]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/ln/peer_handler.rs
573e910ab083849b74587517540ff2210be04983
[rust-lightning] / lightning / src / ln / peer_handler.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Top level peer message handling and socket handling logic lives here.
11 //!
12 //! Instead of actually servicing sockets ourselves we require that you implement the
13 //! SocketDescriptor interface and use that to receive actions which you should perform on the
14 //! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
15 //! call into the provided message handlers (probably a ChannelManager and P2PGossipSync) with
16 //! messages they should handle, and encoding/sending response messages.
17
18 use bitcoin::secp256k1::{self, Secp256k1, SecretKey, PublicKey};
19
20 use ln::features::InitFeatures;
21 use ln::msgs;
22 use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler};
23 use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
24 use util::ser::{VecWriter, Writeable, Writer};
25 use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
26 use ln::wire;
27 use ln::wire::Encode;
28 use routing::gossip::{NetworkGraph, P2PGossipSync};
29 use util::atomic_counter::AtomicCounter;
30 use util::events::{MessageSendEvent, MessageSendEventsProvider};
31 use util::logger::Logger;
32
33 use prelude::*;
34 use io;
35 use alloc::collections::LinkedList;
36 use sync::{Arc, Mutex, MutexGuard, FairRwLock};
37 use core::sync::atomic::{AtomicBool, Ordering};
38 use core::{cmp, hash, fmt, mem};
39 use core::ops::Deref;
40 use core::convert::Infallible;
41 #[cfg(feature = "std")] use std::error;
42
43 use bitcoin::hashes::sha256::Hash as Sha256;
44 use bitcoin::hashes::sha256::HashEngine as Sha256Engine;
45 use bitcoin::hashes::{HashEngine, Hash};
46
47 /// Handler for BOLT1-compliant messages.
48 pub trait CustomMessageHandler: wire::CustomMessageReader {
49         /// Called with the message type that was received and the buffer to be read.
50         /// Can return a `MessageHandlingError` if the message could not be handled.
51         fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>;
52
53         /// Gets the list of pending messages which were generated by the custom message
54         /// handler, clearing the list in the process. The first tuple element must
55         /// correspond to the intended recipients node ids. If no connection to one of the
56         /// specified node does not exist, the message is simply not sent to it.
57         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>;
58 }
59
60 /// A dummy struct which implements `RoutingMessageHandler` without storing any routing information
61 /// or doing any processing. You can provide one of these as the route_handler in a MessageHandler.
62 pub struct IgnoringMessageHandler{}
63 impl MessageSendEventsProvider for IgnoringMessageHandler {
64         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> { Vec::new() }
65 }
66 impl RoutingMessageHandler for IgnoringMessageHandler {
67         fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> { Ok(false) }
68         fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> { Ok(false) }
69         fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> { Ok(false) }
70         fn get_next_channel_announcement(&self, _starting_point: u64) ->
71                 Option<(msgs::ChannelAnnouncement, Option<msgs::ChannelUpdate>, Option<msgs::ChannelUpdate>)> { None }
72         fn get_next_node_announcement(&self, _starting_point: Option<&PublicKey>) -> Option<msgs::NodeAnnouncement> { None }
73         fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {}
74         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) }
75         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) }
76         fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) }
77         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) }
78 }
79 impl Deref for IgnoringMessageHandler {
80         type Target = IgnoringMessageHandler;
81         fn deref(&self) -> &Self { self }
82 }
83
84 // Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a
85 // method that takes self for it.
86 impl wire::Type for Infallible {
87         fn type_id(&self) -> u16 {
88                 unreachable!();
89         }
90 }
91 impl Writeable for Infallible {
92         fn write<W: Writer>(&self, _: &mut W) -> Result<(), io::Error> {
93                 unreachable!();
94         }
95 }
96
97 impl wire::CustomMessageReader for IgnoringMessageHandler {
98         type CustomMessage = Infallible;
99         fn read<R: io::Read>(&self, _message_type: u16, _buffer: &mut R) -> Result<Option<Self::CustomMessage>, msgs::DecodeError> {
100                 Ok(None)
101         }
102 }
103
104 impl CustomMessageHandler for IgnoringMessageHandler {
105         fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> {
106                 // Since we always return `None` in the read the handle method should never be called.
107                 unreachable!();
108         }
109
110         fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() }
111 }
112
113 /// A dummy struct which implements `ChannelMessageHandler` without having any channels.
114 /// You can provide one of these as the route_handler in a MessageHandler.
115 pub struct ErroringMessageHandler {
116         message_queue: Mutex<Vec<MessageSendEvent>>
117 }
118 impl ErroringMessageHandler {
119         /// Constructs a new ErroringMessageHandler
120         pub fn new() -> Self {
121                 Self { message_queue: Mutex::new(Vec::new()) }
122         }
123         fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) {
124                 self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError {
125                         action: msgs::ErrorAction::SendErrorMessage {
126                                 msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() },
127                         },
128                         node_id: node_id.clone(),
129                 });
130         }
131 }
132 impl MessageSendEventsProvider for ErroringMessageHandler {
133         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
134                 let mut res = Vec::new();
135                 mem::swap(&mut res, &mut self.message_queue.lock().unwrap());
136                 res
137         }
138 }
139 impl ChannelMessageHandler for ErroringMessageHandler {
140         // Any messages which are related to a specific channel generate an error message to let the
141         // peer know we don't care about channels.
142         fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) {
143                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
144         }
145         fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) {
146                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
147         }
148         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) {
149                 ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id);
150         }
151         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) {
152                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
153         }
154         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReady) {
155                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
156         }
157         fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) {
158                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
159         }
160         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
161                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
162         }
163         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
164                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
165         }
166         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
167                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
168         }
169         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
170                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
171         }
172         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
173                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
174         }
175         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
176                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
177         }
178         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
179                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
180         }
181         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) {
182                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
183         }
184         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
185                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
186         }
187         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
188                 ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id);
189         }
190         // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them.
191         fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {}
192         fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {}
193         fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {}
194         fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {}
195 }
196 impl Deref for ErroringMessageHandler {
197         type Target = ErroringMessageHandler;
198         fn deref(&self) -> &Self { self }
199 }
200
201 /// Provides references to trait impls which handle different types of messages.
202 pub struct MessageHandler<CM: Deref, RM: Deref> where
203                 CM::Target: ChannelMessageHandler,
204                 RM::Target: RoutingMessageHandler {
205         /// A message handler which handles messages specific to channels. Usually this is just a
206         /// [`ChannelManager`] object or an [`ErroringMessageHandler`].
207         ///
208         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
209         pub chan_handler: CM,
210         /// A message handler which handles messages updating our knowledge of the network channel
211         /// graph. Usually this is just a [`P2PGossipSync`] object or an [`IgnoringMessageHandler`].
212         ///
213         /// [`P2PGossipSync`]: crate::routing::gossip::P2PGossipSync
214         pub route_handler: RM,
215 }
216
217 /// Provides an object which can be used to send data to and which uniquely identifies a connection
218 /// to a remote host. You will need to be able to generate multiple of these which meet Eq and
219 /// implement Hash to meet the PeerManager API.
220 ///
221 /// For efficiency, Clone should be relatively cheap for this type.
222 ///
223 /// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original
224 /// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it
225 /// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no
226 /// further calls to the [`PeerManager`] related to the original socket occur. This allows you to
227 /// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish
228 /// to simply use another value which is guaranteed to be globally unique instead.
229 pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
230         /// Attempts to send some data from the given slice to the peer.
231         ///
232         /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
233         /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be
234         /// called and further write attempts may occur until that time.
235         ///
236         /// If the returned size is smaller than `data.len()`, a
237         /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be
238         /// written. Additionally, until a `send_data` event completes fully, no further
239         /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to
240         /// prevent denial-of-service issues, you should not read or buffer any data from the socket
241         /// until then.
242         ///
243         /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true
244         /// (indicating that read events should be paused to prevent DoS in the send buffer),
245         /// `resume_read` may be set indicating that read events on this descriptor should resume. A
246         /// `resume_read` of false carries no meaning, and should not cause any action.
247         fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
248         /// Disconnect the socket pointed to by this SocketDescriptor.
249         ///
250         /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this
251         /// call (doing so is a noop).
252         fn disconnect_socket(&mut self);
253 }
254
255 /// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
256 /// generate no further read_event/write_buffer_space_avail/socket_disconnected calls for the
257 /// descriptor.
258 #[derive(Clone)]
259 pub struct PeerHandleError {
260         /// Used to indicate that we probably can't make any future connections to this peer (e.g.
261         /// because we required features that our peer was missing, or vice versa).
262         ///
263         /// While LDK's [`ChannelManager`] will not do it automatically, you likely wish to force-close
264         /// any channels with this peer or check for new versions of LDK.
265         ///
266         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
267         pub no_connection_possible: bool,
268 }
269 impl fmt::Debug for PeerHandleError {
270         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
271                 formatter.write_str("Peer Sent Invalid Data")
272         }
273 }
274 impl fmt::Display for PeerHandleError {
275         fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
276                 formatter.write_str("Peer Sent Invalid Data")
277         }
278 }
279
280 #[cfg(feature = "std")]
281 impl error::Error for PeerHandleError {
282         fn description(&self) -> &str {
283                 "Peer Sent Invalid Data"
284         }
285 }
286
287 enum InitSyncTracker{
288         NoSyncRequested,
289         ChannelsSyncing(u64),
290         NodesSyncing(PublicKey),
291 }
292
293 /// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop
294 /// forwarding gossip messages to peers altogether.
295 const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2;
296
297 /// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until
298 /// we have fewer than this many messages in the outbound buffer again.
299 /// We also use this as the target number of outbound gossip messages to keep in the write buffer,
300 /// refilled as we send bytes.
301 const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10;
302 /// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to
303 /// the peer.
304 const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO;
305
306 /// If we've sent a ping, and are still awaiting a response, we may need to churn our way through
307 /// the socket receive buffer before receiving the ping.
308 ///
309 /// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not
310 /// including any network delays, outbound traffic, or the same for messages from other peers.
311 ///
312 /// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks
313 /// per connected peer to respond to a ping, as long as they send us at least one message during
314 /// each tick, ensuring we aren't actually just disconnected.
315 /// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected
316 /// peer.
317 ///
318 /// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per
319 /// two connected peers, assuming most LDK-running systems have at least two cores.
320 const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4;
321
322 /// This is the minimum number of messages we expect a peer to be able to handle within one timer
323 /// tick. Once we have sent this many messages since the last ping, we send a ping right away to
324 /// ensures we don't just fill up our send buffer and leave the peer with too many messages to
325 /// process before the next ping.
