         });
2911                 }
2912
2913                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
2914                         &self.total_consistency_lock, &self.persistence_notifier,
2915                 );
2916                 let per_peer_state = self.per_peer_state.read().unwrap();
2917                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2918                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2919                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2920                 let peer_state = &mut *peer_state_lock;
2921                 for channel_id in channel_ids {
2922                         if !peer_state.channel_by_id.contains_key(channel_id) {
2923                                 return Err(APIError::ChannelUnavailable {
2924                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
2925                                 });
2926                         }
2927                 }
2928                 for channel_id in channel_ids {
2929                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
2930                         if !channel.update_config(config) {
2931                                 continue;
2932                         }
2933                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
2934                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
2935                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
2936                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
2937                                         node_id: channel.get_counterparty_node_id(),
2938                                         msg,
2939                                 });
2940                         }
2941                 }
2942                 Ok(())
2943         }
2944
2945         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
2946         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
2947         ///
2948         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
2949         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
2950         ///
2951         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
2952         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
2953         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
2954         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
2955         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
2956         ///
2957         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
2958         /// you from forwarding more than you received.
2959         ///
2960         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2961         /// backwards.
2962         ///
2963         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
2964         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2965         // TODO: when we move to deciding the best outbound channel at forward time, only take
2966         // `next_node_id` and not `next_hop_channel_id`
2967         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
2968                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2969
2970                 let next_hop_scid = {
2971                         let peer_state_lock = self.per_peer_state.read().unwrap();
2972                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
2973                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
2974                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2975                         let peer_state = &mut *peer_state_lock;
2976                         match peer_state.channel_by_id.get(next_hop_channel_id) {
2977                                 Some(chan) => {
2978                                         if !chan.is_usable() {
2979                                                 return Err(APIError::ChannelUnavailable {
2980                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
2981                                                 })
2982                                         }
2983                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
2984                                 },
2985                                 None => return Err(APIError::ChannelUnavailable {
2986                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
2987                                 })
2988                         }
2989                 };
2990
2991                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2992                         .ok_or_else(|| APIError::APIMisuseError {
2993                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2994                         })?;
2995
2996                 let routing = match payment.forward_info.routing {
2997                         PendingHTLCRouting::Forward { onion_packet, .. } => {
2998                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
2999                         },
3000                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3001                 };
3002                 let pending_htlc_info = PendingHTLCInfo {
3003                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3004                 };
3005
3006                 let mut per_source_pending_forward = [(
3007                         payment.prev_short_channel_id,
3008                         payment.prev_funding_outpoint,
3009                         payment.prev_user_channel_id,
3010                         vec![(pending_htlc_info, payment.prev_htlc_id)]
3011                 )];
3012                 self.forward_htlcs(&mut per_source_pending_forward);
3013                 Ok(())
3014         }
3015
3016         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3017         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3018         ///
3019         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3020         /// backwards.
3021         ///
3022         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3023         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3024                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3025
3026                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3027                         .ok_or_else(|| APIError::APIMisuseError {
3028                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3029                         })?;
3030
3031                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3032                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3033                                 short_channel_id: payment.prev_short_channel_id,
3034                                 outpoint: payment.prev_funding_outpoint,
3035                                 htlc_id: payment.prev_htlc_id,
3036                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3037                                 phantom_shared_secret: None,
3038                         });
3039
3040                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3041                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3042                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3043                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3044
3045                 Ok(())
3046         }
3047
3048         /// Processes HTLCs which are pending waiting on random forward delay.
3049         ///
3050         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3051         /// Will likely generate further events.
3052         pub fn process_pending_htlc_forwards(&self) {
3053                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3054
3055                 let mut new_events = Vec::new();
3056                 let mut failed_forwards = Vec::new();
3057                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3058                 {
3059                         let mut forward_htlcs = HashMap::new();
3060                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3061
3062                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
3063                                 if short_chan_id != 0 {
3064                                         macro_rules! forwarding_channel_not_found {
3065                                                 () => {
3066                                                         for forward_info in pending_forwards.drain(..) {
3067                                                                 match forward_info {
3068                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3069                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3070                                                                                 forward_info: PendingHTLCInfo {
3071                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3072                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3073                                                                                 }
3074                                                                         }) => {
3075                                                                                 macro_rules! failure_handler {
3076                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3077                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3078
3079                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3080                                                                                                         short_channel_id: prev_short_channel_id,
3081                                                                                                         outpoint: prev_funding_outpoint,
3082                                                                                                         htlc_id: prev_htlc_id,
3083                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3084                                                                                                         phantom_shared_secret: $phantom_ss,
3085                                                                                                 });
3086
3087                                                                                                 let reason = if $next_hop_unknown {
3088                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3089                                                                                                 } else {
3090                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3091                                                                                                 };
3092
3093                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3094                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3095                                                                                                         reason
3096                                                                                                 ));
3097                                                                                                 continue;
3098                                                                                         }
3099                                                                                 }
3100                                                                                 macro_rules! fail_forward {
3101                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3102                                                                                                 {
3103                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3104                                                                                                 }
3105                                                                                         }
3106                                                                                 }
3107                                                                                 macro_rules! failed_payment {
3108                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3109                                                                                                 {
3110                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3111                                                                                                 }
3112                                                                                         }
3113                                                                                 }
3114                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3115                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3116                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3117                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3118                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3119                                                                                                         Ok(res) => res,
3120                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3121                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3122                                                                                                                 // In this scenario, the phantom would have sent us an
3123                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3124                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3125                                                                                                                 // of the onion.
3126                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3127                                                                                                         },
3128                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3129                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3130                                                                                                         },
3131                                                                                                 };
3132                                                                                                 match next_hop {
3133                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3134                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3135                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3136                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3137                                                                                                                 }
3138                                                                                                         },
3139                                                                                                         _ => panic!(),
3140                                                                                                 }
3141                                                                                         } else {
3142                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3143                                                                                         }
3144                                                                                 } else {
3145                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3146                                                                                 }
3147                                                                         },
3148                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3149                                                                                 // Channel went away before we could fail it. This implies
3150                                                                                 // the channel is now on chain and our counterparty is
3151                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3152                                                                                 // problem, not ours.
3153                                                                         }
3154                                                                 }
3155                                                         }
3156                                                 }
3157                                         }
3158                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3159                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3160                                                 None => {
3161                                                         forwarding_channel_not_found!();
3162                                                         continue;
3163                                                 }
3164                                         };
3165                                         let per_peer_state = self.per_peer_state.read().unwrap();
3166                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3167                                         if peer_state_mutex_opt.is_none() {
3168                                                 forwarding_channel_not_found!();
3169                                                 continue;
3170                                         }
3171                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3172                                         let peer_state = &mut *peer_state_lock;
3173                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3174                                                 hash_map::Entry::Vacant(_) => {
3175                                                         forwarding_channel_not_found!();
3176                                                         continue;
3177                                                 },
3178                                                 hash_map::Entry::Occupied(mut chan) => {
3179                                                         for forward_info in pending_forwards.drain(..) {
3180                                                                 match forward_info {
3181                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3182                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3183                                                                                 forward_info: PendingHTLCInfo {
3184                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3185                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3186                                                                                 },
3187                                                                         }) => {
3188                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3189                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3190                                                                                         short_channel_id: prev_short_channel_id,
3191                                                                                         outpoint: prev_funding_outpoint,
3192                                                                                         htlc_id: prev_htlc_id,
3193                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3194                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3195                                                                                         phantom_shared_secret: None,
3196                                                                                 });
3197                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3198                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3199                                                                                         onion_packet, &self.logger)
3200                                                                                 {
3201                                                                                         if let ChannelError::Ignore(msg) = e {
3202                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3203                                                                                         } else {
3204                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3205                                                                                         }
3206                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3207                                                                                         failed_forwards.push((htlc_source, payment_hash,
3208                                                                                                 HTLCFailReason::reason(failure_code, data),
3209                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3210                                                                                         ));
3211                                                                                         continue;
3212                                                                                 }
3213                                                                         },
3214                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3215                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3216                                                                         },
3217                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3218                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3219                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3220                                                                                         htlc_id, err_packet, &self.logger
3221                                                                                 ) {
3222                                                                                         if let ChannelError::Ignore(msg) = e {
3223                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3224                                                                                         } else {
3225                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3226                                                                                         }
3227                                                                                         // fail-backs are best-effort, we probably already have one
3228                                                                                         // pending, and if not that's OK, if not, the channel is on
3229                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3230                                                                                         continue;
3231                                                                                 }
3232                                                                         },
3233                                                                 }
3234                                                         }
3235                                                 }
3236                                         }
3237                                 } else {
3238                                         for forward_info in pending_forwards.drain(..) {
3239                                                 match forward_info {
3240                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3241                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3242                                                                 forward_info: PendingHTLCInfo {
3243                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat, ..
3244                                                                 }
3245                                                         }) => {
3246                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3247                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3248                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3249                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3250                                                                         },
3251                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3252                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3253                                                                         _ => {
3254                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3255                                                                         }
3256                                                                 };
3257                                                                 let claimable_htlc = ClaimableHTLC {
3258                                                                         prev_hop: HTLCPreviousHopData {
3259                                                                                 short_channel_id: prev_short_channel_id,
3260                                                                                 outpoint: prev_funding_outpoint,
3261                                                                                 htlc_id: prev_htlc_id,
3262                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3263                                                                                 phantom_shared_secret,
3264                                                                         },
3265                                                                         value: outgoing_amt_msat,
3266                                                                         timer_ticks: 0,
3267                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3268                                                                         cltv_expiry,
3269                                                                         onion_payload,
3270                                                                 };
3271
3272                                                                 macro_rules! fail_htlc {
3273                                                                         ($htlc: expr, $payment_hash: expr) => {
3274                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3275                                                                                 htlc_msat_height_data.extend_from_slice(
3276                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3277                                                                                 );
3278                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3279                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3280                                                                                                 outpoint: prev_funding_outpoint,
3281                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3282                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3283                                                                                                 phantom_shared_secret,
3284                                                                                         }), payment_hash,
3285                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3286                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3287                                                                                 ));
3288                                                                         }
3289                                                                 }
3290                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3291                                                                 let mut receiver_node_id = self.our_network_pubkey;
3292                                                                 if phantom_shared_secret.is_some() {
3293                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3294                                                                                 .expect("Failed to get node_id for phantom node recipient");
3295                                                                 }
3296
3297                                                                 macro_rules! check_total_value {
3298                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3299                                                                                 let mut payment_claimable_generated = false;
3300                                                                                 let purpose = || {
3301                                                                                         events::PaymentPurpose::InvoicePayment {
3302                                                                                                 payment_preimage: $payment_preimage,
3303                                                                                                 payment_secret: $payment_data.payment_secret,
3304                                                                                         }
3305                                                                                 };
3306                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3307                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3308                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3309                                                                                         continue
3310                                                                                 }
3311                                                                                 let (_, htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3312                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3313                                                                                 if htlcs.len() == 1 {
3314                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3315                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3316                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3317                                                                                                 continue
3318                                                                                         }
3319                                                                                 }
3320                                                                                 let mut total_value = claimable_htlc.value;
3321                                                                                 for htlc in htlcs.iter() {
3322                                                                                         total_value += htlc.value;
3323                                                                                         match &htlc.onion_payload {
3324                                                                                                 OnionPayload::Invoice { .. } => {
3325                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3326                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3327                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3328                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3329                                                                                                         }
3330                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3331                                                                                                 },
3332                                                                                                 _ => unreachable!(),
3333                                                                                         }
3334                                                                                 }
3335                                                                                 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3336                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3337                                                                                                 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3338                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3339                                                                                 } else if total_value == $payment_data.total_msat {
3340                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3341                                                                                         htlcs.push(claimable_htlc);
3342                                                                                         new_events.push(events::Event::PaymentClaimable {
3343                                                                                                 receiver_node_id: Some(receiver_node_id),
3344                                                                                                 payment_hash,
3345                                                                                                 purpose: purpose(),
3346                                                                                                 amount_msat: total_value,
3347                                                                                                 via_channel_id: Some(prev_channel_id),
3348                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3349                                                                                         });
3350                                                                                         payment_claimable_generated = true;
3351                                                                                 } else {
3352                                                                                         // Nothing to do - we haven't reached the total
3353                                                                                         // payment value yet, wait until we receive more
3354                                                                                         // MPP parts.
3355                                                                                         htlcs.push(claimable_htlc);
3356                                                                                 }
3357                                                                                 payment_claimable_generated
3358                                                                         }}
3359                                                                 }
3360
3361                                                                 // Check that the payment hash and secret are known. Note that we
3362                                                                 // MUST take care to handle the "unknown payment hash" and
3363                                                                 // "incorrect payment secret" cases here identically or we'd expose
3364                                                                 // that we are the ultimate recipient of the given payment hash.
3365                                                                 // Further, we must not expose whether we have any other HTLCs
3366                                                                 // associated with the same payment_hash pending or not.
3367                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3368                                                                 match payment_secrets.entry(payment_hash) {
3369                                                                         hash_map::Entry::Vacant(_) => {
3370                                                                                 match claimable_htlc.onion_payload {
3371                                                                                         OnionPayload::Invoice { .. } => {
3372                                                                                                 let payment_data = payment_data.unwrap();
3373                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3374                                                                                                         Ok(result) => result,
3375                                                                                                         Err(()) => {
3376                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3377                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3378                                                                                                                 continue
3379                                                                                                         }
3380                                                                                                 };
3381                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3382                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3383                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3384                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3385                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3386                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3387                                                                                                                 continue;
3388                                                                                                         }
3389                                                                                                 }
3390                                                                                                 check_total_value!(payment_data, payment_preimage);
3391                                                                                         },
3392                                                                                         OnionPayload::Spontaneous(preimage) => {
3393                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3394                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3395                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3396                                                                                                         continue
3397                                                                                                 }
3398                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3399                                                                                                         hash_map::Entry::Vacant(e) => {
3400                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3401                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3402                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3403                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3404                                                                                                                         receiver_node_id: Some(receiver_node_id),
3405                                                                                                                         payment_hash,
3406                                                                                                                         amount_msat: outgoing_amt_msat,
3407                                                                                                                         purpose,
3408                                                                                                                         via_channel_id: Some(prev_channel_id),
3409                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3410                                                                                                                 });
3411                                                                                                         },
3412                                                                                                         hash_map::Entry::Occupied(_) => {
3413                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3414                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3415                                                                                                         }
3416                                                                                                 }
3417                                                                                         }
3418                                                                                 }
3419                                                                         },
3420                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3421                                                                                 if payment_data.is_none() {
3422                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3423                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3424                                                                                         continue
3425                                                                                 };
3426                                                                                 let payment_data = payment_data.unwrap();
3427                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3428                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3429                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3430                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3431                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3432                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3433                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3434                                                                                 } else {
3435                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3436                                                                                         if payment_claimable_generated {
3437                                                                                                 inbound_payment.remove_entry();
3438                                                                                         }
3439                                                                                 }
3440                                                                         },
3441                                                                 };
3442                                                         },
3443                                                         HTLCForwardInfo::FailHTLC { .. } => {
3444                                                                 panic!("Got pending fail of our own HTLC");
3445                                                         }
3446                                                 }
3447                                         }
3448                                 }
3449                         }
3450                 }
3451
3452                 let best_block_height = self.best_block.read().unwrap().height();
3453                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3454                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3455                         &self.pending_events, &self.logger,
3456                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3457                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3458
3459                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3460                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3461                 }
3462                 self.forward_htlcs(&mut phantom_receives);
3463
3464                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3465                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3466                 // nice to do the work now if we can rather than while we're trying to get messages in the
3467                 // network stack.
3468                 self.check_free_holding_cells();
3469
3470                 if new_events.is_empty() { return }
3471                 let mut events = self.pending_events.lock().unwrap();
3472                 events.append(&mut new_events);
3473         }
3474
3475         /// Free the background events, generally called from timer_tick_occurred.
3476         ///
3477         /// Exposed for testing to allow us to process events quickly without generating accidental
3478         /// BroadcastChannelUpdate events in timer_tick_occurred.
3479         ///
3480         /// Expects the caller to have a total_consistency_lock read lock.
3481         fn process_background_events(&self) -> bool {
3482                 let mut background_events = Vec::new();
3483                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3484                 if background_events.is_empty() {
3485                         return false;
3486                 }
3487
3488                 for event in background_events.drain(..) {
3489                         match event {
3490                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3491                                         // The channel has already been closed, so no use bothering to care about the
3492                                         // monitor updating completing.
3493                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3494                                 },
3495                         }
3496                 }
3497                 true
3498         }
3499
3500         #[cfg(any(test, feature = "_test_utils"))]
3501         /// Process background events, for functional testing
3502         pub fn test_process_background_events(&self) {
3503                 self.process_background_events();
3504         }
3505
3506         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3507                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3508                 // If the feerate has decreased by less than half, don't bother
3509                 if new_feerate <= chan.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.get_feerate_sat_per_1000_weight() {
3510                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3511                                 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3512                         return NotifyOption::SkipPersist;
3513                 }
3514                 if !chan.is_live() {
3515                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3516                                 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3517                         return NotifyOption::SkipPersist;
3518                 }
3519                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3520                         log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3521
3522                 chan.queue_update_fee(new_feerate, &self.logger);
3523                 NotifyOption::DoPersist
3524         }
3525
3526         #[cfg(fuzzing)]
3527         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3528         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3529         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3530         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3531         pub fn maybe_update_chan_fees(&self) {
3532                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3533                         let mut should_persist = NotifyOption::SkipPersist;
3534
3535                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3536
3537                         let per_peer_state = self.per_peer_state.read().unwrap();
3538                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3539                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3540                                 let peer_state = &mut *peer_state_lock;
3541                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3542                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3543                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3544                                 }
3545                         }
3546
3547                         should_persist
3548                 });
3549         }
3550
3551         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3552         ///
3553         /// This currently includes:
3554         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3555         ///  * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3556         ///    than a minute, informing the network that they should no longer attempt to route over
3557         ///    the channel.
3558         ///  * Expiring a channel's previous `ChannelConfig` if necessary to only allow forwarding HTLCs
3559         ///    with the current `ChannelConfig`.
3560         ///  * Removing peers which have disconnected but and no longer have any channels.
3561         ///
3562         /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3563         /// estimate fetches.
3564         pub fn timer_tick_occurred(&self) {
3565                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3566                         let mut should_persist = NotifyOption::SkipPersist;
3567                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3568
3569                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3570
3571                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3572                         let mut timed_out_mpp_htlcs = Vec::new();
3573                         let mut pending_peers_awaiting_removal = Vec::new();
3574                         {
3575                                 let per_peer_state = self.per_peer_state.read().unwrap();
3576                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3577                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3578                                         let peer_state = &mut *peer_state_lock;
3579                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3580                                         let counterparty_node_id = *counterparty_node_id;
3581                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3582                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3583                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3584
3585                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3586                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3587                                                         handle_errors.push((Err(err), counterparty_node_id));
3588                                                         if needs_close { return false; }
3589                                                 }
3590
3591                                                 match chan.channel_update_status() {
3592                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3593                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3594                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3595                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3596                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3597                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3598                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3599                                                                                 msg: update
3600                                                                         });
3601                                                                 }
3602                                                                 should_persist = NotifyOption::DoPersist;
3603                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3604                                                         },
3605                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3606                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3607                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3608                                                                                 msg: update
3609                                                                         });
3610                                                                 }
3611                                                                 should_persist = NotifyOption::DoPersist;
3612                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3613                                                         },
3614                                                         _ => {},
3615                                                 }
3616
3617                                                 chan.maybe_expire_prev_config();
3618
3619                                                 true
3620                                         });
3621                                         if peer_state.ok_to_remove(true) {
3622                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3623                                         }
3624                                 }
3625                         }
3626
3627                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3628                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3629                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3630                         // we therefore need to remove the peer from `peer_state` separately.
3631                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3632                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3633                         // negative effects on parallelism as much as possible.
3634                         if pending_peers_awaiting_removal.len() > 0 {
3635                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3636                                 for counterparty_node_id in pending_peers_awaiting_removal {
3637                                         match per_peer_state.entry(counterparty_node_id) {
3638                                                 hash_map::Entry::Occupied(entry) => {
3639                                                         // Remove the entry if the peer is still disconnected and we still
3640                                                         // have no channels to the peer.
3641                                                         let remove_entry = {
3642                                                                 let peer_state = entry.get().lock().unwrap();
3643                                                                 peer_state.ok_to_remove(true)
3644                                                         };
3645                                                         if remove_entry {
3646                                                                 entry.remove_entry();
3647                                                         }
3648                                                 },
3649                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3650                                         }
3651                                 }
3652                         }
3653
3654                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3655                                 if htlcs.is_empty() {
3656                                         // This should be unreachable
3657                                         debug_assert!(false);
3658                                         return false;
3659                                 }
3660                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3661                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3662                                         // In this case we're not going to handle any timeouts of the parts here.
3663                                         if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3664                                                 return true;
3665                                         } else if htlcs.into_iter().any(|htlc| {
3666                                                 htlc.timer_ticks += 1;
3667                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3668                                         }) {
3669                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3670                                                 return false;
3671                                         }
3672                                 }
3673                                 true
3674                         });
3675
3676                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3677                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3678                                 let reason = HTLCFailReason::from_failure_code(23);
3679                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3680                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3681                         }
3682
3683                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3684                                 let _ = handle_error!(self, err, counterparty_node_id);
3685                         }
3686
3687                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3688
3689                         // Technically we don't need to do this here, but if we have holding cell entries in a
3690                         // channel that need freeing, it's better to do that here and block a background task
3691                         // than block the message queueing pipeline.
