[Java] Update auto-generated Java bindings
[ldk-java] / src / main / java / org / ldk / structs / PeerManager.java
1 package org.ldk.structs;
2
3 import org.ldk.impl.bindings;
4 import org.ldk.enums.*;
5 import org.ldk.util.*;
6 import java.util.Arrays;
7 import java.lang.ref.Reference;
8 import javax.annotation.Nullable;
9
10
11 /**
12  * A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls
13  * socket events into messages which it passes on to its [`MessageHandler`].
14  * 
15  * Locks are taken internally, so you must never assume that reentrancy from a
16  * [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock.
17  * 
18  * Calls to [`read_event`] will decode relevant messages and pass them to the
19  * [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of
20  * parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any
21  * [`PeerManager`] functions related to the same connection must occur only in serial, making new
22  * calls only after previous ones have returned.
23  * 
24  * Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
25  * a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
26  * essentially you should default to using a SimpleRefPeerManager, and use a
27  * SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
28  * you're using lightning-net-tokio.
29  * 
30  * [`read_event`]: PeerManager::read_event
31  */
32 @SuppressWarnings("unchecked") // We correctly assign various generic arrays
33 public class PeerManager extends CommonBase {
34         PeerManager(Object _dummy, long ptr) { super(ptr); }
35         @Override @SuppressWarnings("deprecation")
36         protected void finalize() throws Throwable {
37                 super.finalize();
38                 if (ptr != 0) { bindings.PeerManager_free(ptr); }
39         }
40
41         /**
42          * Constructs a new PeerManager with the given message handlers and node_id secret key
43          * ephemeral_random_data is used to derive per-connection ephemeral keys and must be
44          * cryptographically secure random bytes.
45          * 
46          * `current_time` is used as an always-increasing counter that survives across restarts and is
47          * incremented irregularly internally. In general it is best to simply use the current UNIX
48          * timestamp, however if it is not available a persistent counter that increases once per
49          * minute should suffice.
50          */
51         public static PeerManager of(ChannelMessageHandler message_handler_chan_handler_arg, RoutingMessageHandler message_handler_route_handler_arg, OnionMessageHandler message_handler_onion_message_handler_arg, int current_time, byte[] ephemeral_random_data, org.ldk.structs.Logger logger, org.ldk.structs.CustomMessageHandler custom_message_handler, org.ldk.structs.NodeSigner node_signer) {
52                 long ret = bindings.PeerManager_new(bindings.MessageHandler_new(message_handler_chan_handler_arg == null ? 0 : message_handler_chan_handler_arg.ptr, message_handler_route_handler_arg == null ? 0 : message_handler_route_handler_arg.ptr, message_handler_onion_message_handler_arg == null ? 0 : message_handler_onion_message_handler_arg.ptr), current_time, InternalUtils.check_arr_len(ephemeral_random_data, 32), logger == null ? 0 : logger.ptr, custom_message_handler == null ? 0 : custom_message_handler.ptr, node_signer == null ? 0 : node_signer.ptr);
53                 Reference.reachabilityFence(message_handler_chan_handler_arg);
54                 Reference.reachabilityFence(message_handler_route_handler_arg);
55                 Reference.reachabilityFence(message_handler_onion_message_handler_arg);
56                 Reference.reachabilityFence(current_time);
57                 Reference.reachabilityFence(ephemeral_random_data);
58                 Reference.reachabilityFence(logger);
59                 Reference.reachabilityFence(custom_message_handler);
60                 Reference.reachabilityFence(node_signer);
61                 if (ret >= 0 && ret <= 4096) { return null; }
62                 org.ldk.structs.PeerManager ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.PeerManager(null, ret); }
63                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(ret_hu_conv); };
64                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(message_handler_chan_handler_arg); };
65                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(message_handler_route_handler_arg); };
66                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(message_handler_onion_message_handler_arg); };
67                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(logger); };
68                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(custom_message_handler); };
69                 if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.add(node_signer); };
70                 return ret_hu_conv;
71         }
72
73         /**
74          * Get a list of tuples mapping from node id to network addresses for peers which have
75          * completed the initial handshake.
