]> git.bitcoin.ninja Git - rust-lightning/blob - lightning/src/routing/gossip.rs
cd366f92a29f82ff9cdeb86ea139e124f5d29f2e
[rust-lightning] / lightning / src / routing / gossip.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level network map tracking logic lives here.
11
12 use bitcoin::secp256k1::constants::PUBLIC_KEY_SIZE;
13 use bitcoin::secp256k1::PublicKey;
14 use bitcoin::secp256k1::Secp256k1;
15 use bitcoin::secp256k1;
16
17 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
18 use bitcoin::hashes::Hash;
19 use bitcoin::blockdata::transaction::TxOut;
20 use bitcoin::hash_types::BlockHash;
21
22 use chain;
23 use chain::Access;
24 use ln::chan_utils::make_funding_redeemscript;
25 use ln::features::{ChannelFeatures, NodeFeatures, InitFeatures};
26 use ln::msgs::{DecodeError, ErrorAction, Init, LightningError, RoutingMessageHandler, NetAddress, MAX_VALUE_MSAT};
27 use ln::msgs::{ChannelAnnouncement, ChannelUpdate, NodeAnnouncement, GossipTimestampFilter};
28 use ln::msgs::{QueryChannelRange, ReplyChannelRange, QueryShortChannelIds, ReplyShortChannelIdsEnd};
29 use ln::msgs;
30 use util::ser::{Readable, ReadableArgs, Writeable, Writer, MaybeReadable};
31 use util::logger::{Logger, Level};
32 use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
33 use util::scid_utils::{block_from_scid, scid_from_parts, MAX_SCID_BLOCK};
34
35 use io;
36 use io_extras::{copy, sink};
37 use prelude::*;
38 use alloc::collections::{BTreeMap, btree_map::Entry as BtreeEntry};
39 use core::{cmp, fmt};
40 use sync::{RwLock, RwLockReadGuard};
41 use core::sync::atomic::{AtomicUsize, Ordering};
42 use sync::Mutex;
43 use core::ops::{Bound, Deref};
44 use bitcoin::hashes::hex::ToHex;
45
46 #[cfg(feature = "std")]
47 use std::time::{SystemTime, UNIX_EPOCH};
48
49 /// We remove stale channel directional info two weeks after the last update, per BOLT 7's
50 /// suggestion.
51 const STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS: u64 = 60 * 60 * 24 * 14;
52
53 /// The maximum number of extra bytes which we do not understand in a gossip message before we will
54 /// refuse to relay the message.
55 const MAX_EXCESS_BYTES_FOR_RELAY: usize = 1024;
56
57 /// Maximum number of short_channel_ids that will be encoded in one gossip reply message.
58 /// This value ensures a reply fits within the 65k payload limit and is consistent with other implementations.
59 const MAX_SCIDS_PER_REPLY: usize = 8000;
60
61 /// Represents the compressed public key of a node
62 #[derive(Clone, Copy)]
63 pub struct NodeId([u8; PUBLIC_KEY_SIZE]);
64
65 impl NodeId {
66         /// Create a new NodeId from a public key
67         pub fn from_pubkey(pubkey: &PublicKey) -> Self {
68                 NodeId(pubkey.serialize())
69         }
70
71         /// Get the public key slice from this NodeId
72         pub fn as_slice(&self) -> &[u8] {
73                 &self.0
74         }
75 }
76
77 impl fmt::Debug for NodeId {
78         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
79                 write!(f, "NodeId({})", log_bytes!(self.0))
80         }
81 }
82
83 impl core::hash::Hash for NodeId {
84         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
85                 self.0.hash(hasher);
86         }
87 }
88
89 impl Eq for NodeId {}
90
91 impl PartialEq for NodeId {
92         fn eq(&self, other: &Self) -> bool {
93                 self.0[..] == other.0[..]
94         }
95 }
96
97 impl cmp::PartialOrd for NodeId {
98         fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
99                 Some(self.cmp(other))
100         }
101 }
102
103 impl Ord for NodeId {
104         fn cmp(&self, other: &Self) -> cmp::Ordering {
105                 self.0[..].cmp(&other.0[..])
106         }
107 }
108
109 impl Writeable for NodeId {
110         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
111                 writer.write_all(&self.0)?;
112                 Ok(())
113         }
114 }
115
116 impl Readable for NodeId {
117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
118                 let mut buf = [0; PUBLIC_KEY_SIZE];
119                 reader.read_exact(&mut buf)?;
120                 Ok(Self(buf))
121         }
122 }
123
124 /// Represents the network as nodes and channels between them
125 pub struct NetworkGraph<L: Deref> where L::Target: Logger {
126         secp_ctx: Secp256k1<secp256k1::VerifyOnly>,
127         last_rapid_gossip_sync_timestamp: Mutex<Option<u32>>,
128         genesis_hash: BlockHash,
129         logger: L,
130         // Lock order: channels -> nodes
131         channels: RwLock<BTreeMap<u64, ChannelInfo>>,
132         nodes: RwLock<BTreeMap<NodeId, NodeInfo>>,
133 }
134
135 /// A read-only view of [`NetworkGraph`].
136 pub struct ReadOnlyNetworkGraph<'a> {
137         channels: RwLockReadGuard<'a, BTreeMap<u64, ChannelInfo>>,
138         nodes: RwLockReadGuard<'a, BTreeMap<NodeId, NodeInfo>>,
139 }
140
141 /// Update to the [`NetworkGraph`] based on payment failure information conveyed via the Onion
142 /// return packet by a node along the route. See [BOLT #4] for details.
143 ///
144 /// [BOLT #4]: https://github.com/lightning/bolts/blob/master/04-onion-routing.md
145 #[derive(Clone, Debug, PartialEq)]
146 pub enum NetworkUpdate {
147         /// An error indicating a `channel_update` messages should be applied via
148         /// [`NetworkGraph::update_channel`].
149         ChannelUpdateMessage {
150                 /// The update to apply via [`NetworkGraph::update_channel`].
151                 msg: ChannelUpdate,
152         },
153         /// An error indicating that a channel failed to route a payment, which should be applied via
154         /// [`NetworkGraph::channel_failed`].
155         ChannelFailure {
156                 /// The short channel id of the closed channel.
157                 short_channel_id: u64,
158                 /// Whether the channel should be permanently removed or temporarily disabled until a new
159                 /// `channel_update` message is received.
160                 is_permanent: bool,
161         },
162         /// An error indicating that a node failed to route a payment, which should be applied via
163         /// [`NetworkGraph::node_failed`].
164         NodeFailure {
165                 /// The node id of the failed node.
166                 node_id: PublicKey,
167                 /// Whether the node should be permanently removed from consideration or can be restored
168                 /// when a new `channel_update` message is received.
169                 is_permanent: bool,
170         }
171 }
172
173 impl_writeable_tlv_based_enum_upgradable!(NetworkUpdate,
174         (0, ChannelUpdateMessage) => {
175                 (0, msg, required),
176         },
177         (2, ChannelFailure) => {
178                 (0, short_channel_id, required),
179                 (2, is_permanent, required),
180         },
181         (4, NodeFailure) => {
182                 (0, node_id, required),
183                 (2, is_permanent, required),
184         },
185 );
186
187 /// Receives and validates network updates from peers,
188 /// stores authentic and relevant data as a network graph.
189 /// This network graph is then used for routing payments.
190 /// Provides interface to help with initial routing sync by
191 /// serving historical announcements.
192 ///
193 /// Serves as an [`EventHandler`] for applying updates from [`Event::PaymentPathFailed`] to the
194 /// [`NetworkGraph`].
195 pub struct P2PGossipSync<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref>
196 where C::Target: chain::Access, L::Target: Logger
197 {
198         network_graph: G,
199         chain_access: Option<C>,
200         #[cfg(feature = "std")]
201         full_syncs_requested: AtomicUsize,
202         pending_events: Mutex<Vec<MessageSendEvent>>,
203         logger: L,
204 }
205
206 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> P2PGossipSync<G, C, L>
207 where C::Target: chain::Access, L::Target: Logger
208 {
209         /// Creates a new tracker of the actual state of the network of channels and nodes,
210         /// assuming an existing Network Graph.
211         /// Chain monitor is used to make sure announced channels exist on-chain,
212         /// channel data is correct, and that the announcement is signed with
213         /// channel owners' keys.
214         pub fn new(network_graph: G, chain_access: Option<C>, logger: L) -> Self {
215                 P2PGossipSync {
216                         network_graph,
217                         #[cfg(feature = "std")]
218                         full_syncs_requested: AtomicUsize::new(0),
219                         chain_access,
220                         pending_events: Mutex::new(vec![]),
221                         logger,
222                 }
223         }
224
225         /// Adds a provider used to check new announcements. Does not affect
226         /// existing announcements unless they are updated.
227         /// Add, update or remove the provider would replace the current one.
228         pub fn add_chain_access(&mut self, chain_access: Option<C>) {
229                 self.chain_access = chain_access;
230         }
231
232         /// Gets a reference to the underlying [`NetworkGraph`] which was provided in
233         /// [`P2PGossipSync::new`].
234         ///
235         /// (C-not exported) as bindings don't support a reference-to-a-reference yet
236         pub fn network_graph(&self) -> &G {
237                 &self.network_graph
238         }
239
240         #[cfg(feature = "std")]
241         /// Returns true when a full routing table sync should be performed with a peer.
242         fn should_request_full_sync(&self, _node_id: &PublicKey) -> bool {
243                 //TODO: Determine whether to request a full sync based on the network map.
244                 const FULL_SYNCS_TO_REQUEST: usize = 5;
245                 if self.full_syncs_requested.load(Ordering::Acquire) < FULL_SYNCS_TO_REQUEST {
246                         self.full_syncs_requested.fetch_add(1, Ordering::AcqRel);
247                         true
248                 } else {
249                         false
250                 }
251         }
252 }
253
254 impl<L: Deref> EventHandler for NetworkGraph<L> where L::Target: Logger {
255         fn handle_event(&self, event: &Event) {
256                 if let Event::PaymentPathFailed { network_update, .. } = event {
257                         if let Some(network_update) = network_update {
258                                 match *network_update {
259                                         NetworkUpdate::ChannelUpdateMessage { ref msg } => {
260                                                 let short_channel_id = msg.contents.short_channel_id;
261                                                 let is_enabled = msg.contents.flags & (1 << 1) != (1 << 1);
262                                                 let status = if is_enabled { "enabled" } else { "disabled" };
263                                                 log_debug!(self.logger, "Updating channel with channel_update from a payment failure. Channel {} is {}.", short_channel_id, status);
264                                                 let _ = self.update_channel(msg);
265                                         },
266                                         NetworkUpdate::ChannelFailure { short_channel_id, is_permanent } => {
267                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
268                                                 log_debug!(self.logger, "{} channel graph entry for {} due to a payment failure.", action, short_channel_id);
269                                                 self.channel_failed(short_channel_id, is_permanent);
270                                         },
271                                         NetworkUpdate::NodeFailure { ref node_id, is_permanent } => {
272                                                 let action = if is_permanent { "Removing" } else { "Disabling" };
273                                                 log_debug!(self.logger, "{} node graph entry for {} due to a payment failure.", action, node_id);
274                                                 self.node_failed(node_id, is_permanent);
275                                         },
276                                 }
277                         }
278                 }
279         }
280 }
281
282 macro_rules! secp_verify_sig {
283         ( $secp_ctx: expr, $msg: expr, $sig: expr, $pubkey: expr, $msg_type: expr ) => {
284                 match $secp_ctx.verify_ecdsa($msg, $sig, $pubkey) {
285                         Ok(_) => {},
286                         Err(_) => {
287                                 return Err(LightningError {
288                                         err: format!("Invalid signature on {} message", $msg_type),
289                                         action: ErrorAction::SendWarningMessage {
290                                                 msg: msgs::WarningMessage {
291                                                         channel_id: [0; 32],
292                                                         data: format!("Invalid signature on {} message", $msg_type),
293                                                 },
294                                                 log_level: Level::Trace,
295                                         },
296                                 });
297                         },
298                 }
299         };
300 }
301
302 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> RoutingMessageHandler for P2PGossipSync<G, C, L>
303 where C::Target: chain::Access, L::Target: Logger
304 {
305         fn handle_node_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<bool, LightningError> {
306                 self.network_graph.update_node_from_announcement(msg)?;
307                 Ok(msg.contents.excess_data.len() <=  MAX_EXCESS_BYTES_FOR_RELAY &&
308                    msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
309                    msg.contents.excess_data.len() + msg.contents.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
310         }
311
312         fn handle_channel_announcement(&self, msg: &msgs::ChannelAnnouncement) -> Result<bool, LightningError> {
313                 self.network_graph.update_channel_from_announcement(msg, &self.chain_access)?;
314                 log_gossip!(self.logger, "Added channel_announcement for {}{}", msg.contents.short_channel_id, if !msg.contents.excess_data.is_empty() { " with excess uninterpreted data!" } else { "" });
315                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
316         }
317
318         fn handle_channel_update(&self, msg: &msgs::ChannelUpdate) -> Result<bool, LightningError> {
319                 self.network_graph.update_channel(msg)?;
320                 Ok(msg.contents.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY)
321         }
322
323         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)> {
324                 let channels = self.network_graph.channels.read().unwrap();
325                 for (_, ref chan) in channels.range(starting_point..) {
326                         if chan.announcement_message.is_some() {
327                                 let chan_announcement = chan.announcement_message.clone().unwrap();
328                                 let mut one_to_two_announcement: Option<msgs::ChannelUpdate> = None;
329                                 let mut two_to_one_announcement: Option<msgs::ChannelUpdate> = None;
330                                 if let Some(one_to_two) = chan.one_to_two.as_ref() {
331                                         one_to_two_announcement = one_to_two.last_update_message.clone();
332                                 }
333                                 if let Some(two_to_one) = chan.two_to_one.as_ref() {
334                                         two_to_one_announcement = two_to_one.last_update_message.clone();
335                                 }
336                                 return Some((chan_announcement, one_to_two_announcement, two_to_one_announcement));
337                         } else {
338                                 // TODO: We may end up sending un-announced channel_updates if we are sending
339                                 // initial sync data while receiving announce/updates for this channel.
340                         }
341                 }
342                 None
343         }
344
345         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement> {
346                 let nodes = self.network_graph.nodes.read().unwrap();
347                 let iter = if let Some(pubkey) = starting_point {
348                                 nodes.range((Bound::Excluded(NodeId::from_pubkey(pubkey)), Bound::Unbounded))
349                         } else {
350                                 nodes.range(..)
351                         };
352                 for (_, ref node) in iter {
353                         if let Some(node_info) = node.announcement_info.as_ref() {
354                                 if let Some(msg) = node_info.announcement_message.clone() {
355                                         return Some(msg);
356                                 }
357                         }
358                 }
359                 None
360         }
361
362         /// Initiates a stateless sync of routing gossip information with a peer
363         /// using gossip_queries. The default strategy used by this implementation
364         /// is to sync the full block range with several peers.
365         ///
366         /// We should expect one or more reply_channel_range messages in response
367         /// to our query_channel_range. Each reply will enqueue a query_scid message
368         /// to request gossip messages for each channel. The sync is considered complete
369         /// when the final reply_scids_end message is received, though we are not
370         /// tracking this directly.
371         fn peer_connected(&self, their_node_id: &PublicKey, init_msg: &Init) {
372                 // We will only perform a sync with peers that support gossip_queries.
373                 if !init_msg.features.supports_gossip_queries() {
374                         return ();
375                 }
376
377                 // The lightning network's gossip sync system is completely broken in numerous ways.
378                 //
379                 // Given no broadly-available set-reconciliation protocol, the only reasonable approach is
380                 // to do a full sync from the first few peers we connect to, and then receive gossip
381                 // updates from all our peers normally.
382                 //
383                 // Originally, we could simply tell a peer to dump us the entire gossip table on startup,
384                 // wasting lots of bandwidth but ensuring we have the full network graph. After the initial
385                 // dump peers would always send gossip and we'd stay up-to-date with whatever our peer has
386                 // seen.
387                 //
388                 // In order to reduce the bandwidth waste, "gossip queries" were introduced, allowing you
389                 // to ask for the SCIDs of all channels in your peer's routing graph, and then only request
390                 // channel data which you are missing. Except there was no way at all to identify which
391                 // `channel_update`s you were missing, so you still had to request everything, just in a
392                 // very complicated way with some queries instead of just getting the dump.
393                 //
394                 // Later, an option was added to fetch the latest timestamps of the `channel_update`s to
395                 // make efficient sync possible, however it has yet to be implemented in lnd, which makes
396                 // relying on it useless.
397                 //
398                 // After gossip queries were introduced, support for receiving a full gossip table dump on
399                 // connection was removed from several nodes, making it impossible to get a full sync
400                 // without using the "gossip queries" messages.
401                 //
402                 // Once you opt into "gossip queries" the only way to receive any gossip updates that a
403                 // peer receives after you connect, you must send a `gossip_timestamp_filter` message. This
404                 // message, as the name implies, tells the peer to not forward any gossip messages with a
405                 // timestamp older than a given value (not the time the peer received the filter, but the
406                 // timestamp in the update message, which is often hours behind when the peer received the
407                 // message).