3692                         if self.check_free_holding_cells() {
3693                                 should_persist = NotifyOption::DoPersist;
3694                         }
3695
3696                         should_persist
3697                 });
3698         }
3699
3700         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3701         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3702         /// along the path (including in our own channel on which we received it).
3703         ///
3704         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3705         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3706         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3707         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3708         ///
3709         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3710         /// [`ChannelManager::claim_funds`]), you should still monitor for
3711         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3712         /// startup during which time claims that were in-progress at shutdown may be replayed.
3713         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3714                 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3715         }
3716
3717         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3718         /// reason for the failure.
3719         ///
3720         /// See [`FailureCode`] for valid failure codes.
3721         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3722                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3723
3724                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3725                 if let Some((_, mut sources)) = removed_source {
3726                         for htlc in sources.drain(..) {
3727                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3728                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3729                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3730                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3731                         }
3732                 }
3733         }
3734
3735         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3736         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3737                 match failure_code {
3738                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3739                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3740                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3741                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3742                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3743                                 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
3744                         }
3745                 }
3746         }
3747
3748         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3749         /// that we want to return and a channel.
3750         ///
3751         /// This is for failures on the channel on which the HTLC was *received*, not failures
3752         /// forwarding
3753         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3754                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3755                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3756                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3757                 // an inbound SCID alias before the real SCID.
3758                 let scid_pref = if chan.should_announce() {
3759                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3760                 } else {
3761                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3762                 };
3763                 if let Some(scid) = scid_pref {
3764                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3765                 } else {
3766                         (0x4000|10, Vec::new())
3767                 }
3768         }
3769
3770
3771         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3772         /// that we want to return and a channel.
3773         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3774                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3775                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3776                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3777                         if desired_err_code == 0x1000 | 20 {
3778                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3779                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3780                                 0u16.write(&mut enc).expect("Writes cannot fail");
3781                         }
3782                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3783                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3784                         upd.write(&mut enc).expect("Writes cannot fail");
3785                         (desired_err_code, enc.0)
3786                 } else {
3787                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3788                         // which means we really shouldn't have gotten a payment to be forwarded over this
3789                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3790                         // PERM|no_such_channel should be fine.
3791                         (0x4000|10, Vec::new())
3792                 }
3793         }
3794
3795         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3796         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3797         // be surfaced to the user.
3798         fn fail_holding_cell_htlcs(
3799                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3800                 counterparty_node_id: &PublicKey
3801         ) {
3802                 let (failure_code, onion_failure_data) = {
3803                         let per_peer_state = self.per_peer_state.read().unwrap();
3804                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3805                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3806                                 let peer_state = &mut *peer_state_lock;
3807                                 match peer_state.channel_by_id.entry(channel_id) {
3808                                         hash_map::Entry::Occupied(chan_entry) => {
3809                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3810                                         },
3811                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3812                                 }
3813                         } else { (0x4000|10, Vec::new()) }
3814                 };
3815
3816                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3817                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3818                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3819                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3820                 }
3821         }
3822
3823         /// Fails an HTLC backwards to the sender of it to us.
3824         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3825         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3826                 // Ensure that no peer state channel storage lock is held when calling this function.
3827                 // This ensures that future code doesn't introduce a lock-order requirement for
3828                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3829                 // this function with any `per_peer_state` peer lock acquired would.
3830                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3831                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3832                 }
3833
3834                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3835                 //identify whether we sent it or not based on the (I presume) very different runtime
3836                 //between the branches here. We should make this async and move it into the forward HTLCs
3837                 //timer handling.
3838
3839                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3840                 // from block_connected which may run during initialization prior to the chain_monitor
3841                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3842                 match source {
3843                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, ref payment_params, .. } => {
3844                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3845                                         session_priv, payment_id, payment_params, self.probing_cookie_secret, &self.secp_ctx,
3846                                         &self.pending_events, &self.logger)
3847                                 { self.push_pending_forwards_ev(); }
3848                         },
3849                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3850                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
3851                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
3852
3853                                 let mut push_forward_ev = false;
3854                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
3855                                 if forward_htlcs.is_empty() {
3856                                         push_forward_ev = true;
3857                                 }
3858                                 match forward_htlcs.entry(*short_channel_id) {
3859                                         hash_map::Entry::Occupied(mut entry) => {
3860                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
3861                                         },
3862                                         hash_map::Entry::Vacant(entry) => {
3863                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
3864                                         }
3865                                 }
3866                                 mem::drop(forward_htlcs);
3867                                 if push_forward_ev { self.push_pending_forwards_ev(); }
3868                                 let mut pending_events = self.pending_events.lock().unwrap();
3869                                 pending_events.push(events::Event::HTLCHandlingFailed {
3870                                         prev_channel_id: outpoint.to_channel_id(),
3871                                         failed_next_destination: destination,
3872                                 });
3873                         },
3874                 }
3875         }
3876
3877         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
3878         /// [`MessageSendEvent`]s needed to claim the payment.
3879         ///
3880         /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3881         /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3882         /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3883         ///
3884         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3885         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
3886         /// event matches your expectation. If you fail to do so and call this method, you may provide
3887         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3888         ///
3889         /// [`Event::PaymentClaimable`]: crate::util::events::Event::PaymentClaimable
3890         /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
3891         /// [`process_pending_events`]: EventsProvider::process_pending_events
3892         /// [`create_inbound_payment`]: Self::create_inbound_payment
3893         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3894         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3895                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3896
3897                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3898
3899                 let mut sources = {
3900                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
3901                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
3902                                 let mut receiver_node_id = self.our_network_pubkey;
3903                                 for htlc in sources.iter() {
3904                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
3905                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
3906                                                         .expect("Failed to get node_id for phantom node recipient");
3907                                                 receiver_node_id = phantom_pubkey;
3908                                                 break;
3909                                         }
3910                                 }
3911
3912                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
3913                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
3914                                         payment_purpose, receiver_node_id,
3915                                 });
3916                                 if dup_purpose.is_some() {
3917                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
3918                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
3919                                                 log_bytes!(payment_hash.0));
3920                                 }
3921                                 sources
3922                         } else { return; }
3923                 };
3924                 debug_assert!(!sources.is_empty());
3925
3926                 // If we are claiming an MPP payment, we check that all channels which contain a claimable
3927                 // HTLC still exist. While this isn't guaranteed to remain true if a channel closes while
3928                 // we're claiming (or even after we claim, before the commitment update dance completes),
3929                 // it should be a relatively rare race, and we'd rather not claim HTLCs that require us to
3930                 // go on-chain (and lose the on-chain fee to do so) than just reject the payment.
3931                 //
3932                 // Note that we'll still always get our funds - as long as the generated
3933                 // `ChannelMonitorUpdate` makes it out to the relevant monitor we can claim on-chain.
3934                 //
3935                 // If we find an HTLC which we would need to claim but for which we do not have a
3936                 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3937                 // the sender retries the already-failed path(s), it should be a pretty rare case where
3938                 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3939                 // provide the preimage, so worrying too much about the optimal handling isn't worth
3940                 // it.
3941                 let mut claimable_amt_msat = 0;
3942                 let mut expected_amt_msat = None;
3943                 let mut valid_mpp = true;
3944                 let mut errs = Vec::new();
3945                 let per_peer_state = self.per_peer_state.read().unwrap();
3946                 for htlc in sources.iter() {
3947                         let (counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&htlc.prev_hop.short_channel_id) {
3948                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3949                                 None => {
3950                                         valid_mpp = false;
3951                                         break;
3952                                 }
3953                         };
3954
3955                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3956                         if peer_state_mutex_opt.is_none() {
3957                                 valid_mpp = false;
3958                                 break;
3959                         }
3960
3961                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3962                         let peer_state = &mut *peer_state_lock;
3963
3964                         if peer_state.channel_by_id.get(&chan_id).is_none() {
3965                                 valid_mpp = false;
3966                                 break;
3967                         }
3968
3969                         if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
3970                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
3971                                 debug_assert!(false);
3972                                 valid_mpp = false;
3973                                 break;
3974                         }
3975
3976                         expected_amt_msat = Some(htlc.total_msat);
3977                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
3978                                 // We don't currently support MPP for spontaneous payments, so just check
3979                                 // that there's one payment here and move on.
3980                                 if sources.len() != 1 {
3981                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
3982                                         debug_assert!(false);
3983                                         valid_mpp = false;
3984                                         break;
3985                                 }
3986                         }
3987
3988                         claimable_amt_msat += htlc.value;
3989                 }
3990                 mem::drop(per_peer_state);
3991                 if sources.is_empty() || expected_amt_msat.is_none() {
3992                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3993                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
3994                         return;
3995                 }
3996                 if claimable_amt_msat != expected_amt_msat.unwrap() {
3997                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3998                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
3999                                 expected_amt_msat.unwrap(), claimable_amt_msat);
4000                         return;
4001                 }
4002                 if valid_mpp {
4003                         for htlc in sources.drain(..) {
4004                                 if let Err((pk, err)) = self.claim_funds_from_hop(
4005                                         htlc.prev_hop, payment_preimage,
4006                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4007                                 {
4008                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
4009                                                 // We got a temporary failure updating monitor, but will claim the
4010                                                 // HTLC when the monitor updating is restored (or on chain).
4011                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4012                                         } else { errs.push((pk, err)); }
4013                                 }
4014                         }
4015                 }
4016                 if !valid_mpp {
4017                         for htlc in sources.drain(..) {
4018                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4019                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4020                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4021                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4022                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
4023                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4024                         }
4025                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4026                 }
4027
4028                 // Now we can handle any errors which were generated.
4029                 for (counterparty_node_id, err) in errs.drain(..) {
4030                         let res: Result<(), _> = Err(err);
4031                         let _ = handle_error!(self, res, counterparty_node_id);
4032                 }
4033         }
4034
4035         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4036                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4037         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4038                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4039
4040                 let per_peer_state = self.per_peer_state.read().unwrap();
4041                 let chan_id = prev_hop.outpoint.to_channel_id();
4042                 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4043                         Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4044                         None => None
4045                 };
4046
4047                 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4048                         |counterparty_node_id| per_peer_state.get(counterparty_node_id).map(
4049                                 |peer_mutex| peer_mutex.lock().unwrap()
4050                         )
4051                 ).unwrap_or(None);
4052
4053                 if peer_state_opt.is_some() {
4054                         let mut peer_state_lock = peer_state_opt.unwrap();
4055                         let peer_state = &mut *peer_state_lock;
4056                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4057                                 let counterparty_node_id = chan.get().get_counterparty_node_id();
4058                                 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4059
4060                                 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4061                                         if let Some(action) = completion_action(Some(htlc_value_msat)) {
4062                                                 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4063                                                         log_bytes!(chan_id), action);
4064                                                 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4065                                         }
4066                                         let update_id = monitor_update.update_id;
4067                                         let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4068                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4069                                                 peer_state, per_peer_state, chan);
4070                                         if let Err(e) = res {
4071                                                 // TODO: This is a *critical* error - we probably updated the outbound edge
4072                                                 // of the HTLC's monitor with a preimage. We should retry this monitor
4073                                                 // update over and over again until morale improves.
4074                                                 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4075                                                 return Err((counterparty_node_id, e));
4076                                         }
4077                                 }
4078                                 return Ok(());
4079                         }
4080                 }
4081                 let preimage_update = ChannelMonitorUpdate {
4082                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4083                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4084                                 payment_preimage,
4085                         }],
4086                 };
4087                 // We update the ChannelMonitor on the backward link, after
4088                 // receiving an `update_fulfill_htlc` from the forward link.
4089                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4090                 if update_res != ChannelMonitorUpdateStatus::Completed {
4091                         // TODO: This needs to be handled somehow - if we receive a monitor update
4092                         // with a preimage we *must* somehow manage to propagate it to the upstream
4093                         // channel, or we must have an ability to receive the same event and try
4094                         // again on restart.
4095                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4096                                 payment_preimage, update_res);
4097                 }
4098                 // Note that we do process the completion action here. This totally could be a
4099                 // duplicate claim, but we have no way of knowing without interrogating the
4100                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4101                 // generally always allowed to be duplicative (and it's specifically noted in
4102                 // `PaymentForwarded`).
4103                 self.handle_monitor_update_completion_actions(completion_action(None));
4104                 Ok(())
4105         }
4106
4107         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4108                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4109         }
4110
4111         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4112                 match source {
4113                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4114                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4115                         },
4116                         HTLCSource::PreviousHopData(hop_data) => {
4117                                 let prev_outpoint = hop_data.outpoint;
4118                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4119                                         |htlc_claim_value_msat| {
4120                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4121                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4122                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4123                                                         } else { None };
4124
4125                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4126                                                         let next_channel_id = Some(next_channel_id);
4127
4128                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4129                                                                 fee_earned_msat,
4130                                                                 claim_from_onchain_tx: from_onchain,
4131                                                                 prev_channel_id,
4132                                                                 next_channel_id,
4133                                                         }})
4134                                                 } else { None }
4135                                         });
4136                                 if let Err((pk, err)) = res {
4137                                         let result: Result<(), _> = Err(err);
4138                                         let _ = handle_error!(self, result, pk);
4139                                 }
4140                         },
4141                 }
4142         }
4143
4144         /// Gets the node_id held by this ChannelManager
4145         pub fn get_our_node_id(&self) -> PublicKey {
4146                 self.our_network_pubkey.clone()
4147         }
4148
4149         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4150                 for action in actions.into_iter() {
4151                         match action {
4152                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4153                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4154                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4155                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4156                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4157                                                 });
4158                                         }
4159                                 },
4160                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4161                                         self.pending_events.lock().unwrap().push(event);
4162                                 },
4163                         }
4164                 }
4165         }
4166
4167         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4168         /// update completion.
4169         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4170                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4171                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4172                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4173                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4174         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4175                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4176                         log_bytes!(channel.channel_id()),
4177                         if raa.is_some() { "an" } else { "no" },
4178                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4179                         if funding_broadcastable.is_some() { "" } else { "not " },
4180                         if channel_ready.is_some() { "sending" } else { "without" },
4181                         if announcement_sigs.is_some() { "sending" } else { "without" });
4182
4183                 let mut htlc_forwards = None;
4184
4185                 let counterparty_node_id = channel.get_counterparty_node_id();
4186                 if !pending_forwards.is_empty() {
4187                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4188                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4189                 }
4190
4191                 if let Some(msg) = channel_ready {
4192                         send_channel_ready!(self, pending_msg_events, channel, msg);
4193                 }
4194                 if let Some(msg) = announcement_sigs {
4195                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4196                                 node_id: counterparty_node_id,
4197                                 msg,
4198                         });
4199                 }
4200
4201                 emit_channel_ready_event!(self, channel);
4202
4203                 macro_rules! handle_cs { () => {
4204                         if let Some(update) = commitment_update {
4205                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4206                                         node_id: counterparty_node_id,
4207                                         updates: update,
4208                                 });
4209                         }
4210                 } }
4211                 macro_rules! handle_raa { () => {
4212                         if let Some(revoke_and_ack) = raa {
4213                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4214                                         node_id: counterparty_node_id,
4215                                         msg: revoke_and_ack,
4216                                 });
4217                         }
4218                 } }
4219                 match order {
4220                         RAACommitmentOrder::CommitmentFirst => {
4221                                 handle_cs!();
4222                                 handle_raa!();
4223                         },
4224                         RAACommitmentOrder::RevokeAndACKFirst => {
4225                                 handle_raa!();
4226                                 handle_cs!();
4227                         },
4228                 }
4229
4230                 if let Some(tx) = funding_broadcastable {
4231                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4232                         self.tx_broadcaster.broadcast_transaction(&tx);
4233                 }
4234
4235                 htlc_forwards
4236         }
4237
4238         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4239                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4240
4241                 let counterparty_node_id = match counterparty_node_id {
4242                         Some(cp_id) => cp_id.clone(),
4243                         None => {
4244                                 // TODO: Once we can rely on the counterparty_node_id from the
4245                                 // monitor event, this and the id_to_peer map should be removed.
4246                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4247                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4248                                         Some(cp_id) => cp_id.clone(),
4249                                         None => return,
4250                                 }
4251                         }
4252                 };
4253                 let per_peer_state = self.per_peer_state.read().unwrap();
4254                 let mut peer_state_lock;
4255                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4256                 if peer_state_mutex_opt.is_none() { return }
4257                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4258                 let peer_state = &mut *peer_state_lock;
4259                 let mut channel = {
4260                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4261                                 hash_map::Entry::Occupied(chan) => chan,
4262                                 hash_map::Entry::Vacant(_) => return,
4263                         }
4264                 };
4265                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4266                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4267                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4268                         return;
4269                 }
4270                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4271         }
4272
4273         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4274         ///
4275         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4276         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4277         /// the channel.
4278         ///
4279         /// The `user_channel_id` parameter will be provided back in
4280         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4281         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4282         ///
4283         /// Note that this method will return an error and reject the channel, if it requires support
4284         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4285         /// used to accept such channels.
4286         ///
4287         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4288         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4289         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4290                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4291         }
4292
4293         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4294         /// it as confirmed immediately.
4295         ///
4296         /// The `user_channel_id` parameter will be provided back in
4297         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4298         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4299         ///
4300         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4301         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4302         ///
4303         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4304         /// transaction and blindly assumes that it will eventually confirm.
4305         ///
4306         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4307         /// does not pay to the correct script the correct amount, *you will lose funds*.
4308         ///
4309         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4310         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4311         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4312                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4313         }
4314
4315         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4316                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4317
4318                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4319                 let per_peer_state = self.per_peer_state.read().unwrap();
4320                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4321                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4322                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4323                 let peer_state = &mut *peer_state_lock;
4324                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4325                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4326                         hash_map::Entry::Occupied(mut channel) => {
4327                                 if !channel.get().inbound_is_awaiting_accept() {
4328                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4329                                 }
4330                                 if accept_0conf {
4331                                         channel.get_mut().set_0conf();
4332                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4333                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4334                                                 node_id: channel.get().get_counterparty_node_id(),
4335                                                 action: msgs::ErrorAction::SendErrorMessage{
4336                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4337                                                 }
4338                                         };
4339                                         peer_state.pending_msg_events.push(send_msg_err_event);
4340                                         let _ = remove_channel!(self, channel);
4341                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4342                                 } else {
4343                                         // If this peer already has some channels, a new channel won't increase our number of peers
4344                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4345                                         // channels per-peer we can accept channels from a peer with existing ones.
4346                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4347                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4348                                                         node_id: channel.get().get_counterparty_node_id(),
4349                                                         action: msgs::ErrorAction::SendErrorMessage{
4350                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4351                                                         }
4352                                                 };
4353                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4354                                                 let _ = remove_channel!(self, channel);
4355                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4356                                         }
4357                                 }
4358
4359                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4360                                         node_id: channel.get().get_counterparty_node_id(),
4361                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4362                                 });
4363                         }
4364                         hash_map::Entry::Vacant(_) => {
4365                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4366                         }
4367                 }
4368                 Ok(())
4369         }
4370
4371         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4372         /// or 0-conf channels.
4373         ///
4374         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4375         /// non-0-conf channels we have with the peer.
4376         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4377         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4378                 let mut peers_without_funded_channels = 0;
4379                 let best_block_height = self.best_block.read().unwrap().height();
4380                 {
4381                         let peer_state_lock = self.per_peer_state.read().unwrap();
4382                         for (_, peer_mtx) in peer_state_lock.iter() {
4383                                 let peer = peer_mtx.lock().unwrap();
4384                                 if !maybe_count_peer(&*peer) { continue; }
4385                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4386                                 if num_unfunded_channels == peer.channel_by_id.len() {
4387                                         peers_without_funded_channels += 1;
4388                                 }
4389                         }
4390                 }
4391                 return peers_without_funded_channels;
4392         }
4393
4394         fn unfunded_channel_count(
4395                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4396         ) -> usize {
4397                 let mut num_unfunded_channels = 0;
4398                 for (_, chan) in peer.channel_by_id.iter() {
4399                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4400                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4401                         {
4402                                 num_unfunded_channels += 1;
4403                         }
4404                 }
4405                 num_unfunded_channels
4406         }
4407
4408         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4409                 if msg.chain_hash != self.genesis_hash {
4410                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4411                 }
4412
4413                 if !self.default_configuration.accept_inbound_channels {
4414                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4415                 }
4416
4417                 let mut random_bytes = [0u8; 16];
4418                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4419                 let user_channel_id = u128::from_be_bytes(random_bytes);
4420                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4421
4422                 // Get the number of peers with channels, but without funded ones. We don't care too much
4423                 // about peers that never open a channel, so we filter by peers that have at least one
4424                 // channel, and then limit the number of those with unfunded channels.
4425                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4426
4427                 let per_peer_state = self.per_peer_state.read().unwrap();
4428                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4429                     .ok_or_else(|| {
4430                                 debug_assert!(false);
4431                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4432                         })?;
4433                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4434                 let peer_state = &mut *peer_state_lock;
4435
4436                 // If this peer already has some channels, a new channel won't increase our number of peers
4437                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4438                 // channels per-peer we can accept channels from a peer with existing ones.