326 ///
327 /// Note that we continue responding to other messages even after we've sent this many messages, so
328 /// it's more of a general guideline used for gossip backfill (and gossip forwarding, times
329 /// [`FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO`]) than a hard limit.
330 const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32;
331
332 struct Peer {
333         channel_encryptor: PeerChannelEncryptor,
334         their_node_id: Option<PublicKey>,
335         their_features: Option<InitFeatures>,
336         their_net_address: Option<NetAddress>,
337
338         pending_outbound_buffer: LinkedList<Vec<u8>>,
339         pending_outbound_buffer_first_msg_offset: usize,
340         // Queue gossip broadcasts separately from `pending_outbound_buffer` so we can easily prioritize
341         // channel messages over them.
342         gossip_broadcast_buffer: LinkedList<Vec<u8>>,
343         awaiting_write_event: bool,
344
345         pending_read_buffer: Vec<u8>,
346         pending_read_buffer_pos: usize,
347         pending_read_is_header: bool,
348
349         sync_status: InitSyncTracker,
350
351         msgs_sent_since_pong: usize,
352         awaiting_pong_timer_tick_intervals: i8,
353         received_message_since_timer_tick: bool,
354         sent_gossip_timestamp_filter: bool,
355 }
356
357 impl Peer {
358         /// Returns true if the channel announcements/updates for the given channel should be
359         /// forwarded to this peer.
360         /// If we are sending our routing table to this peer and we have not yet sent channel
361         /// announcements/updates for the given channel_id then we will send it when we get to that
362         /// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
363         /// sent the old versions, we should send the update, and so return true here.
364         fn should_forward_channel_announcement(&self, channel_id: u64) -> bool {
365                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
366                         !self.sent_gossip_timestamp_filter {
367                                 return false;
368                         }
369                 match self.sync_status {
370                         InitSyncTracker::NoSyncRequested => true,
371                         InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
372                         InitSyncTracker::NodesSyncing(_) => true,
373                 }
374         }
375
376         /// Similar to the above, but for node announcements indexed by node_id.
377         fn should_forward_node_announcement(&self, node_id: PublicKey) -> bool {
378                 if self.their_features.as_ref().unwrap().supports_gossip_queries() &&
379                         !self.sent_gossip_timestamp_filter {
380                                 return false;
381                         }
382                 match self.sync_status {
383                         InitSyncTracker::NoSyncRequested => true,
384                         InitSyncTracker::ChannelsSyncing(_) => false,
385                         InitSyncTracker::NodesSyncing(pk) => pk < node_id,
386                 }
387         }
388
389         /// Returns whether we should be reading bytes from this peer, based on whether its outbound
390         /// buffer still has space and we don't need to pause reads to get some writes out.
391         fn should_read(&self) -> bool {
392                 self.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE
393         }
394
395         /// Determines if we should push additional gossip background sync (aka "backfill") onto a peer's
396         /// outbound buffer. This is checked every time the peer's buffer may have been drained.
397         fn should_buffer_gossip_backfill(&self) -> bool {
398                 self.pending_outbound_buffer.is_empty() && self.gossip_broadcast_buffer.is_empty()
399                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
400         }
401
402         /// Determines if we should push additional gossip broadcast messages onto a peer's outbound
403         /// buffer. This is checked every time the peer's buffer may have been drained.
404         fn should_buffer_gossip_broadcast(&self) -> bool {
405                 self.pending_outbound_buffer.is_empty()
406                         && self.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK
407         }
408
409         /// Returns whether this peer's outbound buffers are full and we should drop gossip broadcasts.
410         fn buffer_full_drop_gossip_broadcast(&self) -> bool {
411                 let total_outbound_buffered =
412                         self.gossip_broadcast_buffer.len() + self.pending_outbound_buffer.len();
413
414                 total_outbound_buffered > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP ||
415                         self.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO
416         }
417 }
418
419 /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
420 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
421 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
422 /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
423 /// issues such as overly long function definitions.
424 ///
425 /// (C-not exported) as Arcs don't make sense in bindings
426 pub type SimpleArcPeerManager<SD, M, T, F, C, L> = PeerManager<SD, Arc<SimpleArcChannelManager<M, T, F, L>>, Arc<P2PGossipSync<Arc<NetworkGraph<Arc<L>>>, Arc<C>, Arc<L>>>, Arc<L>, Arc<IgnoringMessageHandler>>;
427
428 /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
429 /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
430 /// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
431 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
432 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
433 /// helps with issues such as long function definitions.
434 ///
435 /// (C-not exported) as Arcs don't make sense in bindings
436 pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager<SD, SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L>, &'e P2PGossipSync<&'g NetworkGraph<&'f L>, &'h C, &'f L>, &'f L, IgnoringMessageHandler>;
437
438 /// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
439 /// socket events into messages which it passes on to its [`MessageHandler`].
440 ///
441 /// Locks are taken internally, so you must never assume that reentrancy from a
442 /// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
443 ///
444 /// Calls to [`read_event`] will decode relevant messages and pass them to the
445 /// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
446 /// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
447 /// [`PeerManager`] functions related to the same connection must occur only in serial, making new
448 /// calls only after previous ones have returned.
449 ///
450 /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
451 /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
452 /// essentially you should default to using a SimpleRefPeerManager, and use a
453 /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
454 /// you're using lightning-net-tokio.
455 ///
456 /// [`read_event`]: PeerManager::read_event
457 pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> where
458                 CM::Target: ChannelMessageHandler,
459                 RM::Target: RoutingMessageHandler,
460                 L::Target: Logger,
461                 CMH::Target: CustomMessageHandler {
462         message_handler: MessageHandler<CM, RM>,
463         /// Connection state for each connected peer - we have an outer read-write lock which is taken
464         /// as read while we're doing processing for a peer and taken write when a peer is being added
465         /// or removed.
466         ///
467         /// The inner Peer lock is held for sending and receiving bytes, but note that we do *not* hold
468         /// it while we're processing a message. This is fine as [`PeerManager::read_event`] requires
469         /// that there be no parallel calls for a given peer, so mutual exclusion of messages handed to
470         /// the `MessageHandler`s for a given peer is already guaranteed.
471         peers: FairRwLock<HashMap<Descriptor, Mutex<Peer>>>,
472         /// Only add to this set when noise completes.
473         /// Locked *after* peers. When an item is removed, it must be removed with the `peers` write
474         /// lock held. Entries may be added with only the `peers` read lock held (though the
475         /// `Descriptor` value must already exist in `peers`).
476         node_id_to_descriptor: Mutex<HashMap<PublicKey, Descriptor>>,
477         /// We can only have one thread processing events at once, but we don't usually need the full
478         /// `peers` write lock to do so, so instead we block on this empty mutex when entering
479         /// `process_events`.
480         event_processing_lock: Mutex<()>,
481         /// Because event processing is global and always does all available work before returning,
482         /// there is no reason for us to have many event processors waiting on the lock at once.
483         /// Instead, we limit the total blocked event processors to always exactly one by setting this
484         /// when an event process call is waiting.
485         blocked_event_processors: AtomicBool,
486         our_node_secret: SecretKey,
487         ephemeral_key_midstate: Sha256Engine,
488         custom_message_handler: CMH,
489
490         peer_counter: AtomicCounter,
491
492         logger: L,
493         secp_ctx: Secp256k1<secp256k1::SignOnly>
494 }
495
496 enum MessageHandlingError {
497         PeerHandleError(PeerHandleError),
498         LightningError(LightningError),
499 }
500
501 impl From<PeerHandleError> for MessageHandlingError {
502         fn from(error: PeerHandleError) -> Self {
503                 MessageHandlingError::PeerHandleError(error)
504         }
505 }
506
507 impl From<LightningError> for MessageHandlingError {
508         fn from(error: LightningError) -> Self {
509                 MessageHandlingError::LightningError(error)
510         }
511 }
512
513 macro_rules! encode_msg {
514         ($msg: expr) => {{
515                 let mut buffer = VecWriter(Vec::new());
516                 wire::write($msg, &mut buffer).unwrap();
517                 buffer.0
518         }}
519 }
520
521 impl<Descriptor: SocketDescriptor, CM: Deref, L: Deref> PeerManager<Descriptor, CM, IgnoringMessageHandler, L, IgnoringMessageHandler> where
522                 CM::Target: ChannelMessageHandler,
523                 L::Target: Logger {
524         /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message
525         /// handler is used and network graph messages are ignored.
526         ///
527         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
528         /// cryptographically secure random bytes.
529         ///
530         /// (C-not exported) as we can't export a PeerManager with a dummy route handler
531         pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
532                 Self::new(MessageHandler {
533                         chan_handler: channel_message_handler,
534                         route_handler: IgnoringMessageHandler{},
535                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
536         }
537 }
538
539 impl<Descriptor: SocketDescriptor, RM: Deref, L: Deref> PeerManager<Descriptor, ErroringMessageHandler, RM, L, IgnoringMessageHandler> where
540                 RM::Target: RoutingMessageHandler,
541                 L::Target: Logger {
542         /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message
543         /// handler is used and messages related to channels will be ignored (or generate error
544         /// messages). Note that some other lightning implementations time-out connections after some
545         /// time if no channel is built with the peer.
546         ///
547         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
548         /// cryptographically secure random bytes.
549         ///
550         /// (C-not exported) as we can't export a PeerManager with a dummy channel handler
551         pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self {
552                 Self::new(MessageHandler {
553                         chan_handler: ErroringMessageHandler::new(),
554                         route_handler: routing_message_handler,
555                 }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{})
556         }
557 }
558
559 /// A simple wrapper that optionally prints " from <pubkey>" for an optional pubkey.
560 /// This works around `format!()` taking a reference to each argument, preventing
561 /// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling
562 /// due to lifetime errors.