76          * 
77          * For outbound connections, the [`PublicKey`] will be the same as the `their_node_id` parameter
78          * passed in to [`Self::new_outbound_connection`], however entries will only appear once the initial
79          * handshake has completed and we are sure the remote peer has the private key for the given
80          * [`PublicKey`].
81          * 
82          * The returned `Option`s will only be `Some` if an address had been previously given via
83          * [`Self::new_outbound_connection`] or [`Self::new_inbound_connection`].
84          */
85         public TwoTuple_PublicKeyCOption_NetAddressZZ[] get_peer_node_ids() {
86                 long[] ret = bindings.PeerManager_get_peer_node_ids(this.ptr);
87                 Reference.reachabilityFence(this);
88                 int ret_conv_40_len = ret.length;
89                 TwoTuple_PublicKeyCOption_NetAddressZZ[] ret_conv_40_arr = new TwoTuple_PublicKeyCOption_NetAddressZZ[ret_conv_40_len];
90                 for (int o = 0; o < ret_conv_40_len; o++) {
91                         long ret_conv_40 = ret[o];
92                         TwoTuple_PublicKeyCOption_NetAddressZZ ret_conv_40_hu_conv = new TwoTuple_PublicKeyCOption_NetAddressZZ(null, ret_conv_40);
93                         if (ret_conv_40_hu_conv != null) { ret_conv_40_hu_conv.ptrs_to.add(this); };
94                         ret_conv_40_arr[o] = ret_conv_40_hu_conv;
95                 }
96                 return ret_conv_40_arr;
97         }
98
99         /**
100          * Indicates a new outbound connection has been established to a node with the given `node_id`
101          * and an optional remote network address.
102          * 
103          * The remote network address adds the option to report a remote IP address back to a connecting
104          * peer using the init message.
105          * The user should pass the remote network address of the host they are connected to.
106          * 
107          * If an `Err` is returned here you must disconnect the connection immediately.
108          * 
109          * Returns a small number of bytes to send to the remote node (currently always 50).
110          * 
111          * Panics if descriptor is duplicative with some other descriptor which has not yet been
112          * [`socket_disconnected()`].
113          * 
114          * [`socket_disconnected()`]: PeerManager::socket_disconnected
115          */
116         public Result_CVec_u8ZPeerHandleErrorZ new_outbound_connection(byte[] their_node_id, org.ldk.structs.SocketDescriptor descriptor, org.ldk.structs.Option_NetAddressZ remote_network_address) {
117                 long ret = bindings.PeerManager_new_outbound_connection(this.ptr, InternalUtils.check_arr_len(their_node_id, 33), descriptor == null ? 0 : descriptor.ptr, remote_network_address.ptr);
118                 Reference.reachabilityFence(this);
119                 Reference.reachabilityFence(their_node_id);
120                 Reference.reachabilityFence(descriptor);
121                 Reference.reachabilityFence(remote_network_address);
122                 if (ret >= 0 && ret <= 4096) { return null; }
123                 Result_CVec_u8ZPeerHandleErrorZ ret_hu_conv = Result_CVec_u8ZPeerHandleErrorZ.constr_from_ptr(ret);
124                 if (this != null) { this.ptrs_to.add(descriptor); };
125                 if (this != null) { this.ptrs_to.add(remote_network_address); };
126                 return ret_hu_conv;
127         }
128
129         /**
130          * Indicates a new inbound connection has been established to a node with an optional remote
131          * network address.
132          * 
133          * The remote network address adds the option to report a remote IP address back to a connecting
134          * peer using the init message.
135          * The user should pass the remote network address of the host they are connected to.
136          * 
137          * May refuse the connection by returning an Err, but will never write bytes to the remote end
138          * (outbound connector always speaks first). If an `Err` is returned here you must disconnect
139          * the connection immediately.
140          * 
141          * Panics if descriptor is duplicative with some other descriptor which has not yet been
142          * [`socket_disconnected()`].