4439                 if peer_state.channel_by_id.is_empty() &&
4440                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4441                         !self.default_configuration.manually_accept_inbound_channels
4442                 {
4443                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4444                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4445                                 msg.temporary_channel_id.clone()));
4446                 }
4447
4448                 let best_block_height = self.best_block.read().unwrap().height();
4449                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4450                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4451                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4452                                 msg.temporary_channel_id.clone()));
4453                 }
4454
4455                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4456                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4457                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4458                 {
4459                         Err(e) => {
4460                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4461                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4462                         },
4463                         Ok(res) => res
4464                 };
4465                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4466                         hash_map::Entry::Occupied(_) => {
4467                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4468                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4469                         },
4470                         hash_map::Entry::Vacant(entry) => {
4471                                 if !self.default_configuration.manually_accept_inbound_channels {
4472                                         if channel.get_channel_type().requires_zero_conf() {
4473                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4474                                         }
4475                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4476                                                 node_id: counterparty_node_id.clone(),
4477                                                 msg: channel.accept_inbound_channel(user_channel_id),
4478                                         });
4479                                 } else {
4480                                         let mut pending_events = self.pending_events.lock().unwrap();
4481                                         pending_events.push(
4482                                                 events::Event::OpenChannelRequest {
4483                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4484                                                         counterparty_node_id: counterparty_node_id.clone(),
4485                                                         funding_satoshis: msg.funding_satoshis,
4486                                                         push_msat: msg.push_msat,
4487                                                         channel_type: channel.get_channel_type().clone(),
4488                                                 }
4489                                         );
4490                                 }
4491
4492                                 entry.insert(channel);
4493                         }
4494                 }
4495                 Ok(())
4496         }
4497
4498         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4499                 let (value, output_script, user_id) = {
4500                         let per_peer_state = self.per_peer_state.read().unwrap();
4501                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4502                                 .ok_or_else(|| {
4503                                         debug_assert!(false);
4504                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4505                                 })?;
4506                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4507                         let peer_state = &mut *peer_state_lock;
4508                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4509                                 hash_map::Entry::Occupied(mut chan) => {
4510                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4511                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4512                                 },
4513                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4514                         }
4515                 };
4516                 let mut pending_events = self.pending_events.lock().unwrap();
4517                 pending_events.push(events::Event::FundingGenerationReady {
4518                         temporary_channel_id: msg.temporary_channel_id,
4519                         counterparty_node_id: *counterparty_node_id,
4520                         channel_value_satoshis: value,
4521                         output_script,
4522                         user_channel_id: user_id,
4523                 });
4524                 Ok(())
4525         }
4526
4527         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4528                 let best_block = *self.best_block.read().unwrap();
4529
4530                 let per_peer_state = self.per_peer_state.read().unwrap();
4531                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4532                         .ok_or_else(|| {
4533                                 debug_assert!(false);
4534                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4535                         })?;
4536
4537                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4538                 let peer_state = &mut *peer_state_lock;
4539                 let ((funding_msg, monitor), chan) =
4540                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4541                                 hash_map::Entry::Occupied(mut chan) => {
4542                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4543                                 },
4544                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4545                         };
4546
4547                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4548                         hash_map::Entry::Occupied(_) => {
4549                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4550                         },
4551                         hash_map::Entry::Vacant(e) => {
4552                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4553                                         hash_map::Entry::Occupied(_) => {
4554                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4555                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4556                                                         funding_msg.channel_id))
4557                                         },
4558                                         hash_map::Entry::Vacant(i_e) => {
4559                                                 i_e.insert(chan.get_counterparty_node_id());
4560                                         }
4561                                 }
4562
4563                                 // There's no problem signing a counterparty's funding transaction if our monitor
4564                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4565                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4566                                 // until we have persisted our monitor.
4567                                 let new_channel_id = funding_msg.channel_id;
4568                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4569                                         node_id: counterparty_node_id.clone(),
4570                                         msg: funding_msg,
4571                                 });
4572
4573                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4574
4575                                 let chan = e.insert(chan);
4576                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4577                                         per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4578
4579                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4580                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4581                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4582                                 // any messages referencing a previously-closed channel anyway.
4583                                 // We do not propagate the monitor update to the user as it would be for a monitor
4584                                 // that we didn't manage to store (and that we don't care about - we don't respond
4585                                 // with the funding_signed so the channel can never go on chain).
4586                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4587                                         res.0 = None;
4588                                 }
4589                                 res
4590                         }
4591                 }
4592         }
4593
4594         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4595                 let best_block = *self.best_block.read().unwrap();
4596                 let per_peer_state = self.per_peer_state.read().unwrap();
4597                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4598                         .ok_or_else(|| {
4599                                 debug_assert!(false);
4600                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4601                         })?;
4602
4603                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4604                 let peer_state = &mut *peer_state_lock;
4605                 match peer_state.channel_by_id.entry(msg.channel_id) {
4606                         hash_map::Entry::Occupied(mut chan) => {
4607                                 let monitor = try_chan_entry!(self,
4608                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4609                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4610                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4611                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4612                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4613                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4614                                         // monitor update contained within `shutdown_finish` was applied.
4615                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4616                                                 shutdown_finish.0.take();
4617                                         }
4618                                 }
4619                                 res
4620                         },
4621                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4622                 }
4623         }
4624
4625         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4626                 let per_peer_state = self.per_peer_state.read().unwrap();
4627                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4628                         .ok_or_else(|| {
4629                                 debug_assert!(false);
4630                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4631                         })?;
4632                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4633                 let peer_state = &mut *peer_state_lock;
4634                 match peer_state.channel_by_id.entry(msg.channel_id) {
4635                         hash_map::Entry::Occupied(mut chan) => {
4636                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4637                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4638                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4639                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4640                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4641                                                 node_id: counterparty_node_id.clone(),
4642                                                 msg: announcement_sigs,
4643                                         });
4644                                 } else if chan.get().is_usable() {
4645                                         // If we're sending an announcement_signatures, we'll send the (public)
4646                                         // channel_update after sending a channel_announcement when we receive our
4647                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4648                                         // channel_update here if the channel is not public, i.e. we're not sending an
4649                                         // announcement_signatures.
4650                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4651                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4652                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4653                                                         node_id: counterparty_node_id.clone(),
4654                                                         msg,
4655                                                 });
4656                                         }
4657                                 }
4658
4659                                 emit_channel_ready_event!(self, chan.get_mut());
4660
4661                                 Ok(())
4662                         },
4663                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4664                 }
4665         }
4666
4667         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4668                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4669                 let result: Result<(), _> = loop {
4670                         let per_peer_state = self.per_peer_state.read().unwrap();
4671                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4672                                 .ok_or_else(|| {
4673                                         debug_assert!(false);
4674                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4675                                 })?;
4676                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4677                         let peer_state = &mut *peer_state_lock;
4678                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4679                                 hash_map::Entry::Occupied(mut chan_entry) => {
4680
4681                                         if !chan_entry.get().received_shutdown() {
4682                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4683                                                         log_bytes!(msg.channel_id),
4684                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4685                                         }
4686
4687                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4688                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4689                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4690                                         dropped_htlcs = htlcs;
4691
4692                                         if let Some(msg) = shutdown {
4693                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4694                                                 // here as we don't need the monitor update to complete until we send a
4695                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4696                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4697                                                         node_id: *counterparty_node_id,
4698                                                         msg,
4699                                                 });
4700                                         }
4701
4702                                         // Update the monitor with the shutdown script if necessary.
4703                                         if let Some(monitor_update) = monitor_update_opt {
4704                                                 let update_id = monitor_update.update_id;
4705                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4706                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4707                                         }
4708                                         break Ok(());
4709                                 },
4710                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4711                         }
4712                 };
4713                 for htlc_source in dropped_htlcs.drain(..) {
4714                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4715                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4716                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4717                 }
4718
4719                 result
4720         }
4721
4722         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4723                 let per_peer_state = self.per_peer_state.read().unwrap();
4724                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4725                         .ok_or_else(|| {
4726                                 debug_assert!(false);
4727                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4728                         })?;
4729                 let (tx, chan_option) = {
4730                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4731                         let peer_state = &mut *peer_state_lock;
4732                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4733                                 hash_map::Entry::Occupied(mut chan_entry) => {
4734                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4735                                         if let Some(msg) = closing_signed {
4736                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4737                                                         node_id: counterparty_node_id.clone(),
4738                                                         msg,
4739                                                 });
4740                                         }
4741                                         if tx.is_some() {
4742                                                 // We're done with this channel, we've got a signed closing transaction and
4743                                                 // will send the closing_signed back to the remote peer upon return. This
4744                                                 // also implies there are no pending HTLCs left on the channel, so we can
4745                                                 // fully delete it from tracking (the channel monitor is still around to
4746                                                 // watch for old state broadcasts)!
4747                                                 (tx, Some(remove_channel!(self, chan_entry)))
4748                                         } else { (tx, None) }
4749                                 },
4750                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4751                         }
4752                 };
4753                 if let Some(broadcast_tx) = tx {
4754                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4755                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4756                 }
4757                 if let Some(chan) = chan_option {
4758                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4759                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4760                                 let peer_state = &mut *peer_state_lock;
4761                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4762                                         msg: update
4763                                 });
4764                         }
4765                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4766                 }
4767                 Ok(())
4768         }
4769
4770         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4771                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4772                 //determine the state of the payment based on our response/if we forward anything/the time
4773                 //we take to respond. We should take care to avoid allowing such an attack.
4774                 //
4775                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4776                 //us repeatedly garbled in different ways, and compare our error messages, which are
4777                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4778                 //but we should prevent it anyway.
4779
4780                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4781                 let per_peer_state = self.per_peer_state.read().unwrap();
4782                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4783                         .ok_or_else(|| {
4784                                 debug_assert!(false);
4785                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4786                         })?;
4787                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4788                 let peer_state = &mut *peer_state_lock;
4789                 match peer_state.channel_by_id.entry(msg.channel_id) {
4790                         hash_map::Entry::Occupied(mut chan) => {
4791
4792                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4793                                         // If the update_add is completely bogus, the call will Err and we will close,
4794                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4795                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4796                                         match pending_forward_info {
4797                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4798                                                         let reason = if (error_code & 0x1000) != 0 {
4799                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4800                                                                 HTLCFailReason::reason(real_code, error_data)
4801                                                         } else {
4802                                                                 HTLCFailReason::from_failure_code(error_code)
4803                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4804                                                         let msg = msgs::UpdateFailHTLC {
4805                                                                 channel_id: msg.channel_id,
4806                                                                 htlc_id: msg.htlc_id,
4807                                                                 reason
4808                                                         };
4809                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4810                                                 },
4811                                                 _ => pending_forward_info
4812                                         }
4813                                 };
4814                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4815                         },
4816                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4817                 }
4818                 Ok(())
4819         }
4820
4821         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4822                 let (htlc_source, forwarded_htlc_value) = {
4823                         let per_peer_state = self.per_peer_state.read().unwrap();
4824                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4825                                 .ok_or_else(|| {
4826                                         debug_assert!(false);
4827                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4828                                 })?;
4829                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4830                         let peer_state = &mut *peer_state_lock;
4831                         match peer_state.channel_by_id.entry(msg.channel_id) {
4832                                 hash_map::Entry::Occupied(mut chan) => {
4833                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4834                                 },
4835                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4836                         }
4837                 };
4838                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4839                 Ok(())
4840         }
4841
4842         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4843                 let per_peer_state = self.per_peer_state.read().unwrap();
4844                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4845                         .ok_or_else(|| {
4846                                 debug_assert!(false);
4847                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4848                         })?;
4849                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4850                 let peer_state = &mut *peer_state_lock;
4851                 match peer_state.channel_by_id.entry(msg.channel_id) {
4852                         hash_map::Entry::Occupied(mut chan) => {
4853                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4854                         },
4855                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4856                 }
4857                 Ok(())
4858         }
4859
4860         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4861                 let per_peer_state = self.per_peer_state.read().unwrap();
4862                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4863                         .ok_or_else(|| {
4864                                 debug_assert!(false);
4865                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4866                         })?;
4867                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4868                 let peer_state = &mut *peer_state_lock;
4869                 match peer_state.channel_by_id.entry(msg.channel_id) {
4870                         hash_map::Entry::Occupied(mut chan) => {
4871                                 if (msg.failure_code & 0x8000) == 0 {
4872                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4873                                         try_chan_entry!(self, Err(chan_err), chan);
4874                                 }
4875                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
4876                                 Ok(())
4877                         },
4878                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4879                 }
4880         }
4881
4882         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4883                 let per_peer_state = self.per_peer_state.read().unwrap();
4884                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4885                         .ok_or_else(|| {
4886                                 debug_assert!(false);
4887                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4888                         })?;
4889                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4890                 let peer_state = &mut *peer_state_lock;
4891                 match peer_state.channel_by_id.entry(msg.channel_id) {
4892                         hash_map::Entry::Occupied(mut chan) => {
4893                                 let funding_txo = chan.get().get_funding_txo();
4894                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
4895                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4896                                 let update_id = monitor_update.update_id;
4897                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4898                                         peer_state, per_peer_state, chan)
4899                         },
4900                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4901                 }
4902         }
4903
4904         #[inline]
4905         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
4906                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
4907                         let mut push_forward_event = false;
4908                         let mut new_intercept_events = Vec::new();
4909                         let mut failed_intercept_forwards = Vec::new();
4910                         if !pending_forwards.is_empty() {
4911                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4912                                         let scid = match forward_info.routing {
4913                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4914                                                 PendingHTLCRouting::Receive { .. } => 0,
4915                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4916                                         };
4917                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
4918                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
4919
4920                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4921                                         let forward_htlcs_empty = forward_htlcs.is_empty();
4922                                         match forward_htlcs.entry(scid) {
4923                                                 hash_map::Entry::Occupied(mut entry) => {
4924                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4925                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
4926                                                 },
4927                                                 hash_map::Entry::Vacant(entry) => {
4928                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
4929                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
4930                                                         {
4931                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
4932                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
4933                                                                 match pending_intercepts.entry(intercept_id) {
4934                                                                         hash_map::Entry::Vacant(entry) => {
4935                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
4936                                                                                         requested_next_hop_scid: scid,
4937                                                                                         payment_hash: forward_info.payment_hash,
4938                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
4939                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
4940                                                                                         intercept_id
4941                                                                                 });
4942                                                                                 entry.insert(PendingAddHTLCInfo {
4943                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
4944                                                                         },
4945                                                                         hash_map::Entry::Occupied(_) => {
4946                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
4947                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4948                                                                                         short_channel_id: prev_short_channel_id,
4949                                                                                         outpoint: prev_funding_outpoint,
4950                                                                                         htlc_id: prev_htlc_id,
4951                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
4952                                                                                         phantom_shared_secret: None,
4953                                                                                 });
4954
4955                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
4956                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
4957                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
4958                                                                                 ));
4959                                                                         }
4960                                                                 }
4961                                                         } else {
4962                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
4963                                                                 // payments are being processed.
4964                                                                 if forward_htlcs_empty {
4965                                                                         push_forward_event = true;
4966                                                                 }
4967                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4968                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
4969                                                         }
4970                                                 }
4971                                         }
4972                                 }
4973                         }
4974
4975                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
4976                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4977                         }
4978
4979                         if !new_intercept_events.is_empty() {
4980                                 let mut events = self.pending_events.lock().unwrap();
4981                                 events.append(&mut new_intercept_events);
4982                         }
4983                         if push_forward_event { self.push_pending_forwards_ev() }
4984                 }
4985         }
4986
4987         // We only want to push a PendingHTLCsForwardable event if no others are queued.
4988         fn push_pending_forwards_ev(&self) {
4989                 let mut pending_events = self.pending_events.lock().unwrap();
4990                 let forward_ev_exists = pending_events.iter()
4991                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
4992                         .is_some();
4993                 if !forward_ev_exists {
4994                         pending_events.push(events::Event::PendingHTLCsForwardable {
4995                                 time_forwardable:
4996                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
4997                         });
4998                 }
4999         }
5000
5001         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5002                 let (htlcs_to_fail, res) = {
5003                         let per_peer_state = self.per_peer_state.read().unwrap();
5004                         let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
5005                                 .ok_or_else(|| {
5006                                         debug_assert!(false);
5007                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5008                                 }).map(|mtx| mtx.lock().unwrap())?;
5009                         let peer_state = &mut *peer_state_lock;
5010                         match peer_state.channel_by_id.entry(msg.channel_id) {
5011                                 hash_map::Entry::Occupied(mut chan) => {
5012                                         let funding_txo = chan.get().get_funding_txo();
5013                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5014                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5015                                         let update_id = monitor_update.update_id;
5016                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5017                                                 peer_state_lock, peer_state, per_peer_state, chan);
5018                                         (htlcs_to_fail, res)
5019                                 },
5020                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5021                         }
5022                 };
5023                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5024                 res
5025         }
5026
5027         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5028                 let per_peer_state = self.per_peer_state.read().unwrap();
5029                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5030                         .ok_or_else(|| {
5031                                 debug_assert!(false);
5032                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5033                         })?;
5034                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5035                 let peer_state = &mut *peer_state_lock;
5036                 match peer_state.channel_by_id.entry(msg.channel_id) {
5037                         hash_map::Entry::Occupied(mut chan) => {
5038                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5039                         },
5040                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5041                 }
5042                 Ok(())
5043         }
5044
5045         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5046                 let per_peer_state = self.per_peer_state.read().unwrap();
5047                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5048                         .ok_or_else(|| {
5049                                 debug_assert!(false);
5050                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5051                         })?;
5052                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5053                 let peer_state = &mut *peer_state_lock;
5054                 match peer_state.channel_by_id.entry(msg.channel_id) {
5055                         hash_map::Entry::Occupied(mut chan) => {
5056                                 if !chan.get().is_usable() {
5057                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5058                                 }
5059
5060                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5061                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5062                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5063                                                 msg, &self.default_configuration
5064                                         ), chan),
5065                                         // Note that announcement_signatures fails if the channel cannot be announced,
5066                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
5067                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5068                                 });
5069                         },
5070                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5071                 }
5072                 Ok(())
5073         }
5074
5075         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5076         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5077                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5078                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5079                         None => {
5080                                 // It's not a local channel
5081                                 return Ok(NotifyOption::SkipPersist)
5082                         }
5083                 };
5084                 let per_peer_state = self.per_peer_state.read().unwrap();
5085                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5086                 if peer_state_mutex_opt.is_none() {
5087                         return Ok(NotifyOption::SkipPersist)
5088                 }
5089                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5090                 let peer_state = &mut *peer_state_lock;
5091                 match peer_state.channel_by_id.entry(chan_id) {
5092                         hash_map::Entry::Occupied(mut chan) => {
5093                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5094                                         if chan.get().should_announce() {
5095                                                 // If the announcement is about a channel of ours which is public, some
5096                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5097                                                 // a scary-looking error message and return Ok instead.
5098                                                 return Ok(NotifyOption::SkipPersist);
5099                                         }
5100                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5101                                 }
5102                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5103                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5104                                 if were_node_one == msg_from_node_one {
5105                                         return Ok(NotifyOption::SkipPersist);
5106                                 } else {
5107                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5108                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5109                                 }
5110                         },
5111                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5112                 }
5113                 Ok(NotifyOption::DoPersist)
5114         }
5115
5116         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5117                 let htlc_forwards;
5118                 let need_lnd_workaround = {
5119                         let per_peer_state = self.per_peer_state.read().unwrap();
5120
5121                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5122                                 .ok_or_else(|| {
5123                                         debug_assert!(false);
5124                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5125                                 })?;
5126                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5127                         let peer_state = &mut *peer_state_lock;
5128                         match peer_state.channel_by_id.entry(msg.channel_id) {
5129                                 hash_map::Entry::Occupied(mut chan) => {
5130                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5131                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5132                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5133                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5134                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5135                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5136                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5137                                         let mut channel_update = None;
5138                                         if let Some(msg) = responses.shutdown_msg {
5139                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5140                                                         node_id: counterparty_node_id.clone(),
5141                                                         msg,
5142                                                 });
5143                                         } else if chan.get().is_usable() {
5144                                                 // If the channel is in a usable state (ie the channel is not being shut
5145                                                 // down), send a unicast channel_update to our counterparty to make sure
5146                                                 // they have the latest channel parameters.
5147                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5148                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5149                                                                 node_id: chan.get().get_counterparty_node_id(),
5150                                                                 msg,
5151                                                         });
5152                                                 }
5153                                         }
5154                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5155                                         htlc_forwards = self.handle_channel_resumption(
5156                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5157                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5158                                         if let Some(upd) = channel_update {
5159                                                 peer_state.pending_msg_events.push(upd);
5160                                         }
5161                                         need_lnd_workaround
5162                                 },
5163                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5164                         }
5165                 };
5166
5167                 if let Some(forwards) = htlc_forwards {
5168                         self.forward_htlcs(&mut [forwards][..]);
5169                 }
5170
5171                 if let Some(channel_ready_msg) = need_lnd_workaround {
5172                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5173                 }
5174                 Ok(())
5175         }
5176
5177         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
5178         fn process_pending_monitor_events(&self) -> bool {
5179                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5180
5181                 let mut failed_channels = Vec::new();
5182                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5183                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5184                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5185                         for monitor_event in monitor_events.drain(..) {
5186                                 match monitor_event {
5187                                         MonitorEvent::HTLCEvent(htlc_update) => {
5188                                                 if let Some(preimage) = htlc_update.payment_preimage {
5189                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5190                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5191                                                 } else {
5192                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5193                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5194                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5195                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5196                                                 }
5197                                         },
5198                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5199                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5200                                                 let counterparty_node_id_opt = match counterparty_node_id {
5201                                                         Some(cp_id) => Some(cp_id),
5202                                                         None => {
5203                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5204                                                                 // monitor event, this and the id_to_peer map should be removed.