408                 //
409                 // Obnoxiously, `gossip_timestamp_filter` isn't *just* a filter, but its also a request for
410                 // your peer to send you the full routing graph (subject to the filter). Thus, in order to
411                 // tell a peer to send you any updates as it sees them, you have to also ask for the full
412                 // routing graph to be synced. If you set a timestamp filter near the current time, peers
413                 // will simply not forward any new updates they see to you which were generated some time
414                 // ago (which is not uncommon). If you instead set a timestamp filter near 0 (or two weeks
415                 // ago), you will always get the full routing graph from all your peers.
416                 //
417                 // Most lightning nodes today opt to simply turn off receiving gossip data which only
418                 // propagated some time after it was generated, and, worse, often disable gossiping with
419                 // several peers after their first connection. The second behavior can cause gossip to not
420                 // propagate fully if there are cuts in the gossiping subgraph.
421                 //
422                 // In an attempt to cut a middle ground between always fetching the full graph from all of
423                 // our peers and never receiving gossip from peers at all, we send all of our peers a
424                 // `gossip_timestamp_filter`, with the filter time set either two weeks ago or an hour ago.
425                 //
426                 // For no-std builds, we bury our head in the sand and do a full sync on each connection.
427                 #[allow(unused_mut, unused_assignments)]
428                 let mut gossip_start_time = 0;
429                 #[cfg(feature = "std")]
430                 {
431                         gossip_start_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
432                         if self.should_request_full_sync(&their_node_id) {
433                                 gossip_start_time -= 60 * 60 * 24 * 7 * 2; // 2 weeks ago
434                         } else {
435                                 gossip_start_time -= 60 * 60; // an hour ago
436                         }
437                 }
438
439                 let mut pending_events = self.pending_events.lock().unwrap();
440                 pending_events.push(MessageSendEvent::SendGossipTimestampFilter {
441                         node_id: their_node_id.clone(),
442                         msg: GossipTimestampFilter {
443                                 chain_hash: self.network_graph.genesis_hash,
444                                 first_timestamp: gossip_start_time as u32, // 2106 issue!
445                                 timestamp_range: u32::max_value(),
446                         },
447                 });
448         }
449
450         fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: ReplyChannelRange) -> Result<(), LightningError> {
451                 // We don't make queries, so should never receive replies. If, in the future, the set
452                 // reconciliation extensions to gossip queries become broadly supported, we should revert
453                 // this code to its state pre-0.0.106.
454                 Ok(())
455         }
456
457         fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError> {
458                 // We don't make queries, so should never receive replies. If, in the future, the set
459                 // reconciliation extensions to gossip queries become broadly supported, we should revert
460                 // this code to its state pre-0.0.106.
461                 Ok(())
462         }
463
464         /// Processes a query from a peer by finding announced/public channels whose funding UTXOs
465         /// are in the specified block range. Due to message size limits, large range
466         /// queries may result in several reply messages. This implementation enqueues
467         /// all reply messages into pending events. Each message will allocate just under 65KiB. A full
468         /// sync of the public routing table with 128k channels will generated 16 messages and allocate ~1MB.
469         /// Logic can be changed to reduce allocation if/when a full sync of the routing table impacts
470         /// memory constrained systems.
471         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError> {
472                 log_debug!(self.logger, "Handling query_channel_range peer={}, first_blocknum={}, number_of_blocks={}", log_pubkey!(their_node_id), msg.first_blocknum, msg.number_of_blocks);
473
474                 let inclusive_start_scid = scid_from_parts(msg.first_blocknum as u64, 0, 0);
475
476                 // We might receive valid queries with end_blocknum that would overflow SCID conversion.
477                 // If so, we manually cap the ending block to avoid this overflow.
478                 let exclusive_end_scid = scid_from_parts(cmp::min(msg.end_blocknum() as u64, MAX_SCID_BLOCK), 0, 0);
479
480                 // Per spec, we must reply to a query. Send an empty message when things are invalid.
481                 if msg.chain_hash != self.network_graph.genesis_hash || inclusive_start_scid.is_err() || exclusive_end_scid.is_err() || msg.number_of_blocks == 0 {
482                         let mut pending_events = self.pending_events.lock().unwrap();
483                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
484                                 node_id: their_node_id.clone(),
485                                 msg: ReplyChannelRange {
486                                         chain_hash: msg.chain_hash.clone(),
487                                         first_blocknum: msg.first_blocknum,
488                                         number_of_blocks: msg.number_of_blocks,
489                                         sync_complete: true,
490                                         short_channel_ids: vec![],
491                                 }
492                         });
493                         return Err(LightningError {
494                                 err: String::from("query_channel_range could not be processed"),
495                                 action: ErrorAction::IgnoreError,
496                         });
497                 }
498
499                 // Creates channel batches. We are not checking if the channel is routable
500                 // (has at least one update). A peer may still want to know the channel
501                 // exists even if its not yet routable.
502                 let mut batches: Vec<Vec<u64>> = vec![Vec::with_capacity(MAX_SCIDS_PER_REPLY)];
503                 let channels = self.network_graph.channels.read().unwrap();
504                 for (_, ref chan) in channels.range(inclusive_start_scid.unwrap()..exclusive_end_scid.unwrap()) {
505                         if let Some(chan_announcement) = &chan.announcement_message {
506                                 // Construct a new batch if last one is full
507                                 if batches.last().unwrap().len() == batches.last().unwrap().capacity() {
508                                         batches.push(Vec::with_capacity(MAX_SCIDS_PER_REPLY));
509                                 }
510
511                                 let batch = batches.last_mut().unwrap();
512                                 batch.push(chan_announcement.contents.short_channel_id);
513                         }
514                 }
515                 drop(channels);
516
517                 let mut pending_events = self.pending_events.lock().unwrap();
518                 let batch_count = batches.len();
519                 let mut prev_batch_endblock = msg.first_blocknum;
520                 for (batch_index, batch) in batches.into_iter().enumerate() {
521                         // Per spec, the initial `first_blocknum` needs to be <= the query's `first_blocknum`
522                         // and subsequent `first_blocknum`s must be >= the prior reply's `first_blocknum`.
523                         //
524                         // Additionally, c-lightning versions < 0.10 require that the `first_blocknum` of each
525                         // reply is >= the previous reply's `first_blocknum` and either exactly the previous
526                         // reply's `first_blocknum + number_of_blocks` or exactly one greater. This is a
527                         // significant diversion from the requirements set by the spec, and, in case of blocks
528                         // with no channel opens (e.g. empty blocks), requires that we use the previous value
529                         // and *not* derive the first_blocknum from the actual first block of the reply.
530                         let first_blocknum = prev_batch_endblock;
531
532                         // Each message carries the number of blocks (from the `first_blocknum`) its contents
533                         // fit in. Though there is no requirement that we use exactly the number of blocks its
534                         // contents are from, except for the bogus requirements c-lightning enforces, above.
535                         //
536                         // Per spec, the last end block (ie `first_blocknum + number_of_blocks`) needs to be
537                         // >= the query's end block. Thus, for the last reply, we calculate the difference
538                         // between the query's end block and the start of the reply.
539                         //
540                         // Overflow safe since end_blocknum=msg.first_block_num+msg.number_of_blocks and
541                         // first_blocknum will be either msg.first_blocknum or a higher block height.
542                         let (sync_complete, number_of_blocks) = if batch_index == batch_count-1 {
543                                 (true, msg.end_blocknum() - first_blocknum)
544                         }
545                         // Prior replies should use the number of blocks that fit into the reply. Overflow
546                         // safe since first_blocknum is always <= last SCID's block.
547                         else {
548                                 (false, block_from_scid(batch.last().unwrap()) - first_blocknum)
549                         };
550
551                         prev_batch_endblock = first_blocknum + number_of_blocks;
552
553                         pending_events.push(MessageSendEvent::SendReplyChannelRange {
554                                 node_id: their_node_id.clone(),
555                                 msg: ReplyChannelRange {
556                                         chain_hash: msg.chain_hash.clone(),
557                                         first_blocknum,
558                                         number_of_blocks,
559                                         sync_complete,
560                                         short_channel_ids: batch,
561                                 }
562                         });
563                 }
564
565                 Ok(())
566         }
567
568         fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: QueryShortChannelIds) -> Result<(), LightningError> {
569                 // TODO
570                 Err(LightningError {
571                         err: String::from("Not implemented"),
572                         action: ErrorAction::IgnoreError,
573                 })
574         }
575
576         fn provided_init_features(&self, _their_node_id: &PublicKey) -> InitFeatures {
577                 let mut features = InitFeatures::empty();
578                 features.set_gossip_queries_optional();
579                 features
580         }
581 }
582
583 impl<G: Deref<Target=NetworkGraph<L>>, C: Deref, L: Deref> MessageSendEventsProvider for P2PGossipSync<G, C, L>
584 where
585         C::Target: chain::Access,
586         L::Target: Logger,
587 {
588         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
589                 let mut ret = Vec::new();
590                 let mut pending_events = self.pending_events.lock().unwrap();
591                 core::mem::swap(&mut ret, &mut pending_events);
592                 ret
593         }
594 }
595
596 #[derive(Clone, Debug, PartialEq)]
597 /// Details about one direction of a channel as received within a [`ChannelUpdate`].
598 pub struct ChannelUpdateInfo {
599         /// When the last update to the channel direction was issued.
600         /// Value is opaque, as set in the announcement.
601         pub last_update: u32,
602         /// Whether the channel can be currently used for payments (in this one direction).
603         pub enabled: bool,
604         /// The difference in CLTV values that you must have when routing through this channel.
605         pub cltv_expiry_delta: u16,
606         /// The minimum value, which must be relayed to the next hop via the channel
607         pub htlc_minimum_msat: u64,
608         /// The maximum value which may be relayed to the next hop via the channel.
609         pub htlc_maximum_msat: u64,
610         /// Fees charged when the channel is used for routing
611         pub fees: RoutingFees,
612         /// Most recent update for the channel received from the network
613         /// Mostly redundant with the data we store in fields explicitly.
614         /// Everything else is useful only for sending out for initial routing sync.
615         /// Not stored if contains excess data to prevent DoS.
616         pub last_update_message: Option<ChannelUpdate>,
617 }
618
619 impl fmt::Display for ChannelUpdateInfo {
620         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
621                 write!(f, "last_update {}, enabled {}, cltv_expiry_delta {}, htlc_minimum_msat {}, fees {:?}", self.last_update, self.enabled, self.cltv_expiry_delta, self.htlc_minimum_msat, self.fees)?;
622                 Ok(())
623         }
624 }
625
626 impl Writeable for ChannelUpdateInfo {
627         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
628                 write_tlv_fields!(writer, {
629                         (0, self.last_update, required),
630                         (2, self.enabled, required),
631                         (4, self.cltv_expiry_delta, required),
632                         (6, self.htlc_minimum_msat, required),
633                         // Writing htlc_maximum_msat as an Option<u64> is required to maintain backwards
634                         // compatibility with LDK versions prior to v0.0.110.
635                         (8, Some(self.htlc_maximum_msat), required),
636                         (10, self.fees, required),
637                         (12, self.last_update_message, required),
638                 });
639                 Ok(())
640         }
641 }
642
643 impl Readable for ChannelUpdateInfo {
644         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
645                 init_tlv_field_var!(last_update, required);
646                 init_tlv_field_var!(enabled, required);
647                 init_tlv_field_var!(cltv_expiry_delta, required);
648                 init_tlv_field_var!(htlc_minimum_msat, required);
649                 init_tlv_field_var!(htlc_maximum_msat, option);
650                 init_tlv_field_var!(fees, required);
651                 init_tlv_field_var!(last_update_message, required);
652
653                 read_tlv_fields!(reader, {
654                         (0, last_update, required),
655                         (2, enabled, required),
656                         (4, cltv_expiry_delta, required),
657                         (6, htlc_minimum_msat, required),
658                         (8, htlc_maximum_msat, required),
659                         (10, fees, required),
660                         (12, last_update_message, required)
661                 });
662
663                 if let Some(htlc_maximum_msat) = htlc_maximum_msat {
664                         Ok(ChannelUpdateInfo {
665                                 last_update: init_tlv_based_struct_field!(last_update, required),
666                                 enabled: init_tlv_based_struct_field!(enabled, required),
667                                 cltv_expiry_delta: init_tlv_based_struct_field!(cltv_expiry_delta, required),
668                                 htlc_minimum_msat: init_tlv_based_struct_field!(htlc_minimum_msat, required),
669                                 htlc_maximum_msat,
670                                 fees: init_tlv_based_struct_field!(fees, required),
671                                 last_update_message: init_tlv_based_struct_field!(last_update_message, required),
672                         })
673                 } else {
674                         Err(DecodeError::InvalidValue)
675                 }
676         }
677 }
678
679 #[derive(Clone, Debug, PartialEq)]
680 /// Details about a channel (both directions).
681 /// Received within a channel announcement.
682 pub struct ChannelInfo {
683         /// Protocol features of a channel communicated during its announcement
684         pub features: ChannelFeatures,
685         /// Source node of the first direction of a channel
686         pub node_one: NodeId,
687         /// Details about the first direction of a channel
688         pub one_to_two: Option<ChannelUpdateInfo>,
689         /// Source node of the second direction of a channel
690         pub node_two: NodeId,
691         /// Details about the second direction of a channel
692         pub two_to_one: Option<ChannelUpdateInfo>,
693         /// The channel capacity as seen on-chain, if chain lookup is available.
694         pub capacity_sats: Option<u64>,
695         /// An initial announcement of the channel
696         /// Mostly redundant with the data we store in fields explicitly.
697         /// Everything else is useful only for sending out for initial routing sync.
698         /// Not stored if contains excess data to prevent DoS.
699         pub announcement_message: Option<ChannelAnnouncement>,
700         /// The timestamp when we received the announcement, if we are running with feature = "std"
701         /// (which we can probably assume we are - no-std environments probably won't have a full
702         /// network graph in memory!).
703         announcement_received_time: u64,
704 }
705
706 impl ChannelInfo {
707         /// Returns a [`DirectedChannelInfo`] for the channel directed to the given `target` from a
708         /// returned `source`, or `None` if `target` is not one of the channel's counterparties.
709         pub fn as_directed_to(&self, target: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
710                 let (direction, source) = {
711                         if target == &self.node_one {
712                                 (self.two_to_one.as_ref(), &self.node_two)
713                         } else if target == &self.node_two {
714                                 (self.one_to_two.as_ref(), &self.node_one)
715                         } else {
716                                 return None;
717                         }
718                 };
719                 Some((DirectedChannelInfo::new(self, direction), source))
720         }
721
722         /// Returns a [`DirectedChannelInfo`] for the channel directed from the given `source` to a
723         /// returned `target`, or `None` if `source` is not one of the channel's counterparties.
724         pub fn as_directed_from(&self, source: &NodeId) -> Option<(DirectedChannelInfo, &NodeId)> {
725                 let (direction, target) = {
726                         if source == &self.node_one {
727                                 (self.one_to_two.as_ref(), &self.node_two)
728                         } else if source == &self.node_two {
729                                 (self.two_to_one.as_ref(), &self.node_one)
730                         } else {
731                                 return None;
732                         }
733                 };
734                 Some((DirectedChannelInfo::new(self, direction), target))
735         }
736
737         /// Returns a [`ChannelUpdateInfo`] based on the direction implied by the channel_flag.
738         pub fn get_directional_info(&self, channel_flags: u8) -> Option<&ChannelUpdateInfo> {
739                 let direction = channel_flags & 1u8;
740                 if direction == 0 {
741                         self.one_to_two.as_ref()
742                 } else {
743                         self.two_to_one.as_ref()
744                 }
745         }
746 }
747
748 impl fmt::Display for ChannelInfo {
749         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
750                 write!(f, "features: {}, node_one: {}, one_to_two: {:?}, node_two: {}, two_to_one: {:?}",
751                    log_bytes!(self.features.encode()), log_bytes!(self.node_one.as_slice()), self.one_to_two, log_bytes!(self.node_two.as_slice()), self.two_to_one)?;
752                 Ok(())
753         }
754 }
755
756 impl Writeable for ChannelInfo {
757         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
758                 write_tlv_fields!(writer, {
759                         (0, self.features, required),
760                         (1, self.announcement_received_time, (default_value, 0)),
761                         (2, self.node_one, required),
762                         (4, self.one_to_two, required),
763                         (6, self.node_two, required),
764                         (8, self.two_to_one, required),
765                         (10, self.capacity_sats, required),
766                         (12, self.announcement_message, required),
767                 });
768                 Ok(())
769         }
770 }
771
772 // A wrapper allowing for the optional deseralization of ChannelUpdateInfo. Utilizing this is
773 // necessary to maintain backwards compatibility with previous serializations of `ChannelUpdateInfo`
774 // that may have no `htlc_maximum_msat` field set. In case the field is absent, we simply ignore
775 // the error and continue reading the `ChannelInfo`. Hopefully, we'll then eventually receive newer
776 // channel updates via the gossip network.