143          * 
144          * [`socket_disconnected()`]: PeerManager::socket_disconnected
145          */
146         public Result_NonePeerHandleErrorZ new_inbound_connection(org.ldk.structs.SocketDescriptor descriptor, org.ldk.structs.Option_NetAddressZ remote_network_address) {
147                 long ret = bindings.PeerManager_new_inbound_connection(this.ptr, descriptor == null ? 0 : descriptor.ptr, remote_network_address.ptr);
148                 Reference.reachabilityFence(this);
149                 Reference.reachabilityFence(descriptor);
150                 Reference.reachabilityFence(remote_network_address);
151                 if (ret >= 0 && ret <= 4096) { return null; }
152                 Result_NonePeerHandleErrorZ ret_hu_conv = Result_NonePeerHandleErrorZ.constr_from_ptr(ret);
153                 if (this != null) { this.ptrs_to.add(descriptor); };
154                 if (this != null) { this.ptrs_to.add(remote_network_address); };
155                 return ret_hu_conv;
156         }
157
158         /**
159          * Indicates that there is room to write data to the given socket descriptor.
160          * 
161          * May return an Err to indicate that the connection should be closed.
162          * 
163          * May call [`send_data`] on the descriptor passed in (or an equal descriptor) before
164          * returning. Thus, be very careful with reentrancy issues! The invariants around calling
165          * [`write_buffer_space_avail`] in case a write did not fully complete must still hold - be
166          * ready to call `[write_buffer_space_avail`] again if a write call generated here isn't
167          * sufficient!
168          * 
169          * [`send_data`]: SocketDescriptor::send_data
170          * [`write_buffer_space_avail`]: PeerManager::write_buffer_space_avail
171          */
172         public Result_NonePeerHandleErrorZ write_buffer_space_avail(org.ldk.structs.SocketDescriptor descriptor) {
173                 long ret = bindings.PeerManager_write_buffer_space_avail(this.ptr, descriptor == null ? 0 : descriptor.ptr);
174                 Reference.reachabilityFence(this);
175                 Reference.reachabilityFence(descriptor);
176                 if (ret >= 0 && ret <= 4096) { return null; }
177                 Result_NonePeerHandleErrorZ ret_hu_conv = Result_NonePeerHandleErrorZ.constr_from_ptr(ret);
178                 return ret_hu_conv;
179         }
180
181         /**
182          * Indicates that data was read from the given socket descriptor.
183          * 
184          * May return an Err to indicate that the connection should be closed.
185          * 
186          * Will *not* call back into [`send_data`] on any descriptors to avoid reentrancy complexity.
187          * Thus, however, you should call [`process_events`] after any `read_event` to generate
188          * [`send_data`] calls to handle responses.
189          * 
190          * If `Ok(true)` is returned, further read_events should not be triggered until a
191          * [`send_data`] call on this descriptor has `resume_read` set (preventing DoS issues in the
192          * send buffer).
193          * 
194          * In order to avoid processing too many messages at once per peer, `data` should be on the
195          * order of 4KiB.
196          * 
197          * [`send_data`]: SocketDescriptor::send_data
198          * [`process_events`]: PeerManager::process_events
199          */
200         public Result_boolPeerHandleErrorZ read_event(org.ldk.structs.SocketDescriptor peer_descriptor, byte[] data) {
201                 long ret = bindings.PeerManager_read_event(this.ptr, peer_descriptor == null ? 0 : peer_descriptor.ptr, data);
202                 Reference.reachabilityFence(this);
203                 Reference.reachabilityFence(peer_descriptor);
204                 Reference.reachabilityFence(data);
205                 if (ret >= 0 && ret <= 4096) { return null; }
206                 Result_boolPeerHandleErrorZ ret_hu_conv = Result_boolPeerHandleErrorZ.constr_from_ptr(ret);
207                 return ret_hu_conv;
208         }
209
210         /**
211          * Checks for any events generated by our handlers and processes them. Includes sending most
212          * response messages as well as messages generated by calls to handler functions directly (eg
213          * functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]).
214          * 
215          * May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy
216          * issues!
217          * 
218          * You don't have to call this function explicitly if you are using [`lightning-net-tokio`]
219          * or one of the other clients provided in our language bindings.