5205                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5206                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5207                                                         }
5208                                                 };
5209                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5210                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5211                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5212                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5213                                                                 let peer_state = &mut *peer_state_lock;
5214                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5215                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5216                                                                         let mut chan = remove_channel!(self, chan_entry);
5217                                                                         failed_channels.push(chan.force_shutdown(false));
5218                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5219                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5220                                                                                         msg: update
5221                                                                                 });
5222                                                                         }
5223                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5224                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5225                                                                         } else {
5226                                                                                 ClosureReason::CommitmentTxConfirmed
5227                                                                         };
5228                                                                         self.issue_channel_close_events(&chan, reason);
5229                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5230                                                                                 node_id: chan.get_counterparty_node_id(),
5231                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5232                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5233                                                                                 },
5234                                                                         });
5235                                                                 }
5236                                                         }
5237                                                 }
5238                                         },
5239                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5240                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5241                                         },
5242                                 }
5243                         }
5244                 }
5245
5246                 for failure in failed_channels.drain(..) {
5247                         self.finish_force_close_channel(failure);
5248                 }
5249
5250                 has_pending_monitor_events
5251         }
5252
5253         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5254         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5255         /// update events as a separate process method here.
5256         #[cfg(fuzzing)]
5257         pub fn process_monitor_events(&self) {
5258                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5259                         if self.process_pending_monitor_events() {
5260                                 NotifyOption::DoPersist
5261                         } else {
5262                                 NotifyOption::SkipPersist
5263                         }
5264                 });
5265         }
5266
5267         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5268         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5269         /// update was applied.
5270         fn check_free_holding_cells(&self) -> bool {
5271                 let mut has_monitor_update = false;
5272                 let mut failed_htlcs = Vec::new();
5273                 let mut handle_errors = Vec::new();
5274
5275                 // Walk our list of channels and find any that need to update. Note that when we do find an
5276                 // update, if it includes actions that must be taken afterwards, we have to drop the
5277                 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5278                 // manage to go through all our peers without finding a single channel to update.
5279                 'peer_loop: loop {
5280                         let per_peer_state = self.per_peer_state.read().unwrap();
5281                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5282                                 'chan_loop: loop {
5283                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5284                                         let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5285                                         for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5286                                                 let counterparty_node_id = chan.get_counterparty_node_id();
5287                                                 let funding_txo = chan.get_funding_txo();
5288                                                 let (monitor_opt, holding_cell_failed_htlcs) =
5289                                                         chan.maybe_free_holding_cell_htlcs(&self.logger);
5290                                                 if !holding_cell_failed_htlcs.is_empty() {
5291                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5292                                                 }
5293                                                 if let Some(monitor_update) = monitor_opt {
5294                                                         has_monitor_update = true;
5295
5296                                                         let update_res = self.chain_monitor.update_channel(
5297                                                                 funding_txo.expect("channel is live"), monitor_update);
5298                                                         let update_id = monitor_update.update_id;
5299                                                         let channel_id: [u8; 32] = *channel_id;
5300                                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5301                                                                 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5302                                                                 peer_state.channel_by_id.remove(&channel_id));
5303                                                         if res.is_err() {
5304                                                                 handle_errors.push((counterparty_node_id, res));
5305                                                         }
5306                                                         continue 'peer_loop;
5307                                                 }
5308                                         }
5309                                         break 'chan_loop;
5310                                 }
5311                         }
5312                         break 'peer_loop;
5313                 }
5314
5315                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5316                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5317                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5318                 }
5319
5320                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5321                         let _ = handle_error!(self, err, counterparty_node_id);
5322                 }
5323
5324                 has_update
5325         }
5326
5327         /// Check whether any channels have finished removing all pending updates after a shutdown
5328         /// exchange and can now send a closing_signed.
5329         /// Returns whether any closing_signed messages were generated.
5330         fn maybe_generate_initial_closing_signed(&self) -> bool {
5331                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5332                 let mut has_update = false;
5333                 {
5334                         let per_peer_state = self.per_peer_state.read().unwrap();
5335
5336                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5337                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5338                                 let peer_state = &mut *peer_state_lock;
5339                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5340                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5341                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5342                                                 Ok((msg_opt, tx_opt)) => {
5343                                                         if let Some(msg) = msg_opt {
5344                                                                 has_update = true;
5345                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5346                                                                         node_id: chan.get_counterparty_node_id(), msg,
5347                                                                 });
5348                                                         }
5349                                                         if let Some(tx) = tx_opt {
5350                                                                 // We're done with this channel. We got a closing_signed and sent back
5351                                                                 // a closing_signed with a closing transaction to broadcast.
5352                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5353                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5354                                                                                 msg: update
5355                                                                         });
5356                                                                 }
5357
5358                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5359
5360                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5361                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5362                                                                 update_maps_on_chan_removal!(self, chan);
5363                                                                 false
5364                                                         } else { true }
5365                                                 },
5366                                                 Err(e) => {
5367                                                         has_update = true;
5368                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5369                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5370                                                         !close_channel
5371                                                 }
5372                                         }
5373                                 });
5374                         }
5375                 }
5376
5377                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5378                         let _ = handle_error!(self, err, counterparty_node_id);
5379                 }
5380
5381                 has_update
5382         }
5383
5384         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5385         /// pushing the channel monitor update (if any) to the background events queue and removing the
5386         /// Channel object.
5387         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5388                 for mut failure in failed_channels.drain(..) {
5389                         // Either a commitment transactions has been confirmed on-chain or
5390                         // Channel::block_disconnected detected that the funding transaction has been
5391                         // reorganized out of the main chain.
5392                         // We cannot broadcast our latest local state via monitor update (as
5393                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5394                         // so we track the update internally and handle it when the user next calls
5395                         // timer_tick_occurred, guaranteeing we're running normally.
5396                         if let Some((funding_txo, update)) = failure.0.take() {
5397                                 assert_eq!(update.updates.len(), 1);
5398                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5399                                         assert!(should_broadcast);
5400                                 } else { unreachable!(); }
5401                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5402                         }
5403                         self.finish_force_close_channel(failure);
5404                 }
5405         }
5406
5407         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5408                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5409
5410                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5411                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5412                 }
5413
5414                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5415
5416                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5417                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5418                 match payment_secrets.entry(payment_hash) {
5419                         hash_map::Entry::Vacant(e) => {
5420                                 e.insert(PendingInboundPayment {
5421                                         payment_secret, min_value_msat, payment_preimage,
5422                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5423                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5424                                         // it's updated when we receive a new block with the maximum time we've seen in
5425                                         // a header. It should never be more than two hours in the future.
5426                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5427                                         // never fail a payment too early.
5428                                         // Note that we assume that received blocks have reasonably up-to-date
5429                                         // timestamps.
5430                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5431                                 });
5432                         },
5433                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5434                 }
5435                 Ok(payment_secret)
5436         }
5437
5438         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5439         /// to pay us.
5440         ///
5441         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5442         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5443         ///
5444         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5445         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5446         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5447         /// passed directly to [`claim_funds`].
5448         ///
5449         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5450         ///
5451         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5452         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5453         ///
5454         /// # Note
5455         ///
5456         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5457         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5458         ///
5459         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5460         ///
5461         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5462         /// on versions of LDK prior to 0.0.114.
5463         ///
5464         /// [`claim_funds`]: Self::claim_funds
5465         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5466         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5467         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5468         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5469         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5470         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5471                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5472                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5473                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5474                         min_final_cltv_expiry_delta)
5475         }
5476
5477         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5478         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5479         ///
5480         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5481         ///
5482         /// # Note
5483         /// This method is deprecated and will be removed soon.
5484         ///
5485         /// [`create_inbound_payment`]: Self::create_inbound_payment
5486         #[deprecated]
5487         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5488                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5489                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5490                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5491                 Ok((payment_hash, payment_secret))
5492         }
5493
5494         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5495         /// stored external to LDK.
5496         ///
5497         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5498         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5499         /// the `min_value_msat` provided here, if one is provided.
5500         ///
5501         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5502         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5503         /// payments.
5504         ///
5505         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5506         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5507         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5508         /// sender "proof-of-payment" unless they have paid the required amount.
5509         ///
5510         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5511         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5512         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5513         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5514         /// invoices when no timeout is set.
5515         ///
5516         /// Note that we use block header time to time-out pending inbound payments (with some margin
5517         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5518         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5519         /// If you need exact expiry semantics, you should enforce them upon receipt of
5520         /// [`PaymentClaimable`].
5521         ///
5522         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5523         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5524         ///
5525         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5526         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5527         ///
5528         /// # Note
5529         ///
5530         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5531         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5532         ///
5533         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5534         ///
5535         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5536         /// on versions of LDK prior to 0.0.114.
5537         ///
5538         /// [`create_inbound_payment`]: Self::create_inbound_payment
5539         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5540         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5541                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5542                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5543                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5544                         min_final_cltv_expiry)
5545         }
5546
5547         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5548         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5549         ///
5550         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5551         ///
5552         /// # Note
5553         /// This method is deprecated and will be removed soon.
5554         ///
5555         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5556         #[deprecated]
5557         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5558                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5559         }
5560
5561         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5562         /// previously returned from [`create_inbound_payment`].
5563         ///
5564         /// [`create_inbound_payment`]: Self::create_inbound_payment
5565         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5566                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5567         }
5568
5569         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5570         /// are used when constructing the phantom invoice's route hints.
5571         ///
5572         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5573         pub fn get_phantom_scid(&self) -> u64 {
5574                 let best_block_height = self.best_block.read().unwrap().height();
5575                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5576                 loop {
5577                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5578                         // Ensure the generated scid doesn't conflict with a real channel.
5579                         match short_to_chan_info.get(&scid_candidate) {
5580                                 Some(_) => continue,
5581                                 None => return scid_candidate
5582                         }
5583                 }
5584         }
5585
5586         /// Gets route hints for use in receiving [phantom node payments].
5587         ///
5588         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5589         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5590                 PhantomRouteHints {
5591                         channels: self.list_usable_channels(),
5592                         phantom_scid: self.get_phantom_scid(),
5593                         real_node_pubkey: self.get_our_node_id(),
5594                 }
5595         }
5596
5597         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5598         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5599         /// [`ChannelManager::forward_intercepted_htlc`].
5600         ///
5601         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5602         /// times to get a unique scid.
5603         pub fn get_intercept_scid(&self) -> u64 {
5604                 let best_block_height = self.best_block.read().unwrap().height();
5605                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5606                 loop {
5607                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5608                         // Ensure the generated scid doesn't conflict with a real channel.
5609                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5610                         return scid_candidate
5611                 }
5612         }
5613
5614         /// Gets inflight HTLC information by processing pending outbound payments that are in
5615         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5616         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5617                 let mut inflight_htlcs = InFlightHtlcs::new();
5618
5619                 let per_peer_state = self.per_peer_state.read().unwrap();
5620                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5621                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5622                         let peer_state = &mut *peer_state_lock;
5623                         for chan in peer_state.channel_by_id.values() {
5624                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5625                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5626                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5627                                         }
5628                                 }
5629                         }
5630                 }
5631
5632                 inflight_htlcs
5633         }
5634
5635         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5636         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5637                 let events = core::cell::RefCell::new(Vec::new());
5638                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5639                 self.process_pending_events(&event_handler);
5640                 events.into_inner()
5641         }
5642
5643         #[cfg(feature = "_test_utils")]
5644         pub fn push_pending_event(&self, event: events::Event) {
5645                 let mut events = self.pending_events.lock().unwrap();
5646                 events.push(event);
5647         }
5648
5649         #[cfg(test)]
5650         pub fn pop_pending_event(&self) -> Option<events::Event> {
5651                 let mut events = self.pending_events.lock().unwrap();
5652                 if events.is_empty() { None } else { Some(events.remove(0)) }
5653         }
5654
5655         #[cfg(test)]
5656         pub fn has_pending_payments(&self) -> bool {
5657                 self.pending_outbound_payments.has_pending_payments()
5658         }
5659
5660         #[cfg(test)]
5661         pub fn clear_pending_payments(&self) {
5662                 self.pending_outbound_payments.clear_pending_payments()
5663         }
5664
5665         /// Processes any events asynchronously in the order they were generated since the last call
5666         /// using the given event handler.
5667         ///
5668         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5669         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5670                 &self, handler: H
5671         ) {
5672                 // We'll acquire our total consistency lock until the returned future completes so that
5673                 // we can be sure no other persists happen while processing events.
5674                 let _read_guard = self.total_consistency_lock.read().unwrap();
5675
5676                 let mut result = NotifyOption::SkipPersist;
5677
5678                 // TODO: This behavior should be documented. It's unintuitive that we query
5679                 // ChannelMonitors when clearing other events.
5680                 if self.process_pending_monitor_events() {
5681                         result = NotifyOption::DoPersist;
5682                 }
5683
5684                 let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5685                 if !pending_events.is_empty() {
5686                         result = NotifyOption::DoPersist;
5687                 }
5688
5689                 for event in pending_events {
5690                         handler(event).await;
5691                 }
5692
5693                 if result == NotifyOption::DoPersist {
5694                         self.persistence_notifier.notify();
5695                 }
5696         }
5697 }
5698
5699 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5700 where
5701         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5702         T::Target: BroadcasterInterface,
5703         ES::Target: EntropySource,
5704         NS::Target: NodeSigner,
5705         SP::Target: SignerProvider,
5706         F::Target: FeeEstimator,
5707         R::Target: Router,
5708         L::Target: Logger,
5709 {
5710         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5711         /// The returned array will contain `MessageSendEvent`s for different peers if
5712         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5713         /// is always placed next to each other.
5714         ///
5715         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5716         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5717         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5718         /// will randomly be placed first or last in the returned array.
5719         ///
5720         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5721         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5722         /// the `MessageSendEvent`s to the specific peer they were generated under.
5723         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5724                 let events = RefCell::new(Vec::new());
5725                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5726                         let mut result = NotifyOption::SkipPersist;
5727
5728                         // TODO: This behavior should be documented. It's unintuitive that we query
5729                         // ChannelMonitors when clearing other events.
5730                         if self.process_pending_monitor_events() {
5731                                 result = NotifyOption::DoPersist;
5732                         }
5733
5734                         if self.check_free_holding_cells() {
5735                                 result = NotifyOption::DoPersist;
5736                         }
5737                         if self.maybe_generate_initial_closing_signed() {
5738                                 result = NotifyOption::DoPersist;
5739                         }
5740
5741                         let mut pending_events = Vec::new();
5742                         let per_peer_state = self.per_peer_state.read().unwrap();
5743                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5744                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5745                                 let peer_state = &mut *peer_state_lock;
5746                                 if peer_state.pending_msg_events.len() > 0 {
5747                                         pending_events.append(&mut peer_state.pending_msg_events);
5748                                 }
5749                         }
5750
5751                         if !pending_events.is_empty() {
5752                                 events.replace(pending_events);
5753                         }
5754
5755                         result
5756                 });
5757                 events.into_inner()
5758         }
5759 }
5760
5761 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5762 where
5763         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5764         T::Target: BroadcasterInterface,
5765         ES::Target: EntropySource,
5766         NS::Target: NodeSigner,
5767         SP::Target: SignerProvider,
5768         F::Target: FeeEstimator,
5769         R::Target: Router,
5770         L::Target: Logger,
5771 {
5772         /// Processes events that must be periodically handled.
5773         ///
5774         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5775         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5776         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5777                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5778                         let mut result = NotifyOption::SkipPersist;
5779
5780                         // TODO: This behavior should be documented. It's unintuitive that we query
5781                         // ChannelMonitors when clearing other events.
5782                         if self.process_pending_monitor_events() {
5783                                 result = NotifyOption::DoPersist;
5784                         }
5785
5786                         let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5787                         if !pending_events.is_empty() {
5788                                 result = NotifyOption::DoPersist;
5789                         }
5790
5791                         for event in pending_events {
5792                                 handler.handle_event(event);
5793                         }
5794
5795                         result
5796                 });
5797         }
5798 }
5799
5800 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5801 where
5802         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5803         T::Target: BroadcasterInterface,
5804         ES::Target: EntropySource,
5805         NS::Target: NodeSigner,
5806         SP::Target: SignerProvider,
5807         F::Target: FeeEstimator,
5808         R::Target: Router,
5809         L::Target: Logger,
5810 {
5811         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5812                 {
5813                         let best_block = self.best_block.read().unwrap();
5814                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5815                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5816                         assert_eq!(best_block.height(), height - 1,
5817                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5818                 }
5819
5820                 self.transactions_confirmed(header, txdata, height);
5821                 self.best_block_updated(header, height);
5822         }
5823
5824         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5825                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5826                 let new_height = height - 1;
5827                 {
5828                         let mut best_block = self.best_block.write().unwrap();
5829                         assert_eq!(best_block.block_hash(), header.block_hash(),
5830                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5831                         assert_eq!(best_block.height(), height,
5832                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5833                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5834                 }
5835
5836                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5837         }
5838 }
5839
5840 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5841 where
5842         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5843         T::Target: BroadcasterInterface,
5844         ES::Target: EntropySource,
5845         NS::Target: NodeSigner,
5846         SP::Target: SignerProvider,
5847         F::Target: FeeEstimator,
5848         R::Target: Router,
5849         L::Target: Logger,
5850 {
5851         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5852                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5853                 // during initialization prior to the chain_monitor being fully configured in some cases.
5854                 // See the docs for `ChannelManagerReadArgs` for more.
5855
5856                 let block_hash = header.block_hash();
5857                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5858
5859                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5860                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5861                         .map(|(a, b)| (a, Vec::new(), b)));
5862
5863                 let last_best_block_height = self.best_block.read().unwrap().height();
5864                 if height < last_best_block_height {
5865                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5866                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5867                 }
5868         }
5869
5870         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5871                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5872                 // during initialization prior to the chain_monitor being fully configured in some cases.
5873                 // See the docs for `ChannelManagerReadArgs` for more.
5874
5875                 let block_hash = header.block_hash();
5876                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5877
5878                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5879
5880                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5881
5882                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5883
5884                 macro_rules! max_time {
5885                         ($timestamp: expr) => {
5886                                 loop {
5887                                         // Update $timestamp to be the max of its current value and the block
5888                                         // timestamp. This should keep us close to the current time without relying on
5889                                         // having an explicit local time source.
5890                                         // Just in case we end up in a race, we loop until we either successfully
5891                                         // update $timestamp or decide we don't need to.
5892                                         let old_serial = $timestamp.load(Ordering::Acquire);
5893                                         if old_serial >= header.time as usize { break; }
5894                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5895                                                 break;
5896                                         }
5897                                 }
5898                         }
5899                 }
5900                 max_time!(self.highest_seen_timestamp);
5901                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5902                 payment_secrets.retain(|_, inbound_payment| {
5903                         inbound_payment.expiry_time > header.time as u64
5904                 });
5905         }
5906
5907         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
5908                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
5909                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
5910                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5911                         let peer_state = &mut *peer_state_lock;
5912                         for chan in peer_state.channel_by_id.values() {
5913                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
5914                                         res.push((funding_txo.txid, Some(block_hash)));
5915                                 }
5916                         }
5917                 }
5918                 res
5919         }
5920
5921         fn transaction_unconfirmed(&self, txid: &Txid) {
5922                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5923                 self.do_chain_event(None, |channel| {
5924                         if let Some(funding_txo) = channel.get_funding_txo() {
5925                                 if funding_txo.txid == *txid {
5926                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5927                                 } else { Ok((None, Vec::new(), None)) }
5928                         } else { Ok((None, Vec::new(), None)) }
5929                 });
5930         }
5931 }
5932
5933 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
5934 where
5935         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5936         T::Target: BroadcasterInterface,
5937         ES::Target: EntropySource,
5938         NS::Target: NodeSigner,
5939         SP::Target: SignerProvider,
5940         F::Target: FeeEstimator,
5941         R::Target: Router,
5942         L::Target: Logger,
5943 {
5944         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5945         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5946         /// the function.
5947         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5948                         (&self, height_opt: Option<u32>, f: FN) {
5949                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5950                 // during initialization prior to the chain_monitor being fully configured in some cases.
5951                 // See the docs for `ChannelManagerReadArgs` for more.