777 struct ChannelUpdateInfoDeserWrapper(Option<ChannelUpdateInfo>);
778
779 impl MaybeReadable for ChannelUpdateInfoDeserWrapper {
780         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
781                 match ::util::ser::Readable::read(reader) {
782                         Ok(channel_update_option) => Ok(Some(Self(channel_update_option))),
783                         Err(DecodeError::ShortRead) => Ok(None),
784                         Err(DecodeError::InvalidValue) => Ok(None),
785                         Err(err) => Err(err),
786                 }
787         }
788 }
789
790 impl Readable for ChannelInfo {
791         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
792                 init_tlv_field_var!(features, required);
793                 init_tlv_field_var!(announcement_received_time, (default_value, 0));
794                 init_tlv_field_var!(node_one, required);
795                 let mut one_to_two_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
796                 init_tlv_field_var!(node_two, required);
797                 let mut two_to_one_wrap: Option<ChannelUpdateInfoDeserWrapper> = None;
798                 init_tlv_field_var!(capacity_sats, required);
799                 init_tlv_field_var!(announcement_message, required);
800                 read_tlv_fields!(reader, {
801                         (0, features, required),
802                         (1, announcement_received_time, (default_value, 0)),
803                         (2, node_one, required),
804                         (4, one_to_two_wrap, ignorable),
805                         (6, node_two, required),
806                         (8, two_to_one_wrap, ignorable),
807                         (10, capacity_sats, required),
808                         (12, announcement_message, required),
809                 });
810
811                 Ok(ChannelInfo {
812                         features: init_tlv_based_struct_field!(features, required),
813                         node_one: init_tlv_based_struct_field!(node_one, required),
814                         one_to_two: one_to_two_wrap.map(|w| w.0).unwrap_or(None),
815                         node_two: init_tlv_based_struct_field!(node_two, required),
816                         two_to_one: two_to_one_wrap.map(|w| w.0).unwrap_or(None),
817                         capacity_sats: init_tlv_based_struct_field!(capacity_sats, required),
818                         announcement_message: init_tlv_based_struct_field!(announcement_message, required),
819                         announcement_received_time: init_tlv_based_struct_field!(announcement_received_time, (default_value, 0)),
820                 })
821         }
822 }
823
824 /// A wrapper around [`ChannelInfo`] representing information about the channel as directed from a
825 /// source node to a target node.
826 #[derive(Clone)]
827 pub struct DirectedChannelInfo<'a> {
828         channel: &'a ChannelInfo,
829         direction: Option<&'a ChannelUpdateInfo>,
830         htlc_maximum_msat: u64,
831         effective_capacity: EffectiveCapacity,
832 }
833
834 impl<'a> DirectedChannelInfo<'a> {
835         #[inline]
836         fn new(channel: &'a ChannelInfo, direction: Option<&'a ChannelUpdateInfo>) -> Self {
837                 let htlc_maximum_msat = direction.map(|direction| direction.htlc_maximum_msat);
838                 let capacity_msat = channel.capacity_sats.map(|capacity_sats| capacity_sats * 1000);
839
840                 let (htlc_maximum_msat, effective_capacity) = match (htlc_maximum_msat, capacity_msat) {
841                         (Some(amount_msat), Some(capacity_msat)) => {
842                                 let htlc_maximum_msat = cmp::min(amount_msat, capacity_msat);
843                                 (htlc_maximum_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: Some(htlc_maximum_msat) })
844                         },
845                         (Some(amount_msat), None) => {
846                                 (amount_msat, EffectiveCapacity::MaximumHTLC { amount_msat })
847                         },
848                         (None, Some(capacity_msat)) => {
849                                 (capacity_msat, EffectiveCapacity::Total { capacity_msat, htlc_maximum_msat: None })
850                         },
851                         (None, None) => (EffectiveCapacity::Unknown.as_msat(), EffectiveCapacity::Unknown),
852                 };
853
854                 Self {
855                         channel, direction, htlc_maximum_msat, effective_capacity
856                 }
857         }
858
859         /// Returns information for the channel.
860         pub fn channel(&self) -> &'a ChannelInfo { self.channel }
861
862         /// Returns information for the direction.
863         pub fn direction(&self) -> Option<&'a ChannelUpdateInfo> { self.direction }
864
865         /// Returns the maximum HTLC amount allowed over the channel in the direction.
866         pub fn htlc_maximum_msat(&self) -> u64 {
867                 self.htlc_maximum_msat
868         }
869
870         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
871         ///
872         /// This is either the total capacity from the funding transaction, if known, or the
873         /// `htlc_maximum_msat` for the direction as advertised by the gossip network, if known,
874         /// otherwise.
875         pub fn effective_capacity(&self) -> EffectiveCapacity {
876                 self.effective_capacity
877         }
878
879         /// Returns `Some` if [`ChannelUpdateInfo`] is available in the direction.
880         pub(super) fn with_update(self) -> Option<DirectedChannelInfoWithUpdate<'a>> {
881                 match self.direction {
882                         Some(_) => Some(DirectedChannelInfoWithUpdate { inner: self }),
883                         None => None,
884                 }
885         }
886 }
887
888 impl<'a> fmt::Debug for DirectedChannelInfo<'a> {
889         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
890                 f.debug_struct("DirectedChannelInfo")
891                         .field("channel", &self.channel)
892                         .finish()
893         }
894 }
895
896 /// A [`DirectedChannelInfo`] with [`ChannelUpdateInfo`] available in its direction.
897 #[derive(Clone)]
898 pub(super) struct DirectedChannelInfoWithUpdate<'a> {
899         inner: DirectedChannelInfo<'a>,
900 }
901
902 impl<'a> DirectedChannelInfoWithUpdate<'a> {
903         /// Returns information for the channel.
904         #[inline]
905         pub(super) fn channel(&self) -> &'a ChannelInfo { &self.inner.channel }
906
907         /// Returns information for the direction.
908         #[inline]
909         pub(super) fn direction(&self) -> &'a ChannelUpdateInfo { self.inner.direction.unwrap() }
910
911         /// Returns the [`EffectiveCapacity`] of the channel in the direction.
912         #[inline]
913         pub(super) fn effective_capacity(&self) -> EffectiveCapacity { self.inner.effective_capacity() }
914 }
915
916 impl<'a> fmt::Debug for DirectedChannelInfoWithUpdate<'a> {
917         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
918                 self.inner.fmt(f)
919         }
920 }
921
922 /// The effective capacity of a channel for routing purposes.
923 ///
924 /// While this may be smaller than the actual channel capacity, amounts greater than
925 /// [`Self::as_msat`] should not be routed through the channel.
926 #[derive(Clone, Copy, Debug)]
927 pub enum EffectiveCapacity {
928         /// The available liquidity in the channel known from being a channel counterparty, and thus a
929         /// direct hop.
930         ExactLiquidity {
931                 /// Either the inbound or outbound liquidity depending on the direction, denominated in
932                 /// millisatoshi.
933                 liquidity_msat: u64,
934         },
935         /// The maximum HTLC amount in one direction as advertised on the gossip network.
936         MaximumHTLC {
937                 /// The maximum HTLC amount denominated in millisatoshi.
938                 amount_msat: u64,
939         },
940         /// The total capacity of the channel as determined by the funding transaction.
941         Total {
942                 /// The funding amount denominated in millisatoshi.
943                 capacity_msat: u64,
944                 /// The maximum HTLC amount denominated in millisatoshi.
945                 htlc_maximum_msat: Option<u64>
946         },
947         /// A capacity sufficient to route any payment, typically used for private channels provided by
948         /// an invoice.
949         Infinite,
950         /// A capacity that is unknown possibly because either the chain state is unavailable to know
951         /// the total capacity or the `htlc_maximum_msat` was not advertised on the gossip network.
952         Unknown,
953 }
954
955 /// The presumed channel capacity denominated in millisatoshi for [`EffectiveCapacity::Unknown`] to
956 /// use when making routing decisions.
957 pub const UNKNOWN_CHANNEL_CAPACITY_MSAT: u64 = 250_000 * 1000;
958
959 impl EffectiveCapacity {
960         /// Returns the effective capacity denominated in millisatoshi.
961         pub fn as_msat(&self) -> u64 {
962                 match self {
963                         EffectiveCapacity::ExactLiquidity { liquidity_msat } => *liquidity_msat,
964                         EffectiveCapacity::MaximumHTLC { amount_msat } => *amount_msat,
965                         EffectiveCapacity::Total { capacity_msat, .. } => *capacity_msat,
966                         EffectiveCapacity::Infinite => u64::max_value(),
967                         EffectiveCapacity::Unknown => UNKNOWN_CHANNEL_CAPACITY_MSAT,
968                 }
969         }
970 }
971
972 /// Fees for routing via a given channel or a node
973 #[derive(Eq, PartialEq, Copy, Clone, Debug, Hash)]
974 pub struct RoutingFees {
975         /// Flat routing fee in satoshis
976         pub base_msat: u32,
977         /// Liquidity-based routing fee in millionths of a routed amount.
978         /// In other words, 10000 is 1%.
979         pub proportional_millionths: u32,
980 }
981
982 impl_writeable_tlv_based!(RoutingFees, {
983         (0, base_msat, required),
984         (2, proportional_millionths, required)
985 });
986
987 #[derive(Clone, Debug, PartialEq)]
988 /// Information received in the latest node_announcement from this node.
989 pub struct NodeAnnouncementInfo {
990         /// Protocol features the node announced support for
991         pub features: NodeFeatures,
992         /// When the last known update to the node state was issued.
993         /// Value is opaque, as set in the announcement.
994         pub last_update: u32,
995         /// Color assigned to the node
996         pub rgb: [u8; 3],
997         /// Moniker assigned to the node.
998         /// May be invalid or malicious (eg control chars),
999         /// should not be exposed to the user.
1000         pub alias: NodeAlias,
1001         /// Internet-level addresses via which one can connect to the node
1002         pub addresses: Vec<NetAddress>,
1003         /// An initial announcement of the node
1004         /// Mostly redundant with the data we store in fields explicitly.
1005         /// Everything else is useful only for sending out for initial routing sync.
1006         /// Not stored if contains excess data to prevent DoS.
1007         pub announcement_message: Option<NodeAnnouncement>
1008 }
1009
1010 impl_writeable_tlv_based!(NodeAnnouncementInfo, {
1011         (0, features, required),
1012         (2, last_update, required),
1013         (4, rgb, required),
1014         (6, alias, required),
1015         (8, announcement_message, option),
1016         (10, addresses, vec_type),
1017 });
1018
1019 /// A user-defined name for a node, which may be used when displaying the node in a graph.
1020 ///
1021 /// Since node aliases are provided by third parties, they are a potential avenue for injection
1022 /// attacks. Care must be taken when processing.
1023 #[derive(Clone, Debug, PartialEq)]
1024 pub struct NodeAlias(pub [u8; 32]);
1025
1026 impl fmt::Display for NodeAlias {
1027         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1028                 let control_symbol = core::char::REPLACEMENT_CHARACTER;
1029                 let first_null = self.0.iter().position(|b| *b == 0).unwrap_or(self.0.len());
1030                 let bytes = self.0.split_at(first_null).0;
1031                 match core::str::from_utf8(bytes) {
1032                         Ok(alias) => {
1033                                 for c in alias.chars() {
1034                                         let mut bytes = [0u8; 4];
1035                                         let c = if !c.is_control() { c } else { control_symbol };
1036                                         f.write_str(c.encode_utf8(&mut bytes))?;
1037                                 }
1038                         },
1039                         Err(_) => {
1040                                 for c in bytes.iter().map(|b| *b as char) {
1041                                         // Display printable ASCII characters
1042                                         let mut bytes = [0u8; 4];
1043                                         let c = if c >= '\x20' && c <= '\x7e' { c } else { control_symbol };
1044                                         f.write_str(c.encode_utf8(&mut bytes))?;
1045                                 }
1046                         },
1047                 };
1048                 Ok(())
1049         }
1050 }
1051
1052 impl Writeable for NodeAlias {
1053         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1054                 self.0.write(w)
1055         }
1056 }
1057
1058 impl Readable for NodeAlias {
1059         fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
1060                 Ok(NodeAlias(Readable::read(r)?))
1061         }
1062 }
1063
1064 #[derive(Clone, Debug, PartialEq)]
1065 /// Details about a node in the network, known from the network announcement.
1066 pub struct NodeInfo {
1067         /// All valid channels a node has announced
1068         pub channels: Vec<u64>,
1069         /// Lowest fees enabling routing via any of the enabled, known channels to a node.
1070         /// The two fields (flat and proportional fee) are independent,
1071         /// meaning they don't have to refer to the same channel.
1072         pub lowest_inbound_channel_fees: Option<RoutingFees>,
1073         /// More information about a node from node_announcement.
1074         /// Optional because we store a Node entry after learning about it from
1075         /// a channel announcement, but before receiving a node announcement.
1076         pub announcement_info: Option<NodeAnnouncementInfo>
1077 }
1078
1079 impl fmt::Display for NodeInfo {
1080         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1081                 write!(f, "lowest_inbound_channel_fees: {:?}, channels: {:?}, announcement_info: {:?}",
1082                    self.lowest_inbound_channel_fees, &self.channels[..], self.announcement_info)?;
1083                 Ok(())
1084         }
1085 }
1086
1087 impl Writeable for NodeInfo {
1088         fn write<W: ::util::ser::Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1089                 write_tlv_fields!(writer, {
1090                         (0, self.lowest_inbound_channel_fees, option),
1091                         (2, self.announcement_info, option),
1092                         (4, self.channels, vec_type),
1093                 });
1094                 Ok(())
1095         }
1096 }
1097
1098 // A wrapper allowing for the optional deseralization of `NodeAnnouncementInfo`. Utilizing this is
1099 // necessary to maintain compatibility with previous serializations of `NetAddress` that have an
1100 // invalid hostname set. We ignore and eat all errors until we are either able to read a
1101 // `NodeAnnouncementInfo` or hit a `ShortRead`, i.e., read the TLV field to the end.
1102 struct NodeAnnouncementInfoDeserWrapper(NodeAnnouncementInfo);
1103
1104 impl MaybeReadable for NodeAnnouncementInfoDeserWrapper {
1105         fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
1106                 match ::util::ser::Readable::read(reader) {
1107                         Ok(node_announcement_info) => return Ok(Some(Self(node_announcement_info))),
1108                         Err(_) => {
1109                                 copy(reader, &mut sink()).unwrap();
1110                                 return Ok(None)
1111                         },
1112                 };
1113         }
1114 }
1115
1116 impl Readable for NodeInfo {
1117         fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
1118                 init_tlv_field_var!(lowest_inbound_channel_fees, option);
1119                 let mut announcement_info_wrap: Option<NodeAnnouncementInfoDeserWrapper> = None;
1120                 init_tlv_field_var!(channels, vec_type);
1121
1122                 read_tlv_fields!(reader, {
1123                         (0, lowest_inbound_channel_fees, option),
1124                         (2, announcement_info_wrap, ignorable),
1125                         (4, channels, vec_type),
1126                 });
1127
1128                 Ok(NodeInfo {
1129                         lowest_inbound_channel_fees: init_tlv_based_struct_field!(lowest_inbound_channel_fees, option),
1130                         announcement_info: announcement_info_wrap.map(|w| w.0),
1131                         channels: init_tlv_based_struct_field!(channels, vec_type),
1132                 })
1133         }
1134 }
1135
1136 const SERIALIZATION_VERSION: u8 = 1;
1137 const MIN_SERIALIZATION_VERSION: u8 = 1;
1138
1139 impl<L: Deref> Writeable for NetworkGraph<L> where L::Target: Logger {
1140         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1141                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
1142
1143                 self.genesis_hash.write(writer)?;
1144                 let channels = self.channels.read().unwrap();
1145                 (channels.len() as u64).write(writer)?;
1146                 for (ref chan_id, ref chan_info) in channels.iter() {
1147                         (*chan_id).write(writer)?;
1148                         chan_info.write(writer)?;
1149                 }
1150                 let nodes = self.nodes.read().unwrap();
1151                 (nodes.len() as u64).write(writer)?;
1152                 for (ref node_id, ref node_info) in nodes.iter() {
1153                         node_id.write(writer)?;
1154                         node_info.write(writer)?;
1155                 }
1156
1157                 let last_rapid_gossip_sync_timestamp = self.get_last_rapid_gossip_sync_timestamp();
1158                 write_tlv_fields!(writer, {
1159                         (1, last_rapid_gossip_sync_timestamp, option),
1160                 });
1161                 Ok(())
1162         }
1163 }
1164
1165 impl<L: Deref> ReadableArgs<L> for NetworkGraph<L> where L::Target: Logger {
1166         fn read<R: io::Read>(reader: &mut R, logger: L) -> Result<NetworkGraph<L>, DecodeError> {
1167                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
1168
1169                 let genesis_hash: BlockHash = Readable::read(reader)?;
1170                 let channels_count: u64 = Readable::read(reader)?;
1171                 let mut channels = BTreeMap::new();
1172                 for _ in 0..channels_count {
1173                         let chan_id: u64 = Readable::read(reader)?;
1174                         let chan_info = Readable::read(reader)?;
1175                         channels.insert(chan_id, chan_info);
1176                 }
1177                 let nodes_count: u64 = Readable::read(reader)?;
1178                 let mut nodes = BTreeMap::new();
1179                 for _ in 0..nodes_count {
1180                         let node_id = Readable::read(reader)?;
1181                         let node_info = Readable::read(reader)?;
1182                         nodes.insert(node_id, node_info);
1183                 }
1184
1185                 let mut last_rapid_gossip_sync_timestamp: Option<u32> = None;
1186                 read_tlv_fields!(reader, {
1187                         (1, last_rapid_gossip_sync_timestamp, option),
1188                 });
1189
1190                 Ok(NetworkGraph {
1191                         secp_ctx: Secp256k1::verification_only(),
1192                         genesis_hash,
1193                         logger,
1194                         channels: RwLock::new(channels),
1195                         nodes: RwLock::new(nodes),
1196                         last_rapid_gossip_sync_timestamp: Mutex::new(last_rapid_gossip_sync_timestamp),
1197                 })
1198         }
1199 }
1200
1201 impl<L: Deref> fmt::Display for NetworkGraph<L> where L::Target: Logger {
1202         fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1203                 writeln!(f, "Network map\n[Channels]")?;
1204                 for (key, val) in self.channels.read().unwrap().iter() {
1205                         writeln!(f, " {}: {}", key, val)?;
1206                 }
1207                 writeln!(f, "[Nodes]")?;
1208                 for (&node_id, val) in self.nodes.read().unwrap().iter() {
1209                         writeln!(f, " {}: {}", log_bytes!(node_id.as_slice()), val)?;
1210                 }
1211                 Ok(())
1212         }
1213 }
1214
1215 impl<L: Deref> PartialEq for NetworkGraph<L> where L::Target: Logger {
1216         fn eq(&self, other: &Self) -> bool {
1217                 self.genesis_hash == other.genesis_hash &&
1218                         *self.channels.read().unwrap() == *other.channels.read().unwrap() &&
1219                         *self.nodes.read().unwrap() == *other.nodes.read().unwrap()
1220         }
1221 }
1222
1223 impl<L: Deref> NetworkGraph<L> where L::Target: Logger {
1224         /// Creates a new, empty, network graph.