563 struct OptionalFromDebugger<'a>(&'a Option<PublicKey>);
564 impl core::fmt::Display for OptionalFromDebugger<'_> {
565         fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
566                 if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) }
567         }
568 }
569
570 /// A function used to filter out local or private addresses
571 /// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml
572 /// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
573 fn filter_addresses(ip_address: Option<NetAddress>) -> Option<NetAddress> {
574         match ip_address{
575                 // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8)
576                 Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None,
577                 // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8)
578                 Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None,
579                 // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10)
580                 Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None,
581                 // For IPv4 range       127.0.0.0 - 127.255.255.255 (127/8)
582                 Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None,
583                 // For IPv4 range       169.254.0.0 - 169.254.255.255 (169.254/16)
584                 Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None,
585                 // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12)
586                 Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None,
587                 // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16)
588                 Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None,
589                 // For IPv4 range 192.88.99.0 - 192.88.99.255  (192.88.99/24)
590                 Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None,
591                 // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3)
592                 Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address,
593                 // For remaining addresses
594                 Some(NetAddress::IPv6{addr: _, port: _}) => None,
595                 Some(..) => ip_address,
596                 None => None,
597         }
598 }
599
600 impl<Descriptor: SocketDescriptor, CM: Deref, RM: Deref, L: Deref, CMH: Deref> PeerManager<Descriptor, CM, RM, L, CMH> where
601                 CM::Target: ChannelMessageHandler,
602                 RM::Target: RoutingMessageHandler,
603                 L::Target: Logger,
604                 CMH::Target: CustomMessageHandler {
605         /// Constructs a new PeerManager with the given message handlers and node_id secret key
606         /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
607         /// cryptographically secure random bytes.
608         pub fn new(message_handler: MessageHandler<CM, RM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self {
609                 let mut ephemeral_key_midstate = Sha256::engine();
610                 ephemeral_key_midstate.input(ephemeral_random_data);
611
612                 let mut secp_ctx = Secp256k1::signing_only();
613                 let ephemeral_hash = Sha256::from_engine(ephemeral_key_midstate.clone()).into_inner();
614                 secp_ctx.seeded_randomize(&ephemeral_hash);
615
616                 PeerManager {
617                         message_handler,
618                         peers: FairRwLock::new(HashMap::new()),
619                         node_id_to_descriptor: Mutex::new(HashMap::new()),
620                         event_processing_lock: Mutex::new(()),
621                         blocked_event_processors: AtomicBool::new(false),
622                         our_node_secret,
623                         ephemeral_key_midstate,
624                         peer_counter: AtomicCounter::new(),
625                         logger,
626                         custom_message_handler,
627                         secp_ctx,
628                 }
629         }
630
631         /// Get the list of node ids for peers which have completed the initial handshake.
632         ///
633         /// For outbound connections, this will be the same as the their_node_id parameter passed in to
634         /// new_outbound_connection, however entries will only appear once the initial handshake has
635         /// completed and we are sure the remote peer has the private key for the given node_id.
636         pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
637                 let peers = self.peers.read().unwrap();
638                 peers.values().filter_map(|peer_mutex| {
639                         let p = peer_mutex.lock().unwrap();
640                         if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
641                                 return None;
642                         }
643                         p.their_node_id
644                 }).collect()
645         }
646
647         fn get_ephemeral_key(&self) -> SecretKey {
648                 let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
649                 let counter = self.peer_counter.get_increment();
650                 ephemeral_hash.input(&counter.to_le_bytes());
651                 SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
652         }
653
654         /// Indicates a new outbound connection has been established to a node with the given node_id
655         /// and an optional remote network address.
656         ///
657         /// The remote network address adds the option to report a remote IP address back to a connecting
658         /// peer using the init message.
659         /// The user should pass the remote network address of the host they are connected to.
660         ///
661         /// If an `Err` is returned here you must disconnect the connection immediately.
662         ///
663         /// Returns a small number of bytes to send to the remote node (currently always 50).
664         ///
665         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
666         /// [`socket_disconnected()`].
667         ///
668         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
669         pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<Vec<u8>, PeerHandleError> {
670                 let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
671                 let res = peer_encryptor.get_act_one(&self.secp_ctx).to_vec();
672                 let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
673
674                 let mut peers = self.peers.write().unwrap();
675                 if peers.insert(descriptor, Mutex::new(Peer {
676                         channel_encryptor: peer_encryptor,
677                         their_node_id: None,
678                         their_features: None,
679                         their_net_address: remote_network_address,
680
681                         pending_outbound_buffer: LinkedList::new(),
682                         pending_outbound_buffer_first_msg_offset: 0,
683                         gossip_broadcast_buffer: LinkedList::new(),
684                         awaiting_write_event: false,
685
686                         pending_read_buffer,
687                         pending_read_buffer_pos: 0,
688                         pending_read_is_header: false,
689
690                         sync_status: InitSyncTracker::NoSyncRequested,
691
692                         msgs_sent_since_pong: 0,
693                         awaiting_pong_timer_tick_intervals: 0,
694                         received_message_since_timer_tick: false,
695                         sent_gossip_timestamp_filter: false,
696                 })).is_some() {
697                         panic!("PeerManager driver duplicated descriptors!");
698                 };
699                 Ok(res)
700         }
701
702         /// Indicates a new inbound connection has been established to a node with an optional remote
703         /// network address.
704         ///
705         /// The remote network address adds the option to report a remote IP address back to a connecting
706         /// peer using the init message.
707         /// The user should pass the remote network address of the host they are connected to.
708         ///
709         /// May refuse the connection by returning an Err, but will never write bytes to the remote end
710         /// (outbound connector always speaks first). If an `Err` is returned here you must disconnect
711         /// the connection immediately.
712         ///
713         /// Panics if descriptor is duplicative with some other descriptor which has not yet been
714         /// [`socket_disconnected()`].
715         ///
716         /// [`socket_disconnected()`]: PeerManager::socket_disconnected
717         pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option<NetAddress>) -> Result<(), PeerHandleError> {
718                 let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret, &self.secp_ctx);
719                 let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
720
721                 let mut peers = self.peers.write().unwrap();
722                 if peers.insert(descriptor, Mutex::new(Peer {
723                         channel_encryptor: peer_encryptor,
724                         their_node_id: None,
725                         their_features: None,
726                         their_net_address: remote_network_address,
727
728                         pending_outbound_buffer: LinkedList::new(),
729                         pending_outbound_buffer_first_msg_offset: 0,
730                         gossip_broadcast_buffer: LinkedList::new(),
731                         awaiting_write_event: false,
732
733                         pending_read_buffer,
734                         pending_read_buffer_pos: 0,
735                         pending_read_is_header: false,
736
737                         sync_status: InitSyncTracker::NoSyncRequested,
738
739                         msgs_sent_since_pong: 0,
740                         awaiting_pong_timer_tick_intervals: 0,
741                         received_message_since_timer_tick: false,
742                         sent_gossip_timestamp_filter: false,
743                 })).is_some() {
744                         panic!("PeerManager driver duplicated descriptors!");
745                 };
746                 Ok(())
747         }
748
749         fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
750                 while !peer.awaiting_write_event {
751                         if peer.should_buffer_gossip_broadcast() {
752                                 if let Some(msg) = peer.gossip_broadcast_buffer.pop_front() {
753                                         peer.pending_outbound_buffer.push_back(msg);
754                                 }
755                         }
756                         if peer.should_buffer_gossip_backfill() {
757                                 match peer.sync_status {
758                                         InitSyncTracker::NoSyncRequested => {},
759                                         InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
760                                                 if let Some((announce, update_a_option, update_b_option)) =
761                                                         self.message_handler.route_handler.get_next_channel_announcement(c)
762                                                 {
763                                                         self.enqueue_message(peer, &announce);
764                                                         if let Some(update_a) = update_a_option {
765                                                                 self.enqueue_message(peer, &update_a);
766                                                         }
767                                                         if let Some(update_b) = update_b_option {
768                                                                 self.enqueue_message(peer, &update_b);
769                                                         }
770                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
771                                                 } else {
772                                                         peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
773                                                 }
774                                         },
775                                         InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
776                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(None) {
777                                                         self.enqueue_message(peer, &msg);
778                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
779                                                 } else {
780                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
781                                                 }
782                                         },
783                                         InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
784                                         InitSyncTracker::NodesSyncing(key) => {
785                                                 if let Some(msg) = self.message_handler.route_handler.get_next_node_announcement(Some(&key)) {
786                                                         self.enqueue_message(peer, &msg);
787                                                         peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
788                                                 } else {
789                                                         peer.sync_status = InitSyncTracker::NoSyncRequested;
790                                                 }
791                                         },
792                                 }
793                         }
794                         if peer.msgs_sent_since_pong >= BUFFER_DRAIN_MSGS_PER_TICK {
795                                 self.maybe_send_extra_ping(peer);
796                         }
797
798                         let next_buff = match peer.pending_outbound_buffer.front() {
799                                 None => return,
800                                 Some(buff) => buff,
801                         };
802
803                         let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
804                         let data_sent = descriptor.send_data(pending, peer.should_read());
805                         peer.pending_outbound_buffer_first_msg_offset += data_sent;
806                         if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() {
807                                 peer.pending_outbound_buffer_first_msg_offset = 0;
808                                 peer.pending_outbound_buffer.pop_front();
809                         } else {
810                                 peer.awaiting_write_event = true;
811                         }
812                 }
813         }
814
815         /// Indicates that there is room to write data to the given socket descriptor.
816         ///
817         /// May return an Err to indicate that the connection should be closed.
818         ///
819         /// May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
820         /// returning. Thus, be very careful with reentrancy issues! The invariants around calling
821         /// [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
822         /// ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
823         /// sufficient!
824         ///
825         /// [`send_data`]: SocketDescriptor::send_data
826         /// [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
827         pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
828                 let peers = self.peers.read().unwrap();
829                 match peers.get(descriptor) {
830                         None => {
831                                 // This is most likely a simple race condition where the user found that the socket
832                                 // was writeable, then we told the user to `disconnect_socket()`, then they called
833                                 // this method. Return an error to make sure we get disconnected.
834                                 return Err(PeerHandleError { no_connection_possible: false });
835                         },
836                         Some(peer_mutex) => {
837                                 let mut peer = peer_mutex.lock().unwrap();
838                                 peer.awaiting_write_event = false;
839                                 self.do_attempt_write_data(descriptor, &mut peer);
840                         }
841                 };
842                 Ok(())
843         }
844
845         /// Indicates that data was read from the given socket descriptor.
846         ///
847         /// May return an Err to indicate that the connection should be closed.
848         ///
849         /// Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
850         /// Thus, however, you should call [`process_events`] after any `read_event` to generate
851         /// [`send_data`] calls to handle responses.
852         ///
853         /// If `Ok(true)` is returned, further read_events should not be triggered until a
854         /// [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
855         /// send buffer).