5952
5953                 let mut failed_channels = Vec::new();
5954                 let mut timed_out_htlcs = Vec::new();
5955                 {
5956                         let per_peer_state = self.per_peer_state.read().unwrap();
5957                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5958                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5959                                 let peer_state = &mut *peer_state_lock;
5960                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5961                                 peer_state.channel_by_id.retain(|_, channel| {
5962                                         let res = f(channel);
5963                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5964                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5965                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5966                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
5967                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
5968                                                 }
5969                                                 if let Some(channel_ready) = channel_ready_opt {
5970                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
5971                                                         if channel.is_usable() {
5972                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5973                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5974                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5975                                                                                 node_id: channel.get_counterparty_node_id(),
5976                                                                                 msg,
5977                                                                         });
5978                                                                 }
5979                                                         } else {
5980                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5981                                                         }
5982                                                 }
5983
5984                                                 emit_channel_ready_event!(self, channel);
5985
5986                                                 if let Some(announcement_sigs) = announcement_sigs {
5987                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5988                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5989                                                                 node_id: channel.get_counterparty_node_id(),
5990                                                                 msg: announcement_sigs,
5991                                                         });
5992                                                         if let Some(height) = height_opt {
5993                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
5994                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5995                                                                                 msg: announcement,
5996                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
5997                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
5998                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
5999                                                                         });
6000                                                                 }
6001                                                         }
6002                                                 }
6003                                                 if channel.is_our_channel_ready() {
6004                                                         if let Some(real_scid) = channel.get_short_channel_id() {
6005                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
6006                                                                 // to the short_to_chan_info map here. Note that we check whether we
6007                                                                 // can relay using the real SCID at relay-time (i.e.
6008                                                                 // enforce option_scid_alias then), and if the funding tx is ever
6009                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6010                                                                 // is always consistent.
6011                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6012                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
6013                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
6014                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6015                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6016                                                         }
6017                                                 }
6018                                         } else if let Err(reason) = res {
6019                                                 update_maps_on_chan_removal!(self, channel);
6020                                                 // It looks like our counterparty went on-chain or funding transaction was
6021                                                 // reorged out of the main chain. Close the channel.
6022                                                 failed_channels.push(channel.force_shutdown(true));
6023                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6024                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6025                                                                 msg: update
6026                                                         });
6027                                                 }
6028                                                 let reason_message = format!("{}", reason);
6029                                                 self.issue_channel_close_events(channel, reason);
6030                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
6031                                                         node_id: channel.get_counterparty_node_id(),
6032                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6033                                                                 channel_id: channel.channel_id(),
6034                                                                 data: reason_message,
6035                                                         } },
6036                                                 });
6037                                                 return false;
6038                                         }
6039                                         true
6040                                 });
6041                         }
6042                 }
6043
6044                 if let Some(height) = height_opt {
6045                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
6046                                 htlcs.retain(|htlc| {
6047                                         // If height is approaching the number of blocks we think it takes us to get
6048                                         // our commitment transaction confirmed before the HTLC expires, plus the
6049                                         // number of blocks we generally consider it to take to do a commitment update,
6050                                         // just give up on it and fail the HTLC.
6051                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6052                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6053                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6054
6055                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6056                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6057                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6058                                                 false
6059                                         } else { true }
6060                                 });
6061                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6062                         });
6063
6064                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6065                         intercepted_htlcs.retain(|_, htlc| {
6066                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6067                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6068                                                 short_channel_id: htlc.prev_short_channel_id,
6069                                                 htlc_id: htlc.prev_htlc_id,
6070                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6071                                                 phantom_shared_secret: None,
6072                                                 outpoint: htlc.prev_funding_outpoint,
6073                                         });
6074
6075                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6076                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6077                                                 _ => unreachable!(),
6078                                         };
6079                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6080                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
6081                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
6082                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6083                                         false
6084                                 } else { true }
6085                         });
6086                 }
6087
6088                 self.handle_init_event_channel_failures(failed_channels);
6089
6090                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6091                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6092                 }
6093         }
6094
6095         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
6096         /// indicating whether persistence is necessary. Only one listener on
6097         /// [`await_persistable_update`], [`await_persistable_update_timeout`], or a future returned by
6098         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6099         ///
6100         /// Note that this method is not available with the `no-std` feature.
6101         ///
6102         /// [`await_persistable_update`]: Self::await_persistable_update
6103         /// [`await_persistable_update_timeout`]: Self::await_persistable_update_timeout
6104         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6105         #[cfg(any(test, feature = "std"))]
6106         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
6107                 self.persistence_notifier.wait_timeout(max_wait)
6108         }
6109
6110         /// Blocks until ChannelManager needs to be persisted. Only one listener on
6111         /// [`await_persistable_update`], `await_persistable_update_timeout`, or a future returned by
6112         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6113         ///
6114         /// [`await_persistable_update`]: Self::await_persistable_update
6115         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6116         pub fn await_persistable_update(&self) {
6117                 self.persistence_notifier.wait()
6118         }
6119
6120         /// Gets a [`Future`] that completes when a persistable update is available. Note that
6121         /// callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and
6122         /// should instead register actions to be taken later.
6123         pub fn get_persistable_update_future(&self) -> Future {
6124                 self.persistence_notifier.get_future()
6125         }
6126
6127         #[cfg(any(test, feature = "_test_utils"))]
6128         pub fn get_persistence_condvar_value(&self) -> bool {
6129                 self.persistence_notifier.notify_pending()
6130         }
6131
6132         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6133         /// [`chain::Confirm`] interfaces.
6134         pub fn current_best_block(&self) -> BestBlock {
6135                 self.best_block.read().unwrap().clone()
6136         }
6137
6138         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6139         /// [`ChannelManager`].
6140         pub fn node_features(&self) -> NodeFeatures {
6141                 provided_node_features(&self.default_configuration)
6142         }
6143
6144         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6145         /// [`ChannelManager`].
6146         ///
6147         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6148         /// or not. Thus, this method is not public.
6149         #[cfg(any(feature = "_test_utils", test))]
6150         pub fn invoice_features(&self) -> InvoiceFeatures {
6151                 provided_invoice_features(&self.default_configuration)
6152         }
6153
6154         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6155         /// [`ChannelManager`].
6156         pub fn channel_features(&self) -> ChannelFeatures {
6157                 provided_channel_features(&self.default_configuration)
6158         }
6159
6160         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6161         /// [`ChannelManager`].
6162         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6163                 provided_channel_type_features(&self.default_configuration)
6164         }
6165
6166         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6167         /// [`ChannelManager`].
6168         pub fn init_features(&self) -> InitFeatures {
6169                 provided_init_features(&self.default_configuration)
6170         }
6171 }
6172
6173 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6174         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6175 where
6176         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6177         T::Target: BroadcasterInterface,
6178         ES::Target: EntropySource,
6179         NS::Target: NodeSigner,
6180         SP::Target: SignerProvider,
6181         F::Target: FeeEstimator,
6182         R::Target: Router,
6183         L::Target: Logger,
6184 {
6185         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6186                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6187                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6188         }
6189
6190         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6191                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6192                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6193         }
6194
6195         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6196                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6197                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6198         }
6199
6200         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6201                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6202                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6203         }
6204
6205         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6206                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6207                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6208         }
6209
6210         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6211                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6212                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6213         }
6214
6215         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6216                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6217                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6218         }
6219
6220         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6221                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6222                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6223         }
6224
6225         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6226                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6227                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6228         }
6229
6230         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6231                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6232                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6233         }
6234
6235         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6236                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6237                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6238         }
6239
6240         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6241                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6242                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6243         }
6244
6245         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6246                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6247                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6248         }
6249
6250         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6251                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6252                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6253         }
6254
6255         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6256                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6257                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6258         }
6259
6260         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6261                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6262                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6263                                 persist
6264                         } else {
6265                                 NotifyOption::SkipPersist
6266                         }
6267                 });
6268         }
6269
6270         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6271                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6272                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6273         }
6274
6275         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6276                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6277                 let mut failed_channels = Vec::new();
6278                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6279                 let remove_peer = {
6280                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6281                                 log_pubkey!(counterparty_node_id));
6282                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6283                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6284                                 let peer_state = &mut *peer_state_lock;
6285                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6286                                 peer_state.channel_by_id.retain(|_, chan| {
6287                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6288                                         if chan.is_shutdown() {
6289                                                 update_maps_on_chan_removal!(self, chan);
6290                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6291                                                 return false;
6292                                         }
6293                                         true
6294                                 });
6295                                 pending_msg_events.retain(|msg| {
6296                                         match msg {
6297                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6298                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6299                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6300                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6301                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6302                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6303                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6304                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6305                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6306                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6307                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6308                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6309                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6310                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6311                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6312                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6313                                                 &events::MessageSendEvent::HandleError { .. } => false,
6314                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6315                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6316                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6317                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6318                                         }
6319                                 });
6320                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6321                                 peer_state.is_connected = false;
6322                                 peer_state.ok_to_remove(true)
6323                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6324                 };
6325                 if remove_peer {
6326                         per_peer_state.remove(counterparty_node_id);
6327                 }
6328                 mem::drop(per_peer_state);
6329
6330                 for failure in failed_channels.drain(..) {
6331                         self.finish_force_close_channel(failure);
6332                 }
6333         }
6334
6335         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6336                 if !init_msg.features.supports_static_remote_key() {
6337                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6338                         return Err(());
6339                 }
6340
6341                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6342
6343                 // If we have too many peers connected which don't have funded channels, disconnect the
6344                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6345                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6346                 // peers connect, but we'll reject new channels from them.
6347                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6348                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6349
6350                 {
6351                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6352                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6353                                 hash_map::Entry::Vacant(e) => {
6354                                         if inbound_peer_limited {
6355                                                 return Err(());
6356                                         }
6357                                         e.insert(Mutex::new(PeerState {
6358                                                 channel_by_id: HashMap::new(),
6359                                                 latest_features: init_msg.features.clone(),
6360                                                 pending_msg_events: Vec::new(),
6361                                                 monitor_update_blocked_actions: BTreeMap::new(),
6362                                                 is_connected: true,
6363                                         }));
6364                                 },
6365                                 hash_map::Entry::Occupied(e) => {
6366                                         let mut peer_state = e.get().lock().unwrap();
6367                                         peer_state.latest_features = init_msg.features.clone();
6368
6369                                         let best_block_height = self.best_block.read().unwrap().height();
6370                                         if inbound_peer_limited &&
6371                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6372                                                 peer_state.channel_by_id.len()
6373                                         {
6374                                                 return Err(());
6375                                         }
6376
6377                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6378                                         peer_state.is_connected = true;
6379                                 },
6380                         }
6381                 }
6382
6383                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6384
6385                 let per_peer_state = self.per_peer_state.read().unwrap();
6386                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6387                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6388                         let peer_state = &mut *peer_state_lock;
6389                         let pending_msg_events = &mut peer_state.pending_msg_events;
6390                         peer_state.channel_by_id.retain(|_, chan| {
6391                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6392                                         if !chan.have_received_message() {
6393                                                 // If we created this (outbound) channel while we were disconnected from the
6394                                                 // peer we probably failed to send the open_channel message, which is now
6395                                                 // lost. We can't have had anything pending related to this channel, so we just
6396                                                 // drop it.
6397                                                 false
6398                                         } else {
6399                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6400                                                         node_id: chan.get_counterparty_node_id(),
6401                                                         msg: chan.get_channel_reestablish(&self.logger),
6402                                                 });
6403                                                 true
6404                                         }
6405                                 } else { true };
6406                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6407                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6408                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6409                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6410                                                                 node_id: *counterparty_node_id,
6411                                                                 msg, update_msg,
6412                                                         });
6413                                                 }
6414                                         }
6415                                 }
6416                                 retain
6417                         });
6418                 }
6419                 //TODO: Also re-broadcast announcement_signatures
6420                 Ok(())
6421         }
6422
6423         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6424                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6425
6426                 if msg.channel_id == [0; 32] {
6427                         let channel_ids: Vec<[u8; 32]> = {
6428                                 let per_peer_state = self.per_peer_state.read().unwrap();
6429                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6430                                 if peer_state_mutex_opt.is_none() { return; }
6431                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6432                                 let peer_state = &mut *peer_state_lock;
6433                                 peer_state.channel_by_id.keys().cloned().collect()
6434                         };
6435                         for channel_id in channel_ids {
6436                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6437                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6438                         }
6439                 } else {
6440                         {
6441                                 // First check if we can advance the channel type and try again.
6442                                 let per_peer_state = self.per_peer_state.read().unwrap();
6443                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6444                                 if peer_state_mutex_opt.is_none() { return; }
6445                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6446                                 let peer_state = &mut *peer_state_lock;
6447                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6448                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6449                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6450                                                         node_id: *counterparty_node_id,
6451                                                         msg,
6452                                                 });
6453                                                 return;
6454                                         }
6455                                 }
6456                         }
6457
6458                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6459                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6460                 }
6461         }
6462
6463         fn provided_node_features(&self) -> NodeFeatures {
6464                 provided_node_features(&self.default_configuration)
6465         }
6466
6467         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6468                 provided_init_features(&self.default_configuration)
6469         }
6470 }
6471
6472 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6473 /// [`ChannelManager`].
6474 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6475         provided_init_features(config).to_context()
6476 }
6477
6478 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6479 /// [`ChannelManager`].
6480 ///
6481 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6482 /// or not. Thus, this method is not public.
6483 #[cfg(any(feature = "_test_utils", test))]
6484 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6485         provided_init_features(config).to_context()
6486 }
6487
6488 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6489 /// [`ChannelManager`].
6490 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6491         provided_init_features(config).to_context()
6492 }
6493
6494 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6495 /// [`ChannelManager`].
6496 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6497         ChannelTypeFeatures::from_init(&provided_init_features(config))
6498 }
6499
6500 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6501 /// [`ChannelManager`].
6502 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6503         // Note that if new features are added here which other peers may (eventually) require, we
6504         // should also add the corresponding (optional) bit to the ChannelMessageHandler impl for
6505         // ErroringMessageHandler.
6506         let mut features = InitFeatures::empty();
6507         features.set_data_loss_protect_optional();
6508         features.set_upfront_shutdown_script_optional();
6509         features.set_variable_length_onion_required();
6510         features.set_static_remote_key_required();
6511         features.set_payment_secret_required();
6512         features.set_basic_mpp_optional();
6513         features.set_wumbo_optional();
6514         features.set_shutdown_any_segwit_optional();
6515         features.set_channel_type_optional();
6516         features.set_scid_privacy_optional();
6517         features.set_zero_conf_optional();
6518         #[cfg(anchors)]
6519         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6520                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6521                         features.set_anchors_zero_fee_htlc_tx_optional();
6522                 }
6523         }
6524         features
6525 }
6526
6527 const SERIALIZATION_VERSION: u8 = 1;
6528 const MIN_SERIALIZATION_VERSION: u8 = 1;
6529
6530 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6531         (2, fee_base_msat, required),
6532         (4, fee_proportional_millionths, required),
6533         (6, cltv_expiry_delta, required),
6534 });
6535
6536 impl_writeable_tlv_based!(ChannelCounterparty, {
6537         (2, node_id, required),
6538         (4, features, required),
6539         (6, unspendable_punishment_reserve, required),
6540         (8, forwarding_info, option),
6541         (9, outbound_htlc_minimum_msat, option),
6542         (11, outbound_htlc_maximum_msat, option),
6543 });
6544
6545 impl Writeable for ChannelDetails {
6546         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6547                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6548                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6549                 let user_channel_id_low = self.user_channel_id as u64;
6550                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6551                 write_tlv_fields!(writer, {
6552                         (1, self.inbound_scid_alias, option),
6553                         (2, self.channel_id, required),
6554                         (3, self.channel_type, option),
6555                         (4, self.counterparty, required),
6556                         (5, self.outbound_scid_alias, option),
6557                         (6, self.funding_txo, option),
6558                         (7, self.config, option),
6559                         (8, self.short_channel_id, option),
6560                         (9, self.confirmations, option),
6561                         (10, self.channel_value_satoshis, required),
6562                         (12, self.unspendable_punishment_reserve, option),
6563                         (14, user_channel_id_low, required),
6564                         (16, self.balance_msat, required),
6565                         (18, self.outbound_capacity_msat, required),
6566                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6567                         // filled in, so we can safely unwrap it here.
6568                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6569                         (20, self.inbound_capacity_msat, required),
6570                         (22, self.confirmations_required, option),
6571                         (24, self.force_close_spend_delay, option),
6572                         (26, self.is_outbound, required),
6573                         (28, self.is_channel_ready, required),
6574                         (30, self.is_usable, required),
6575                         (32, self.is_public, required),
6576                         (33, self.inbound_htlc_minimum_msat, option),
6577                         (35, self.inbound_htlc_maximum_msat, option),
6578                         (37, user_channel_id_high_opt, option),
6579                         (39, self.feerate_sat_per_1000_weight, option),
6580                 });
6581                 Ok(())
6582         }
6583 }
6584
6585 impl Readable for ChannelDetails {
6586         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6587                 _init_and_read_tlv_fields!(reader, {
6588                         (1, inbound_scid_alias, option),
6589                         (2, channel_id, required),
6590                         (3, channel_type, option),
6591                         (4, counterparty, required),
6592                         (5, outbound_scid_alias, option),
6593                         (6, funding_txo, option),
6594                         (7, config, option),
6595                         (8, short_channel_id, option),
6596                         (9, confirmations, option),
6597                         (10, channel_value_satoshis, required),
6598                         (12, unspendable_punishment_reserve, option),
6599                         (14, user_channel_id_low, required),
6600                         (16, balance_msat, required),
6601                         (18, outbound_capacity_msat, required),
6602                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6603                         // filled in, so we can safely unwrap it here.
6604                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6605                         (20, inbound_capacity_msat, required),
6606                         (22, confirmations_required, option),
6607                         (24, force_close_spend_delay, option),
6608                         (26, is_outbound, required),
6609                         (28, is_channel_ready, required),
6610                         (30, is_usable, required),
6611                         (32, is_public, required),
6612                         (33, inbound_htlc_minimum_msat, option),
6613                         (35, inbound_htlc_maximum_msat, option),
6614                         (37, user_channel_id_high_opt, option),
6615                         (39, feerate_sat_per_1000_weight, option),
6616                 });
6617
6618                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6619                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6620                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6621                 let user_channel_id = user_channel_id_low as u128 +
6622                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6623
6624                 Ok(Self {
6625                         inbound_scid_alias,
6626                         channel_id: channel_id.0.unwrap(),
6627                         channel_type,
6628                         counterparty: counterparty.0.unwrap(),
6629                         outbound_scid_alias,
6630                         funding_txo,
6631                         config,
6632                         short_channel_id,
6633                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6634                         unspendable_punishment_reserve,
6635                         user_channel_id,
6636                         balance_msat: balance_msat.0.unwrap(),
6637                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6638                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6639                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6640                         confirmations_required,
6641                         confirmations,
6642                         force_close_spend_delay,
6643                         is_outbound: is_outbound.0.unwrap(),
6644                         is_channel_ready: is_channel_ready.0.unwrap(),
6645                         is_usable: is_usable.0.unwrap(),
6646                         is_public: is_public.0.unwrap(),
6647                         inbound_htlc_minimum_msat,
6648                         inbound_htlc_maximum_msat,
6649                         feerate_sat_per_1000_weight,
6650                 })
6651         }
6652 }
6653
6654 impl_writeable_tlv_based!(PhantomRouteHints, {
6655         (2, channels, vec_type),
6656         (4, phantom_scid, required),
6657         (6, real_node_pubkey, required),
6658 });
6659
6660 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6661         (0, Forward) => {
6662                 (0, onion_packet, required),
6663                 (2, short_channel_id, required),
6664         },
6665         (1, Receive) => {
6666                 (0, payment_data, required),
6667                 (1, phantom_shared_secret, option),
6668                 (2, incoming_cltv_expiry, required),
6669         },
6670         (2, ReceiveKeysend) => {
6671                 (0, payment_preimage, required),
6672                 (2, incoming_cltv_expiry, required),
6673         },
6674 ;);
6675
6676 impl_writeable_tlv_based!(PendingHTLCInfo, {
6677         (0, routing, required),
6678         (2, incoming_shared_secret, required),
6679         (4, payment_hash, required),
6680         (6, outgoing_amt_msat, required),
6681         (8, outgoing_cltv_value, required),
6682         (9, incoming_amt_msat, option),
6683 });
6684
6685
6686 impl Writeable for HTLCFailureMsg {
6687         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6688                 match self {
6689                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6690                                 0u8.write(writer)?;
6691                                 channel_id.write(writer)?;
6692                                 htlc_id.write(writer)?;
6693                                 reason.write(writer)?;
6694                         },
6695                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6696                                 channel_id, htlc_id, sha256_of_onion, failure_code
6697                         }) => {
6698                                 1u8.write(writer)?;
6699                                 channel_id.write(writer)?;
6700                                 htlc_id.write(writer)?;
6701                                 sha256_of_onion.write(writer)?;
6702                                 failure_code.write(writer)?;
6703                         },
6704                 }
6705                 Ok(())
6706         }
6707 }
6708
6709 impl Readable for HTLCFailureMsg {
6710         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6711                 let id: u8 = Readable::read(reader)?;
6712                 match id {
6713                         0 => {
6714                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6715                                         channel_id: Readable::read(reader)?,
6716                                         htlc_id: Readable::read(reader)?,
6717                                         reason: Readable::read(reader)?,
6718                                 }))
6719                         },
6720                         1 => {
6721                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6722                                         channel_id: Readable::read(reader)?,
6723                                         htlc_id: Readable::read(reader)?,
6724                                         sha256_of_onion: Readable::read(reader)?,
6725                                         failure_code: Readable::read(reader)?,
6726                                 }))
6727                         },
6728                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6729                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6730                         // messages contained in the variants.