1225         pub fn new(genesis_hash: BlockHash, logger: L) -> NetworkGraph<L> {
1226                 Self {
1227                         secp_ctx: Secp256k1::verification_only(),
1228                         genesis_hash,
1229                         logger,
1230                         channels: RwLock::new(BTreeMap::new()),
1231                         nodes: RwLock::new(BTreeMap::new()),
1232                         last_rapid_gossip_sync_timestamp: Mutex::new(None),
1233                 }
1234         }
1235
1236         /// Returns a read-only view of the network graph.
1237         pub fn read_only(&'_ self) -> ReadOnlyNetworkGraph<'_> {
1238                 let channels = self.channels.read().unwrap();
1239                 let nodes = self.nodes.read().unwrap();
1240                 ReadOnlyNetworkGraph {
1241                         channels,
1242                         nodes,
1243                 }
1244         }
1245
1246         /// The unix timestamp provided by the most recent rapid gossip sync.
1247         /// It will be set by the rapid sync process after every sync completion.
1248         pub fn get_last_rapid_gossip_sync_timestamp(&self) -> Option<u32> {
1249                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().clone()
1250         }
1251
1252         /// Update the unix timestamp provided by the most recent rapid gossip sync.
1253         /// This should be done automatically by the rapid sync process after every sync completion.
1254         pub fn set_last_rapid_gossip_sync_timestamp(&self, last_rapid_gossip_sync_timestamp: u32) {
1255                 self.last_rapid_gossip_sync_timestamp.lock().unwrap().replace(last_rapid_gossip_sync_timestamp);
1256         }
1257
1258         /// Clears the `NodeAnnouncementInfo` field for all nodes in the `NetworkGraph` for testing
1259         /// purposes.
1260         #[cfg(test)]
1261         pub fn clear_nodes_announcement_info(&self) {
1262                 for node in self.nodes.write().unwrap().iter_mut() {
1263                         node.1.announcement_info = None;
1264                 }
1265         }
1266
1267         /// For an already known node (from channel announcements), update its stored properties from a
1268         /// given node announcement.
1269         ///
1270         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1271         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1272         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1273         pub fn update_node_from_announcement(&self, msg: &msgs::NodeAnnouncement) -> Result<(), LightningError> {
1274                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1275                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.signature, &msg.contents.node_id, "node_announcement");
1276                 self.update_node_from_announcement_intern(&msg.contents, Some(&msg))
1277         }
1278
1279         /// For an already known node (from channel announcements), update its stored properties from a
1280         /// given node announcement without verifying the associated signatures. Because we aren't
1281         /// given the associated signatures here we cannot relay the node announcement to any of our
1282         /// peers.
1283         pub fn update_node_from_unsigned_announcement(&self, msg: &msgs::UnsignedNodeAnnouncement) -> Result<(), LightningError> {
1284                 self.update_node_from_announcement_intern(msg, None)
1285         }
1286
1287         fn update_node_from_announcement_intern(&self, msg: &msgs::UnsignedNodeAnnouncement, full_msg: Option<&msgs::NodeAnnouncement>) -> Result<(), LightningError> {
1288                 match self.nodes.write().unwrap().get_mut(&NodeId::from_pubkey(&msg.node_id)) {
1289                         None => Err(LightningError{err: "No existing channels for node_announcement".to_owned(), action: ErrorAction::IgnoreError}),
1290                         Some(node) => {
1291                                 if let Some(node_info) = node.announcement_info.as_ref() {
1292                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to order
1293                                         // updates to ensure you always have the latest one, only vaguely suggesting
1294                                         // that it be at least the current time.
1295                                         if node_info.last_update  > msg.timestamp {
1296                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1297                                         } else if node_info.last_update  == msg.timestamp {
1298                                                 return Err(LightningError{err: "Update had the same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1299                                         }
1300                                 }
1301
1302                                 let should_relay =
1303                                         msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1304                                         msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY &&
1305                                         msg.excess_data.len() + msg.excess_address_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY;
1306                                 node.announcement_info = Some(NodeAnnouncementInfo {
1307                                         features: msg.features.clone(),
1308                                         last_update: msg.timestamp,
1309                                         rgb: msg.rgb,
1310                                         alias: NodeAlias(msg.alias),
1311                                         addresses: msg.addresses.clone(),
1312                                         announcement_message: if should_relay { full_msg.cloned() } else { None },
1313                                 });
1314
1315                                 Ok(())
1316                         }
1317                 }
1318         }
1319
1320         /// Store or update channel info from a channel announcement.
1321         ///
1322         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1323         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1324         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1325         ///
1326         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1327         /// the corresponding UTXO exists on chain and is correctly-formatted.
1328         pub fn update_channel_from_announcement<C: Deref>(
1329                 &self, msg: &msgs::ChannelAnnouncement, chain_access: &Option<C>,
1330         ) -> Result<(), LightningError>
1331         where
1332                 C::Target: chain::Access,
1333         {
1334                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.contents.encode()[..])[..]);
1335                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_1, &msg.contents.node_id_1, "channel_announcement");
1336                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.node_signature_2, &msg.contents.node_id_2, "channel_announcement");
1337                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_1, &msg.contents.bitcoin_key_1, "channel_announcement");
1338                 secp_verify_sig!(self.secp_ctx, &msg_hash, &msg.bitcoin_signature_2, &msg.contents.bitcoin_key_2, "channel_announcement");
1339                 self.update_channel_from_unsigned_announcement_intern(&msg.contents, Some(msg), chain_access)
1340         }
1341
1342         /// Store or update channel info from a channel announcement without verifying the associated
1343         /// signatures. Because we aren't given the associated signatures here we cannot relay the
1344         /// channel announcement to any of our peers.
1345         ///
1346         /// If a `chain::Access` object is provided via `chain_access`, it will be called to verify
1347         /// the corresponding UTXO exists on chain and is correctly-formatted.
1348         pub fn update_channel_from_unsigned_announcement<C: Deref>(
1349                 &self, msg: &msgs::UnsignedChannelAnnouncement, chain_access: &Option<C>
1350         ) -> Result<(), LightningError>
1351         where
1352                 C::Target: chain::Access,
1353         {
1354                 self.update_channel_from_unsigned_announcement_intern(msg, None, chain_access)
1355         }
1356
1357         /// Update channel from partial announcement data received via rapid gossip sync
1358         ///
1359         /// `timestamp: u64`: Timestamp emulating the backdated original announcement receipt (by the
1360         /// rapid gossip sync server)
1361         ///
1362         /// All other parameters as used in [`msgs::UnsignedChannelAnnouncement`] fields.
1363         pub fn add_channel_from_partial_announcement(&self, short_channel_id: u64, timestamp: u64, features: ChannelFeatures, node_id_1: PublicKey, node_id_2: PublicKey) -> Result<(), LightningError> {
1364                 if node_id_1 == node_id_2 {
1365                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1366                 };
1367
1368                 let node_1 = NodeId::from_pubkey(&node_id_1);
1369                 let node_2 = NodeId::from_pubkey(&node_id_2);
1370                 let channel_info = ChannelInfo {
1371                         features,
1372                         node_one: node_1.clone(),
1373                         one_to_two: None,
1374                         node_two: node_2.clone(),
1375                         two_to_one: None,
1376                         capacity_sats: None,
1377                         announcement_message: None,
1378                         announcement_received_time: timestamp,
1379                 };
1380
1381                 self.add_channel_between_nodes(short_channel_id, channel_info, None)
1382         }
1383
1384         fn add_channel_between_nodes(&self, short_channel_id: u64, channel_info: ChannelInfo, utxo_value: Option<u64>) -> Result<(), LightningError> {
1385                 let mut channels = self.channels.write().unwrap();
1386                 let mut nodes = self.nodes.write().unwrap();
1387
1388                 let node_id_a = channel_info.node_one.clone();
1389                 let node_id_b = channel_info.node_two.clone();
1390
1391                 match channels.entry(short_channel_id) {
1392                         BtreeEntry::Occupied(mut entry) => {
1393                                 //TODO: because asking the blockchain if short_channel_id is valid is only optional
1394                                 //in the blockchain API, we need to handle it smartly here, though it's unclear
1395                                 //exactly how...
1396                                 if utxo_value.is_some() {
1397                                         // Either our UTXO provider is busted, there was a reorg, or the UTXO provider
1398                                         // only sometimes returns results. In any case remove the previous entry. Note
1399                                         // that the spec expects us to "blacklist" the node_ids involved, but we can't
1400                                         // do that because
1401                                         // a) we don't *require* a UTXO provider that always returns results.
1402                                         // b) we don't track UTXOs of channels we know about and remove them if they
1403                                         //    get reorg'd out.
1404                                         // c) it's unclear how to do so without exposing ourselves to massive DoS risk.
1405                                         Self::remove_channel_in_nodes(&mut nodes, &entry.get(), short_channel_id);
1406                                         *entry.get_mut() = channel_info;
1407                                 } else {
1408                                         return Err(LightningError{err: "Already have knowledge of channel".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1409                                 }
1410                         },
1411                         BtreeEntry::Vacant(entry) => {
1412                                 entry.insert(channel_info);
1413                         }
1414                 };
1415
1416                 for current_node_id in [node_id_a, node_id_b].iter() {
1417                         match nodes.entry(current_node_id.clone()) {
1418                                 BtreeEntry::Occupied(node_entry) => {
1419                                         node_entry.into_mut().channels.push(short_channel_id);
1420                                 },
1421                                 BtreeEntry::Vacant(node_entry) => {
1422                                         node_entry.insert(NodeInfo {
1423                                                 channels: vec!(short_channel_id),
1424                                                 lowest_inbound_channel_fees: None,
1425                                                 announcement_info: None,
1426                                         });
1427                                 }
1428                         };
1429                 };
1430
1431                 Ok(())
1432         }
1433
1434         fn update_channel_from_unsigned_announcement_intern<C: Deref>(
1435                 &self, msg: &msgs::UnsignedChannelAnnouncement, full_msg: Option<&msgs::ChannelAnnouncement>, chain_access: &Option<C>
1436         ) -> Result<(), LightningError>
1437         where
1438                 C::Target: chain::Access,
1439         {
1440                 if msg.node_id_1 == msg.node_id_2 || msg.bitcoin_key_1 == msg.bitcoin_key_2 {
1441                         return Err(LightningError{err: "Channel announcement node had a channel with itself".to_owned(), action: ErrorAction::IgnoreError});
1442                 }
1443
1444                 {
1445                         let channels = self.channels.read().unwrap();
1446
1447                         if let Some(chan) = channels.get(&msg.short_channel_id) {
1448                                 if chan.capacity_sats.is_some() {
1449                                         // If we'd previously looked up the channel on-chain and checked the script
1450                                         // against what appears on-chain, ignore the duplicate announcement.
1451                                         //
1452                                         // Because a reorg could replace one channel with another at the same SCID, if
1453                                         // the channel appears to be different, we re-validate. This doesn't expose us
1454                                         // to any more DoS risk than not, as a peer can always flood us with
1455                                         // randomly-generated SCID values anyway.
1456                                         //
1457                                         // We use the Node IDs rather than the bitcoin_keys to check for "equivalence"
1458                                         // as we didn't (necessarily) store the bitcoin keys, and we only really care
1459                                         // if the peers on the channel changed anyway.
1460                                         if NodeId::from_pubkey(&msg.node_id_1) == chan.node_one && NodeId::from_pubkey(&msg.node_id_2) == chan.node_two {
1461                                                 return Err(LightningError {
1462                                                         err: "Already have chain-validated channel".to_owned(),
1463                                                         action: ErrorAction::IgnoreDuplicateGossip
1464                                                 });
1465                                         }
1466                                 } else if chain_access.is_none() {
1467                                         // Similarly, if we can't check the chain right now anyway, ignore the
1468                                         // duplicate announcement without bothering to take the channels write lock.
1469                                         return Err(LightningError {
1470                                                 err: "Already have non-chain-validated channel".to_owned(),
1471                                                 action: ErrorAction::IgnoreDuplicateGossip
1472                                         });
1473                                 }
1474                         }
1475                 }
1476
1477                 let utxo_value = match &chain_access {
1478                         &None => {
1479                                 // Tentatively accept, potentially exposing us to DoS attacks
1480                                 None
1481                         },
1482                         &Some(ref chain_access) => {
1483                                 match chain_access.get_utxo(&msg.chain_hash, msg.short_channel_id) {
1484                                         Ok(TxOut { value, script_pubkey }) => {
1485                                                 let expected_script =
1486                                                         make_funding_redeemscript(&msg.bitcoin_key_1, &msg.bitcoin_key_2).to_v0_p2wsh();
1487                                                 if script_pubkey != expected_script {
1488                                                         return Err(LightningError{err: format!("Channel announcement key ({}) didn't match on-chain script ({})", expected_script.to_hex(), script_pubkey.to_hex()), action: ErrorAction::IgnoreError});
1489                                                 }
1490                                                 //TODO: Check if value is worth storing, use it to inform routing, and compare it
1491                                                 //to the new HTLC max field in channel_update
1492                                                 Some(value)
1493                                         },
1494                                         Err(chain::AccessError::UnknownChain) => {
1495                                                 return Err(LightningError{err: format!("Channel announced on an unknown chain ({})", msg.chain_hash.encode().to_hex()), action: ErrorAction::IgnoreError});
1496                                         },
1497                                         Err(chain::AccessError::UnknownTx) => {
1498                                                 return Err(LightningError{err: "Channel announced without corresponding UTXO entry".to_owned(), action: ErrorAction::IgnoreError});
1499                                         },
1500                                 }
1501                         },
1502                 };
1503
1504                 #[allow(unused_mut, unused_assignments)]
1505                 let mut announcement_received_time = 0;
1506                 #[cfg(feature = "std")]
1507                 {
1508                         announcement_received_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1509                 }
1510
1511                 let chan_info = ChannelInfo {
1512                         features: msg.features.clone(),
1513                         node_one: NodeId::from_pubkey(&msg.node_id_1),
1514                         one_to_two: None,
1515                         node_two: NodeId::from_pubkey(&msg.node_id_2),
1516                         two_to_one: None,
1517                         capacity_sats: utxo_value,
1518                         announcement_message: if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1519                                 { full_msg.cloned() } else { None },
1520                         announcement_received_time,
1521                 };
1522
1523                 self.add_channel_between_nodes(msg.short_channel_id, chan_info, utxo_value)
1524         }
1525
1526         /// Marks a channel in the graph as failed if a corresponding HTLC fail was sent.
1527         /// If permanent, removes a channel from the local storage.
1528         /// May cause the removal of nodes too, if this was their last channel.
1529         /// If not permanent, makes channels unavailable for routing.
1530         pub fn channel_failed(&self, short_channel_id: u64, is_permanent: bool) {
1531                 let mut channels = self.channels.write().unwrap();
1532                 if is_permanent {
1533                         if let Some(chan) = channels.remove(&short_channel_id) {
1534                                 let mut nodes = self.nodes.write().unwrap();
1535                                 Self::remove_channel_in_nodes(&mut nodes, &chan, short_channel_id);
1536                         }
1537                 } else {
1538                         if let Some(chan) = channels.get_mut(&short_channel_id) {
1539                                 if let Some(one_to_two) = chan.one_to_two.as_mut() {
1540                                         one_to_two.enabled = false;
1541                                 }
1542                                 if let Some(two_to_one) = chan.two_to_one.as_mut() {
1543                                         two_to_one.enabled = false;
1544                                 }
1545                         }
1546                 }
1547         }
1548
1549         /// Marks a node in the graph as failed.
