using org.ldk.impl; using org.ldk.enums; using org.ldk.util; using System; namespace org { namespace ldk { namespace structs { /** * Arguments for the creation of a ChannelManager that are not deserialized. * * At a high-level, the process for deserializing a ChannelManager and resuming normal operation * is: * 1) Deserialize all stored [`ChannelMonitor`]s. * 2) Deserialize the [`ChannelManager`] by filling in this struct and calling: * `<(BlockHash, ChannelManager)>::read(reader, args)` * This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored * [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted. * 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the * same way you would handle a [`chain::Filter`] call using * [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`]. * 4) Reconnect blocks on your [`ChannelMonitor`]s. * 5) Disconnect/connect blocks on the [`ChannelManager`]. * 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk. * Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you * will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in * the next step. * 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a * [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`]. * * Note that the ordering of #4-7 is not of importance, however all four must occur before you * call any other methods on the newly-deserialized [`ChannelManager`]. * * Note that because some channels may be closed during deserialization, it is critical that you * always deserialize only the latest version of a ChannelManager and ChannelMonitors available to * you. If you deserialize an old ChannelManager (during which force-closure transactions may be * broadcast), and then later deserialize a newer version of the same ChannelManager (which will * not force-close the same channels but consider them live), you may end up revoking a state for * which you've already broadcasted the transaction. * * [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor */ public class ChannelManagerReadArgs : CommonBase { internal ChannelManagerReadArgs(object _dummy, long ptr) : base(ptr) { } ~ChannelManagerReadArgs() { if (ptr != 0) { bindings.ChannelManagerReadArgs_free(ptr); } } /** * A cryptographically secure source of entropy. */ public EntropySource get_entropy_source() { long ret = bindings.ChannelManagerReadArgs_get_entropy_source(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } EntropySource ret_hu_conv = new EntropySource(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * A cryptographically secure source of entropy. */ public void set_entropy_source(org.ldk.structs.EntropySource val) { bindings.ChannelManagerReadArgs_set_entropy_source(this.ptr, val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * A signer that is able to perform node-scoped cryptographic operations. */ public NodeSigner get_node_signer() { long ret = bindings.ChannelManagerReadArgs_get_node_signer(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } NodeSigner ret_hu_conv = new NodeSigner(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * A signer that is able to perform node-scoped cryptographic operations. */ public void set_node_signer(org.ldk.structs.NodeSigner val) { bindings.ChannelManagerReadArgs_set_node_signer(this.ptr, val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * The keys provider which will give us relevant keys. Some keys will be loaded during * deserialization and KeysInterface::read_chan_signer will be used to read per-Channel * signing data. */ public SignerProvider get_signer_provider() { long ret = bindings.ChannelManagerReadArgs_get_signer_provider(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } SignerProvider ret_hu_conv = new SignerProvider(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * The keys provider which will give us relevant keys. Some keys will be loaded during * deserialization and KeysInterface::read_chan_signer will be used to read per-Channel * signing data. */ public void set_signer_provider(org.ldk.structs.SignerProvider val) { bindings.ChannelManagerReadArgs_set_signer_provider(this.ptr, val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * The fee_estimator for use in the ChannelManager in the future. * * No calls to the FeeEstimator will be made during deserialization. */ public FeeEstimator get_fee_estimator() { long ret = bindings.ChannelManagerReadArgs_get_fee_estimator(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } FeeEstimator ret_hu_conv = new FeeEstimator(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * The fee_estimator for use in the ChannelManager in the future. * * No calls to the FeeEstimator will be made during deserialization. */ public void set_fee_estimator(org.ldk.structs.FeeEstimator val) { bindings.ChannelManagerReadArgs_set_fee_estimator(this.ptr, val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * The chain::Watch for use in the ChannelManager in the future. * * No calls to the chain::Watch will be made during deserialization. It is assumed that * you have deserialized ChannelMonitors separately and will add them to your * chain::Watch after deserializing this ChannelManager. */ public Watch get_chain_monitor() { long ret = bindings.ChannelManagerReadArgs_get_chain_monitor(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } Watch ret_hu_conv = new Watch(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * The chain::Watch for use in the ChannelManager in the future. * * No calls to the chain::Watch will be made during deserialization. It is assumed that * you have deserialized ChannelMonitors separately and will add them to your * chain::Watch after deserializing this ChannelManager. */ public void set_chain_monitor(org.ldk.structs.Watch