856         ///
857         /// [`send_data`]: SocketDescriptor::send_data
858         /// [`process_events`]: PeerManager::process_events
859         pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
860                 match self.do_read_event(peer_descriptor, data) {
861                         Ok(res) => Ok(res),
862                         Err(e) => {
863                                 log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error");
864                                 self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
865                                 Err(e)
866                         }
867                 }
868         }
869
870         /// Append a message to a peer's pending outbound/write buffer
871         fn enqueue_message<M: wire::Type>(&self, peer: &mut Peer, message: &M) {
872                 let mut buffer = VecWriter(Vec::with_capacity(2048));
873                 wire::write(message, &mut buffer).unwrap(); // crash if the write failed
874
875                 if is_gossip_msg(message.type_id()) {
876                         log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()));
877                 } else {
878                         log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap()))
879                 }
880                 peer.msgs_sent_since_pong += 1;
881                 peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&buffer.0[..]));
882         }
883
884         /// Append a message to a peer's pending outbound/write gossip broadcast buffer
885         fn enqueue_encoded_gossip_broadcast(&self, peer: &mut Peer, encoded_message: &Vec<u8>) {
886                 peer.msgs_sent_since_pong += 1;
887                 peer.gossip_broadcast_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..]));
888         }
889
890         fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result<bool, PeerHandleError> {
891                 let mut pause_read = false;
892                 let peers = self.peers.read().unwrap();
893                 let mut msgs_to_forward = Vec::new();
894                 let mut peer_node_id = None;
895                 match peers.get(peer_descriptor) {
896                         None => {
897                                 // This is most likely a simple race condition where the user read some bytes
898                                 // from the socket, then we told the user to `disconnect_socket()`, then they
899                                 // called this method. Return an error to make sure we get disconnected.
900                                 return Err(PeerHandleError { no_connection_possible: false });
901                         },
902                         Some(peer_mutex) => {
903                                 let mut read_pos = 0;
904                                 while read_pos < data.len() {
905                                         macro_rules! try_potential_handleerror {
906                                                 ($peer: expr, $thing: expr) => {
907                                                         match $thing {
908                                                                 Ok(x) => x,
909                                                                 Err(e) => {
910                                                                         match e.action {
911                                                                                 msgs::ErrorAction::DisconnectPeer { msg: _ } => {
912                                                                                         //TODO: Try to push msg
913                                                                                         log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer_node_id), e.err);
914                                                                                         return Err(PeerHandleError{ no_connection_possible: false });
915                                                                                 },
916                                                                                 msgs::ErrorAction::IgnoreAndLog(level) => {
917                                                                                         log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
918                                                                                         continue
919                                                                                 },
920                                                                                 msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these
921                                                                                 msgs::ErrorAction::IgnoreError => {
922                                                                                         log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer_node_id), e.err);
923                                                                                         continue;
924                                                                                 },
925                                                                                 msgs::ErrorAction::SendErrorMessage { msg } => {
926                                                                                         log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
927                                                                                         self.enqueue_message($peer, &msg);
928                                                                                         continue;
929                                                                                 },
930                                                                                 msgs::ErrorAction::SendWarningMessage { msg, log_level } => {
931                                                                                         log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer_node_id), e.err);
932                                                                                         self.enqueue_message($peer, &msg);
933                                                                                         continue;
934                                                                                 },
935                                                                         }
936                                                                 }
937                                                         }
938                                                 }
939                                         }
940
941                                         let mut peer_lock = peer_mutex.lock().unwrap();
942                                         let peer = &mut *peer_lock;
943                                         let mut msg_to_handle = None;
944                                         if peer_node_id.is_none() {
945                                                 peer_node_id = peer.their_node_id.clone();
946                                         }
947
948                                         assert!(peer.pending_read_buffer.len() > 0);
949                                         assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
950
951                                         {
952                                                 let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
953                                                 peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
954                                                 read_pos += data_to_copy;
955                                                 peer.pending_read_buffer_pos += data_to_copy;
956                                         }
957
958                                         if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
959                                                 peer.pending_read_buffer_pos = 0;
960
961                                                 macro_rules! insert_node_id {
962                                                         () => {
963                                                                 match self.node_id_to_descriptor.lock().unwrap().entry(peer.their_node_id.unwrap()) {
964                                                                         hash_map::Entry::Occupied(_) => {
965                                                                                 log_trace!(self.logger, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
966                                                                                 peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
967                                                                                 return Err(PeerHandleError{ no_connection_possible: false })
968                                                                         },
969                                                                         hash_map::Entry::Vacant(entry) => {
970                                                                                 log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
971                                                                                 entry.insert(peer_descriptor.clone())
972                                                                         },
973                                                                 };
974                                                         }
975                                                 }
976
977                                                 let next_step = peer.channel_encryptor.get_noise_step();
978                                                 match next_step {
979                                                         NextNoiseStep::ActOne => {
980                                                                 let act_two = try_potential_handleerror!(peer, peer.channel_encryptor
981                                                                         .process_act_one_with_keys(&peer.pending_read_buffer[..],
982                                                                                 &self.our_node_secret, self.get_ephemeral_key(), &self.secp_ctx)).to_vec();
983                                                                 peer.pending_outbound_buffer.push_back(act_two);
984                                                                 peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
985                                                         },
986                                                         NextNoiseStep::ActTwo => {
987                                                                 let (act_three, their_node_id) = try_potential_handleerror!(peer,
988                                                                         peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..],
989                                                                                 &self.our_node_secret, &self.secp_ctx));
990                                                                 peer.pending_outbound_buffer.push_back(act_three.to_vec());
991                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
992                                                                 peer.pending_read_is_header = true;
993
994                                                                 peer.their_node_id = Some(their_node_id);
995                                                                 insert_node_id!();
996                                                                 let features = InitFeatures::known();
997                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
998                                                                 self.enqueue_message(peer, &resp);
999                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1000                                                         },
1001                                                         NextNoiseStep::ActThree => {
1002                                                                 let their_node_id = try_potential_handleerror!(peer,
1003                                                                         peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
1004                                                                 peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
1005                                                                 peer.pending_read_is_header = true;
1006                                                                 peer.their_node_id = Some(their_node_id);
1007                                                                 insert_node_id!();
1008                                                                 let features = InitFeatures::known();
1009                                                                 let resp = msgs::Init { features, remote_network_address: filter_addresses(peer.their_net_address.clone()) };
1010                                                                 self.enqueue_message(peer, &resp);
1011                                                                 peer.awaiting_pong_timer_tick_intervals = 0;
1012                                                         },
1013                                                         NextNoiseStep::NoiseComplete => {
1014                                                                 if peer.pending_read_is_header {
1015                                                                         let msg_len = try_potential_handleerror!(peer,
1016                                                                                 peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
1017                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1018                                                                         peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
1019                                                                         if msg_len < 2 { // Need at least the message type tag
1020                                                                                 return Err(PeerHandleError{ no_connection_possible: false });
1021                                                                         }
1022                                                                         peer.pending_read_is_header = false;
1023                                                                 } else {
1024                                                                         let msg_data = try_potential_handleerror!(peer,
1025                                                                                 peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
1026                                                                         assert!(msg_data.len() >= 2);
1027
1028                                                                         // Reset read buffer
1029                                                                         if peer.pending_read_buffer.capacity() > 8192 { peer.pending_read_buffer = Vec::new(); }
1030                                                                         peer.pending_read_buffer.resize(18, 0);
1031                                                                         peer.pending_read_is_header = true;
1032
1033                                                                         let mut reader = io::Cursor::new(&msg_data[..]);
1034                                                                         let message_result = wire::read(&mut reader, &*self.custom_message_handler);
1035                                                                         let message = match message_result {
1036                                                                                 Ok(x) => x,
1037                                                                                 Err(e) => {
1038                                                                                         match e {
1039                                                                                                 // Note that to avoid recursion we never call
1040                                                                                                 // `do_attempt_write_data` from here, causing
1041                                                                                                 // the messages enqueued here to not actually
1042                                                                                                 // be sent before the peer is disconnected.
1043                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => {
1044                                                                                                         log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!");
1045                                                                                                         continue;
1046                                                                                                 }
1047                                                                                                 (msgs::DecodeError::UnsupportedCompression, _) => {
1048                                                                                                         log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message");
1049                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() });
1050                                                                                                         continue;
1051                                                                                                 }
1052                                                                                                 (_, Some(ty)) if is_gossip_msg(ty) => {
1053                                                                                                         log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message");
1054                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() });
1055                                                                                                         continue;
1056                                                                                                 }
1057                                                                                                 (msgs::DecodeError::UnknownRequiredFeature, ty) => {
1058                                                                                                         log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!");
1059                                                                                                         self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) });
1060                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1061                                                                                                 }
1062                                                                                                 (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }),
1063                                                                                                 (msgs::DecodeError::InvalidValue, _) => {
1064                                                                                                         log_debug!(self.logger, "Got an invalid value while deserializing message");
1065                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1066                                                                                                 }
1067                                                                                                 (msgs::DecodeError::ShortRead, _) => {
1068                                                                                                         log_debug!(self.logger, "Deserialization failed due to shortness of message");
1069                                                                                                         return Err(PeerHandleError { no_connection_possible: false });
1070                                                                                                 }
1071                                                                                                 (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }),
1072                                                                                                 (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }),
1073                                                                                         }
1074                                                                                 }
1075                                                                         };
1076
1077                                                                         msg_to_handle = Some(message);
1078                                                                 }
1079                                                         }
1080                                                 }
1081                                         }
1082                                         pause_read = !peer.should_read();
1083
1084                                         if let Some(message) = msg_to_handle {
1085                                                 match self.handle_message(&peer_mutex, peer_lock, message) {
1086                                                         Err(handling_error) => match handling_error {
1087                                                                 MessageHandlingError::PeerHandleError(e) => { return Err(e) },
1088                                                                 MessageHandlingError::LightningError(e) => {
1089                                                                         try_potential_handleerror!(&mut peer_mutex.lock().unwrap(), Err(e));
1090                                                                 },
1091                                                         },
1092                                                         Ok(Some(msg)) => {
1093                                                                 msgs_to_forward.push(msg);
1094                                                         },
1095                                                         Ok(None) => {},
1096                                                 }
1097                                         }
1098                                 }
1099                         }
1100                 }
1101
1102                 for msg in msgs_to_forward.drain(..) {
1103                         self.forward_broadcast_msg(&*peers, &msg, peer_node_id.as_ref());
1104                 }
1105
1106                 Ok(pause_read)
1107         }
1108
1109         /// Process an incoming message and return a decision (ok, lightning error, peer handling error) regarding the next action with the peer
1110         /// Returns the message back if it needs to be broadcasted to all other peers.