6731                         // In version 0.0.101, support for reading the variants with these types was added, and
6732                         // we should migrate to writing these variants when UpdateFailHTLC or
6733                         // UpdateFailMalformedHTLC get TLV fields.
6734                         2 => {
6735                                 let length: BigSize = Readable::read(reader)?;
6736                                 let mut s = FixedLengthReader::new(reader, length.0);
6737                                 let res = Readable::read(&mut s)?;
6738                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6739                                 Ok(HTLCFailureMsg::Relay(res))
6740                         },
6741                         3 => {
6742                                 let length: BigSize = Readable::read(reader)?;
6743                                 let mut s = FixedLengthReader::new(reader, length.0);
6744                                 let res = Readable::read(&mut s)?;
6745                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6746                                 Ok(HTLCFailureMsg::Malformed(res))
6747                         },
6748                         _ => Err(DecodeError::UnknownRequiredFeature),
6749                 }
6750         }
6751 }
6752
6753 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6754         (0, Forward),
6755         (1, Fail),
6756 );
6757
6758 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6759         (0, short_channel_id, required),
6760         (1, phantom_shared_secret, option),
6761         (2, outpoint, required),
6762         (4, htlc_id, required),
6763         (6, incoming_packet_shared_secret, required)
6764 });
6765
6766 impl Writeable for ClaimableHTLC {
6767         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6768                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6769                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6770                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6771                 };
6772                 write_tlv_fields!(writer, {
6773                         (0, self.prev_hop, required),
6774                         (1, self.total_msat, required),
6775                         (2, self.value, required),
6776                         (4, payment_data, option),
6777                         (6, self.cltv_expiry, required),
6778                         (8, keysend_preimage, option),
6779                 });
6780                 Ok(())
6781         }
6782 }
6783
6784 impl Readable for ClaimableHTLC {
6785         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6786                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6787                 let mut value = 0;
6788                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6789                 let mut cltv_expiry = 0;
6790                 let mut total_msat = None;
6791                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6792                 read_tlv_fields!(reader, {
6793                         (0, prev_hop, required),
6794                         (1, total_msat, option),
6795                         (2, value, required),
6796                         (4, payment_data, option),
6797                         (6, cltv_expiry, required),
6798                         (8, keysend_preimage, option)
6799                 });
6800                 let onion_payload = match keysend_preimage {
6801                         Some(p) => {
6802                                 if payment_data.is_some() {
6803                                         return Err(DecodeError::InvalidValue)
6804                                 }
6805                                 if total_msat.is_none() {
6806                                         total_msat = Some(value);
6807                                 }
6808                                 OnionPayload::Spontaneous(p)
6809                         },
6810                         None => {
6811                                 if total_msat.is_none() {
6812                                         if payment_data.is_none() {
6813                                                 return Err(DecodeError::InvalidValue)
6814                                         }
6815                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6816                                 }
6817                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6818                         },
6819                 };
6820                 Ok(Self {
6821                         prev_hop: prev_hop.0.unwrap(),
6822                         timer_ticks: 0,
6823                         value,
6824                         total_msat: total_msat.unwrap(),
6825                         onion_payload,
6826                         cltv_expiry,
6827                 })
6828         }
6829 }
6830
6831 impl Readable for HTLCSource {
6832         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6833                 let id: u8 = Readable::read(reader)?;
6834                 match id {
6835                         0 => {
6836                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6837                                 let mut first_hop_htlc_msat: u64 = 0;
6838                                 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6839                                 let mut payment_id = None;
6840                                 let mut payment_secret = None;
6841                                 let mut payment_params: Option<PaymentParameters> = None;
6842                                 read_tlv_fields!(reader, {
6843                                         (0, session_priv, required),
6844                                         (1, payment_id, option),
6845                                         (2, first_hop_htlc_msat, required),
6846                                         (3, payment_secret, option),
6847                                         (4, path, vec_type),
6848                                         (5, payment_params, (option: ReadableArgs, 0)),
6849                                 });
6850                                 if payment_id.is_none() {
6851                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6852                                         // instead.
6853                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6854                                 }
6855                                 if path.is_none() || path.as_ref().unwrap().is_empty() {
6856                                         return Err(DecodeError::InvalidValue);
6857                                 }
6858                                 let path = path.unwrap();
6859                                 if let Some(params) = payment_params.as_mut() {
6860                                         if params.final_cltv_expiry_delta == 0 {
6861                                                 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6862                                         }
6863                                 }
6864                                 Ok(HTLCSource::OutboundRoute {
6865                                         session_priv: session_priv.0.unwrap(),
6866                                         first_hop_htlc_msat,
6867                                         path,
6868                                         payment_id: payment_id.unwrap(),
6869                                         payment_secret,
6870                                         payment_params,
6871                                 })
6872                         }
6873                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6874                         _ => Err(DecodeError::UnknownRequiredFeature),
6875                 }
6876         }
6877 }
6878
6879 impl Writeable for HTLCSource {
6880         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6881                 match self {
6882                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6883                                 0u8.write(writer)?;
6884                                 let payment_id_opt = Some(payment_id);
6885                                 write_tlv_fields!(writer, {
6886                                         (0, session_priv, required),
6887                                         (1, payment_id_opt, option),
6888                                         (2, first_hop_htlc_msat, required),
6889                                         (3, payment_secret, option),
6890                                         (4, *path, vec_type),
6891                                         (5, payment_params, option),
6892                                  });
6893                         }
6894                         HTLCSource::PreviousHopData(ref field) => {
6895                                 1u8.write(writer)?;
6896                                 field.write(writer)?;
6897                         }
6898                 }
6899                 Ok(())
6900         }
6901 }
6902
6903 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6904         (0, forward_info, required),
6905         (1, prev_user_channel_id, (default_value, 0)),
6906         (2, prev_short_channel_id, required),
6907         (4, prev_htlc_id, required),
6908         (6, prev_funding_outpoint, required),
6909 });
6910
6911 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6912         (1, FailHTLC) => {
6913                 (0, htlc_id, required),
6914                 (2, err_packet, required),
6915         };
6916         (0, AddHTLC)
6917 );
6918
6919 impl_writeable_tlv_based!(PendingInboundPayment, {
6920         (0, payment_secret, required),
6921         (2, expiry_time, required),
6922         (4, user_payment_id, required),
6923         (6, payment_preimage, required),
6924         (8, min_value_msat, required),
6925 });
6926
6927 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
6928 where
6929         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6930         T::Target: BroadcasterInterface,
6931         ES::Target: EntropySource,
6932         NS::Target: NodeSigner,
6933         SP::Target: SignerProvider,
6934         F::Target: FeeEstimator,
6935         R::Target: Router,
6936         L::Target: Logger,
6937 {
6938         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6939                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6940
6941                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6942
6943                 self.genesis_hash.write(writer)?;
6944                 {
6945                         let best_block = self.best_block.read().unwrap();
6946                         best_block.height().write(writer)?;
6947                         best_block.block_hash().write(writer)?;
6948                 }
6949
6950                 let mut serializable_peer_count: u64 = 0;
6951                 {
6952                         let per_peer_state = self.per_peer_state.read().unwrap();
6953                         let mut unfunded_channels = 0;
6954                         let mut number_of_channels = 0;
6955                         for (_, peer_state_mutex) in per_peer_state.iter() {
6956                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6957                                 let peer_state = &mut *peer_state_lock;
6958                                 if !peer_state.ok_to_remove(false) {
6959                                         serializable_peer_count += 1;
6960                                 }
6961                                 number_of_channels += peer_state.channel_by_id.len();
6962                                 for (_, channel) in peer_state.channel_by_id.iter() {
6963                                         if !channel.is_funding_initiated() {
6964                                                 unfunded_channels += 1;
6965                                         }
6966                                 }
6967                         }
6968
6969                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
6970
6971                         for (_, peer_state_mutex) in per_peer_state.iter() {
6972                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6973                                 let peer_state = &mut *peer_state_lock;
6974                                 for (_, channel) in peer_state.channel_by_id.iter() {
6975                                         if channel.is_funding_initiated() {
6976                                                 channel.write(writer)?;
6977                                         }
6978                                 }
6979                         }
6980                 }
6981
6982                 {
6983                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
6984                         (forward_htlcs.len() as u64).write(writer)?;
6985                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
6986                                 short_channel_id.write(writer)?;
6987                                 (pending_forwards.len() as u64).write(writer)?;
6988                                 for forward in pending_forwards {
6989                                         forward.write(writer)?;
6990                                 }
6991                         }
6992                 }
6993
6994                 let per_peer_state = self.per_peer_state.write().unwrap();
6995
6996                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6997                 let claimable_payments = self.claimable_payments.lock().unwrap();
6998                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
6999
7000                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
7001                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
7002                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
7003                         payment_hash.write(writer)?;
7004                         (previous_hops.len() as u64).write(writer)?;
7005                         for htlc in previous_hops.iter() {
7006                                 htlc.write(writer)?;
7007                         }
7008                         htlc_purposes.push(purpose);
7009                 }
7010
7011                 let mut monitor_update_blocked_actions_per_peer = None;
7012                 let mut peer_states = Vec::new();
7013                 for (_, peer_state_mutex) in per_peer_state.iter() {
7014                         // Because we're holding the owning `per_peer_state` write lock here there's no chance
7015                         // of a lockorder violation deadlock - no other thread can be holding any
7016                         // per_peer_state lock at all.
7017                         peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7018                 }
7019
7020                 (serializable_peer_count).write(writer)?;
7021                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7022                         // Peers which we have no channels to should be dropped once disconnected. As we
7023                         // disconnect all peers when shutting down and serializing the ChannelManager, we
7024                         // consider all peers as disconnected here. There's therefore no need write peers with
7025                         // no channels.
7026                         if !peer_state.ok_to_remove(false) {
7027                                 peer_pubkey.write(writer)?;
7028                                 peer_state.latest_features.write(writer)?;
7029                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
7030                                         monitor_update_blocked_actions_per_peer
7031                                                 .get_or_insert_with(Vec::new)
7032                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7033                                 }
7034                         }
7035                 }
7036
7037                 let events = self.pending_events.lock().unwrap();
7038                 (events.len() as u64).write(writer)?;
7039                 for event in events.iter() {
7040                         event.write(writer)?;
7041                 }
7042
7043                 let background_events = self.pending_background_events.lock().unwrap();
7044                 (background_events.len() as u64).write(writer)?;
7045                 for event in background_events.iter() {
7046                         match event {
7047                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7048                                         0u8.write(writer)?;
7049                                         funding_txo.write(writer)?;
7050                                         monitor_update.write(writer)?;
7051                                 },
7052                         }
7053                 }
7054
7055                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7056                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7057                 // likely to be identical.
7058                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7059                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7060
7061                 (pending_inbound_payments.len() as u64).write(writer)?;
7062                 for (hash, pending_payment) in pending_inbound_payments.iter() {
7063                         hash.write(writer)?;
7064                         pending_payment.write(writer)?;
7065                 }
7066
7067                 // For backwards compat, write the session privs and their total length.
7068                 let mut num_pending_outbounds_compat: u64 = 0;
7069                 for (_, outbound) in pending_outbound_payments.iter() {
7070                         if !outbound.is_fulfilled() && !outbound.abandoned() {
7071                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7072                         }
7073                 }
7074                 num_pending_outbounds_compat.write(writer)?;
7075                 for (_, outbound) in pending_outbound_payments.iter() {
7076                         match outbound {
7077                                 PendingOutboundPayment::Legacy { session_privs } |
7078                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7079                                         for session_priv in session_privs.iter() {
7080                                                 session_priv.write(writer)?;
7081                                         }
7082                                 }
7083                                 PendingOutboundPayment::Fulfilled { .. } => {},
7084                                 PendingOutboundPayment::Abandoned { .. } => {},
7085                         }
7086                 }
7087
7088                 // Encode without retry info for 0.0.101 compatibility.
7089                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7090                 for (id, outbound) in pending_outbound_payments.iter() {
7091                         match outbound {
7092                                 PendingOutboundPayment::Legacy { session_privs } |
7093                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7094                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7095                                 },
7096                                 _ => {},
7097                         }
7098                 }
7099
7100                 let mut pending_intercepted_htlcs = None;
7101                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7102                 if our_pending_intercepts.len() != 0 {
7103                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7104                 }
7105
7106                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7107                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7108                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7109                         // map. Thus, if there are no entries we skip writing a TLV for it.
7110                         pending_claiming_payments = None;
7111                 }
7112
7113                 write_tlv_fields!(writer, {
7114                         (1, pending_outbound_payments_no_retry, required),
7115                         (2, pending_intercepted_htlcs, option),
7116                         (3, pending_outbound_payments, required),
7117                         (4, pending_claiming_payments, option),
7118                         (5, self.our_network_pubkey, required),
7119                         (6, monitor_update_blocked_actions_per_peer, option),
7120                         (7, self.fake_scid_rand_bytes, required),
7121                         (9, htlc_purposes, vec_type),
7122                         (11, self.probing_cookie_secret, required),
7123                 });
7124
7125                 Ok(())
7126         }
7127 }
7128
7129 /// Arguments for the creation of a ChannelManager that are not deserialized.
7130 ///
7131 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7132 /// is:
7133 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7134 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7135 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7136 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7137 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7138 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7139 ///    same way you would handle a [`chain::Filter`] call using
7140 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7141 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7142 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7143 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7144 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7145 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7146 ///    the next step.
7147 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7148 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7149 ///
7150 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7151 /// call any other methods on the newly-deserialized [`ChannelManager`].
7152 ///
7153 /// Note that because some channels may be closed during deserialization, it is critical that you
7154 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7155 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7156 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7157 /// not force-close the same channels but consider them live), you may end up revoking a state for
7158 /// which you've already broadcasted the transaction.
7159 ///
7160 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7161 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7162 where
7163         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7164         T::Target: BroadcasterInterface,
7165         ES::Target: EntropySource,
7166         NS::Target: NodeSigner,
7167         SP::Target: SignerProvider,
7168         F::Target: FeeEstimator,
7169         R::Target: Router,
7170         L::Target: Logger,
7171 {
7172         /// A cryptographically secure source of entropy.
7173         pub entropy_source: ES,
7174
7175         /// A signer that is able to perform node-scoped cryptographic operations.
7176         pub node_signer: NS,
7177
7178         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7179         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7180         /// signing data.
7181         pub signer_provider: SP,
7182
7183         /// The fee_estimator for use in the ChannelManager in the future.
7184         ///
7185         /// No calls to the FeeEstimator will be made during deserialization.
7186         pub fee_estimator: F,
7187         /// The chain::Watch for use in the ChannelManager in the future.
7188         ///
7189         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7190         /// you have deserialized ChannelMonitors separately and will add them to your
7191         /// chain::Watch after deserializing this ChannelManager.
7192         pub chain_monitor: M,
7193
7194         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7195         /// used to broadcast the latest local commitment transactions of channels which must be
7196         /// force-closed during deserialization.
7197         pub tx_broadcaster: T,
7198         /// The router which will be used in the ChannelManager in the future for finding routes
7199         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7200         ///
7201         /// No calls to the router will be made during deserialization.
7202         pub router: R,
7203         /// The Logger for use in the ChannelManager and which may be used to log information during
7204         /// deserialization.
7205         pub logger: L,
7206         /// Default settings used for new channels. Any existing channels will continue to use the
7207         /// runtime settings which were stored when the ChannelManager was serialized.
7208         pub default_config: UserConfig,
7209
7210         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7211         /// value.get_funding_txo() should be the key).
7212         ///
7213         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7214         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7215         /// is true for missing channels as well. If there is a monitor missing for which we find
7216         /// channel data Err(DecodeError::InvalidValue) will be returned.
7217         ///
7218         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7219         /// this struct.
7220         ///
7221         /// (C-not exported) because we have no HashMap bindings
7222         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7223 }
7224
7225 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7226                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7227 where
7228         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7229         T::Target: BroadcasterInterface,
7230         ES::Target: EntropySource,
7231         NS::Target: NodeSigner,
7232         SP::Target: SignerProvider,
7233         F::Target: FeeEstimator,
7234         R::Target: Router,
7235         L::Target: Logger,
7236 {
7237         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7238         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7239         /// populate a HashMap directly from C.
7240         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7241                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7242                 Self {
7243                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7244                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7245                 }
7246         }
7247 }
7248
7249 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7250 // SipmleArcChannelManager type:
7251 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7252         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7253 where
7254         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7255         T::Target: BroadcasterInterface,
7256         ES::Target: EntropySource,
7257         NS::Target: NodeSigner,
7258         SP::Target: SignerProvider,
7259         F::Target: FeeEstimator,
7260         R::Target: Router,
7261         L::Target: Logger,
7262 {
7263         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7264                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7265                 Ok((blockhash, Arc::new(chan_manager)))
7266         }
7267 }
7268
7269 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7270         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7271 where
7272         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7273         T::Target: BroadcasterInterface,
7274         ES::Target: EntropySource,
7275         NS::Target: NodeSigner,
7276         SP::Target: SignerProvider,
7277         F::Target: FeeEstimator,
7278         R::Target: Router,
7279         L::Target: Logger,
7280 {
7281         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7282                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7283
7284                 let genesis_hash: BlockHash = Readable::read(reader)?;
7285                 let best_block_height: u32 = Readable::read(reader)?;
7286                 let best_block_hash: BlockHash = Readable::read(reader)?;
7287
7288                 let mut failed_htlcs = Vec::new();
7289
7290                 let channel_count: u64 = Readable::read(reader)?;
7291                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7292                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7293                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7294                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7295                 let mut channel_closures = Vec::new();
7296                 for _ in 0..channel_count {
7297                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7298                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7299                         ))?;
7300                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7301                         funding_txo_set.insert(funding_txo.clone());
7302                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7303                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7304                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7305                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7306                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7307                                         // If the channel is ahead of the monitor, return InvalidValue:
7308                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7309                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7310                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7311                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7312                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7313                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7314                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7315                                         return Err(DecodeError::InvalidValue);
7316                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7317                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7318                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7319                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7320                                         // But if the channel is behind of the monitor, close the channel:
7321                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7322                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7323                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7324                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7325                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
7326                                         failed_htlcs.append(&mut new_failed_htlcs);
7327                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7328                                         channel_closures.push(events::Event::ChannelClosed {
7329                                                 channel_id: channel.channel_id(),
7330                                                 user_channel_id: channel.get_user_id(),
7331                                                 reason: ClosureReason::OutdatedChannelManager
7332                                         });
7333                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7334                                                 let mut found_htlc = false;
7335                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7336                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7337                                                 }
7338                                                 if !found_htlc {
7339                                                         // If we have some HTLCs in the channel which are not present in the newer
7340                                                         // ChannelMonitor, they have been removed and should be failed back to
7341                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7342                                                         // were actually claimed we'd have generated and ensured the previous-hop
7343                                                         // claim update ChannelMonitor updates were persisted prior to persising
7344                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7345                                                         // backwards leg of the HTLC will simply be rejected.
7346                                                         log_info!(args.logger,
7347                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7348                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7349                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7350                                                 }
7351                                         }
7352                                 } else {
7353                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7354                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7355                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7356                                         }
7357                                         if channel.is_funding_initiated() {
7358                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7359                                         }
7360                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7361                                                 hash_map::Entry::Occupied(mut entry) => {
7362                                                         let by_id_map = entry.get_mut();
7363                                                         by_id_map.insert(channel.channel_id(), channel);
7364                                                 },
7365                                                 hash_map::Entry::Vacant(entry) => {
7366                                                         let mut by_id_map = HashMap::new();
7367                                                         by_id_map.insert(channel.channel_id(), channel);
7368                                                         entry.insert(by_id_map);
7369                                                 }
7370                                         }
7371                                 }
7372                         } else if channel.is_awaiting_initial_mon_persist() {
7373                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7374                                 // was in-progress, we never broadcasted the funding transaction and can still
7375                                 // safely discard the channel.