1550         pub fn node_failed(&self, _node_id: &PublicKey, is_permanent: bool) {
1551                 if is_permanent {
1552                         // TODO: Wholly remove the node
1553                 } else {
1554                         // TODO: downgrade the node
1555                 }
1556         }
1557
1558         #[cfg(feature = "std")]
1559         /// Removes information about channels that we haven't heard any updates about in some time.
1560         /// This can be used regularly to prune the network graph of channels that likely no longer
1561         /// exist.
1562         ///
1563         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1564         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1565         /// pruning occur for updates which are at least two weeks old, which we implement here.
1566         ///
1567         /// Note that for users of the `lightning-background-processor` crate this method may be
1568         /// automatically called regularly for you.
1569         ///
1570         /// This method is only available with the `std` feature. See
1571         /// [`NetworkGraph::remove_stale_channels_with_time`] for `no-std` use.
1572         pub fn remove_stale_channels(&self) {
1573                 let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1574                 self.remove_stale_channels_with_time(time);
1575         }
1576
1577         /// Removes information about channels that we haven't heard any updates about in some time.
1578         /// This can be used regularly to prune the network graph of channels that likely no longer
1579         /// exist.
1580         ///
1581         /// While there is no formal requirement that nodes regularly re-broadcast their channel
1582         /// updates every two weeks, the non-normative section of BOLT 7 currently suggests that
1583         /// pruning occur for updates which are at least two weeks old, which we implement here.
1584         ///
1585         /// This function takes the current unix time as an argument. For users with the `std` feature
1586         /// enabled, [`NetworkGraph::remove_stale_channels`] may be preferable.
1587         pub fn remove_stale_channels_with_time(&self, current_time_unix: u64) {
1588                 let mut channels = self.channels.write().unwrap();
1589                 // Time out if we haven't received an update in at least 14 days.
1590                 if current_time_unix > u32::max_value() as u64 { return; } // Remove by 2106
1591                 if current_time_unix < STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS { return; }
1592                 let min_time_unix: u32 = (current_time_unix - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS) as u32;
1593                 // Sadly BTreeMap::retain was only stabilized in 1.53 so we can't switch to it for some
1594                 // time.
1595                 let mut scids_to_remove = Vec::new();
1596                 for (scid, info) in channels.iter_mut() {
1597                         if info.one_to_two.is_some() && info.one_to_two.as_ref().unwrap().last_update < min_time_unix {
1598                                 info.one_to_two = None;
1599                         }
1600                         if info.two_to_one.is_some() && info.two_to_one.as_ref().unwrap().last_update < min_time_unix {
1601                                 info.two_to_one = None;
1602                         }
1603                         if info.one_to_two.is_none() && info.two_to_one.is_none() {
1604                                 // We check the announcement_received_time here to ensure we don't drop
1605                                 // announcements that we just received and are just waiting for our peer to send a
1606                                 // channel_update for.
1607                                 if info.announcement_received_time < min_time_unix as u64 {
1608                                         scids_to_remove.push(*scid);
1609                                 }
1610                         }
1611                 }
1612                 if !scids_to_remove.is_empty() {
1613                         let mut nodes = self.nodes.write().unwrap();
1614                         for scid in scids_to_remove {
1615                                 let info = channels.remove(&scid).expect("We just accessed this scid, it should be present");
1616                                 Self::remove_channel_in_nodes(&mut nodes, &info, scid);
1617                         }
1618                 }
1619         }
1620
1621         /// For an already known (from announcement) channel, update info about one of the directions
1622         /// of the channel.
1623         ///
1624         /// You probably don't want to call this directly, instead relying on a P2PGossipSync's
1625         /// RoutingMessageHandler implementation to call it indirectly. This may be useful to accept
1626         /// routing messages from a source using a protocol other than the lightning P2P protocol.
1627         ///
1628         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1629         /// materially in the future will be rejected.
1630         pub fn update_channel(&self, msg: &msgs::ChannelUpdate) -> Result<(), LightningError> {
1631                 self.update_channel_intern(&msg.contents, Some(&msg), Some(&msg.signature))
1632         }
1633
1634         /// For an already known (from announcement) channel, update info about one of the directions
1635         /// of the channel without verifying the associated signatures. Because we aren't given the
1636         /// associated signatures here we cannot relay the channel update to any of our peers.
1637         ///
1638         /// If built with `no-std`, any updates with a timestamp more than two weeks in the past or
1639         /// materially in the future will be rejected.
1640         pub fn update_channel_unsigned(&self, msg: &msgs::UnsignedChannelUpdate) -> Result<(), LightningError> {
1641                 self.update_channel_intern(msg, None, None)
1642         }
1643
1644         fn update_channel_intern(&self, msg: &msgs::UnsignedChannelUpdate, full_msg: Option<&msgs::ChannelUpdate>, sig: Option<&secp256k1::ecdsa::Signature>) -> Result<(), LightningError> {
1645                 let dest_node_id;
1646                 let chan_enabled = msg.flags & (1 << 1) != (1 << 1);
1647                 let chan_was_enabled;
1648
1649                 #[cfg(all(feature = "std", not(test), not(feature = "_test_utils")))]
1650                 {
1651                         // Note that many tests rely on being able to set arbitrarily old timestamps, thus we
1652                         // disable this check during tests!
1653                         let time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
1654                         if (msg.timestamp as u64) < time - STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS {
1655                                 return Err(LightningError{err: "channel_update is older than two weeks old".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1656                         }
1657                         if msg.timestamp as u64 > time + 60 * 60 * 24 {
1658                                 return Err(LightningError{err: "channel_update has a timestamp more than a day in the future".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1659                         }
1660                 }
1661
1662                 let mut channels = self.channels.write().unwrap();
1663                 match channels.get_mut(&msg.short_channel_id) {
1664                         None => return Err(LightningError{err: "Couldn't find channel for update".to_owned(), action: ErrorAction::IgnoreError}),
1665                         Some(channel) => {
1666                                 if msg.htlc_maximum_msat > MAX_VALUE_MSAT {
1667                                         return Err(LightningError{err:
1668                                                 "htlc_maximum_msat is larger than maximum possible msats".to_owned(),
1669                                                 action: ErrorAction::IgnoreError});
1670                                 }
1671
1672                                 if let Some(capacity_sats) = channel.capacity_sats {
1673                                         // It's possible channel capacity is available now, although it wasn't available at announcement (so the field is None).
1674                                         // Don't query UTXO set here to reduce DoS risks.
1675                                         if capacity_sats > MAX_VALUE_MSAT / 1000 || msg.htlc_maximum_msat > capacity_sats * 1000 {
1676                                                 return Err(LightningError{err:
1677                                                         "htlc_maximum_msat is larger than channel capacity or capacity is bogus".to_owned(),
1678                                                         action: ErrorAction::IgnoreError});
1679                                         }
1680                                 }
1681                                 macro_rules! check_update_latest {
1682                                         ($target: expr) => {
1683                                                 if let Some(existing_chan_info) = $target.as_ref() {
1684                                                         // The timestamp field is somewhat of a misnomer - the BOLTs use it to
1685                                                         // order updates to ensure you always have the latest one, only
1686                                                         // suggesting  that it be at least the current time. For
1687                                                         // channel_updates specifically, the BOLTs discuss the possibility of
1688                                                         // pruning based on the timestamp field being more than two weeks old,
1689                                                         // but only in the non-normative section.
1690                                                         if existing_chan_info.last_update > msg.timestamp {
1691                                                                 return Err(LightningError{err: "Update older than last processed update".to_owned(), action: ErrorAction::IgnoreAndLog(Level::Gossip)});
1692                                                         } else if existing_chan_info.last_update == msg.timestamp {
1693                                                                 return Err(LightningError{err: "Update had same timestamp as last processed update".to_owned(), action: ErrorAction::IgnoreDuplicateGossip});
1694                                                         }
1695                                                         chan_was_enabled = existing_chan_info.enabled;
1696                                                 } else {
1697                                                         chan_was_enabled = false;
1698                                                 }
1699                                         }
1700                                 }
1701
1702                                 macro_rules! get_new_channel_info {
1703                                         () => { {
1704                                                 let last_update_message = if msg.excess_data.len() <= MAX_EXCESS_BYTES_FOR_RELAY
1705                                                         { full_msg.cloned() } else { None };
1706
1707                                                 let updated_channel_update_info = ChannelUpdateInfo {
1708                                                         enabled: chan_enabled,
1709                                                         last_update: msg.timestamp,
1710                                                         cltv_expiry_delta: msg.cltv_expiry_delta,
1711                                                         htlc_minimum_msat: msg.htlc_minimum_msat,
1712                                                         htlc_maximum_msat: msg.htlc_maximum_msat,
1713                                                         fees: RoutingFees {
1714                                                                 base_msat: msg.fee_base_msat,
1715                                                                 proportional_millionths: msg.fee_proportional_millionths,
1716                                                         },
1717                                                         last_update_message
1718                                                 };
1719                                                 Some(updated_channel_update_info)
1720                                         } }
1721                                 }
1722
1723                                 let msg_hash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
1724                                 if msg.flags & 1 == 1 {
1725                                         dest_node_id = channel.node_one.clone();
1726                                         check_update_latest!(channel.two_to_one);
1727                                         if let Some(sig) = sig {
1728                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_two.as_slice()).map_err(|_| LightningError{
1729                                                         err: "Couldn't parse source node pubkey".to_owned(),
1730                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1731                                                 })?, "channel_update");
1732                                         }
1733                                         channel.two_to_one = get_new_channel_info!();
1734                                 } else {
1735                                         dest_node_id = channel.node_two.clone();
1736                                         check_update_latest!(channel.one_to_two);
1737                                         if let Some(sig) = sig {
1738                                                 secp_verify_sig!(self.secp_ctx, &msg_hash, &sig, &PublicKey::from_slice(channel.node_one.as_slice()).map_err(|_| LightningError{
1739                                                         err: "Couldn't parse destination node pubkey".to_owned(),
1740                                                         action: ErrorAction::IgnoreAndLog(Level::Debug)
1741                                                 })?, "channel_update");
1742                                         }
1743                                         channel.one_to_two = get_new_channel_info!();
1744                                 }
1745                         }
1746                 }
1747
1748                 let mut nodes = self.nodes.write().unwrap();
1749                 if chan_enabled {
1750                         let node = nodes.get_mut(&dest_node_id).unwrap();
1751                         let mut base_msat = msg.fee_base_msat;
1752                         let mut proportional_millionths = msg.fee_proportional_millionths;
1753                         if let Some(fees) = node.lowest_inbound_channel_fees {
1754                                 base_msat = cmp::min(base_msat, fees.base_msat);
1755                                 proportional_millionths = cmp::min(proportional_millionths, fees.proportional_millionths);
1756                         }
1757                         node.lowest_inbound_channel_fees = Some(RoutingFees {
1758                                 base_msat,
1759                                 proportional_millionths
1760                         });
1761                 } else if chan_was_enabled {
1762                         let node = nodes.get_mut(&dest_node_id).unwrap();
1763                         let mut lowest_inbound_channel_fees = None;
1764
1765                         for chan_id in node.channels.iter() {
1766                                 let chan = channels.get(chan_id).unwrap();
1767                                 let chan_info_opt;
1768                                 if chan.node_one == dest_node_id {
1769                                         chan_info_opt = chan.two_to_one.as_ref();
1770                                 } else {
1771                                         chan_info_opt = chan.one_to_two.as_ref();
1772                                 }
1773                                 if let Some(chan_info) = chan_info_opt {
1774                                         if chan_info.enabled {
1775                                                 let fees = lowest_inbound_channel_fees.get_or_insert(RoutingFees {
1776                                                         base_msat: u32::max_value(), proportional_millionths: u32::max_value() });
1777                                                 fees.base_msat = cmp::min(fees.base_msat, chan_info.fees.base_msat);
1778                                                 fees.proportional_millionths = cmp::min(fees.proportional_millionths, chan_info.fees.proportional_millionths);
1779                                         }
1780                                 }
1781                         }
1782
1783                         node.lowest_inbound_channel_fees = lowest_inbound_channel_fees;
1784                 }
1785
1786                 Ok(())
1787         }
1788
1789         fn remove_channel_in_nodes(nodes: &mut BTreeMap<NodeId, NodeInfo>, chan: &ChannelInfo, short_channel_id: u64) {
1790                 macro_rules! remove_from_node {
1791                         ($node_id: expr) => {
1792                                 if let BtreeEntry::Occupied(mut entry) = nodes.entry($node_id) {
1793                                         entry.get_mut().channels.retain(|chan_id| {
1794                                                 short_channel_id != *chan_id
1795                                         });
1796                                         if entry.get().channels.is_empty() {
1797                                                 entry.remove_entry();
1798                                         }
1799                                 } else {
1800                                         panic!("Had channel that pointed to unknown node (ie inconsistent network map)!");
1801                                 }
1802                         }
1803                 }
1804
1805                 remove_from_node!(chan.node_one);
1806                 remove_from_node!(chan.node_two);
1807         }
1808 }
1809
1810 impl ReadOnlyNetworkGraph<'_> {
1811         /// Returns all known valid channels' short ids along with announced channel info.
1812         ///
1813         /// (C-not exported) because we have no mapping for `BTreeMap`s
1814         pub fn channels(&self) -> &BTreeMap<u64, ChannelInfo> {
1815                 &*self.channels
1816         }
1817
1818         /// Returns information on a channel with the given id.
1819         pub fn channel(&self, short_channel_id: u64) -> Option<&ChannelInfo> {
1820                 self.channels.get(&short_channel_id)
1821         }
1822
1823         #[cfg(c_bindings)] // Non-bindings users should use `channels`
1824         /// Returns the list of channels in the graph
1825         pub fn list_channels(&self) -> Vec<u64> {
1826                 self.channels.keys().map(|c| *c).collect()
1827         }
1828
1829         /// Returns all known nodes' public keys along with announced node info.
1830         ///
1831         /// (C-not exported) because we have no mapping for `BTreeMap`s
1832         pub fn nodes(&self) -> &BTreeMap<NodeId, NodeInfo> {
1833                 &*self.nodes
1834         }
1835
1836         /// Returns information on a node with the given id.
1837         pub fn node(&self, node_id: &NodeId) -> Option<&NodeInfo> {
1838                 self.nodes.get(node_id)
1839         }
1840
1841         #[cfg(c_bindings)] // Non-bindings users should use `nodes`
1842         /// Returns the list of nodes in the graph
1843         pub fn list_nodes(&self) -> Vec<NodeId> {
1844                 self.nodes.keys().map(|n| *n).collect()
1845         }
1846
1847         /// Get network addresses by node id.
1848         /// Returns None if the requested node is completely unknown,
1849         /// or if node announcement for the node was never received.
