]> git.bitcoin.ninja Git - rapid-gossip-sync-server/blob - src/lib.rs
Remove println from persistence.rs
[rapid-gossip-sync-server] / src / lib.rs
1 #![deny(unsafe_code)]
2 #![deny(broken_intra_doc_links)]
3 #![deny(private_intra_doc_links)]
4 #![deny(non_upper_case_globals)]
5 #![deny(non_camel_case_types)]
6 #![deny(non_snake_case)]
7 #![deny(unused_variables)]
8 #![deny(unused_imports)]
9
10 extern crate core;
11
12 use std::collections::{HashMap, HashSet};
13 use std::fs::File;
14 use std::io::BufReader;
15 use std::ops::Deref;
16 use std::sync::Arc;
17 use lightning::log_info;
18
19 use lightning::routing::gossip::{NetworkGraph, NodeId};
20 use lightning::util::logger::Logger;
21 use lightning::util::ser::{ReadableArgs, Writeable};
22 use tokio::sync::mpsc;
23 use crate::lookup::DeltaSet;
24
25 use crate::persistence::GossipPersister;
26 use crate::serialization::UpdateSerialization;
27 use crate::snapshot::Snapshotter;
28 use crate::types::RGSSLogger;
29
30 mod downloader;
31 mod tracking;
32 mod lookup;
33 mod persistence;
34 mod serialization;
35 mod snapshot;
36 mod config;
37 mod hex_utils;
38 mod verifier;
39
40 pub mod types;
41
42 /// The purpose of this prefix is to identify the serialization format, should other rapid gossip
43 /// sync formats arise in the future.
44 ///
45 /// The fourth byte is the protocol version in case our format gets updated.
46 const GOSSIP_PREFIX: [u8; 4] = [76, 68, 75, 1];
47
48 pub struct RapidSyncProcessor<L: Deref> where L::Target: Logger {
49         network_graph: Arc<NetworkGraph<L>>,
50         logger: L
51 }
52
53 pub struct SerializedResponse {
54         pub data: Vec<u8>,
55         pub message_count: u32,
56         pub announcement_count: u32,
57         pub update_count: u32,
58         pub update_count_full: u32,
59         pub update_count_incremental: u32,
60 }
61
62 impl<L: Deref + Clone + Send + Sync + 'static> RapidSyncProcessor<L> where L::Target: Logger {
63         pub fn new(logger: L) -> Self {
64                 let network = config::network();
65                 let network_graph = if let Ok(file) = File::open(&config::network_graph_cache_path()) {
66                         log_info!(logger, "Initializing from cached network graph…");
67                         let mut buffered_reader = BufReader::new(file);
68                         let network_graph_result = NetworkGraph::read(&mut buffered_reader, logger.clone());
69                         if let Ok(network_graph) = network_graph_result {
70                                 log_info!(logger, "Initialized from cached network graph!");
71                                 network_graph
72                         } else {
73                                 log_info!(logger, "Initialization from cached network graph failed: {}", network_graph_result.err().unwrap());
74                                 NetworkGraph::new(network, logger.clone())
75                         }
76                 } else {
77                         NetworkGraph::new(network, logger.clone())
78                 };
79                 let arc_network_graph = Arc::new(network_graph);
80                 Self {
81                         network_graph: arc_network_graph,
82                         logger
83                 }
84         }
85
86         pub async fn start_sync(&self) {
87                 // means to indicate sync completion status within this module
88                 let (sync_completion_sender, mut sync_completion_receiver) = mpsc::channel::<()>(1);
89
90                 if config::DOWNLOAD_NEW_GOSSIP {
91                         let (mut persister, persistence_sender) = GossipPersister::new(self.network_graph.clone(), self.logger.clone());
92
93                         log_info!(self.logger, "Starting gossip download");
94                         tokio::spawn(tracking::download_gossip(persistence_sender, sync_completion_sender,
95                                 Arc::clone(&self.network_graph), self.logger.clone()));
96                         log_info!(self.logger, "Starting gossip db persistence listener");
97                         tokio::spawn(async move { persister.persist_gossip().await; });
98                 } else {
99                         sync_completion_sender.send(()).await.unwrap();
100                 }
101
102                 let sync_completion = sync_completion_receiver.recv().await;
103                 if sync_completion.is_none() {
104                         panic!("Sync failed!");
105                 }
106                 log_info!(self.logger, "Initial sync complete!");
107
108                 // start the gossip snapshotting service
109                 Snapshotter::new(Arc::clone(&self.network_graph), self.logger.clone()).snapshot_gossip().await;
110         }
111 }
112
113 /// This method generates a no-op blob that can be used as a delta where none exists.