1111         fn handle_message(
1112                 &self,
1113                 peer_mutex: &Mutex<Peer>,
1114                 mut peer_lock: MutexGuard<Peer>,
1115                 message: wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>
1116         ) -> Result<Option<wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> {
1117                 let their_node_id = peer_lock.their_node_id.clone().expect("We know the peer's public key by the time we receive messages");
1118                 peer_lock.received_message_since_timer_tick = true;
1119
1120                 // Need an Init as first message
1121                 if let wire::Message::Init(msg) = message {
1122                         if msg.features.requires_unknown_bits() {
1123                                 log_debug!(self.logger, "Peer features required unknown version bits");
1124                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1125                         }
1126                         if peer_lock.their_features.is_some() {
1127                                 return Err(PeerHandleError{ no_connection_possible: false }.into());
1128                         }
1129
1130                         log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(their_node_id), msg.features);
1131
1132                         // For peers not supporting gossip queries start sync now, otherwise wait until we receive a filter.
1133                         if msg.features.initial_routing_sync() && !msg.features.supports_gossip_queries() {
1134                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1135                         }
1136
1137                         if !msg.features.supports_static_remote_key() {
1138                                 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(their_node_id));
1139                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1140                         }
1141
1142                         self.message_handler.route_handler.peer_connected(&their_node_id, &msg);
1143
1144                         self.message_handler.chan_handler.peer_connected(&their_node_id, &msg);
1145                         peer_lock.their_features = Some(msg.features);
1146                         return Ok(None);
1147                 } else if peer_lock.their_features.is_none() {
1148                         log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(their_node_id));
1149                         return Err(PeerHandleError{ no_connection_possible: false }.into());
1150                 }
1151
1152                 if let wire::Message::GossipTimestampFilter(_msg) = message {
1153                         // When supporting gossip messages, start inital gossip sync only after we receive
1154                         // a GossipTimestampFilter
1155                         if peer_lock.their_features.as_ref().unwrap().supports_gossip_queries() &&
1156                                 !peer_lock.sent_gossip_timestamp_filter {
1157                                 peer_lock.sent_gossip_timestamp_filter = true;
1158                                 peer_lock.sync_status = InitSyncTracker::ChannelsSyncing(0);
1159                         }
1160                         return Ok(None);
1161                 }
1162
1163                 let their_features = peer_lock.their_features.clone();
1164                 mem::drop(peer_lock);
1165
1166                 if is_gossip_msg(message.type_id()) {
1167                         log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1168                 } else {
1169                         log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(their_node_id));
1170                 }
1171
1172                 let mut should_forward = None;
1173
1174                 match message {
1175                         // Setup and Control messages:
1176                         wire::Message::Init(_) => {
1177                                 // Handled above
1178                         },
1179                         wire::Message::GossipTimestampFilter(_) => {
1180                                 // Handled above
1181                         },
1182                         wire::Message::Error(msg) => {
1183                                 let mut data_is_printable = true;
1184                                 for b in msg.data.bytes() {
1185                                         if b < 32 || b > 126 {
1186                                                 data_is_printable = false;
1187                                                 break;
1188                                         }
1189                                 }
1190
1191                                 if data_is_printable {
1192                                         log_debug!(self.logger, "Got Err message from {}: {}", log_pubkey!(their_node_id), msg.data);
1193                                 } else {
1194                                         log_debug!(self.logger, "Got Err message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1195                                 }
1196                                 self.message_handler.chan_handler.handle_error(&their_node_id, &msg);
1197                                 if msg.channel_id == [0; 32] {
1198                                         return Err(PeerHandleError{ no_connection_possible: true }.into());
1199                                 }
1200                         },
1201                         wire::Message::Warning(msg) => {
1202                                 let mut data_is_printable = true;
1203                                 for b in msg.data.bytes() {
1204                                         if b < 32 || b > 126 {
1205                                                 data_is_printable = false;
1206                                                 break;
1207                                         }
1208                                 }
1209
1210                                 if data_is_printable {
1211                                         log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(their_node_id), msg.data);
1212                                 } else {
1213                                         log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(their_node_id));
1214                                 }
1215                         },
1216
1217                         wire::Message::Ping(msg) => {
1218                                 if msg.ponglen < 65532 {
1219                                         let resp = msgs::Pong { byteslen: msg.ponglen };
1220                                         self.enqueue_message(&mut *peer_mutex.lock().unwrap(), &resp);
1221                                 }
1222                         },
1223                         wire::Message::Pong(_msg) => {
1224                                 let mut peer_lock = peer_mutex.lock().unwrap();
1225                                 peer_lock.awaiting_pong_timer_tick_intervals = 0;
1226                                 peer_lock.msgs_sent_since_pong = 0;
1227                         },
1228
1229                         // Channel messages:
1230                         wire::Message::OpenChannel(msg) => {
1231                                 self.message_handler.chan_handler.handle_open_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1232                         },
1233                         wire::Message::AcceptChannel(msg) => {
1234                                 self.message_handler.chan_handler.handle_accept_channel(&their_node_id, their_features.clone().unwrap(), &msg);
1235                         },
1236
1237                         wire::Message::FundingCreated(msg) => {
1238                                 self.message_handler.chan_handler.handle_funding_created(&their_node_id, &msg);
1239                         },
1240                         wire::Message::FundingSigned(msg) => {
1241                                 self.message_handler.chan_handler.handle_funding_signed(&their_node_id, &msg);
1242                         },
1243                         wire::Message::ChannelReady(msg) => {
1244                                 self.message_handler.chan_handler.handle_channel_ready(&their_node_id, &msg);
1245                         },
1246
1247                         wire::Message::Shutdown(msg) => {
1248                                 self.message_handler.chan_handler.handle_shutdown(&their_node_id, their_features.as_ref().unwrap(), &msg);
1249                         },
1250                         wire::Message::ClosingSigned(msg) => {
1251                                 self.message_handler.chan_handler.handle_closing_signed(&their_node_id, &msg);
1252                         },
1253
1254                         // Commitment messages:
1255                         wire::Message::UpdateAddHTLC(msg) => {
1256                                 self.message_handler.chan_handler.handle_update_add_htlc(&their_node_id, &msg);
1257                         },
1258                         wire::Message::UpdateFulfillHTLC(msg) => {
1259                                 self.message_handler.chan_handler.handle_update_fulfill_htlc(&their_node_id, &msg);
1260                         },
1261                         wire::Message::UpdateFailHTLC(msg) => {
1262                                 self.message_handler.chan_handler.handle_update_fail_htlc(&their_node_id, &msg);
1263                         },
1264                         wire::Message::UpdateFailMalformedHTLC(msg) => {
1265                                 self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&their_node_id, &msg);
1266                         },
1267
1268                         wire::Message::CommitmentSigned(msg) => {
1269                                 self.message_handler.chan_handler.handle_commitment_signed(&their_node_id, &msg);
1270                         },
1271                         wire::Message::RevokeAndACK(msg) => {
1272                                 self.message_handler.chan_handler.handle_revoke_and_ack(&their_node_id, &msg);
1273                         },
1274                         wire::Message::UpdateFee(msg) => {
1275                                 self.message_handler.chan_handler.handle_update_fee(&their_node_id, &msg);
1276                         },
1277                         wire::Message::ChannelReestablish(msg) => {
1278                                 self.message_handler.chan_handler.handle_channel_reestablish(&their_node_id, &msg);
1279                         },
1280
1281                         // Routing messages:
1282                         wire::Message::AnnouncementSignatures(msg) => {
1283                                 self.message_handler.chan_handler.handle_announcement_signatures(&their_node_id, &msg);
1284                         },
1285                         wire::Message::ChannelAnnouncement(msg) => {
1286                                 if self.message_handler.route_handler.handle_channel_announcement(&msg)
1287                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1288                                         should_forward = Some(wire::Message::ChannelAnnouncement(msg));
1289                                 }
1290                         },
1291                         wire::Message::NodeAnnouncement(msg) => {
1292                                 if self.message_handler.route_handler.handle_node_announcement(&msg)
1293                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1294                                         should_forward = Some(wire::Message::NodeAnnouncement(msg));
1295                                 }
1296                         },
1297                         wire::Message::ChannelUpdate(msg) => {
1298                                 self.message_handler.chan_handler.handle_channel_update(&their_node_id, &msg);
1299                                 if self.message_handler.route_handler.handle_channel_update(&msg)
1300                                                 .map_err(|e| -> MessageHandlingError { e.into() })? {
1301                                         should_forward = Some(wire::Message::ChannelUpdate(msg));
1302                                 }
1303                         },
1304                         wire::Message::QueryShortChannelIds(msg) => {
1305                                 self.message_handler.route_handler.handle_query_short_channel_ids(&their_node_id, msg)?;
1306                         },
1307                         wire::Message::ReplyShortChannelIdsEnd(msg) => {
1308                                 self.message_handler.route_handler.handle_reply_short_channel_ids_end(&their_node_id, msg)?;
1309                         },
1310                         wire::Message::QueryChannelRange(msg) => {
1311                                 self.message_handler.route_handler.handle_query_channel_range(&their_node_id, msg)?;
1312                         },
1313                         wire::Message::ReplyChannelRange(msg) => {
1314                                 self.message_handler.route_handler.handle_reply_channel_range(&their_node_id, msg)?;
1315                         },
1316
1317                         // Unknown messages:
1318                         wire::Message::Unknown(type_id) if message.is_even() => {
1319                                 log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id);
1320                                 // Fail the channel if message is an even, unknown type as per BOLT #1.