1850         pub fn get_addresses(&self, pubkey: &PublicKey) -> Option<Vec<NetAddress>> {
1851                 if let Some(node) = self.nodes.get(&NodeId::from_pubkey(&pubkey)) {
1852                         if let Some(node_info) = node.announcement_info.as_ref() {
1853                                 return Some(node_info.addresses.clone())
1854                         }
1855                 }
1856                 None
1857         }
1858 }
1859
1860 #[cfg(test)]
1861 mod tests {
1862         use chain;
1863         use ln::chan_utils::make_funding_redeemscript;
1864         use ln::PaymentHash;
1865         use ln::features::{ChannelFeatures, InitFeatures, NodeFeatures};
1866         use routing::gossip::{P2PGossipSync, NetworkGraph, NetworkUpdate, NodeAlias, MAX_EXCESS_BYTES_FOR_RELAY, NodeId, RoutingFees, ChannelUpdateInfo, ChannelInfo, NodeAnnouncementInfo, NodeInfo};
1867         use ln::msgs::{RoutingMessageHandler, UnsignedNodeAnnouncement, NodeAnnouncement,
1868                 UnsignedChannelAnnouncement, ChannelAnnouncement, UnsignedChannelUpdate, ChannelUpdate,
1869                 ReplyChannelRange, QueryChannelRange, QueryShortChannelIds, MAX_VALUE_MSAT};
1870         use util::test_utils;
1871         use util::ser::{ReadableArgs, Writeable};
1872         use util::events::{Event, EventHandler, MessageSendEvent, MessageSendEventsProvider};
1873         use util::scid_utils::scid_from_parts;
1874
1875         use super::STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS;
1876
1877         use bitcoin::hashes::sha256d::Hash as Sha256dHash;
1878         use bitcoin::hashes::Hash;
1879         use bitcoin::network::constants::Network;
1880         use bitcoin::blockdata::constants::genesis_block;
1881         use bitcoin::blockdata::script::Script;
1882         use bitcoin::blockdata::transaction::TxOut;
1883
1884         use hex;
1885
1886         use bitcoin::secp256k1::{PublicKey, SecretKey};
1887         use bitcoin::secp256k1::{All, Secp256k1};
1888
1889         use io;
1890         use bitcoin::secp256k1;
1891         use prelude::*;
1892         use sync::Arc;
1893
1894         fn create_network_graph() -> NetworkGraph<Arc<test_utils::TestLogger>> {
1895                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
1896                 let logger = Arc::new(test_utils::TestLogger::new());
1897                 NetworkGraph::new(genesis_hash, logger)
1898         }
1899
1900         fn create_gossip_sync(network_graph: &NetworkGraph<Arc<test_utils::TestLogger>>) -> (
1901                 Secp256k1<All>, P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>,
1902                 Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>
1903         ) {
1904                 let secp_ctx = Secp256k1::new();
1905                 let logger = Arc::new(test_utils::TestLogger::new());
1906                 let gossip_sync = P2PGossipSync::new(network_graph, None, Arc::clone(&logger));
1907                 (secp_ctx, gossip_sync)
1908         }
1909
1910         #[test]
1911         #[cfg(feature = "std")]
1912         fn request_full_sync_finite_times() {
1913                 let network_graph = create_network_graph();
1914                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
1915                 let node_id = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap()[..]).unwrap());
1916
1917                 assert!(gossip_sync.should_request_full_sync(&node_id));
1918                 assert!(gossip_sync.should_request_full_sync(&node_id));
1919                 assert!(gossip_sync.should_request_full_sync(&node_id));
1920                 assert!(gossip_sync.should_request_full_sync(&node_id));
1921                 assert!(gossip_sync.should_request_full_sync(&node_id));
1922                 assert!(!gossip_sync.should_request_full_sync(&node_id));
1923         }
1924
1925         fn get_signed_node_announcement<F: Fn(&mut UnsignedNodeAnnouncement)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> NodeAnnouncement {
1926                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_key);
1927                 let mut unsigned_announcement = UnsignedNodeAnnouncement {
1928                         features: NodeFeatures::known(),
1929                         timestamp: 100,
1930                         node_id: node_id,
1931                         rgb: [0; 3],
1932                         alias: [0; 32],
1933                         addresses: Vec::new(),
1934                         excess_address_data: Vec::new(),
1935                         excess_data: Vec::new(),
1936                 };
1937                 f(&mut unsigned_announcement);
1938                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1939                 NodeAnnouncement {
1940                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1941                         contents: unsigned_announcement
1942                 }
1943         }
1944
1945         fn get_signed_channel_announcement<F: Fn(&mut UnsignedChannelAnnouncement)>(f: F, node_1_key: &SecretKey, node_2_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelAnnouncement {
1946                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_key);
1947                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_key);
1948                 let node_1_btckey = &SecretKey::from_slice(&[40; 32]).unwrap();
1949                 let node_2_btckey = &SecretKey::from_slice(&[39; 32]).unwrap();
1950
1951                 let mut unsigned_announcement = UnsignedChannelAnnouncement {
1952                         features: ChannelFeatures::known(),
1953                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1954                         short_channel_id: 0,
1955                         node_id_1,
1956                         node_id_2,
1957                         bitcoin_key_1: PublicKey::from_secret_key(&secp_ctx, node_1_btckey),
1958                         bitcoin_key_2: PublicKey::from_secret_key(&secp_ctx, node_2_btckey),
1959                         excess_data: Vec::new(),
1960                 };
1961                 f(&mut unsigned_announcement);
1962                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_announcement.encode()[..])[..]);
1963                 ChannelAnnouncement {
1964                         node_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_key),
1965                         node_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_key),
1966                         bitcoin_signature_1: secp_ctx.sign_ecdsa(&msghash, node_1_btckey),
1967                         bitcoin_signature_2: secp_ctx.sign_ecdsa(&msghash, node_2_btckey),
1968                         contents: unsigned_announcement,
1969                 }
1970         }
1971
1972         fn get_channel_script(secp_ctx: &Secp256k1<secp256k1::All>) -> Script {
1973                 let node_1_btckey = SecretKey::from_slice(&[40; 32]).unwrap();
1974                 let node_2_btckey = SecretKey::from_slice(&[39; 32]).unwrap();
1975                 make_funding_redeemscript(&PublicKey::from_secret_key(secp_ctx, &node_1_btckey),
1976                         &PublicKey::from_secret_key(secp_ctx, &node_2_btckey)).to_v0_p2wsh()
1977         }
1978
1979         fn get_signed_channel_update<F: Fn(&mut UnsignedChannelUpdate)>(f: F, node_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> ChannelUpdate {
1980                 let mut unsigned_channel_update = UnsignedChannelUpdate {
1981                         chain_hash: genesis_block(Network::Testnet).header.block_hash(),
1982                         short_channel_id: 0,
1983                         timestamp: 100,
1984                         flags: 0,
1985                         cltv_expiry_delta: 144,
1986                         htlc_minimum_msat: 1_000_000,
1987                         htlc_maximum_msat: 1_000_000,
1988                         fee_base_msat: 10_000,
1989                         fee_proportional_millionths: 20,
1990                         excess_data: Vec::new()
1991                 };
1992                 f(&mut unsigned_channel_update);
1993                 let msghash = hash_to_message!(&Sha256dHash::hash(&unsigned_channel_update.encode()[..])[..]);
1994                 ChannelUpdate {
1995                         signature: secp_ctx.sign_ecdsa(&msghash, node_key),
1996                         contents: unsigned_channel_update
1997                 }
1998         }
1999
2000         #[test]
2001         fn handling_node_announcements() {
2002                 let network_graph = create_network_graph();
2003                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2004
2005                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2006                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2007                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2008
2009                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2010                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2011                         Ok(_) => panic!(),
2012                         Err(e) => assert_eq!("No existing channels for node_announcement", e.err)
2013                 };
2014
2015                 {
2016                         // Announce a channel to add a corresponding node.
2017                         let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2018                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2019                                 Ok(res) => assert!(res),
2020                                 _ => panic!()
2021                         };
2022                 }
2023
2024                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2025                         Ok(res) => assert!(res),
2026                         Err(_) => panic!()
2027                 };
2028
2029                 let fake_msghash = hash_to_message!(&zero_hash);
2030                 match gossip_sync.handle_node_announcement(
2031                         &NodeAnnouncement {
2032                                 signature: secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey),
2033                                 contents: valid_announcement.contents.clone()
2034                 }) {
2035                         Ok(_) => panic!(),
2036                         Err(e) => assert_eq!(e.err, "Invalid signature on node_announcement message")
2037                 };
2038
2039                 let announcement_with_data = get_signed_node_announcement(|unsigned_announcement| {
2040                         unsigned_announcement.timestamp += 1000;
2041                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2042                 }, node_1_privkey, &secp_ctx);
2043                 // Return false because contains excess data.
2044                 match gossip_sync.handle_node_announcement(&announcement_with_data) {
2045                         Ok(res) => assert!(!res),
2046                         Err(_) => panic!()
2047                 };
2048
2049                 // Even though previous announcement was not relayed further, we still accepted it,
2050                 // so we now won't accept announcements before the previous one.
2051                 let outdated_announcement = get_signed_node_announcement(|unsigned_announcement| {
2052                         unsigned_announcement.timestamp += 1000 - 10;
2053                 }, node_1_privkey, &secp_ctx);
2054                 match gossip_sync.handle_node_announcement(&outdated_announcement) {
2055                         Ok(_) => panic!(),
2056                         Err(e) => assert_eq!(e.err, "Update older than last processed update")
2057                 };
2058         }
2059
2060         #[test]
2061         fn handling_channel_announcements() {
2062                 let secp_ctx = Secp256k1::new();
2063                 let logger = test_utils::TestLogger::new();
2064
2065                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2066                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2067
2068                 let good_script = get_channel_script(&secp_ctx);
2069                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2070
2071                 // Test if the UTXO lookups were not supported
2072                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2073                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2074                 let mut gossip_sync = P2PGossipSync::new(&network_graph, None, &logger);
2075                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2076                         Ok(res) => assert!(res),
2077                         _ => panic!()
2078                 };
2079
2080                 {
2081                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2082                                 None => panic!(),
2083                                 Some(_) => ()
2084                         };
2085                 }
2086
2087                 // If we receive announcement for the same channel (with UTXO lookups disabled),
2088                 // drop new one on the floor, since we can't see any changes.
2089                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2090                         Ok(_) => panic!(),
2091                         Err(e) => assert_eq!(e.err, "Already have non-chain-validated channel")
2092                 };
2093
2094                 // Test if an associated transaction were not on-chain (or not confirmed).
2095                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2096                 *chain_source.utxo_ret.lock().unwrap() = Err(chain::AccessError::UnknownTx);
2097                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2098                 gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2099
2100                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2101                         unsigned_announcement.short_channel_id += 1;
2102                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2103                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2104                         Ok(_) => panic!(),
2105                         Err(e) => assert_eq!(e.err, "Channel announced without corresponding UTXO entry")
2106                 };
2107
2108                 // Now test if the transaction is found in the UTXO set and the script is correct.
2109                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script.clone() });
2110                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2111                         unsigned_announcement.short_channel_id += 2;
2112                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2113                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2114                         Ok(res) => assert!(res),
2115                         _ => panic!()
2116                 };
2117
2118                 {
2119                         match network_graph.read_only().channels().get(&valid_announcement.contents.short_channel_id) {
2120                                 None => panic!(),
2121                                 Some(_) => ()
2122                         };
2123                 }
2124
2125                 // If we receive announcement for the same channel, once we've validated it against the
2126                 // chain, we simply ignore all new (duplicate) announcements.
2127                 *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: 0, script_pubkey: good_script });
2128                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2129                         Ok(_) => panic!(),
2130                         Err(e) => assert_eq!(e.err, "Already have chain-validated channel")
2131                 };
2132
2133                 // Don't relay valid channels with excess data
2134                 let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2135                         unsigned_announcement.short_channel_id += 3;
2136                         unsigned_announcement.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2137                 }, node_1_privkey, node_2_privkey, &secp_ctx);
2138                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2139                         Ok(res) => assert!(!res),
2140                         _ => panic!()
2141                 };
2142
2143                 let mut invalid_sig_announcement = valid_announcement.clone();
2144                 invalid_sig_announcement.contents.excess_data = Vec::new();
2145                 match gossip_sync.handle_channel_announcement(&invalid_sig_announcement) {
2146                         Ok(_) => panic!(),
2147                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_announcement message")
2148                 };
2149
2150                 let channel_to_itself_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_1_privkey, &secp_ctx);
2151                 match gossip_sync.handle_channel_announcement(&channel_to_itself_announcement) {
2152                         Ok(_) => panic!(),
2153                         Err(e) => assert_eq!(e.err, "Channel announcement node had a channel with itself")
2154                 };
2155         }
2156
2157         #[test]
2158         fn handling_channel_update() {
2159                 let secp_ctx = Secp256k1::new();
2160                 let logger = test_utils::TestLogger::new();
2161                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2162                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2163                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2164                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2165
2166                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2167                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2168
2169                 let amount_sats = 1000_000;
2170                 let short_channel_id;
2171
2172                 {
2173                         // Announce a channel we will update
2174                         let good_script = get_channel_script(&secp_ctx);
2175                         *chain_source.utxo_ret.lock().unwrap() = Ok(TxOut { value: amount_sats, script_pubkey: good_script.clone() });
2176
2177                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2178                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2179                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2180                                 Ok(_) => (),
2181                                 Err(_) => panic!()
2182                         };
2183
2184                 }
2185
2186                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2187                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2188                         Ok(res) => assert!(res),
2189                         _ => panic!(),
2190                 };
2191
2192                 {
2193                         match network_graph.read_only().channels().get(&short_channel_id) {
2194                                 None => panic!(),
2195                                 Some(channel_info) => {
2196                                         assert_eq!(channel_info.one_to_two.as_ref().unwrap().cltv_expiry_delta, 144);
2197                                         assert!(channel_info.two_to_one.is_none());
2198                                 }
2199                         };
2200                 }
2201
2202                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2203                         unsigned_channel_update.timestamp += 100;
2204                         unsigned_channel_update.excess_data.resize(MAX_EXCESS_BYTES_FOR_RELAY + 1, 0);
2205                 }, node_1_privkey, &secp_ctx);
2206                 // Return false because contains excess data
2207                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2208                         Ok(res) => assert!(!res),
2209                         _ => panic!()
2210                 };
2211
2212                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2213                         unsigned_channel_update.timestamp += 110;
2214                         unsigned_channel_update.short_channel_id += 1;
2215                 }, node_1_privkey, &secp_ctx);
2216                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2217                         Ok(_) => panic!(),
2218                         Err(e) => assert_eq!(e.err, "Couldn't find channel for update")
2219                 };
2220
2221                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2222                         unsigned_channel_update.htlc_maximum_msat = MAX_VALUE_MSAT + 1;
2223                         unsigned_channel_update.timestamp += 110;
2224                 }, node_1_privkey, &secp_ctx);
2225                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2226                         Ok(_) => panic!(),
2227                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than maximum possible msats")
2228                 };
2229
2230                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2231                         unsigned_channel_update.htlc_maximum_msat = amount_sats * 1000 + 1;
2232                         unsigned_channel_update.timestamp += 110;
2233                 }, node_1_privkey, &secp_ctx);
2234                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2235                         Ok(_) => panic!(),
2236                         Err(e) => assert_eq!(e.err, "htlc_maximum_msat is larger than channel capacity or capacity is bogus")
2237                 };
2238
2239                 // Even though previous update was not relayed further, we still accepted it,
2240                 // so we now won't accept update before the previous one.
2241                 let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2242                         unsigned_channel_update.timestamp += 100;
2243                 }, node_1_privkey, &secp_ctx);
2244                 match gossip_sync.handle_channel_update(&valid_channel_update) {
2245                         Ok(_) => panic!(),
2246                         Err(e) => assert_eq!(e.err, "Update had same timestamp as last processed update")
2247                 };
2248
2249                 let mut invalid_sig_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2250                         unsigned_channel_update.timestamp += 500;
2251                 }, node_1_privkey, &secp_ctx);
2252                 let zero_hash = Sha256dHash::hash(&[0; 32]);
2253                 let fake_msghash = hash_to_message!(&zero_hash);
2254                 invalid_sig_channel_update.signature = secp_ctx.sign_ecdsa(&fake_msghash, node_1_privkey);
2255                 match gossip_sync.handle_channel_update(&invalid_sig_channel_update) {
2256                         Ok(_) => panic!(),
2257                         Err(e) => assert_eq!(e.err, "Invalid signature on channel_update message")
2258                 };
2259         }
2260
2261         #[test]
2262         fn handling_network_update() {
2263                 let logger = test_utils::TestLogger::new();
2264                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2265                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2266                 let secp_ctx = Secp256k1::new();
2267
2268                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2269                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2270
2271                 {
2272                         // There is no nodes in the table at the beginning.
2273                         assert_eq!(network_graph.read_only().nodes().len(), 0);
2274                 }
2275
2276                 let short_channel_id;
2277                 {
2278                         // Announce a channel we will update
2279                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2280                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2281                         let chain_source: Option<&test_utils::TestChainSource> = None;
2282                         assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2283                         assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2284
2285                         let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2286                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2287
2288                         network_graph.handle_event(&Event::PaymentPathFailed {
2289                                 payment_id: None,
2290                                 payment_hash: PaymentHash([0; 32]),
2291                                 payment_failed_permanently: false,
2292                                 all_paths_failed: true,
2293                                 path: vec![],
2294                                 network_update: Some(NetworkUpdate::ChannelUpdateMessage {
2295                                         msg: valid_channel_update,
2296                                 }),
2297                                 short_channel_id: None,
2298                                 retry: None,
2299                                 error_code: None,
2300                                 error_data: None,
2301                         });
2302
2303                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2304                 }
2305
2306                 // Non-permanent closing just disables a channel
2307                 {
2308                         match network_graph.read_only().channels().get(&short_channel_id) {
2309                                 None => panic!(),
2310                                 Some(channel_info) => {
2311                                         assert!(channel_info.one_to_two.as_ref().unwrap().enabled);
2312                                 }
2313                         };
2314
2315                         network_graph.handle_event(&Event::PaymentPathFailed {
2316                                 payment_id: None,
2317                                 payment_hash: PaymentHash([0; 32]),
2318                                 payment_failed_permanently: false,
2319                                 all_paths_failed: true,
2320                                 path: vec![],
2321                                 network_update: Some(NetworkUpdate::ChannelFailure {
2322                                         short_channel_id,
2323                                         is_permanent: false,
2324                                 }),
2325                                 short_channel_id: None,
2326                                 retry: None,
2327                                 error_code: None,
2328                                 error_data: None,
2329                         });
2330
2331                         match network_graph.read_only().channels().get(&short_channel_id) {
2332                                 None => panic!(),
2333                                 Some(channel_info) => {
2334                                         assert!(!channel_info.one_to_two.as_ref().unwrap().enabled);
2335                                 }
2336                         };
2337                 }
2338
2339                 // Permanent closing deletes a channel
2340                 network_graph.handle_event(&Event::PaymentPathFailed {
2341                         payment_id: None,
2342                         payment_hash: PaymentHash([0; 32]),
2343                         payment_failed_permanently: false,
2344                         all_paths_failed: true,
2345                         path: vec![],
2346                         network_update: Some(NetworkUpdate::ChannelFailure {
2347                                 short_channel_id,
2348                                 is_permanent: true,
2349                         }),
2350                         short_channel_id: None,
2351                         retry: None,
2352                         error_code: None,
2353                         error_data: None,
2354                 });
2355
2356                 assert_eq!(network_graph.read_only().channels().len(), 0);
2357                 // Nodes are also deleted because there are no associated channels anymore
2358                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2359                 // TODO: Test NetworkUpdate::NodeFailure, which is not implemented yet.