114 ///
115 /// The primary purpose of this method is the scenario of a client retrieving and processing a
116 /// given snapshot, and then immediately retrieving the would-be next snapshot at the timestamp
117 /// indicated by the one that was just processed.
118 /// Previously, there would not be a new snapshot to be processed for that particular timestamp yet,
119 /// and the server would return a 404 error.
120 ///
121 /// In principle, this method could also be used to address another unfortunately all too common
122 /// pitfall: requesting snapshots from intermediate timestamps, i. e. those that are not multiples
123 /// of our granularity constant. Note that for that purpose, this method could be very dangerous,
124 /// because if consumed, the `timestamp` value calculated here will overwrite the timestamp that
125 /// the client previously had, which could result in duplicated or omitted gossip down the line.
126 fn serialize_empty_blob(current_timestamp: u64) -> Vec<u8> {
127         let mut blob = GOSSIP_PREFIX.to_vec();
128
129         let network = config::network();
130         let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
131         let chain_hash = genesis_block.block_hash();
132         chain_hash.write(&mut blob).unwrap();
133
134         let blob_timestamp = Snapshotter::<Arc<RGSSLogger>>::round_down_to_nearest_multiple(current_timestamp, config::SNAPSHOT_CALCULATION_INTERVAL as u64) as u32;
135         blob_timestamp.write(&mut blob).unwrap();
136
137         0u32.write(&mut blob).unwrap(); // node count
138         0u32.write(&mut blob).unwrap(); // announcement count
139         0u32.write(&mut blob).unwrap(); // update count
140
141         blob
142 }
143
144 async fn serialize_delta<L: Deref + Clone>(network_graph: Arc<NetworkGraph<L>>, last_sync_timestamp: u32, logger: L) -> SerializedResponse where L::Target: Logger {
145         let (client, connection) = lookup::connect_to_db().await;
146
147         network_graph.remove_stale_channels_and_tracking();
148
149         tokio::spawn(async move {
150                 if let Err(e) = connection.await {
151                         panic!("connection error: {}", e);
152                 }
153         });
154
155         let mut output: Vec<u8> = vec![];
156
157         // set a flag if the chain hash is prepended
158         // chain hash only necessary if either channel announcements or non-incremental updates are present
159         // for announcement-free incremental-only updates, chain hash can be skipped
160
161         let mut node_id_set: HashSet<NodeId> = HashSet::new();
162         let mut node_id_indices: HashMap<NodeId, usize> = HashMap::new();
163         let mut node_ids: Vec<NodeId> = Vec::new();
164         let mut duplicate_node_ids: i32 = 0;
165
166         let mut get_node_id_index = |node_id: NodeId| {
167                 if node_id_set.insert(node_id) {
168                         node_ids.push(node_id);
169                         let index = node_ids.len() - 1;
170                         node_id_indices.insert(node_id, index);
171                         return index;
172                 }
173                 duplicate_node_ids += 1;
174                 node_id_indices[&node_id]
175         };
176
177         let mut delta_set = DeltaSet::new();
178         lookup::fetch_channel_announcements(&mut delta_set, network_graph, &client, last_sync_timestamp, logger.clone()).await;
179         log_info!(logger, "announcement channel count: {}", delta_set.len());
180         lookup::fetch_channel_updates(&mut delta_set, &client, last_sync_timestamp, logger.clone()).await;
181         log_info!(logger, "update-fetched channel count: {}", delta_set.len());
182         lookup::filter_delta_set(&mut delta_set, logger.clone());
183         log_info!(logger, "update-filtered channel count: {}", delta_set.len());
184         let serialization_details = serialization::serialize_delta_set(delta_set, last_sync_timestamp);
185
186         // process announcements