7376                                 let _ = channel.force_shutdown(false);
7377                                 channel_closures.push(events::Event::ChannelClosed {
7378                                         channel_id: channel.channel_id(),
7379                                         user_channel_id: channel.get_user_id(),
7380                                         reason: ClosureReason::DisconnectedPeer,
7381                                 });
7382                         } else {
7383                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7384                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7385                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7386                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7387                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7388                                 return Err(DecodeError::InvalidValue);
7389                         }
7390                 }
7391
7392                 for (funding_txo, monitor) in args.channel_monitors.iter_mut() {
7393                         if !funding_txo_set.contains(funding_txo) {
7394                                 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
7395                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7396                         }
7397                 }
7398
7399                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7400                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7401                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7402                 for _ in 0..forward_htlcs_count {
7403                         let short_channel_id = Readable::read(reader)?;
7404                         let pending_forwards_count: u64 = Readable::read(reader)?;
7405                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7406                         for _ in 0..pending_forwards_count {
7407                                 pending_forwards.push(Readable::read(reader)?);
7408                         }
7409                         forward_htlcs.insert(short_channel_id, pending_forwards);
7410                 }
7411
7412                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7413                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7414                 for _ in 0..claimable_htlcs_count {
7415                         let payment_hash = Readable::read(reader)?;
7416                         let previous_hops_len: u64 = Readable::read(reader)?;
7417                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7418                         for _ in 0..previous_hops_len {
7419                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7420                         }
7421                         claimable_htlcs_list.push((payment_hash, previous_hops));
7422                 }
7423
7424                 let peer_count: u64 = Readable::read(reader)?;
7425                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7426                 for _ in 0..peer_count {
7427                         let peer_pubkey = Readable::read(reader)?;
7428                         let peer_state = PeerState {
7429                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7430                                 latest_features: Readable::read(reader)?,
7431                                 pending_msg_events: Vec::new(),
7432                                 monitor_update_blocked_actions: BTreeMap::new(),
7433                                 is_connected: false,
7434                         };
7435                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7436                 }
7437
7438                 let event_count: u64 = Readable::read(reader)?;
7439                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7440                 for _ in 0..event_count {
7441                         match MaybeReadable::read(reader)? {
7442                                 Some(event) => pending_events_read.push(event),
7443                                 None => continue,
7444                         }
7445                 }
7446
7447                 let background_event_count: u64 = Readable::read(reader)?;
7448                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
7449                 for _ in 0..background_event_count {
7450                         match <u8 as Readable>::read(reader)? {
7451                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
7452                                 _ => return Err(DecodeError::InvalidValue),
7453                         }
7454                 }
7455
7456                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7457                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7458
7459                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7460                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7461                 for _ in 0..pending_inbound_payment_count {
7462                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7463                                 return Err(DecodeError::InvalidValue);
7464                         }
7465                 }
7466
7467                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7468                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7469                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7470                 for _ in 0..pending_outbound_payments_count_compat {
7471                         let session_priv = Readable::read(reader)?;
7472                         let payment = PendingOutboundPayment::Legacy {
7473                                 session_privs: [session_priv].iter().cloned().collect()
7474                         };
7475                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7476                                 return Err(DecodeError::InvalidValue)
7477                         };
7478                 }
7479
7480                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7481                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7482                 let mut pending_outbound_payments = None;
7483                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7484                 let mut received_network_pubkey: Option<PublicKey> = None;
7485                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7486                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7487                 let mut claimable_htlc_purposes = None;
7488                 let mut pending_claiming_payments = Some(HashMap::new());
7489                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7490                 read_tlv_fields!(reader, {
7491                         (1, pending_outbound_payments_no_retry, option),
7492                         (2, pending_intercepted_htlcs, option),
7493                         (3, pending_outbound_payments, option),
7494                         (4, pending_claiming_payments, option),
7495                         (5, received_network_pubkey, option),
7496                         (6, monitor_update_blocked_actions_per_peer, option),
7497                         (7, fake_scid_rand_bytes, option),
7498                         (9, claimable_htlc_purposes, vec_type),
7499                         (11, probing_cookie_secret, option),
7500                 });
7501                 if fake_scid_rand_bytes.is_none() {
7502                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7503                 }
7504
7505                 if probing_cookie_secret.is_none() {
7506                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7507                 }
7508
7509                 if !channel_closures.is_empty() {
7510                         pending_events_read.append(&mut channel_closures);
7511                 }
7512
7513                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7514                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7515                 } else if pending_outbound_payments.is_none() {
7516                         let mut outbounds = HashMap::new();
7517                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7518                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7519                         }
7520                         pending_outbound_payments = Some(outbounds);
7521                 }
7522                 let pending_outbounds = OutboundPayments {
7523                         pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7524                         retry_lock: Mutex::new(())
7525                 };
7526
7527                 {
7528                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7529                         // ChannelMonitor data for any channels for which we do not have authorative state
7530                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7531                         // corresponding `Channel` at all).
7532                         // This avoids several edge-cases where we would otherwise "forget" about pending
7533                         // payments which are still in-flight via their on-chain state.
7534                         // We only rebuild the pending payments map if we were most recently serialized by
7535                         // 0.0.102+
7536                         for (_, monitor) in args.channel_monitors.iter() {
7537                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7538                                         for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7539                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7540                                                         if path.is_empty() {
7541                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7542                                                                 return Err(DecodeError::InvalidValue);
7543                                                         }
7544
7545                                                         let path_amt = path.last().unwrap().fee_msat;
7546                                                         let mut session_priv_bytes = [0; 32];
7547                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7548                                                         match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7549                                                                 hash_map::Entry::Occupied(mut entry) => {
7550                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7551                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7552                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7553                                                                 },
7554                                                                 hash_map::Entry::Vacant(entry) => {
7555                                                                         let path_fee = path.get_path_fees();
7556                                                                         entry.insert(PendingOutboundPayment::Retryable {
7557                                                                                 retry_strategy: None,
7558                                                                                 attempts: PaymentAttempts::new(),
7559                                                                                 payment_params: None,
7560                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7561                                                                                 payment_hash: htlc.payment_hash,
7562                                                                                 payment_secret,
7563                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7564                                                                                 pending_amt_msat: path_amt,
7565                                                                                 pending_fee_msat: Some(path_fee),
7566                                                                                 total_msat: path_amt,
7567                                                                                 starting_block_height: best_block_height,
7568                                                                         });
7569                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7570                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7571                                                                 }
7572                                                         }
7573                                                 }
7574                                         }
7575                                         for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7576                                                 match htlc_source {
7577                                                         HTLCSource::PreviousHopData(prev_hop_data) => {
7578                                                                 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7579                                                                         info.prev_funding_outpoint == prev_hop_data.outpoint &&
7580                                                                                 info.prev_htlc_id == prev_hop_data.htlc_id
7581                                                                 };
7582                                                                 // The ChannelMonitor is now responsible for this HTLC's
7583                                                                 // failure/success and will let us know what its outcome is. If we
7584                                                                 // still have an entry for this HTLC in `forward_htlcs` or
7585                                                                 // `pending_intercepted_htlcs`, we were apparently not persisted after
7586                                                                 // the monitor was when forwarding the payment.
7587                                                                 forward_htlcs.retain(|_, forwards| {
7588                                                                         forwards.retain(|forward| {
7589                                                                                 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7590                                                                                         if pending_forward_matches_htlc(&htlc_info) {
7591                                                                                                 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7592                                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7593                                                                                                 false
7594                                                                                         } else { true }
7595                                                                                 } else { true }
7596                                                                         });
7597                                                                         !forwards.is_empty()
7598                                                                 });
7599                                                                 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7600                                                                         if pending_forward_matches_htlc(&htlc_info) {
7601                                                                                 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7602                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7603                                                                                 pending_events_read.retain(|event| {
7604                                                                                         if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7605                                                                                                 intercepted_id != ev_id
7606                                                                                         } else { true }
7607                                                                                 });
7608                                                                                 false
7609                                                                         } else { true }
7610                                                                 });
7611                                                         },
7612                                                         HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7613                                                                 if let Some(preimage) = preimage_opt {
7614                                                                         let pending_events = Mutex::new(pending_events_read);
7615                                                                         // Note that we set `from_onchain` to "false" here,
7616                                                                         // deliberately keeping the pending payment around forever.
7617                                                                         // Given it should only occur when we have a channel we're
7618                                                                         // force-closing for being stale that's okay.
7619                                                                         // The alternative would be to wipe the state when claiming,
7620                                                                         // generating a `PaymentPathSuccessful` event but regenerating
7621                                                                         // it and the `PaymentSent` on every restart until the
7622                                                                         // `ChannelMonitor` is removed.
7623                                                                         pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7624                                                                         pending_events_read = pending_events.into_inner().unwrap();
7625                                                                 }
7626                                                         },
7627                                                 }
7628                                         }
7629                                 }
7630                         }
7631                 }
7632
7633                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7634                         // If we have pending HTLCs to forward, assume we either dropped a
7635                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7636                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7637                         // constant as enough time has likely passed that we should simply handle the forwards
7638                         // now, or at least after the user gets a chance to reconnect to our peers.
7639                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7640                                 time_forwardable: Duration::from_secs(2),
7641                         });
7642                 }
7643
7644                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7645                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7646
7647                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7648                 if let Some(mut purposes) = claimable_htlc_purposes {
7649                         if purposes.len() != claimable_htlcs_list.len() {
7650                                 return Err(DecodeError::InvalidValue);
7651                         }
7652                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7653                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7654                         }
7655                 } else {
7656                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7657                         // include a `_legacy_hop_data` in the `OnionPayload`.
7658                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7659                                 if previous_hops.is_empty() {
7660                                         return Err(DecodeError::InvalidValue);
7661                                 }
7662                                 let purpose = match &previous_hops[0].onion_payload {
7663                                         OnionPayload::Invoice { _legacy_hop_data } => {
7664                                                 if let Some(hop_data) = _legacy_hop_data {
7665                                                         events::PaymentPurpose::InvoicePayment {
7666                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7667                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7668                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7669                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7670                                                                                 Err(()) => {
7671                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7672                                                                                         return Err(DecodeError::InvalidValue);
7673                                                                                 }
7674                                                                         }
7675                                                                 },
7676                                                                 payment_secret: hop_data.payment_secret,
7677                                                         }
7678                                                 } else { return Err(DecodeError::InvalidValue); }
7679                                         },
7680                                         OnionPayload::Spontaneous(payment_preimage) =>
7681                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7682                                 };
7683                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7684                         }
7685                 }
7686
7687                 let mut secp_ctx = Secp256k1::new();
7688                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7689
7690                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7691                         Ok(key) => key,
7692                         Err(()) => return Err(DecodeError::InvalidValue)
7693                 };
7694                 if let Some(network_pubkey) = received_network_pubkey {
7695                         if network_pubkey != our_network_pubkey {
7696                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7697                                 return Err(DecodeError::InvalidValue);
7698                         }
7699                 }
7700
7701                 let mut outbound_scid_aliases = HashSet::new();
7702                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7703                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7704                         let peer_state = &mut *peer_state_lock;
7705                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7706                                 if chan.outbound_scid_alias() == 0 {
7707                                         let mut outbound_scid_alias;
7708                                         loop {
7709                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7710                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7711                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7712                                         }
7713                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7714                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7715                                         // Note that in rare cases its possible to hit this while reading an older
7716                                         // channel if we just happened to pick a colliding outbound alias above.
7717                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7718                                         return Err(DecodeError::InvalidValue);
7719                                 }
7720                                 if chan.is_usable() {
7721                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7722                                                 // Note that in rare cases its possible to hit this while reading an older
7723                                                 // channel if we just happened to pick a colliding outbound alias above.
7724                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7725                                                 return Err(DecodeError::InvalidValue);
7726                                         }
7727                                 }
7728                         }
7729                 }
7730
7731                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7732
7733                 for (_, monitor) in args.channel_monitors.iter() {
7734                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7735                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7736                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7737                                         let mut claimable_amt_msat = 0;
7738                                         let mut receiver_node_id = Some(our_network_pubkey);
7739                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7740                                         if phantom_shared_secret.is_some() {
7741                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7742                                                         .expect("Failed to get node_id for phantom node recipient");
7743                                                 receiver_node_id = Some(phantom_pubkey)
7744                                         }
7745                                         for claimable_htlc in claimable_htlcs {
7746                                                 claimable_amt_msat += claimable_htlc.value;
7747
7748                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7749                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7750                                                 // new commitment transaction we can just provide the payment preimage to
7751                                                 // the corresponding ChannelMonitor and nothing else.
7752                                                 //
7753                                                 // We do so directly instead of via the normal ChannelMonitor update
7754                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7755                                                 // we're not allowed to call it directly yet. Further, we do the update
7756                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7757                                                 // reason to.
7758                                                 // If we were to generate a new ChannelMonitor update ID here and then
7759                                                 // crash before the user finishes block connect we'd end up force-closing
7760                                                 // this channel as well. On the flip side, there's no harm in restarting
7761                                                 // without the new monitor persisted - we'll end up right back here on
7762                                                 // restart.
7763                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7764                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7765                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7766                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7767                                                         let peer_state = &mut *peer_state_lock;
7768                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7769                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7770                                                         }
7771                                                 }
7772                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7773                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7774                                                 }
7775                                         }
7776                                         pending_events_read.push(events::Event::PaymentClaimed {
7777                                                 receiver_node_id,
7778                                                 payment_hash,
7779                                                 purpose: payment_purpose,
7780                                                 amount_msat: claimable_amt_msat,
7781                                         });
7782                                 }
7783                         }
7784                 }
7785
7786                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7787                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7788                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7789                         } else {
7790                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7791                                 return Err(DecodeError::InvalidValue);
7792                         }
7793                 }
7794
7795                 let channel_manager = ChannelManager {
7796                         genesis_hash,
7797                         fee_estimator: bounded_fee_estimator,
7798                         chain_monitor: args.chain_monitor,
7799                         tx_broadcaster: args.tx_broadcaster,
7800                         router: args.router,
7801
7802                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7803
7804                         inbound_payment_key: expanded_inbound_key,
7805                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7806                         pending_outbound_payments: pending_outbounds,
7807                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7808
7809                         forward_htlcs: Mutex::new(forward_htlcs),
7810                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7811                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7812                         id_to_peer: Mutex::new(id_to_peer),
7813                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7814                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7815
7816                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7817
7818                         our_network_pubkey,
7819                         secp_ctx,
7820
7821                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7822
7823                         per_peer_state: FairRwLock::new(per_peer_state),
7824
7825                         pending_events: Mutex::new(pending_events_read),
7826                         pending_background_events: Mutex::new(pending_background_events_read),
7827                         total_consistency_lock: RwLock::new(()),
7828                         persistence_notifier: Notifier::new(),
7829
7830                         entropy_source: args.entropy_source,
7831                         node_signer: args.node_signer,
7832                         signer_provider: args.signer_provider,
7833
7834                         logger: args.logger,
7835                         default_configuration: args.default_config,
7836                 };
7837
7838                 for htlc_source in failed_htlcs.drain(..) {
7839                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7840                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7841                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7842                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7843                 }
7844
7845                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7846                 //connection or two.
7847
7848                 Ok((best_block_hash.clone(), channel_manager))
7849         }
7850 }
7851
7852 #[cfg(test)]
7853 mod tests {
7854         use bitcoin::hashes::Hash;
7855         use bitcoin::hashes::sha256::Hash as Sha256;
7856         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7857         use core::time::Duration;
7858         use core::sync::atomic::Ordering;
7859         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7860         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, InterceptId};
7861         use crate::ln::functional_test_utils::*;
7862         use crate::ln::msgs;
7863         use crate::ln::msgs::ChannelMessageHandler;
7864         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7865         use crate::util::errors::APIError;
7866         use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7867         use crate::util::test_utils;
7868         use crate::util::config::ChannelConfig;
7869         use crate::chain::keysinterface::EntropySource;
7870
7871         #[test]
7872         fn test_notify_limits() {
7873                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7874                 // indeed, do not cause the persistence of a new ChannelManager.
7875                 let chanmon_cfgs = create_chanmon_cfgs(3);
7876                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7877                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7878                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7879
7880                 // All nodes start with a persistable update pending as `create_network` connects each node
7881                 // with all other nodes to make most tests simpler.
7882                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7883                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7884                 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7885
7886                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7887
7888                 // We check that the channel info nodes have doesn't change too early, even though we try
7889                 // to connect messages with new values
7890                 chan.0.contents.fee_base_msat *= 2;
7891                 chan.1.contents.fee_base_msat *= 2;
7892                 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
7893                         &nodes[1].node.get_our_node_id()).pop().unwrap();
7894                 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
7895                         &nodes[0].node.get_our_node_id()).pop().unwrap();
7896
7897                 // The first two nodes (which opened a channel) should now require fresh persistence
7898                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7899                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7900                 // ... but the last node should not.
7901                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7902                 // After persisting the first two nodes they should no longer need fresh persistence.
7903                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7904                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7905
7906                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7907                 // about the channel.
7908                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7909                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7910                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7911
7912                 // The nodes which are a party to the channel should also ignore messages from unrelated
7913                 // parties.
7914                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7915                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7916                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7917                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7918                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7919                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7920
7921                 // At this point the channel info given by peers should still be the same.
7922                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7923                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7924
7925                 // An earlier version of handle_channel_update didn't check the directionality of the
7926                 // update message and would always update the local fee info, even if our peer was
7927                 // (spuriously) forwarding us our own channel_update.
7928                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7929                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7930                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7931
7932                 // First deliver each peers' own message, checking that the node doesn't need to be
7933                 // persisted and that its channel info remains the same.
7934                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7935                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7936                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7937                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7938                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7939                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7940
7941                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7942                 // the channel info has updated.
7943                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7944                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7945                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7946                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7947                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7948                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7949         }
7950
7951         #[test]
7952         fn test_keysend_dup_hash_partial_mpp() {
7953                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7954                 // expected.
7955                 let chanmon_cfgs = create_chanmon_cfgs(2);
7956                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7957                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7958                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7959                 create_announced_chan_between_nodes(&nodes, 0, 1);
7960
7961                 // First, send a partial MPP payment.
7962                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7963                 let mut mpp_route = route.clone();
7964                 mpp_route.paths.push(mpp_route.paths[0].clone());
7965
7966                 let payment_id = PaymentId([42; 32]);
7967                 // Use the utility function send_payment_along_path to send the payment with MPP data which
7968                 // indicates there are more HTLCs coming.
7969                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7970                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
7971                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
7972                 check_added_monitors!(nodes[0], 1);
7973                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7974                 assert_eq!(events.len(), 1);
7975                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7976
7977                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7978                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7979                 check_added_monitors!(nodes[0], 1);
7980                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7981                 assert_eq!(events.len(), 1);
7982                 let ev = events.drain(..).next().unwrap();
7983                 let payment_event = SendEvent::from_event(ev);
7984                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7985                 check_added_monitors!(nodes[1], 0);
7986                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7987                 expect_pending_htlcs_forwardable!(nodes[1]);
7988                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
7989                 check_added_monitors!(nodes[1], 1);
7990                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7991                 assert!(updates.update_add_htlcs.is_empty());
7992                 assert!(updates.update_fulfill_htlcs.is_empty());
7993                 assert_eq!(updates.update_fail_htlcs.len(), 1);
7994                 assert!(updates.update_fail_malformed_htlcs.is_empty());
7995                 assert!(updates.update_fee.is_none());
7996                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7997                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7998                 expect_payment_failed!(nodes[0], our_payment_hash, true);
7999
8000                 // Send the second half of the original MPP payment.
8001                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
8002                 check_added_monitors!(nodes[0], 1);
8003                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8004                 assert_eq!(events.len(), 1);
8005                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
8006
8007                 // Claim the full MPP payment. Note that we can't use a test utility like
8008                 // claim_funds_along_route because the ordering of the messages causes the second half of the
8009                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
8010                 // lightning messages manually.
8011                 nodes[1].node.claim_funds(payment_preimage);
8012                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
8013                 check_added_monitors!(nodes[1], 2);
8014
8015                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8016                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
8017                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
8018                 check_added_monitors!(nodes[0], 1);
8019                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8020                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
8021                 check_added_monitors!(nodes[1], 1);
8022                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8023                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
8024                 check_added_monitors!(nodes[1], 1);
8025                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8026                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
8027                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
8028                 check_added_monitors!(nodes[0], 1);
8029                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
8030                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
8031                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8032                 check_added_monitors!(nodes[0], 1);
8033                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8034                 check_added_monitors!(nodes[1], 1);
8035                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8036                 check_added_monitors!(nodes[1], 1);
8037                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8038                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8039                 check_added_monitors!(nodes[0], 1);
8040
8041                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8042                 // path's success and a PaymentPathSuccessful event for each path's success.
8043                 let events = nodes[0].node.get_and_clear_pending_events();
8044                 assert_eq!(events.len(), 3);
8045                 match events[0] {
8046                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8047                                 assert_eq!(Some(payment_id), *id);
8048                                 assert_eq!(payment_preimage, *preimage);
8049                                 assert_eq!(our_payment_hash, *hash);
8050                         },
8051                         _ => panic!("Unexpected event"),
8052                 }
8053                 match events[1] {
8054                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8055                                 assert_eq!(payment_id, *actual_payment_id);
8056                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8057                                 assert_eq!(route.paths[0], *path);
8058                         },
8059                         _ => panic!("Unexpected event"),
8060                 }
8061                 match events[2] {
8062                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8063                                 assert_eq!(payment_id, *actual_payment_id);
8064                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8065                                 assert_eq!(route.paths[0], *path);
8066                         },
8067                         _ => panic!("Unexpected event"),
8068                 }
8069         }
8070
8071         #[test]
8072         fn test_keysend_dup_payment_hash() {
8073                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8074                 //      outbound regular payment fails as expected.
8075                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8076                 //      fails as expected.
8077                 let chanmon_cfgs = create_chanmon_cfgs(2);
8078                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8079                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8080                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8081                 create_announced_chan_between_nodes(&nodes, 0, 1);
8082                 let scorer = test_utils::TestScorer::new();
8083                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8084
8085                 // To start (1), send a regular payment but don't claim it.
8086                 let expected_route = [&nodes[1]];
8087                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8088
8089                 // Next, attempt a keysend payment and make sure it fails.