2360         }
2361
2362         #[test]
2363         fn test_channel_timeouts() {
2364                 // Test the removal of channels with `remove_stale_channels`.
2365                 let logger = test_utils::TestLogger::new();
2366                 let chain_source = test_utils::TestChainSource::new(Network::Testnet);
2367                 let genesis_hash = genesis_block(Network::Testnet).header.block_hash();
2368                 let network_graph = NetworkGraph::new(genesis_hash, &logger);
2369                 let gossip_sync = P2PGossipSync::new(&network_graph, Some(&chain_source), &logger);
2370                 let secp_ctx = Secp256k1::new();
2371
2372                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2373                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2374
2375                 let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2376                 let short_channel_id = valid_channel_announcement.contents.short_channel_id;
2377                 let chain_source: Option<&test_utils::TestChainSource> = None;
2378                 assert!(network_graph.update_channel_from_announcement(&valid_channel_announcement, &chain_source).is_ok());
2379                 assert!(network_graph.read_only().channels().get(&short_channel_id).is_some());
2380
2381                 let valid_channel_update = get_signed_channel_update(|_| {}, node_1_privkey, &secp_ctx);
2382                 assert!(gossip_sync.handle_channel_update(&valid_channel_update).is_ok());
2383                 assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_some());
2384
2385                 network_graph.remove_stale_channels_with_time(100 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2386                 assert_eq!(network_graph.read_only().channels().len(), 1);
2387                 assert_eq!(network_graph.read_only().nodes().len(), 2);
2388
2389                 network_graph.remove_stale_channels_with_time(101 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2390                 #[cfg(feature = "std")]
2391                 {
2392                         // In std mode, a further check is performed before fully removing the channel -
2393                         // the channel_announcement must have been received at least two weeks ago. We
2394                         // fudge that here by indicating the time has jumped two weeks. Note that the
2395                         // directional channel information will have been removed already..
2396                         assert_eq!(network_graph.read_only().channels().len(), 1);
2397                         assert_eq!(network_graph.read_only().nodes().len(), 2);
2398                         assert!(network_graph.read_only().channels().get(&short_channel_id).unwrap().one_to_two.is_none());
2399
2400                         use std::time::{SystemTime, UNIX_EPOCH};
2401                         let announcement_time = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2402                         network_graph.remove_stale_channels_with_time(announcement_time + 1 + STALE_CHANNEL_UPDATE_AGE_LIMIT_SECS);
2403                 }
2404
2405                 assert_eq!(network_graph.read_only().channels().len(), 0);
2406                 assert_eq!(network_graph.read_only().nodes().len(), 0);
2407         }
2408
2409         #[test]
2410         fn getting_next_channel_announcements() {
2411                 let network_graph = create_network_graph();
2412                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2413                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2414                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2415
2416                 // Channels were not announced yet.
2417                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(0);
2418                 assert!(channels_with_announcements.is_none());
2419
2420                 let short_channel_id;
2421                 {
2422                         // Announce a channel we will update
2423                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2424                         short_channel_id = valid_channel_announcement.contents.short_channel_id;
2425                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2426                                 Ok(_) => (),
2427                                 Err(_) => panic!()
2428                         };
2429                 }
2430
2431                 // Contains initial channel announcement now.
2432                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2433                 if let Some(channel_announcements) = channels_with_announcements {
2434                         let (_, ref update_1, ref update_2) = channel_announcements;
2435                         assert_eq!(update_1, &None);
2436                         assert_eq!(update_2, &None);
2437                 } else {
2438                         panic!();
2439                 }
2440
2441                 {
2442                         // Valid channel update
2443                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2444                                 unsigned_channel_update.timestamp = 101;
2445                         }, node_1_privkey, &secp_ctx);
2446                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2447                                 Ok(_) => (),
2448                                 Err(_) => panic!()
2449                         };
2450                 }
2451
2452                 // Now contains an initial announcement and an update.
2453                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2454                 if let Some(channel_announcements) = channels_with_announcements {
2455                         let (_, ref update_1, ref update_2) = channel_announcements;
2456                         assert_ne!(update_1, &None);
2457                         assert_eq!(update_2, &None);
2458                 } else {
2459                         panic!();
2460                 }
2461
2462                 {
2463                         // Channel update with excess data.
2464                         let valid_channel_update = get_signed_channel_update(|unsigned_channel_update| {
2465                                 unsigned_channel_update.timestamp = 102;
2466                                 unsigned_channel_update.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2467                         }, node_1_privkey, &secp_ctx);
2468                         match gossip_sync.handle_channel_update(&valid_channel_update) {
2469                                 Ok(_) => (),
2470                                 Err(_) => panic!()
2471                         };
2472                 }
2473
2474                 // Test that announcements with excess data won't be returned
2475                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id);
2476                 if let Some(channel_announcements) = channels_with_announcements {
2477                         let (_, ref update_1, ref update_2) = channel_announcements;
2478                         assert_eq!(update_1, &None);
2479                         assert_eq!(update_2, &None);
2480                 } else {
2481                         panic!();
2482                 }
2483
2484                 // Further starting point have no channels after it
2485                 let channels_with_announcements = gossip_sync.get_next_channel_announcement(short_channel_id + 1000);
2486                 assert!(channels_with_announcements.is_none());
2487         }
2488
2489         #[test]
2490         fn getting_next_node_announcements() {
2491                 let network_graph = create_network_graph();
2492                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2493                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2494                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2495                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_1_privkey);
2496
2497                 // No nodes yet.
2498                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2499                 assert!(next_announcements.is_none());
2500
2501                 {
2502                         // Announce a channel to add 2 nodes
2503                         let valid_channel_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2504                         match gossip_sync.handle_channel_announcement(&valid_channel_announcement) {
2505                                 Ok(_) => (),
2506                                 Err(_) => panic!()
2507                         };
2508                 }
2509
2510                 // Nodes were never announced
2511                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2512                 assert!(next_announcements.is_none());
2513
2514                 {
2515                         let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2516                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2517                                 Ok(_) => (),
2518                                 Err(_) => panic!()
2519                         };
2520
2521                         let valid_announcement = get_signed_node_announcement(|_| {}, node_2_privkey, &secp_ctx);
2522                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2523                                 Ok(_) => (),
2524                                 Err(_) => panic!()
2525                         };
2526                 }
2527
2528                 let next_announcements = gossip_sync.get_next_node_announcement(None);
2529                 assert!(next_announcements.is_some());
2530
2531                 // Skip the first node.
2532                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2533                 assert!(next_announcements.is_some());
2534
2535                 {
2536                         // Later announcement which should not be relayed (excess data) prevent us from sharing a node
2537                         let valid_announcement = get_signed_node_announcement(|unsigned_announcement| {
2538                                 unsigned_announcement.timestamp += 10;
2539                                 unsigned_announcement.excess_data = [1; MAX_EXCESS_BYTES_FOR_RELAY + 1].to_vec();
2540                         }, node_2_privkey, &secp_ctx);
2541                         match gossip_sync.handle_node_announcement(&valid_announcement) {
2542                                 Ok(res) => assert!(!res),
2543                                 Err(_) => panic!()
2544                         };
2545                 }
2546
2547                 let next_announcements = gossip_sync.get_next_node_announcement(Some(&node_id_1));
2548                 assert!(next_announcements.is_none());
2549         }
2550
2551         #[test]
2552         fn network_graph_serialization() {
2553                 let network_graph = create_network_graph();
2554                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2555
2556                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2557                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2558
2559                 // Announce a channel to add a corresponding node.
2560                 let valid_announcement = get_signed_channel_announcement(|_| {}, node_1_privkey, node_2_privkey, &secp_ctx);
2561                 match gossip_sync.handle_channel_announcement(&valid_announcement) {
2562                         Ok(res) => assert!(res),
2563                         _ => panic!()
2564                 };
2565
2566                 let valid_announcement = get_signed_node_announcement(|_| {}, node_1_privkey, &secp_ctx);
2567                 match gossip_sync.handle_node_announcement(&valid_announcement) {
2568                         Ok(_) => (),
2569                         Err(_) => panic!()
2570                 };
2571
2572                 let mut w = test_utils::TestVecWriter(Vec::new());
2573                 assert!(!network_graph.read_only().nodes().is_empty());
2574                 assert!(!network_graph.read_only().channels().is_empty());
2575                 network_graph.write(&mut w).unwrap();
2576
2577                 let logger = Arc::new(test_utils::TestLogger::new());
2578                 assert!(<NetworkGraph<_>>::read(&mut io::Cursor::new(&w.0), logger).unwrap() == network_graph);
2579         }
2580
2581         #[test]
2582         fn network_graph_tlv_serialization() {
2583                 let network_graph = create_network_graph();
2584                 network_graph.set_last_rapid_gossip_sync_timestamp(42);
2585
2586                 let mut w = test_utils::TestVecWriter(Vec::new());
2587                 network_graph.write(&mut w).unwrap();
2588
2589                 let logger = Arc::new(test_utils::TestLogger::new());
2590                 let reassembled_network_graph: NetworkGraph<_> = ReadableArgs::read(&mut io::Cursor::new(&w.0), logger).unwrap();
2591                 assert!(reassembled_network_graph == network_graph);
2592                 assert_eq!(reassembled_network_graph.get_last_rapid_gossip_sync_timestamp().unwrap(), 42);
2593         }
2594
2595         #[test]
2596         #[cfg(feature = "std")]
2597         fn calling_sync_routing_table() {
2598                 use std::time::{SystemTime, UNIX_EPOCH};
2599                 use ln::msgs::Init;
2600
2601                 let network_graph = create_network_graph();
2602                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2603                 let node_privkey_1 = &SecretKey::from_slice(&[42; 32]).unwrap();
2604                 let node_id_1 = PublicKey::from_secret_key(&secp_ctx, node_privkey_1);
2605
2606                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2607
2608                 // It should ignore if gossip_queries feature is not enabled
2609                 {
2610                         let init_msg = Init { features: InitFeatures::known().clear_gossip_queries(), remote_network_address: None };
2611                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2612                         let events = gossip_sync.get_and_clear_pending_msg_events();
2613                         assert_eq!(events.len(), 0);
2614                 }
2615
2616                 // It should send a gossip_timestamp_filter with the correct information
2617                 {
2618                         let init_msg = Init { features: InitFeatures::known(), remote_network_address: None };
2619                         gossip_sync.peer_connected(&node_id_1, &init_msg);
2620                         let events = gossip_sync.get_and_clear_pending_msg_events();
2621                         assert_eq!(events.len(), 1);
2622                         match &events[0] {
2623                                 MessageSendEvent::SendGossipTimestampFilter{ node_id, msg } => {
2624                                         assert_eq!(node_id, &node_id_1);
2625                                         assert_eq!(msg.chain_hash, chain_hash);
2626                                         let expected_timestamp = SystemTime::now().duration_since(UNIX_EPOCH).expect("Time must be > 1970").as_secs();
2627                                         assert!((msg.first_timestamp as u64) >= expected_timestamp - 60*60*24*7*2);
2628                                         assert!((msg.first_timestamp as u64) < expected_timestamp - 60*60*24*7*2 + 10);
2629                                         assert_eq!(msg.timestamp_range, u32::max_value());
2630                                 },
2631                                 _ => panic!("Expected MessageSendEvent::SendChannelRangeQuery")
2632                         };
2633                 }
2634         }
2635
2636         #[test]
2637         fn handling_query_channel_range() {
2638                 let network_graph = create_network_graph();
2639                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2640
2641                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2642                 let node_1_privkey = &SecretKey::from_slice(&[42; 32]).unwrap();
2643                 let node_2_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2644                 let node_id_2 = PublicKey::from_secret_key(&secp_ctx, node_2_privkey);
2645
2646                 let mut scids: Vec<u64> = vec![
2647                         scid_from_parts(0xfffffe, 0xffffff, 0xffff).unwrap(), // max
2648                         scid_from_parts(0xffffff, 0xffffff, 0xffff).unwrap(), // never
2649                 ];
2650
2651                 // used for testing multipart reply across blocks
2652                 for block in 100000..=108001 {
2653                         scids.push(scid_from_parts(block, 0, 0).unwrap());
2654                 }
2655
2656                 // used for testing resumption on same block
2657                 scids.push(scid_from_parts(108001, 1, 0).unwrap());
2658
2659                 for scid in scids {
2660                         let valid_announcement = get_signed_channel_announcement(|unsigned_announcement| {
2661                                 unsigned_announcement.short_channel_id = scid;
2662                         }, node_1_privkey, node_2_privkey, &secp_ctx);
2663                         match gossip_sync.handle_channel_announcement(&valid_announcement) {
2664                                 Ok(_) => (),
2665                                 _ => panic!()
2666                         };
2667                 }
2668
2669                 // Error when number_of_blocks=0
2670                 do_handling_query_channel_range(
2671                         &gossip_sync,
2672                         &node_id_2,
2673                         QueryChannelRange {
2674                                 chain_hash: chain_hash.clone(),
2675                                 first_blocknum: 0,
2676                                 number_of_blocks: 0,
2677                         },
2678                         false,
2679                         vec![ReplyChannelRange {
2680                                 chain_hash: chain_hash.clone(),
2681                                 first_blocknum: 0,
2682                                 number_of_blocks: 0,
2683                                 sync_complete: true,
2684                                 short_channel_ids: vec![]
2685                         }]
2686                 );
2687
2688                 // Error when wrong chain
2689                 do_handling_query_channel_range(
2690                         &gossip_sync,
2691                         &node_id_2,
2692                         QueryChannelRange {
2693                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2694                                 first_blocknum: 0,
2695                                 number_of_blocks: 0xffff_ffff,
2696                         },
2697                         false,
2698                         vec![ReplyChannelRange {
2699                                 chain_hash: genesis_block(Network::Bitcoin).header.block_hash(),
2700                                 first_blocknum: 0,
2701                                 number_of_blocks: 0xffff_ffff,
2702                                 sync_complete: true,
2703                                 short_channel_ids: vec![],
2704                         }]
2705                 );
2706
2707                 // Error when first_blocknum > 0xffffff
2708                 do_handling_query_channel_range(
2709                         &gossip_sync,
2710                         &node_id_2,
2711                         QueryChannelRange {
2712                                 chain_hash: chain_hash.clone(),
2713                                 first_blocknum: 0x01000000,
2714                                 number_of_blocks: 0xffff_ffff,
2715                         },
2716                         false,
2717                         vec![ReplyChannelRange {
2718                                 chain_hash: chain_hash.clone(),
2719                                 first_blocknum: 0x01000000,
2720                                 number_of_blocks: 0xffff_ffff,
2721                                 sync_complete: true,
2722                                 short_channel_ids: vec![]
2723                         }]
2724                 );
2725
2726                 // Empty reply when max valid SCID block num
2727                 do_handling_query_channel_range(
2728                         &gossip_sync,
2729                         &node_id_2,
2730                         QueryChannelRange {
2731                                 chain_hash: chain_hash.clone(),
2732                                 first_blocknum: 0xffffff,
2733                                 number_of_blocks: 1,
2734                         },
2735                         true,
2736                         vec![
2737                                 ReplyChannelRange {
2738                                         chain_hash: chain_hash.clone(),
2739                                         first_blocknum: 0xffffff,
2740                                         number_of_blocks: 1,
2741                                         sync_complete: true,
2742                                         short_channel_ids: vec![]
2743                                 },
2744                         ]
2745                 );
2746
2747                 // No results in valid query range
2748                 do_handling_query_channel_range(
2749                         &gossip_sync,
2750                         &node_id_2,
2751                         QueryChannelRange {
2752                                 chain_hash: chain_hash.clone(),
2753                                 first_blocknum: 1000,
2754                                 number_of_blocks: 1000,
2755                         },
2756                         true,
2757                         vec![
2758                                 ReplyChannelRange {
2759                                         chain_hash: chain_hash.clone(),
2760                                         first_blocknum: 1000,
2761                                         number_of_blocks: 1000,
2762                                         sync_complete: true,
2763                                         short_channel_ids: vec![],
2764                                 }
2765                         ]
2766                 );
2767
2768                 // Overflow first_blocknum + number_of_blocks