187         // write the number of channel announcements to the output
188         let announcement_count = serialization_details.announcements.len() as u32;
189         announcement_count.write(&mut output).unwrap();
190         let mut previous_announcement_scid = 0;
191         for current_announcement in serialization_details.announcements {
192                 let id_index_1 = get_node_id_index(current_announcement.node_id_1);
193                 let id_index_2 = get_node_id_index(current_announcement.node_id_2);
194                 let mut stripped_announcement = serialization::serialize_stripped_channel_announcement(&current_announcement, id_index_1, id_index_2, previous_announcement_scid);
195                 output.append(&mut stripped_announcement);
196
197                 previous_announcement_scid = current_announcement.short_channel_id;
198         }
199
200         // process updates
201         let mut previous_update_scid = 0;
202         let update_count = serialization_details.updates.len() as u32;
203         update_count.write(&mut output).unwrap();
204
205         let default_update_values = serialization_details.full_update_defaults;
206         if update_count > 0 {
207                 default_update_values.cltv_expiry_delta.write(&mut output).unwrap();
208                 default_update_values.htlc_minimum_msat.write(&mut output).unwrap();
209                 default_update_values.fee_base_msat.write(&mut output).unwrap();
210                 default_update_values.fee_proportional_millionths.write(&mut output).unwrap();
211                 default_update_values.htlc_maximum_msat.write(&mut output).unwrap();
212         }
213
214         let mut update_count_full = 0;
215         let mut update_count_incremental = 0;
216         for current_update in serialization_details.updates {
217                 match &current_update {
218                         UpdateSerialization::Full(_) => {
219                                 update_count_full += 1;
220                         }
221                         UpdateSerialization::Incremental(_, _) | UpdateSerialization::Reminder(_, _) => {
222                                 update_count_incremental += 1;
223                         }
224                 };
225
226                 let mut stripped_update = serialization::serialize_stripped_channel_update(&current_update, &default_update_values, previous_update_scid);
227                 output.append(&mut stripped_update);
228
229                 previous_update_scid = current_update.scid();
230         }
231
232         // some stats
233         let message_count = announcement_count + update_count;
234
235         let mut prefixed_output = GOSSIP_PREFIX.to_vec();
236
237         // always write the chain hash
238         serialization_details.chain_hash.write(&mut prefixed_output).unwrap();
239         // always write the latest seen timestamp
240         let latest_seen_timestamp = serialization_details.latest_seen;
241         let overflow_seconds = latest_seen_timestamp % config::SNAPSHOT_CALCULATION_INTERVAL;
242         let serialized_seen_timestamp = latest_seen_timestamp.saturating_sub(overflow_seconds);
243         serialized_seen_timestamp.write(&mut prefixed_output).unwrap();
244
245         let node_id_count = node_ids.len() as u32;
246         node_id_count.write(&mut prefixed_output).unwrap();
247
248         for current_node_id in node_ids {
249                 current_node_id.write(&mut prefixed_output).unwrap();
250         }
251
252         prefixed_output.append(&mut output);
253
254         log_info!(logger, "duplicated node ids: {}", duplicate_node_ids);
255         log_info!(logger, "latest seen timestamp: {:?}", serialization_details.latest_seen);
256
257         SerializedResponse {
258                 data: prefixed_output,
259                 message_count,
260                 announcement_count,
261                 update_count,
262                 update_count_full,
263                 update_count_incremental,
264         }
265 }