220          * 
221          * Note that if there are any other calls to this function waiting on lock(s) this may return
222          * without doing any work. All available events that need handling will be handled before the
223          * other calls return.
224          * 
225          * [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment
226          * [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards
227          * [`send_data`]: SocketDescriptor::send_data
228          */
229         public void process_events() {
230                 bindings.PeerManager_process_events(this.ptr);
231                 Reference.reachabilityFence(this);
232         }
233
234         /**
235          * Indicates that the given socket descriptor's connection is now closed.
236          */
237         public void socket_disconnected(org.ldk.structs.SocketDescriptor descriptor) {
238                 bindings.PeerManager_socket_disconnected(this.ptr, descriptor == null ? 0 : descriptor.ptr);
239                 Reference.reachabilityFence(this);
240                 Reference.reachabilityFence(descriptor);
241         }
242
243         /**
244          * Disconnect a peer given its node id.
245          * 
246          * If a peer is connected, this will call [`disconnect_socket`] on the descriptor for the
247          * peer. Thus, be very careful about reentrancy issues.
248          * 
249          * [`disconnect_socket`]: SocketDescriptor::disconnect_socket
250          */
251         public void disconnect_by_node_id(byte[] node_id) {
252                 bindings.PeerManager_disconnect_by_node_id(this.ptr, InternalUtils.check_arr_len(node_id, 33));
253                 Reference.reachabilityFence(this);
254                 Reference.reachabilityFence(node_id);
255         }
256
257         /**
258          * Disconnects all currently-connected peers. This is useful on platforms where there may be
259          * an indication that TCP sockets have stalled even if we weren't around to time them out
260          * using regular ping/pongs.
261          */
262         public void disconnect_all_peers() {
263                 bindings.PeerManager_disconnect_all_peers(this.ptr);
264                 Reference.reachabilityFence(this);
265         }
266
267         /**
268          * Send pings to each peer and disconnect those which did not respond to the last round of
269          * pings.
270          * 
271          * This may be called on any timescale you want, however, roughly once every ten seconds is
272          * preferred. The call rate determines both how often we send a ping to our peers and how much
273          * time they have to respond before we disconnect them.
274          * 
275          * May call [`send_data`] on all [`SocketDescriptor`]s. Thus, be very careful with reentrancy
276          * issues!
277          * 
278          * [`send_data`]: SocketDescriptor::send_data
279          */
280         public void timer_tick_occurred() {
281                 bindings.PeerManager_timer_tick_occurred(this.ptr);
282                 Reference.reachabilityFence(this);
283         }
284
285         /**
286          * Generates a signed node_announcement from the given arguments, sending it to all connected
287          * peers. Note that peers will likely ignore this message unless we have at least one public
288          * channel which has at least six confirmations on-chain.
289          * 
290          * `rgb` is a node \"color\" and `alias` is a printable human-readable string to describe this
291          * node to humans. They carry no in-protocol meaning.
292          * 
293          * `addresses` represent the set (possibly empty) of socket addresses on which this node
294          * accepts incoming connections. These will be included in the node_announcement, publicly
295          * tying these addresses together and to this node. If you wish to preserve user privacy,
296          * addresses should likely contain only Tor Onion addresses.
297          * 
298          * Panics if `addresses` is absurdly large (more than 100).
299          * 
300          * [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
301          */
302         public void broadcast_node_announcement(byte[] rgb, byte[] alias, NetAddress[] addresses) {
303                 bindings.PeerManager_broadcast_node_announcement(this.ptr, InternalUtils.check_arr_len(rgb, 3), InternalUtils.check_arr_len(alias, 32), addresses != null ? Arrays.stream(addresses).mapToLong(addresses_conv_12 -> addresses_conv_12.ptr).toArray() : null);
304                 Reference.reachabilityFence(this);
305                 Reference.reachabilityFence(rgb);
306                 Reference.reachabilityFence(alias);
307                 Reference.reachabilityFence(addresses);
308                 for (NetAddress addresses_conv_12: addresses) { if (this != null) { this.ptrs_to.add(addresses_conv_12); }; };
309         }
310
311 }