8090                 let route_params = RouteParameters {
8091                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8092                         final_value_msat: 100_000,
8093                 };
8094                 let route = find_route(
8095                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8096                         None, nodes[0].logger, &scorer, &random_seed_bytes
8097                 ).unwrap();
8098                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8099                 check_added_monitors!(nodes[0], 1);
8100                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8101                 assert_eq!(events.len(), 1);
8102                 let ev = events.drain(..).next().unwrap();
8103                 let payment_event = SendEvent::from_event(ev);
8104                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8105                 check_added_monitors!(nodes[1], 0);
8106                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8107                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8108                 // fails), the second will process the resulting failure and fail the HTLC backward
8109                 expect_pending_htlcs_forwardable!(nodes[1]);
8110                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8111                 check_added_monitors!(nodes[1], 1);
8112                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8113                 assert!(updates.update_add_htlcs.is_empty());
8114                 assert!(updates.update_fulfill_htlcs.is_empty());
8115                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8116                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8117                 assert!(updates.update_fee.is_none());
8118                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8119                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8120                 expect_payment_failed!(nodes[0], payment_hash, true);
8121
8122                 // Finally, claim the original payment.
8123                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8124
8125                 // To start (2), send a keysend payment but don't claim it.
8126                 let payment_preimage = PaymentPreimage([42; 32]);
8127                 let route = find_route(
8128                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8129                         None, nodes[0].logger, &scorer, &random_seed_bytes
8130                 ).unwrap();
8131                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8132                 check_added_monitors!(nodes[0], 1);
8133                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8134                 assert_eq!(events.len(), 1);
8135                 let event = events.pop().unwrap();
8136                 let path = vec![&nodes[1]];
8137                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8138
8139                 // Next, attempt a regular payment and make sure it fails.
8140                 let payment_secret = PaymentSecret([43; 32]);
8141                 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8142                 check_added_monitors!(nodes[0], 1);
8143                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8144                 assert_eq!(events.len(), 1);
8145                 let ev = events.drain(..).next().unwrap();
8146                 let payment_event = SendEvent::from_event(ev);
8147                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8148                 check_added_monitors!(nodes[1], 0);
8149                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8150                 expect_pending_htlcs_forwardable!(nodes[1]);
8151                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8152                 check_added_monitors!(nodes[1], 1);
8153                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8154                 assert!(updates.update_add_htlcs.is_empty());
8155                 assert!(updates.update_fulfill_htlcs.is_empty());
8156                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8157                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8158                 assert!(updates.update_fee.is_none());
8159                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8160                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8161                 expect_payment_failed!(nodes[0], payment_hash, true);
8162
8163                 // Finally, succeed the keysend payment.
8164                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8165         }
8166
8167         #[test]
8168         fn test_keysend_hash_mismatch() {
8169                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8170                 // preimage doesn't match the msg's payment hash.
8171                 let chanmon_cfgs = create_chanmon_cfgs(2);
8172                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8173                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8174                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8175
8176                 let payer_pubkey = nodes[0].node.get_our_node_id();
8177                 let payee_pubkey = nodes[1].node.get_our_node_id();
8178
8179                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8180                 let route_params = RouteParameters {
8181                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8182                         final_value_msat: 10_000,
8183                 };
8184                 let network_graph = nodes[0].network_graph.clone();
8185                 let first_hops = nodes[0].node.list_usable_channels();
8186                 let scorer = test_utils::TestScorer::new();
8187                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8188                 let route = find_route(
8189                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8190                         nodes[0].logger, &scorer, &random_seed_bytes
8191                 ).unwrap();
8192
8193                 let test_preimage = PaymentPreimage([42; 32]);
8194                 let mismatch_payment_hash = PaymentHash([43; 32]);
8195                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
8196                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8197                 check_added_monitors!(nodes[0], 1);
8198
8199                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8200                 assert_eq!(updates.update_add_htlcs.len(), 1);
8201                 assert!(updates.update_fulfill_htlcs.is_empty());
8202                 assert!(updates.update_fail_htlcs.is_empty());
8203                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8204                 assert!(updates.update_fee.is_none());
8205                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8206
8207                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
8208         }
8209
8210         #[test]
8211         fn test_keysend_msg_with_secret_err() {
8212                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8213                 let chanmon_cfgs = create_chanmon_cfgs(2);
8214                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8215                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8216                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8217
8218                 let payer_pubkey = nodes[0].node.get_our_node_id();
8219                 let payee_pubkey = nodes[1].node.get_our_node_id();
8220
8221                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8222                 let route_params = RouteParameters {
8223                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8224                         final_value_msat: 10_000,
8225                 };
8226                 let network_graph = nodes[0].network_graph.clone();
8227                 let first_hops = nodes[0].node.list_usable_channels();
8228                 let scorer = test_utils::TestScorer::new();
8229                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8230                 let route = find_route(
8231                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8232                         nodes[0].logger, &scorer, &random_seed_bytes
8233                 ).unwrap();
8234
8235                 let test_preimage = PaymentPreimage([42; 32]);
8236                 let test_secret = PaymentSecret([43; 32]);
8237                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8238                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8239                 nodes[0].node.test_send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
8240                 check_added_monitors!(nodes[0], 1);
8241
8242                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8243                 assert_eq!(updates.update_add_htlcs.len(), 1);
8244                 assert!(updates.update_fulfill_htlcs.is_empty());
8245                 assert!(updates.update_fail_htlcs.is_empty());
8246                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8247                 assert!(updates.update_fee.is_none());
8248                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8249
8250                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
8251         }
8252
8253         #[test]
8254         fn test_multi_hop_missing_secret() {
8255                 let chanmon_cfgs = create_chanmon_cfgs(4);
8256                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8257                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8258                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8259
8260                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8261                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8262                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8263                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8264
8265                 // Marshall an MPP route.
8266                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8267                 let path = route.paths[0].clone();
8268                 route.paths.push(path);
8269                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8270                 route.paths[0][0].short_channel_id = chan_1_id;
8271                 route.paths[0][1].short_channel_id = chan_3_id;
8272                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8273                 route.paths[1][0].short_channel_id = chan_2_id;
8274                 route.paths[1][1].short_channel_id = chan_4_id;
8275
8276                 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
8277                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8278                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))                        },
8279                         _ => panic!("unexpected error")
8280                 }
8281         }
8282
8283         #[test]
8284         fn test_drop_disconnected_peers_when_removing_channels() {
8285                 let chanmon_cfgs = create_chanmon_cfgs(2);
8286                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8287                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8288                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8289
8290                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8291
8292                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8293                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8294
8295                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8296                 check_closed_broadcast!(nodes[0], true);
8297                 check_added_monitors!(nodes[0], 1);
8298                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8299
8300                 {
8301                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8302                         // disconnected and the channel between has been force closed.
8303                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8304                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8305                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8306                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8307                 }
8308
8309                 nodes[0].node.timer_tick_occurred();
8310
8311                 {
8312                         // Assert that nodes[1] has now been removed.
8313                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8314                 }
8315         }
8316
8317         #[test]
8318         fn bad_inbound_payment_hash() {
8319                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8320                 let chanmon_cfgs = create_chanmon_cfgs(2);
8321                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8322                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8323                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8324
8325                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8326                 let payment_data = msgs::FinalOnionHopData {
8327                         payment_secret,
8328                         total_msat: 100_000,
8329                 };
8330
8331                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8332                 // payment verification fails as expected.
8333                 let mut bad_payment_hash = payment_hash.clone();
8334                 bad_payment_hash.0[0] += 1;
8335                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8336                         Ok(_) => panic!("Unexpected ok"),
8337                         Err(()) => {
8338                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
8339                         }
8340                 }
8341
8342                 // Check that using the original payment hash succeeds.
8343                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8344         }
8345
8346         #[test]
8347         fn test_id_to_peer_coverage() {
8348                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8349                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8350                 // the channel is successfully closed.
8351                 let chanmon_cfgs = create_chanmon_cfgs(2);
8352                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8353                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8354                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8355
8356                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8357                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8358                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8359                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8360                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8361
8362                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8363                 let channel_id = &tx.txid().into_inner();
8364                 {
8365                         // Ensure that the `id_to_peer` map is empty until either party has received the
8366                         // funding transaction, and have the real `channel_id`.
8367                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8368                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8369                 }
8370
8371                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8372                 {
8373                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8374                         // as it has the funding transaction.
8375                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8376                         assert_eq!(nodes_0_lock.len(), 1);
8377                         assert!(nodes_0_lock.contains_key(channel_id));
8378                 }
8379
8380                 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8381
8382                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8383
8384                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8385                 {
8386                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8387                         assert_eq!(nodes_0_lock.len(), 1);
8388                         assert!(nodes_0_lock.contains_key(channel_id));
8389                 }
8390
8391                 {
8392                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8393                         // as it has the funding transaction.
8394                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8395                         assert_eq!(nodes_1_lock.len(), 1);
8396                         assert!(nodes_1_lock.contains_key(channel_id));
8397                 }
8398                 check_added_monitors!(nodes[1], 1);
8399                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8400                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8401                 check_added_monitors!(nodes[0], 1);
8402                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8403                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8404                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8405
8406                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8407                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8408                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8409                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8410
8411                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8412                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8413                 {
8414                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8415                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8416                         // fee for the closing transaction has been negotiated and the parties has the other
8417                         // party's signature for the fee negotiated closing transaction.)
8418                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8419                         assert_eq!(nodes_0_lock.len(), 1);
8420                         assert!(nodes_0_lock.contains_key(channel_id));
8421                 }
8422
8423                 {
8424                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8425                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8426                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8427                         // kept in the `nodes[1]`'s `id_to_peer` map.
8428                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8429                         assert_eq!(nodes_1_lock.len(), 1);
8430                         assert!(nodes_1_lock.contains_key(channel_id));
8431                 }
8432
8433                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8434                 {
8435                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8436                         // therefore has all it needs to fully close the channel (both signatures for the
8437                         // closing transaction).
8438                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8439                         // fully closed by `nodes[0]`.
8440                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8441
8442                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8443                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8444                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8445                         assert_eq!(nodes_1_lock.len(), 1);
8446                         assert!(nodes_1_lock.contains_key(channel_id));
8447                 }
8448
8449                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8450
8451                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8452                 {
8453                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8454                         // they both have everything required to fully close the channel.
8455                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8456                 }
8457                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8458
8459                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8460                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8461         }
8462
8463         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8464                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8465                 check_api_error_message(expected_message, res_err)
8466         }
8467
8468         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8469                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8470                 check_api_error_message(expected_message, res_err)
8471         }
8472
8473         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8474                 match res_err {
8475                         Err(APIError::APIMisuseError { err }) => {
8476                                 assert_eq!(err, expected_err_message);
8477                         },
8478                         Err(APIError::ChannelUnavailable { err }) => {
8479                                 assert_eq!(err, expected_err_message);
8480                         },
8481                         Ok(_) => panic!("Unexpected Ok"),
8482                         Err(_) => panic!("Unexpected Error"),
8483                 }
8484         }
8485
8486         #[test]
8487         fn test_api_calls_with_unkown_counterparty_node() {
8488                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8489                 // expected if the `counterparty_node_id` is an unkown peer in the
8490                 // `ChannelManager::per_peer_state` map.
8491                 let chanmon_cfg = create_chanmon_cfgs(2);
8492                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8493                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8494                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8495
8496                 // Dummy values
8497                 let channel_id = [4; 32];
8498                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8499                 let intercept_id = InterceptId([0; 32]);
8500
8501                 // Test the API functions.
8502                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8503
8504                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8505
8506                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8507
8508                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8509
8510                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8511
8512                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8513
8514                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8515         }
8516
8517         #[test]
8518         fn test_connection_limiting() {
8519                 // Test that we limit un-channel'd peers and un-funded channels properly.
8520                 let chanmon_cfgs = create_chanmon_cfgs(2);
8521                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8522                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8523                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8524
8525                 // Note that create_network connects the nodes together for us
8526
8527                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8528                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8529
8530                 let mut funding_tx = None;
8531                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8532                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8533                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8534
8535                         if idx == 0 {
8536                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8537                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8538                                 funding_tx = Some(tx.clone());
8539                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8540                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8541
8542                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8543                                 check_added_monitors!(nodes[1], 1);
8544                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8545
8546                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8547                                 check_added_monitors!(nodes[0], 1);
8548                         }
8549                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8550                 }
8551
8552                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8553                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8554                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8555                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8556                         open_channel_msg.temporary_channel_id);
8557
8558                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8559                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8560                 // limit.
8561                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8562                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8563                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8564                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8565                         peer_pks.push(random_pk);
8566                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8567                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8568                 }
8569                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8570                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8571                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8572                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8573
8574                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8575                 // them if we have too many un-channel'd peers.
8576                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8577                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8578                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8579                 for ev in chan_closed_events {
8580                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8581                 }
8582                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8583                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8584                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8585                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8586
8587                 // but of course if the connection is outbound its allowed...
8588                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8589                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8590                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8591
8592                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8593                 // Even though we accept one more connection from new peers, we won't actually let them
8594                 // open channels.
8595                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8596                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8597                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8598                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8599                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8600                 }
8601                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8602                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8603                         open_channel_msg.temporary_channel_id);
8604
8605                 // Of course, however, outbound channels are always allowed
8606                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8607                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8608
8609                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8610                 // "protected" and can connect again.
8611                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8612                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8613                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8614                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8615
8616                 // Further, because the first channel was funded, we can open another channel with
8617                 // last_random_pk.
8618                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8619                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8620         }
8621
8622         #[test]
8623         fn test_outbound_chans_unlimited() {
8624                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8625                 let chanmon_cfgs = create_chanmon_cfgs(2);
8626                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8627                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8628                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8629
8630                 // Note that create_network connects the nodes together for us
8631
8632                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8633                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8634
8635                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8636                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8637                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8638                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8639                 }
8640
8641                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8642                 // rejected.
8643                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8644                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8645                         open_channel_msg.temporary_channel_id);
8646
8647                 // but we can still open an outbound channel.
8648                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8649                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8650
8651                 // but even with such an outbound channel, additional inbound channels will still fail.
8652                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8653                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8654                         open_channel_msg.temporary_channel_id);
8655         }
8656
8657         #[test]
8658         fn test_0conf_limiting() {
8659                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8660                 // flag set and (sometimes) accept channels as 0conf.
8661                 let chanmon_cfgs = create_chanmon_cfgs(2);
8662                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8663                 let mut settings = test_default_channel_config();
8664                 settings.manually_accept_inbound_channels = true;
8665                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8666                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8667
8668                 // Note that create_network connects the nodes together for us
8669
8670                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8671                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8672
8673                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8674                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8675                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8676                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8677                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8678                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8679
8680                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8681                         let events = nodes[1].node.get_and_clear_pending_events();
8682                         match events[0] {
8683                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8684                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8685                                 }
8686                                 _ => panic!("Unexpected event"),
8687                         }
8688                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8689                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8690                 }
8691
8692                 // If we try to accept a channel from another peer non-0conf it will fail.
8693                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8694                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8695                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8696                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8697                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8698                 let events = nodes[1].node.get_and_clear_pending_events();
8699                 match events[0] {
8700                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8701                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8702                                         Err(APIError::APIMisuseError { err }) =>
8703                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8704                                         _ => panic!(),
8705                                 }
8706                         }
8707                         _ => panic!("Unexpected event"),
8708                 }
8709                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8710                         open_channel_msg.temporary_channel_id);
8711
8712                 // ...however if we accept the same channel 0conf it should work just fine.
8713                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8714                 let events = nodes[1].node.get_and_clear_pending_events();
8715                 match events[0] {
8716                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8717                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8718                         }
8719                         _ => panic!("Unexpected event"),
8720                 }
8721                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8722         }
8723
8724         #[cfg(anchors)]
8725         #[test]
8726         fn test_anchors_zero_fee_htlc_tx_fallback() {
8727                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8728                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8729                 // the channel without the anchors feature.
8730                 let chanmon_cfgs = create_chanmon_cfgs(2);
8731                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8732                 let mut anchors_config = test_default_channel_config();
8733                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8734                 anchors_config.manually_accept_inbound_channels = true;
8735                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8736                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8737
8738                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8739                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8740                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8741
8742                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8743                 let events = nodes[1].node.get_and_clear_pending_events();
8744                 match events[0] {
8745                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8746                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8747                         }
8748                         _ => panic!("Unexpected event"),
8749                 }
8750
8751                 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
8752                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8753
8754                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8755                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8756
8757                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8758         }
8759 }
8760
8761 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8762 pub mod bench {
8763         use crate::chain::Listen;
8764         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8765         use crate::chain::keysinterface::{EntropySource, KeysManager, InMemorySigner};
8766         use crate::ln::channelmanager::{self, BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
8767         use crate::ln::functional_test_utils::*;
8768         use crate::ln::msgs::{ChannelMessageHandler, Init};
8769         use crate::routing::gossip::NetworkGraph;
8770         use crate::routing::router::{PaymentParameters, get_route};
8771         use crate::util::test_utils;
8772         use crate::util::config::UserConfig;
8773         use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8774
8775         use bitcoin::hashes::Hash;
8776         use bitcoin::hashes::sha256::Hash as Sha256;
8777         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8778
8779         use crate::sync::{Arc, Mutex};
8780
8781         use test::Bencher;
8782
8783         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8784                 node: &'a ChannelManager<
8785                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8786                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8787                                 &'a test_utils::TestLogger, &'a P>,
8788                         &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8789                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8790                         &'a test_utils::TestLogger>,
8791         }
8792
8793         #[cfg(test)]
8794         #[bench]
8795         fn bench_sends(bench: &mut Bencher) {
8796                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8797         }
8798
8799         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8800                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8801                 // Note that this is unrealistic as each payment send will require at least two fsync
8802                 // calls per node.
8803                 let network = bitcoin::Network::Testnet;
8804
8805                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8806                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8807                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8808                 let scorer = Mutex::new(test_utils::TestScorer::new());
8809                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8810
8811                 let mut config: UserConfig = Default::default();
8812                 config.channel_handshake_config.minimum_depth = 1;
8813
8814                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8815                 let seed_a = [1u8; 32];
8816                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8817                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8818                         network,
8819                         best_block: BestBlock::from_network(network),
8820                 });
8821                 let node_a_holder = NodeHolder { node: &node_a };
8822
8823                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8824                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8825                 let seed_b = [2u8; 32];
8826                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8827                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8828                         network,
8829                         best_block: BestBlock::from_network(network),
8830                 });
8831                 let node_b_holder = NodeHolder { node: &node_b };
8832
8833                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8834                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8835                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8836                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8837                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8838
8839                 let tx;
8840                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8841                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8842                                 value: 8_000_000, script_pubkey: output_script,
8843                         }]};
8844                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8845                 } else { panic!(); }
8846
8847                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8848                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8849
8850                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8851
8852                 let block = Block {
8853                         header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8854                         txdata: vec![tx],
8855                 };
8856                 Listen::block_connected(&node_a, &block, 1);
8857                 Listen::block_connected(&node_b, &block, 1);
8858
8859                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8860                 let msg_events = node_a.get_and_clear_pending_msg_events();
8861                 assert_eq!(msg_events.len(), 2);
8862                 match msg_events[0] {
8863                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
8864                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8865                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8866                         },
8867                         _ => panic!(),
8868                 }
8869                 match msg_events[1] {
8870                         MessageSendEvent::SendChannelUpdate { .. } => {},
8871                         _ => panic!(),
8872                 }
8873
8874                 let events_a = node_a.get_and_clear_pending_events();
8875                 assert_eq!(events_a.len(), 1);
8876                 match events_a[0] {
8877                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8878                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8879                         },
8880                         _ => panic!("Unexpected event"),
8881                 }
8882
8883                 let events_b = node_b.get_and_clear_pending_events();
8884                 assert_eq!(events_b.len(), 1);
8885                 match events_b[0] {
8886                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8887                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8888                         },
8889                         _ => panic!("Unexpected event"),
8890                 }
8891
8892                 let dummy_graph = NetworkGraph::new(network, &logger_a);
8893
8894                 let mut payment_count: u64 = 0;
8895                 macro_rules! send_payment {
8896                         ($node_a: expr, $node_b: expr) => {
8897                                 let usable_channels = $node_a.list_usable_channels();
8898                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
8899                                         .with_features($node_b.invoice_features());
8900                                 let scorer = test_utils::TestScorer::new();
8901                                 let seed = [3u8; 32];
8902                                 let keys_manager = KeysManager::new(&seed, 42, 42);
8903                                 let random_seed_bytes = keys_manager.get_secure_random_bytes();
8904                                 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
8905                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
8906
8907                                 let mut payment_preimage = PaymentPreimage([0; 32]);
8908                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
8909                                 payment_count += 1;
8910                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
8911                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
8912
8913                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8914                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
8915                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
8916                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
8917                                 let (raa, cs) = do_get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
8918                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
8919                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
8920                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
8921
8922                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
8923                                 expect_payment_claimable!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
8924                                 $node_b.claim_funds(payment_preimage);
8925                                 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
8926
8927                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
8928                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
8929                                                 assert_eq!(node_id, $node_a.get_our_node_id());
8930                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
8931                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
8932                                         },
8933                                         _ => panic!("Failed to generate claim event"),
8934                                 }
8935
8936                                 let (raa, cs) = do_get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
8937                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
8938                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
8939                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
8940
8941                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
8942                         }
8943                 }
8944
8945                 bench.iter(|| {
8946                         send_payment!(node_a, node_b);
8947                         send_payment!(node_b, node_a);
8948                 });
8949         }
8950 }