1321                                 return Err(PeerHandleError{ no_connection_possible: true }.into());
1322                         },
1323                         wire::Message::Unknown(type_id) => {
1324                                 log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id);
1325                         },
1326                         wire::Message::Custom(custom) => {
1327                                 self.custom_message_handler.handle_custom_message(custom, &their_node_id)?;
1328                         },
1329                 };
1330                 Ok(should_forward)
1331         }
1332
1333         fn forward_broadcast_msg(&self, peers: &HashMap<Descriptor, Mutex<Peer>>, msg: &wire::Message<<<CMH as core::ops::Deref>::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) {
1334                 match msg {
1335                         wire::Message::ChannelAnnouncement(ref msg) => {
1336                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg);
1337                                 let encoded_msg = encode_msg!(msg);
1338
1339                                 for (_, peer_mutex) in peers.iter() {
1340                                         let mut peer = peer_mutex.lock().unwrap();
1341                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1342                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id) {
1343                                                 continue
1344                                         }
1345                                         if peer.buffer_full_drop_gossip_broadcast() {
1346                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1347                                                 continue;
1348                                         }
1349                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) ||
1350                                            peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) {
1351                                                 continue;
1352                                         }
1353                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1354                                                 continue;
1355                                         }
1356                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1357                                 }
1358                         },
1359                         wire::Message::NodeAnnouncement(ref msg) => {
1360                                 log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg);
1361                                 let encoded_msg = encode_msg!(msg);
1362
1363                                 for (_, peer_mutex) in peers.iter() {
1364                                         let mut peer = peer_mutex.lock().unwrap();
1365                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1366                                                         !peer.should_forward_node_announcement(msg.contents.node_id) {
1367                                                 continue
1368                                         }
1369                                         if peer.buffer_full_drop_gossip_broadcast() {
1370                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1371                                                 continue;
1372                                         }
1373                                         if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) {
1374                                                 continue;
1375                                         }
1376                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1377                                                 continue;
1378                                         }
1379                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1380                                 }
1381                         },
1382                         wire::Message::ChannelUpdate(ref msg) => {
1383                                 log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg);
1384                                 let encoded_msg = encode_msg!(msg);
1385
1386                                 for (_, peer_mutex) in peers.iter() {
1387                                         let mut peer = peer_mutex.lock().unwrap();
1388                                         if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
1389                                                         !peer.should_forward_channel_announcement(msg.contents.short_channel_id)  {
1390                                                 continue
1391                                         }
1392                                         if peer.buffer_full_drop_gossip_broadcast() {
1393                                                 log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id);
1394                                                 continue;
1395                                         }
1396                                         if except_node.is_some() && peer.their_node_id.as_ref() == except_node {
1397                                                 continue;
1398                                         }
1399                                         self.enqueue_encoded_gossip_broadcast(&mut *peer, &encoded_msg);
1400                                 }
1401                         },
1402                         _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"),
1403                 }
1404         }
1405
1406         /// Checks for any events generated by our handlers and processes them. Includes sending most
1407         /// response messages as well as messages generated by calls to handler functions directly (eg
1408         /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
1409         ///
1410         /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1411         /// issues!
1412         ///
1413         /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
1414         /// or one of the other clients provided in our language bindings.
1415         ///
1416         /// Note that if there are any other calls to this function waiting on lock(s) this may return
1417         /// without doing any work. All available events that need handling will be handled before the
1418         /// other calls return.
1419         ///
1420         /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
1421         /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
1422         /// [`send_data`]: SocketDescriptor::send_data
1423         pub fn process_events(&self) {
1424                 let mut _single_processor_lock = self.event_processing_lock.try_lock();
1425                 if _single_processor_lock.is_err() {
1426                         // While we could wake the older sleeper here with a CV and make more even waiting
1427                         // times, that would be a lot of overengineering for a simple "reduce total waiter
1428                         // count" goal.
1429                         match self.blocked_event_processors.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire) {
1430                                 Err(val) => {
1431                                         debug_assert!(val, "compare_exchange failed spuriously?");
1432                                         return;
1433                                 },
1434                                 Ok(val) => {
1435                                         debug_assert!(!val, "compare_exchange succeeded spuriously?");
1436                                         // We're the only waiter, as the running process_events may have emptied the
1437                                         // pending events "long" ago and there are new events for us to process, wait until
1438                                         // its done and process any leftover events before returning.
1439                                         _single_processor_lock = Ok(self.event_processing_lock.lock().unwrap());
1440                                         self.blocked_event_processors.store(false, Ordering::Release);
1441                                 }
1442                         }
1443                 }
1444
1445                 let mut peers_to_disconnect = HashMap::new();
1446                 let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
1447                 events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events());
1448
1449                 {
1450                         // TODO: There are some DoS attacks here where you can flood someone's outbound send
1451                         // buffer by doing things like announcing channels on another node. We should be willing to
1452                         // drop optional-ish messages when send buffers get full!
1453
1454                         let peers_lock = self.peers.read().unwrap();
1455                         let peers = &*peers_lock;
1456                         macro_rules! get_peer_for_forwarding {
1457                                 ($node_id: expr) => {
1458                                         {
1459                                                 if peers_to_disconnect.get($node_id).is_some() {
1460                                                         // If we've "disconnected" this peer, do not send to it.
1461                                                         continue;
1462                                                 }
1463                                                 let descriptor_opt = self.node_id_to_descriptor.lock().unwrap().get($node_id).cloned();
1464                                                 match descriptor_opt {
1465                                                         Some(descriptor) => match peers.get(&descriptor) {
1466                                                                 Some(peer_mutex) => {
1467                                                                         let peer_lock = peer_mutex.lock().unwrap();
1468                                                                         if peer_lock.their_features.is_none() {
1469                                                                                 continue;
1470                                                                         }
1471                                                                         peer_lock
1472                                                                 },
1473                                                                 None => {
1474                                                                         debug_assert!(false, "Inconsistent peers set state!");
1475                                                                         continue;
1476                                                                 }
1477                                                         },
1478                                                         None => {
1479                                                                 continue;
1480                                                         },
1481                                                 }
1482                                         }
1483                                 }
1484                         }
1485                         for event in events_generated.drain(..) {
1486                                 match event {
1487                                         MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
1488                                                 log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
1489                                                                 log_pubkey!(node_id),
1490                                                                 log_bytes!(msg.temporary_channel_id));
1491                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1492                                         },
1493                                         MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
1494                                                 log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
1495                                                                 log_pubkey!(node_id),
1496                                                                 log_bytes!(msg.temporary_channel_id));
1497                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1498                                         },
1499                                         MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
1500                                                 log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
1501                                                                 log_pubkey!(node_id),
1502                                                                 log_bytes!(msg.temporary_channel_id),
1503                                                                 log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
1504                                                 // TODO: If the peer is gone we should generate a DiscardFunding event
1505                                                 // indicating to the wallet that they should just throw away this funding transaction
1506                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1507                                         },
1508                                         MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
1509                                                 log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
1510                                                                 log_pubkey!(node_id),
1511                                                                 log_bytes!(msg.channel_id));
1512                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1513                                         },
1514                                         MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
1515                                                 log_debug!(self.logger, "Handling SendChannelReady event in peer_handler for node {} for channel {}",
1516                                                                 log_pubkey!(node_id),
1517                                                                 log_bytes!(msg.channel_id));
1518                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1519                                         },
1520                                         MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
1521                                                 log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
1522                                                                 log_pubkey!(node_id),
1523                                                                 log_bytes!(msg.channel_id));
1524                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1525                                         },
1526                                         MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
1527                                                 log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
1528                                                                 log_pubkey!(node_id),
1529                                                                 update_add_htlcs.len(),
1530                                                                 update_fulfill_htlcs.len(),
1531                                                                 update_fail_htlcs.len(),
1532                                                                 log_bytes!(commitment_signed.channel_id));
1533                                                 let mut peer = get_peer_for_forwarding!(node_id);
1534                                                 for msg in update_add_htlcs {
1535                                                         self.enqueue_message(&mut *peer, msg);
1536                                                 }
1537                                                 for msg in update_fulfill_htlcs {
1538                                                         self.enqueue_message(&mut *peer, msg);
1539                                                 }
1540                                                 for msg in update_fail_htlcs {
1541                                                         self.enqueue_message(&mut *peer, msg);
1542                                                 }
1543                                                 for msg in update_fail_malformed_htlcs {
1544                                                         self.enqueue_message(&mut *peer, msg);
1545                                                 }
1546                                                 if let &Some(ref msg) = update_fee {
1547                                                         self.enqueue_message(&mut *peer, msg);
1548                                                 }
1549                                                 self.enqueue_message(&mut *peer, commitment_signed);
1550                                         },
1551                                         MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
1552                                                 log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
1553                                                                 log_pubkey!(node_id),
1554                                                                 log_bytes!(msg.channel_id));
1555                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1556                                         },
1557                                         MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
1558                                                 log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
1559                                                                 log_pubkey!(node_id),
1560                                                                 log_bytes!(msg.channel_id));
1561                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1562                                         },
1563                                         MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
1564                                                 log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}",
1565                                                                 log_pubkey!(node_id),
1566                                                                 log_bytes!(msg.channel_id));
1567                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1568                                         },
1569                                         MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
1570                                                 log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
1571                                                                 log_pubkey!(node_id),
1572                                                                 log_bytes!(msg.channel_id));
1573                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1574                                         },
1575                                         MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => {
1576                                                 log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1577                                                 match self.message_handler.route_handler.handle_channel_announcement(&msg) {
1578                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1579                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None),
1580                                                         _ => {},
1581                                                 }
1582                                                 match self.message_handler.route_handler.handle_channel_update(&update_msg) {
1583                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1584                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None),
1585                                                         _ => {},
1586                                                 }
1587                                         },
1588                                         MessageSendEvent::BroadcastNodeAnnouncement { msg } => {
1589                                                 log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler");
1590                                                 match self.message_handler.route_handler.handle_node_announcement(&msg) {
1591                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1592                                                                 self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None),
1593                                                         _ => {},
1594                                                 }
1595                                         },
1596                                         MessageSendEvent::BroadcastChannelUpdate { msg } => {
1597                                                 log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
1598                                                 match self.message_handler.route_handler.handle_channel_update(&msg) {
1599                                                         Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) =>
1600                                                                 self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None),
1601                                                         _ => {},
1602                                                 }
1603                                         },
1604                                         MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => {
1605                                                 log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}",
1606                                                                 log_pubkey!(node_id), msg.contents.short_channel_id);
1607                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1608                                         },
1609                                         MessageSendEvent::HandleError { ref node_id, ref action } => {
1610                                                 match *action {
1611                                                         msgs::ErrorAction::DisconnectPeer { ref msg } => {
1612                                                                 // We do not have the peers write lock, so we just store that we're
1613                                                                 // about to disconenct the peer and do it after we finish
1614                                                                 // processing most messages.