2769                 do_handling_query_channel_range(
2770                         &gossip_sync,
2771                         &node_id_2,
2772                         QueryChannelRange {
2773                                 chain_hash: chain_hash.clone(),
2774                                 first_blocknum: 0xfe0000,
2775                                 number_of_blocks: 0xffffffff,
2776                         },
2777                         true,
2778                         vec![
2779                                 ReplyChannelRange {
2780                                         chain_hash: chain_hash.clone(),
2781                                         first_blocknum: 0xfe0000,
2782                                         number_of_blocks: 0xffffffff - 0xfe0000,
2783                                         sync_complete: true,
2784                                         short_channel_ids: vec![
2785                                                 0xfffffe_ffffff_ffff, // max
2786                                         ]
2787                                 }
2788                         ]
2789                 );
2790
2791                 // Single block exactly full
2792                 do_handling_query_channel_range(
2793                         &gossip_sync,
2794                         &node_id_2,
2795                         QueryChannelRange {
2796                                 chain_hash: chain_hash.clone(),
2797                                 first_blocknum: 100000,
2798                                 number_of_blocks: 8000,
2799                         },
2800                         true,
2801                         vec![
2802                                 ReplyChannelRange {
2803                                         chain_hash: chain_hash.clone(),
2804                                         first_blocknum: 100000,
2805                                         number_of_blocks: 8000,
2806                                         sync_complete: true,
2807                                         short_channel_ids: (100000..=107999)
2808                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2809                                                 .collect(),
2810                                 },
2811                         ]
2812                 );
2813
2814                 // Multiple split on new block
2815                 do_handling_query_channel_range(
2816                         &gossip_sync,
2817                         &node_id_2,
2818                         QueryChannelRange {
2819                                 chain_hash: chain_hash.clone(),
2820                                 first_blocknum: 100000,
2821                                 number_of_blocks: 8001,
2822                         },
2823                         true,
2824                         vec![
2825                                 ReplyChannelRange {
2826                                         chain_hash: chain_hash.clone(),
2827                                         first_blocknum: 100000,
2828                                         number_of_blocks: 7999,
2829                                         sync_complete: false,
2830                                         short_channel_ids: (100000..=107999)
2831                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2832                                                 .collect(),
2833                                 },
2834                                 ReplyChannelRange {
2835                                         chain_hash: chain_hash.clone(),
2836                                         first_blocknum: 107999,
2837                                         number_of_blocks: 2,
2838                                         sync_complete: true,
2839                                         short_channel_ids: vec![
2840                                                 scid_from_parts(108000, 0, 0).unwrap(),
2841                                         ],
2842                                 }
2843                         ]
2844                 );
2845
2846                 // Multiple split on same block
2847                 do_handling_query_channel_range(
2848                         &gossip_sync,
2849                         &node_id_2,
2850                         QueryChannelRange {
2851                                 chain_hash: chain_hash.clone(),
2852                                 first_blocknum: 100002,
2853                                 number_of_blocks: 8000,
2854                         },
2855                         true,
2856                         vec![
2857                                 ReplyChannelRange {
2858                                         chain_hash: chain_hash.clone(),
2859                                         first_blocknum: 100002,
2860                                         number_of_blocks: 7999,
2861                                         sync_complete: false,
2862                                         short_channel_ids: (100002..=108001)
2863                                                 .map(|block| scid_from_parts(block, 0, 0).unwrap())
2864                                                 .collect(),
2865                                 },
2866                                 ReplyChannelRange {
2867                                         chain_hash: chain_hash.clone(),
2868                                         first_blocknum: 108001,
2869                                         number_of_blocks: 1,
2870                                         sync_complete: true,
2871                                         short_channel_ids: vec![
2872                                                 scid_from_parts(108001, 1, 0).unwrap(),
2873                                         ],
2874                                 }
2875                         ]
2876                 );
2877         }
2878
2879         fn do_handling_query_channel_range(
2880                 gossip_sync: &P2PGossipSync<&NetworkGraph<Arc<test_utils::TestLogger>>, Arc<test_utils::TestChainSource>, Arc<test_utils::TestLogger>>,
2881                 test_node_id: &PublicKey,
2882                 msg: QueryChannelRange,
2883                 expected_ok: bool,
2884                 expected_replies: Vec<ReplyChannelRange>
2885         ) {
2886                 let mut max_firstblocknum = msg.first_blocknum.saturating_sub(1);
2887                 let mut c_lightning_0_9_prev_end_blocknum = max_firstblocknum;
2888                 let query_end_blocknum = msg.end_blocknum();
2889                 let result = gossip_sync.handle_query_channel_range(test_node_id, msg);
2890
2891                 if expected_ok {
2892                         assert!(result.is_ok());
2893                 } else {
2894                         assert!(result.is_err());
2895                 }
2896
2897                 let events = gossip_sync.get_and_clear_pending_msg_events();
2898                 assert_eq!(events.len(), expected_replies.len());
2899
2900                 for i in 0..events.len() {
2901                         let expected_reply = &expected_replies[i];
2902                         match &events[i] {
2903                                 MessageSendEvent::SendReplyChannelRange { node_id, msg } => {
2904                                         assert_eq!(node_id, test_node_id);
2905                                         assert_eq!(msg.chain_hash, expected_reply.chain_hash);
2906                                         assert_eq!(msg.first_blocknum, expected_reply.first_blocknum);
2907                                         assert_eq!(msg.number_of_blocks, expected_reply.number_of_blocks);
2908                                         assert_eq!(msg.sync_complete, expected_reply.sync_complete);
2909                                         assert_eq!(msg.short_channel_ids, expected_reply.short_channel_ids);
2910
2911                                         // Enforce exactly the sequencing requirements present on c-lightning v0.9.3
2912                                         assert!(msg.first_blocknum == c_lightning_0_9_prev_end_blocknum || msg.first_blocknum == c_lightning_0_9_prev_end_blocknum.saturating_add(1));
2913                                         assert!(msg.first_blocknum >= max_firstblocknum);
2914                                         max_firstblocknum = msg.first_blocknum;
2915                                         c_lightning_0_9_prev_end_blocknum = msg.first_blocknum.saturating_add(msg.number_of_blocks);
2916
2917                                         // Check that the last block count is >= the query's end_blocknum
2918                                         if i == events.len() - 1 {
2919                                                 assert!(msg.first_blocknum.saturating_add(msg.number_of_blocks) >= query_end_blocknum);
2920                                         }
2921                                 },
2922                                 _ => panic!("expected MessageSendEvent::SendReplyChannelRange"),
2923                         }
2924                 }
2925         }
2926
2927         #[test]
2928         fn handling_query_short_channel_ids() {
2929                 let network_graph = create_network_graph();
2930                 let (secp_ctx, gossip_sync) = create_gossip_sync(&network_graph);
2931                 let node_privkey = &SecretKey::from_slice(&[41; 32]).unwrap();
2932                 let node_id = PublicKey::from_secret_key(&secp_ctx, node_privkey);
2933
2934                 let chain_hash = genesis_block(Network::Testnet).header.block_hash();
2935
2936                 let result = gossip_sync.handle_query_short_channel_ids(&node_id, QueryShortChannelIds {
2937                         chain_hash,
2938                         short_channel_ids: vec![0x0003e8_000000_0000],
2939                 });
2940                 assert!(result.is_err());
2941         }
2942
2943         #[test]
2944         fn displays_node_alias() {
2945                 let format_str_alias = |alias: &str| {
2946                         let mut bytes = [0u8; 32];
2947                         bytes[..alias.as_bytes().len()].copy_from_slice(alias.as_bytes());
2948                         format!("{}", NodeAlias(bytes))
2949                 };
2950
2951                 assert_eq!(format_str_alias("I\u{1F496}LDK! \u{26A1}"), "I\u{1F496}LDK! \u{26A1}");
2952                 assert_eq!(format_str_alias("I\u{1F496}LDK!\0\u{26A1}"), "I\u{1F496}LDK!");
2953                 assert_eq!(format_str_alias("I\u{1F496}LDK!\t\u{26A1}"), "I\u{1F496}LDK!\u{FFFD}\u{26A1}");
2954
2955                 let format_bytes_alias = |alias: &[u8]| {
2956                         let mut bytes = [0u8; 32];
2957                         bytes[..alias.len()].copy_from_slice(alias);
2958                         format!("{}", NodeAlias(bytes))
2959                 };
2960
2961                 assert_eq!(format_bytes_alias(b"\xFFI <heart> LDK!"), "\u{FFFD}I <heart> LDK!");
2962                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\0LDK!"), "\u{FFFD}I <heart>");
2963                 assert_eq!(format_bytes_alias(b"\xFFI <heart>\tLDK!"), "\u{FFFD}I <heart>\u{FFFD}LDK!");
2964         }
2965
2966         #[test]
2967         fn channel_info_is_readable() {
2968                 let chanmon_cfgs = ::ln::functional_test_utils::create_chanmon_cfgs(2);
2969                 let node_cfgs = ::ln::functional_test_utils::create_node_cfgs(2, &chanmon_cfgs);
2970                 let node_chanmgrs = ::ln::functional_test_utils::create_node_chanmgrs(2, &node_cfgs, &[None, None, None, None]);
2971                 let nodes = ::ln::functional_test_utils::create_network(2, &node_cfgs, &node_chanmgrs);
2972
2973                 // 1. Test encoding/decoding of ChannelUpdateInfo
2974                 let chan_update_info = ChannelUpdateInfo {
2975                         last_update: 23,
2976                         enabled: true,
2977                         cltv_expiry_delta: 42,
2978                         htlc_minimum_msat: 1234,
2979                         htlc_maximum_msat: 5678,
2980                         fees: RoutingFees { base_msat: 9, proportional_millionths: 10 },
2981                         last_update_message: None,
2982                 };
2983
2984                 let mut encoded_chan_update_info: Vec<u8> = Vec::new();
2985                 assert!(chan_update_info.write(&mut encoded_chan_update_info).is_ok());
2986
2987                 // First make sure we can read ChannelUpdateInfos we just wrote
2988                 let read_chan_update_info: ChannelUpdateInfo = ::util::ser::Readable::read(&mut encoded_chan_update_info.as_slice()).unwrap();
2989                 assert_eq!(chan_update_info, read_chan_update_info);
2990
2991                 // Check the serialization hasn't changed.
2992                 let legacy_chan_update_info_with_some: Vec<u8> = hex::decode("340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c0100").unwrap();
2993                 assert_eq!(encoded_chan_update_info, legacy_chan_update_info_with_some);
2994
2995                 // Check we fail if htlc_maximum_msat is not present in either the ChannelUpdateInfo itself
2996                 // or the ChannelUpdate enclosed with `last_update_message`.
2997                 let legacy_chan_update_info_with_some_and_fail_update: Vec<u8> = hex::decode("b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f42400000271000000014").unwrap();
2998                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_some_and_fail_update.as_slice());
2999                 assert!(read_chan_update_info_res.is_err());
3000
3001                 let legacy_chan_update_info_with_none: Vec<u8> = hex::decode("2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c0100").unwrap();
3002                 let read_chan_update_info_res: Result<ChannelUpdateInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut legacy_chan_update_info_with_none.as_slice());
3003                 assert!(read_chan_update_info_res.is_err());
3004
3005                 // 2. Test encoding/decoding of ChannelInfo
3006                 // Check we can encode/decode ChannelInfo without ChannelUpdateInfo fields present.
3007                 let chan_info_none_updates = ChannelInfo {
3008                         features: ChannelFeatures::known(),
3009                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3010                         one_to_two: None,
3011                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3012                         two_to_one: None,
3013                         capacity_sats: None,
3014                         announcement_message: None,
3015                         announcement_received_time: 87654,
3016                 };
3017
3018                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3019                 assert!(chan_info_none_updates.write(&mut encoded_chan_info).is_ok());
3020
3021                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3022                 assert_eq!(chan_info_none_updates, read_chan_info);
3023
3024                 // Check we can encode/decode ChannelInfo with ChannelUpdateInfo fields present.
3025                 let chan_info_some_updates = ChannelInfo {
3026                         features: ChannelFeatures::known(),
3027                         node_one: NodeId::from_pubkey(&nodes[0].node.get_our_node_id()),
3028                         one_to_two: Some(chan_update_info.clone()),
3029                         node_two: NodeId::from_pubkey(&nodes[1].node.get_our_node_id()),
3030                         two_to_one: Some(chan_update_info.clone()),
3031                         capacity_sats: None,
3032                         announcement_message: None,
3033                         announcement_received_time: 87654,
3034                 };
3035
3036                 let mut encoded_chan_info: Vec<u8> = Vec::new();
3037                 assert!(chan_info_some_updates.write(&mut encoded_chan_info).is_ok());
3038
3039                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut encoded_chan_info.as_slice()).unwrap();
3040                 assert_eq!(chan_info_some_updates, read_chan_info);
3041
3042                 // Check the serialization hasn't changed.
3043                 let legacy_chan_info_with_some: Vec<u8> = hex::decode("ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88043636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23083636340004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3044                 assert_eq!(encoded_chan_info, legacy_chan_info_with_some);
3045
3046                 // Check we can decode legacy ChannelInfo, even if the `two_to_one` / `one_to_two` /
3047                 // `last_update_message` fields fail to decode due to missing htlc_maximum_msat.
3048                 let legacy_chan_info_with_some_and_fail_update = hex::decode("fd01ca00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce8804b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f4240000027100000001406210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c2308b6b6b40004000000170201010402002a060800000000000004d2080909000000000000162e0a0d0c00040000000902040000000a0c8181d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f00083a840000034d013413a70000009000000000000f424000002710000000140a01000c0100").unwrap();
3049                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_some_and_fail_update.as_slice()).unwrap();
3050                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3051                 assert_eq!(read_chan_info.one_to_two, None);
3052                 assert_eq!(read_chan_info.two_to_one, None);
3053
3054                 let legacy_chan_info_with_none: Vec<u8> = hex::decode("ba00020000010800000000000156660221027f921585f2ac0c7c70e36110adecfd8fd14b8a99bfb3d000a283fcac358fce88042e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c010006210355f8d2238a322d16b602bd0ceaad5b01019fb055971eaadcc9b29226a4da6c23082e2e2c0004000000170201010402002a060800000000000004d20801000a0d0c00040000000902040000000a0c01000a01000c0100").unwrap();
3055                 let read_chan_info: ChannelInfo = ::util::ser::Readable::read(&mut legacy_chan_info_with_none.as_slice()).unwrap();
3056                 assert_eq!(read_chan_info.announcement_received_time, 87654);
3057                 assert_eq!(read_chan_info.one_to_two, None);
3058                 assert_eq!(read_chan_info.two_to_one, None);
3059         }
3060
3061         #[test]
3062         fn node_info_is_readable() {
3063                 use std::convert::TryFrom;
3064
3065                 // 1. Check we can read a valid NodeAnnouncementInfo and fail on an invalid one
3066                 let valid_netaddr = ::ln::msgs::NetAddress::Hostname { hostname: ::util::ser::Hostname::try_from("A".to_string()).unwrap(), port: 1234 };
3067                 let valid_node_ann_info = NodeAnnouncementInfo {
3068                         features: NodeFeatures::known(),
3069                         last_update: 0,
3070                         rgb: [0u8; 3],
3071                         alias: NodeAlias([0u8; 32]),
3072                         addresses: vec![valid_netaddr],
3073                         announcement_message: None,
3074                 };
3075
3076                 let mut encoded_valid_node_ann_info = Vec::new();
3077                 assert!(valid_node_ann_info.write(&mut encoded_valid_node_ann_info).is_ok());
3078                 let read_valid_node_ann_info: NodeAnnouncementInfo = ::util::ser::Readable::read(&mut encoded_valid_node_ann_info.as_slice()).unwrap();
3079                 assert_eq!(read_valid_node_ann_info, valid_node_ann_info);
3080
3081                 let encoded_invalid_node_ann_info = hex::decode("3f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d2").unwrap();
3082                 let read_invalid_node_ann_info_res: Result<NodeAnnouncementInfo, ::ln::msgs::DecodeError> = ::util::ser::Readable::read(&mut encoded_invalid_node_ann_info.as_slice());
3083                 assert!(read_invalid_node_ann_info_res.is_err());
3084
3085                 // 2. Check we can read a NodeInfo anyways, but set the NodeAnnouncementInfo to None if invalid
3086                 let valid_node_info = NodeInfo {
3087                         channels: Vec::new(),
3088                         lowest_inbound_channel_fees: None,
3089                         announcement_info: Some(valid_node_ann_info),
3090                 };
3091
3092                 let mut encoded_valid_node_info = Vec::new();
3093                 assert!(valid_node_info.write(&mut encoded_valid_node_info).is_ok());
3094                 let read_valid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_valid_node_info.as_slice()).unwrap();
3095                 assert_eq!(read_valid_node_info, valid_node_info);
3096
3097                 let encoded_invalid_node_info_hex = hex::decode("4402403f0009000788a000080a51a20204000000000403000000062000000000000000000000000000000000000000000000000000000000000000000a0505014004d20400").unwrap();
3098                 let read_invalid_node_info: NodeInfo = ::util::ser::Readable::read(&mut encoded_invalid_node_info_hex.as_slice()).unwrap();
3099                 assert_eq!(read_invalid_node_info.announcement_info, None);
3100         }
3101 }
3102
3103 #[cfg(all(test, feature = "_bench_unstable"))]
3104 mod benches {
3105         use super::*;
3106
3107         use test::Bencher;
3108         use std::io::Read;
3109
3110         #[bench]
3111         fn read_network_graph(bench: &mut Bencher) {
3112                 let logger = ::util::test_utils::TestLogger::new();
3113                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3114                 let mut v = Vec::new();
3115                 d.read_to_end(&mut v).unwrap();
3116                 bench.iter(|| {
3117                         let _ = NetworkGraph::read(&mut std::io::Cursor::new(&v), &logger).unwrap();
3118                 });
3119         }
3120
3121         #[bench]
3122         fn write_network_graph(bench: &mut Bencher) {
3123                 let logger = ::util::test_utils::TestLogger::new();
3124                 let mut d = ::routing::router::test_utils::get_route_file().unwrap();
3125                 let net_graph = NetworkGraph::read(&mut d, &logger).unwrap();
3126                 bench.iter(|| {
3127                         let _ = net_graph.encode();
3128                 });
3129         }
3130 }