val) { bindings.ChannelManagerReadArgs_set_chain_monitor(this.ptr, val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * The BroadcasterInterface which will be used in the ChannelManager in the future and may be * used to broadcast the latest local commitment transactions of channels which must be * force-closed during deserialization. */ public BroadcasterInterface get_tx_broadcaster() { long ret = bindings.ChannelManagerReadArgs_get_tx_broadcaster(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } BroadcasterInterface ret_hu_conv = new BroadcasterInterface(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * The BroadcasterInterface which will be used in the ChannelManager in the future and may be * used to broadcast the latest local commitment transactions of channels which must be * force-closed during deserialization. */ public void set_tx_broadcaster(org.ldk.structs.BroadcasterInterface val) { bindings.ChannelManagerReadArgs_set_tx_broadcaster(this.ptr, val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * The router which will be used in the ChannelManager in the future for finding routes * on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding. * * No calls to the router will be made during deserialization. */ public Router get_router() { long ret = bindings.ChannelManagerReadArgs_get_router(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } Router ret_hu_conv = new Router(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * The router which will be used in the ChannelManager in the future for finding routes * on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding. * * No calls to the router will be made during deserialization. */ public void set_router(org.ldk.structs.Router val) { bindings.ChannelManagerReadArgs_set_router(this.ptr, val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * The Logger for use in the ChannelManager and which may be used to log information during * deserialization. */ public Logger get_logger() { long ret = bindings.ChannelManagerReadArgs_get_logger(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } Logger ret_hu_conv = new Logger(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * The Logger for use in the ChannelManager and which may be used to log information during * deserialization. */ public void set_logger(org.ldk.structs.Logger val) { bindings.ChannelManagerReadArgs_set_logger(this.ptr, val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * Default settings used for new channels. Any existing channels will continue to use the * runtime settings which were stored when the ChannelManager was serialized. */ public UserConfig get_default_config() { long ret = bindings.ChannelManagerReadArgs_get_default_config(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } org.ldk.structs.UserConfig ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.UserConfig(null, ret); } if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * Default settings used for new channels. Any existing channels will continue to use the * runtime settings which were stored when the ChannelManager was serialized. */ public void set_default_config(org.ldk.structs.UserConfig val) { bindings.ChannelManagerReadArgs_set_default_config(this.ptr, val == null ? 0 : val.ptr); GC.KeepAlive(this); GC.KeepAlive(val); if (this != null) { this.ptrs_to.AddLast(val); }; } /** * Simple utility function to create a ChannelManagerReadArgs which creates the monitor * HashMap for you. This is primarily useful for C bindings where it is not practical to * populate a HashMap directly from C. */ public static ChannelManagerReadArgs of(org.ldk.structs.EntropySource entropy_source, org.ldk.structs.NodeSigner node_signer, org.ldk.structs.SignerProvider signer_provider, org.ldk.structs.FeeEstimator fee_estimator, org.ldk.structs.Watch chain_monitor, org.ldk.structs.BroadcasterInterface tx_broadcaster, org.ldk.structs.Router router, org.ldk.structs.Logger logger, org.ldk.structs.UserConfig default_config, ChannelMonitor[] channel_monitors) { long ret = bindings.ChannelManagerReadArgs_new(entropy_source.ptr, node_signer.ptr, signer_provider.ptr, fee_estimator.ptr, chain_monitor.ptr, tx_broadcaster.ptr, router.ptr, logger.ptr, default_config == null ? 0 : default_config.ptr, InternalUtils.encodeUint64Array(InternalUtils.mapArray(channel_monitors, channel_monitors_conv_16 => channel_monitors_conv_16 == null ? 0 : channel_monitors_conv_16.ptr))); GC.KeepAlive(entropy_source); GC.KeepAlive(node_signer); GC.KeepAlive(signer_provider); GC.KeepAlive(fee_estimator); GC.KeepAlive(chain_monitor); GC.KeepAlive(tx_broadcaster); GC.KeepAlive(router); GC.KeepAlive(logger); GC.KeepAlive(default_config); GC.KeepAlive(channel_monitors); if (ret >= 0 && ret <= 4096) { return null; } org.ldk.structs.ChannelManagerReadArgs ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.ChannelManagerReadArgs(null, ret); } if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(ret_hu_conv); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(entropy_source); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(node_signer); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(signer_provider); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(fee_estimator); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(chain_monitor); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(tx_broadcaster); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(router); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(logger); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(default_config); }; foreach (ChannelMonitor channel_monitors_conv_16 in channel_monitors) { if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(channel_monitors_conv_16); }; }; return ret_hu_conv; } } } } }