1615                                                                 peers_to_disconnect.insert(*node_id, msg.clone());
1616                                                         },
1617                                                         msgs::ErrorAction::IgnoreAndLog(level) => {
1618                                                                 log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1619                                                         },
1620                                                         msgs::ErrorAction::IgnoreDuplicateGossip => {},
1621                                                         msgs::ErrorAction::IgnoreError => {
1622                                                                 log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id));
1623                                                         },
1624                                                         msgs::ErrorAction::SendErrorMessage { ref msg } => {
1625                                                                 log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
1626                                                                                 log_pubkey!(node_id),
1627                                                                                 msg.data);
1628                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1629                                                         },
1630                                                         msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => {
1631                                                                 log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}",
1632                                                                                 log_pubkey!(node_id),
1633                                                                                 msg.data);
1634                                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1635                                                         },
1636                                                 }
1637                                         },
1638                                         MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => {
1639                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1640                                         },
1641                                         MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => {
1642                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1643                                         }
1644                                         MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => {
1645                                                 log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}",
1646                                                         log_pubkey!(node_id),
1647                                                         msg.short_channel_ids.len(),
1648                                                         msg.first_blocknum,
1649                                                         msg.number_of_blocks,
1650                                                         msg.sync_complete);
1651                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1652                                         }
1653                                         MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => {
1654                                                 self.enqueue_message(&mut *get_peer_for_forwarding!(node_id), msg);
1655                                         }
1656                                 }
1657                         }
1658
1659                         for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() {
1660                                 if peers_to_disconnect.get(&node_id).is_some() { continue; }
1661                                 self.enqueue_message(&mut *get_peer_for_forwarding!(&node_id), &msg);
1662                         }
1663
1664                         for (descriptor, peer_mutex) in peers.iter() {
1665                                 self.do_attempt_write_data(&mut (*descriptor).clone(), &mut *peer_mutex.lock().unwrap());
1666                         }
1667                 }
1668                 if !peers_to_disconnect.is_empty() {
1669                         let mut peers_lock = self.peers.write().unwrap();
1670                         let peers = &mut *peers_lock;
1671                         for (node_id, msg) in peers_to_disconnect.drain() {
1672                                 // Note that since we are holding the peers *write* lock we can
1673                                 // remove from node_id_to_descriptor immediately (as no other
1674                                 // thread can be holding the peer lock if we have the global write
1675                                 // lock).
1676
1677                                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1678                                         if let Some(peer_mutex) = peers.remove(&descriptor) {
1679                                                 if let Some(msg) = msg {
1680                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
1681                                                                         log_pubkey!(node_id),
1682                                                                         msg.data);
1683                                                         let mut peer = peer_mutex.lock().unwrap();
1684                                                         self.enqueue_message(&mut *peer, &msg);
1685                                                         // This isn't guaranteed to work, but if there is enough free
1686                                                         // room in the send buffer, put the error message there...
1687                                                         self.do_attempt_write_data(&mut descriptor, &mut *peer);
1688                                                 } else {
1689                                                         log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
1690                                                 }
1691                                         }
1692                                         descriptor.disconnect_socket();
1693                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1694                                 }
1695                         }
1696                 }
1697         }
1698
1699         /// Indicates that the given socket descriptor's connection is now closed.
1700         pub fn socket_disconnected(&self, descriptor: &Descriptor) {
1701                 self.disconnect_event_internal(descriptor, false);
1702         }
1703
1704         fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
1705                 let mut peers = self.peers.write().unwrap();
1706                 let peer_option = peers.remove(descriptor);
1707                 match peer_option {
1708                         None => {
1709                                 // This is most likely a simple race condition where the user found that the socket
1710                                 // was disconnected, then we told the user to `disconnect_socket()`, then they
1711                                 // called this method. Either way we're disconnected, return.
1712                         },
1713                         Some(peer_lock) => {
1714                                 let peer = peer_lock.lock().unwrap();
1715                                 if let Some(node_id) = peer.their_node_id {
1716                                         log_trace!(self.logger,
1717                                                 "Handling disconnection of peer {}, with {}future connection to the peer possible.",
1718                                                 log_pubkey!(node_id), if no_connection_possible { "no " } else { "" });
1719                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1720                                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1721                                 }
1722                         }
1723                 };
1724         }
1725
1726         /// Disconnect a peer given its node id.
1727         ///
1728         /// Set `no_connection_possible` to true to prevent any further connection with this peer,
1729         /// force-closing any channels we have with it.
1730         ///
1731         /// If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
1732         /// peer. Thus, be very careful about reentrancy issues.
1733         ///
1734         /// [`disconnect_socket`]: SocketDescriptor::disconnect_socket
1735         pub fn disconnect_by_node_id(&self, node_id: PublicKey, no_connection_possible: bool) {
1736                 let mut peers_lock = self.peers.write().unwrap();
1737                 if let Some(mut descriptor) = self.node_id_to_descriptor.lock().unwrap().remove(&node_id) {
1738                         log_trace!(self.logger, "Disconnecting peer with id {} due to client request", node_id);
1739                         peers_lock.remove(&descriptor);
1740                         self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
1741                         descriptor.disconnect_socket();
1742                 }
1743         }
1744
1745         /// Disconnects all currently-connected peers. This is useful on platforms where there may be
1746         /// an indication that TCP sockets have stalled even if we weren't around to time them out
1747         /// using regular ping/pongs.
1748         pub fn disconnect_all_peers(&self) {
1749                 let mut peers_lock = self.peers.write().unwrap();
1750                 self.node_id_to_descriptor.lock().unwrap().clear();
1751                 let peers = &mut *peers_lock;
1752                 for (mut descriptor, peer) in peers.drain() {
1753                         if let Some(node_id) = peer.lock().unwrap().their_node_id {
1754                                 log_trace!(self.logger, "Disconnecting peer with id {} due to client request to disconnect all peers", node_id);
1755                                 self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1756                         }
1757                         descriptor.disconnect_socket();
1758                 }
1759         }
1760
1761         /// This is called when we're blocked on sending additional gossip messages until we receive a
1762         /// pong. If we aren't waiting on a pong, we take this opportunity to send a ping (setting
1763         /// `awaiting_pong_timer_tick_intervals` to a special flag value to indicate this).
1764         fn maybe_send_extra_ping(&self, peer: &mut Peer) {
1765                 if peer.awaiting_pong_timer_tick_intervals == 0 {
1766                         peer.awaiting_pong_timer_tick_intervals = -1;
1767                         let ping = msgs::Ping {
1768                                 ponglen: 0,
1769                                 byteslen: 64,
1770                         };
1771                         self.enqueue_message(peer, &ping);
1772                 }
1773         }
1774
1775         /// Send pings to each peer and disconnect those which did not respond to the last round of
1776         /// pings.
1777         ///
1778         /// This may be called on any timescale you want, however, roughly once every ten seconds is
1779         /// preferred. The call rate determines both how often we send a ping to our peers and how much
1780         /// time they have to respond before we disconnect them.
1781         ///
1782         /// May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
1783         /// issues!
1784         ///
1785         /// [`send_data`]: SocketDescriptor::send_data
1786         pub fn timer_tick_occurred(&self) {
1787                 let mut descriptors_needing_disconnect = Vec::new();
1788                 {
1789                         let peers_lock = self.peers.read().unwrap();
1790
1791                         for (descriptor, peer_mutex) in peers_lock.iter() {
1792                                 let mut peer = peer_mutex.lock().unwrap();
1793                                 if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_node_id.is_none() {
1794                                         // The peer needs to complete its handshake before we can exchange messages. We
1795                                         // give peers one timer tick to complete handshake, reusing
1796                                         // `awaiting_pong_timer_tick_intervals` to track number of timer ticks taken
1797                                         // for handshake completion.
1798                                         if peer.awaiting_pong_timer_tick_intervals != 0 {
1799                                                 descriptors_needing_disconnect.push(descriptor.clone());
1800                                         } else {
1801                                                 peer.awaiting_pong_timer_tick_intervals = 1;
1802                                         }
1803                                         continue;
1804                                 }
1805
1806                                 if peer.awaiting_pong_timer_tick_intervals == -1 {
1807                                         // Magic value set in `maybe_send_extra_ping`.
1808                                         peer.awaiting_pong_timer_tick_intervals = 1;
1809                                         peer.received_message_since_timer_tick = false;
1810                                         continue;
1811                                 }
1812
1813                                 if (peer.awaiting_pong_timer_tick_intervals > 0 && !peer.received_message_since_timer_tick)
1814                                         || peer.awaiting_pong_timer_tick_intervals as u64 >
1815                                                 MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peers_lock.len() as u64
1816                                 {
1817                                         descriptors_needing_disconnect.push(descriptor.clone());
1818                                         continue;
1819                                 }
1820                                 peer.received_message_since_timer_tick = false;
1821
1822                                 if peer.awaiting_pong_timer_tick_intervals > 0 {
1823                                         peer.awaiting_pong_timer_tick_intervals += 1;
1824                                         continue;
1825                                 }
1826
1827                                 peer.awaiting_pong_timer_tick_intervals = 1;
1828                                 let ping = msgs::Ping {
1829                                         ponglen: 0,
1830                                         byteslen: 64,
1831                                 };
1832                                 self.enqueue_message(&mut *peer, &ping);
1833                                 self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer);
1834                         }
1835                 }
1836
1837                 if !descriptors_needing_disconnect.is_empty() {
1838                         {
1839                                 let mut peers_lock = self.peers.write().unwrap();
1840                                 for descriptor in descriptors_needing_disconnect.iter() {
1841                                         if let Some(peer) = peers_lock.remove(descriptor) {
1842                                                 if let Some(node_id) = peer.lock().unwrap().their_node_id {
1843                                                         log_trace!(self.logger, "Disconnecting peer with id {} due to ping timeout", node_id);
1844                                                         self.node_id_to_descriptor.lock().unwrap().remove(&node_id);
1845                                                         self.message_handler.chan_handler.peer_disconnected(&node_id, false);
1846                                                 }
1847                                         }
1848                                 }
1849                         }
1850
1851                         for mut descriptor in descriptors_needing_disconnect.drain(..) {
1852                                 descriptor.disconnect_socket();
1853                         }
1854                 }
1855         }
1856 }
1857
1858 fn is_gossip_msg(type_id: u16) -> bool {
1859         match type_id {
1860                 msgs::ChannelAnnouncement::TYPE |
1861                 msgs::ChannelUpdate::TYPE |
1862                 msgs::NodeAnnouncement::TYPE |
1863                 msgs::QueryChannelRange::TYPE |
1864                 msgs::ReplyChannelRange::TYPE |
1865                 msgs::QueryShortChannelIds::TYPE |
1866                 msgs::ReplyShortChannelIdsEnd::TYPE => true,
1867                 _ => false
1868         }
1869 }
1870
1871 #[cfg(test)]
1872 mod tests {
1873         use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses};
1874         use ln::{msgs, wire};
1875         use ln::msgs::NetAddress;
1876         use util::events;
1877         use util::test_utils;
1878
1879         use bitcoin::secp256k1::Secp256k1;
1880         use bitcoin::secp256k1::{SecretKey, PublicKey};
1881
1882         use prelude::*;
1883         use sync::{Arc, Mutex};
1884         use core::sync::atomic::Ordering;
1885
1886         #[derive(Clone)]
1887         struct FileDescriptor {
1888                 fd: u16,
1889                 outbound_data: Arc<Mutex<Vec<u8>>>,
1890         }
1891         impl PartialEq for FileDescriptor {
1892                 fn eq(&self, other: &Self) -> bool {
1893                         self.fd == other.fd
1894                 }
1895         }
1896         impl Eq for FileDescriptor { }
1897         impl core::hash::Hash for FileDescriptor {
1898                 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
1899                         self.fd.hash(hasher)
1900                 }
1901         }
1902
1903         impl SocketDescriptor for FileDescriptor {
1904                 fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
1905                         self.outbound_data.lock().unwrap().extend_from_slice(data);
1906                         data.len()
1907                 }
1908
1909                 fn disconnect_socket(&mut self) {}
1910         }
1911
1912         struct PeerManagerCfg {
1913                 chan_handler: test_utils::TestChannelMessageHandler,
1914                 routing_handler: test_utils::TestRoutingMessageHandler,
1915                 logger: test_utils::TestLogger,
1916         }
1917
1918         fn create_peermgr_cfgs(peer_count: usize) -> Vec<PeerManagerCfg> {
1919                 let mut cfgs = Vec::new();
1920                 for _ in 0..peer_count {
1921                         cfgs.push(
1922                                 PeerManagerCfg{
1923                                         chan_handler: test_utils::TestChannelMessageHandler::new(),
1924                                         logger: test_utils::TestLogger::new(),
1925                                         routing_handler: test_utils::TestRoutingMessageHandler::new(),
1926                                 }
1927                         );
1928                 }
1929
1930                 cfgs
1931         }
1932
1933         fn create_network<'a>(peer_count: usize, cfgs: &'a Vec<PeerManagerCfg>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>> {
1934                 let mut peers = Vec::new();
1935                 for i in 0..peer_count {
1936                         let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap();
1937                         let ephemeral_bytes = [i as u8; 32];
1938                         let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler };
1939                         let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {});
1940                         peers.push(peer);
1941                 }
1942
1943                 peers
1944         }
1945
1946         fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler, &'a test_utils::TestRoutingMessageHandler, &'a test_utils::TestLogger, IgnoringMessageHandler>) -> (FileDescriptor, FileDescriptor) {
1947                 let secp_ctx = Secp256k1::new();
1948                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
1949                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1950                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
1951                 let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
1952                 peer_a.new_inbound_connection(fd_a.clone(), None).unwrap();
1953                 assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false);
1954                 peer_a.process_events();
1955
1956                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1957                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
1958
1959                 peer_b.process_events();
1960                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
1961                 assert_eq!(peer_a.read_event(&mut fd_a, &b_data).unwrap(), false);
1962
1963                 peer_a.process_events();
1964                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
1965                 assert_eq!(peer_b.read_event(&mut fd_b, &a_data).unwrap(), false);
1966
1967                 (fd_a.clone(), fd_b.clone())
1968         }
1969
1970         #[test]
1971         fn test_disconnect_peer() {
1972                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1973                 // push a DisconnectPeer event to remove the node flagged by id
1974                 let cfgs = create_peermgr_cfgs(2);
1975                 let chan_handler = test_utils::TestChannelMessageHandler::new();
1976                 let mut peers = create_network(2, &cfgs);
1977                 establish_connection(&peers[0], &peers[1]);
1978                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
1979
1980                 let secp_ctx = Secp256k1::new();
1981                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
1982
1983                 chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
1984                         node_id: their_id,
1985                         action: msgs::ErrorAction::DisconnectPeer { msg: None },
1986                 });
1987                 assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
1988                 peers[0].message_handler.chan_handler = &chan_handler;
1989
1990                 peers[0].process_events();
1991                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
1992         }
1993
1994         #[test]
1995         fn test_send_simple_msg() {
1996                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
1997                 // push a message from one peer to another.
1998                 let cfgs = create_peermgr_cfgs(2);
1999                 let a_chan_handler = test_utils::TestChannelMessageHandler::new();
2000                 let b_chan_handler = test_utils::TestChannelMessageHandler::new();
2001                 let mut peers = create_network(2, &cfgs);
2002                 let (fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2003                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2004
2005                 let secp_ctx = Secp256k1::new();
2006                 let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
2007
2008                 let msg = msgs::Shutdown { channel_id: [42; 32], scriptpubkey: bitcoin::Script::new() };
2009                 a_chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::SendShutdown {
2010                         node_id: their_id, msg: msg.clone()
2011                 });
2012                 peers[0].message_handler.chan_handler = &a_chan_handler;
2013
2014                 b_chan_handler.expect_receive_msg(wire::Message::Shutdown(msg));
2015                 peers[1].message_handler.chan_handler = &b_chan_handler;
2016
2017                 peers[0].process_events();
2018
2019                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2020                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2021         }
2022
2023         #[test]
2024         fn test_disconnect_all_peer() {
2025                 // Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2026                 // then calls disconnect_all_peers
2027                 let cfgs = create_peermgr_cfgs(2);
2028                 let peers = create_network(2, &cfgs);
2029                 establish_connection(&peers[0], &peers[1]);
2030                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2031
2032                 peers[0].disconnect_all_peers();
2033                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2034         }
2035
2036         #[test]
2037         fn test_timer_tick_occurred() {
2038                 // Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
2039                 let cfgs = create_peermgr_cfgs(2);
2040                 let peers = create_network(2, &cfgs);
2041                 establish_connection(&peers[0], &peers[1]);
2042                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2043
2044                 // peers[0] awaiting_pong is set to true, but the Peer is still connected
2045                 peers[0].timer_tick_occurred();
2046                 peers[0].process_events();
2047                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2048
2049                 // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected
2050                 peers[0].timer_tick_occurred();
2051                 peers[0].process_events();
2052                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2053         }
2054
2055         #[test]
2056         fn test_do_attempt_write_data() {
2057                 // Create 2 peers with custom TestRoutingMessageHandlers and connect them.
2058                 let cfgs = create_peermgr_cfgs(2);
2059                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2060                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2061                 let peers = create_network(2, &cfgs);
2062
2063                 // By calling establish_connect, we trigger do_attempt_write_data between
2064                 // the peers. Previously this function would mistakenly enter an infinite loop
2065                 // when there were more channel messages available than could fit into a peer's
2066                 // buffer. This issue would now be detected by this test (because we use custom
2067                 // RoutingMessageHandlers that intentionally return more channel messages
2068                 // than can fit into a peer's buffer).
2069                 let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]);
2070
2071                 // Make each peer to read the messages that the other peer just wrote to them. Note that
2072                 // due to the max-message-before-ping limits this may take a few iterations to complete.
2073                 for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 {
2074                         peers[1].process_events();
2075                         let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2076                         assert!(!a_read_data.is_empty());
2077
2078                         peers[0].read_event(&mut fd_a, &a_read_data).unwrap();
2079                         peers[0].process_events();
2080
2081                         let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2082                         assert!(!b_read_data.is_empty());
2083                         peers[1].read_event(&mut fd_b, &b_read_data).unwrap();
2084
2085                         peers[0].process_events();
2086                         assert_eq!(fd_a.outbound_data.lock().unwrap().len(), 0, "Until A receives data, it shouldn't send more messages");
2087                 }
2088
2089                 // Check that each peer has received the expected number of channel updates and channel
2090                 // announcements.
2091                 assert_eq!(cfgs[0].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2092                 assert_eq!(cfgs[0].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2093                 assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 108);
2094                 assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 54);
2095         }
2096
2097         #[test]
2098         fn test_handshake_timeout() {
2099                 // Tests that we time out a peer still waiting on handshake completion after a full timer
2100                 // tick.
2101                 let cfgs = create_peermgr_cfgs(2);
2102                 cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release);
2103                 cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release);
2104                 let peers = create_network(2, &cfgs);
2105
2106                 let secp_ctx = Secp256k1::new();
2107                 let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret);
2108                 let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2109                 let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
2110                 let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap();
2111                 peers[0].new_inbound_connection(fd_a.clone(), None).unwrap();
2112
2113                 // If we get a single timer tick before completion, that's fine
2114                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2115                 peers[0].timer_tick_occurred();
2116                 assert_eq!(peers[0].peers.read().unwrap().len(), 1);
2117
2118                 assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false);
2119                 peers[0].process_events();
2120                 let a_data = fd_a.outbound_data.lock().unwrap().split_off(0);
2121                 assert_eq!(peers[1].read_event(&mut fd_b, &a_data).unwrap(), false);
2122                 peers[1].process_events();
2123
2124                 // ...but if we get a second timer tick, we should disconnect the peer
2125                 peers[0].timer_tick_occurred();
2126                 assert_eq!(peers[0].peers.read().unwrap().len(), 0);
2127
2128                 let b_data = fd_b.outbound_data.lock().unwrap().split_off(0);
2129                 assert!(peers[0].read_event(&mut fd_a, &b_data).is_err());
2130         }
2131
2132         #[test]
2133         fn test_filter_addresses(){
2134                 // Tests the filter_addresses function.
2135
2136                 // For (10/8)
2137                 let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000};
2138                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2139                 let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000};
2140                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2141                 let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000};
2142                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2143
2144                 // For (0/8)
2145                 let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000};
2146                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2147                 let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000};
2148                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2149                 let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000};
2150                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2151
2152                 // For (100.64/10)
2153                 let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000};
2154                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2155                 let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000};
2156                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2157                 let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000};
2158                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2159
2160                 // For (127/8)
2161                 let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000};
2162                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2163                 let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000};
2164                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2165                 let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000};
2166                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2167
2168                 // For (169.254/16)
2169                 let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000};
2170                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2171                 let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000};
2172                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2173                 let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000};
2174                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2175
2176                 // For (172.16/12)
2177                 let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000};
2178                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2179                 let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000};
2180                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2181                 let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000};
2182                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2183
2184                 // For (192.168/16)
2185                 let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000};
2186                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2187                 let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000};
2188                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2189                 let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000};
2190                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2191
2192                 // For (192.88.99/24)
2193                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000};
2194                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2195                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000};
2196                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2197                 let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000};
2198                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2199
2200                 // For other IPv4 addresses
2201                 let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000};
2202                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2203                 let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000};
2204                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2205                 let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000};
2206                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2207
2208                 // For (2000::/3)
2209                 let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000};
2210                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2211                 let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000};
2212                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2213                 let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000};
2214                 assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone()));
2215
2216                 // For other IPv6 addresses
2217                 let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000};
2218                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2219                 let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000};
2220                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2221                 let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000};
2222                 assert_eq!(filter_addresses(Some(ip_address.clone())), None);
2223
2224                 // For (None)
2225                 assert_eq!(filter_addresses(None), None);
2226         }
2227 }