using org.ldk.impl; using org.ldk.enums; using org.ldk.util; using System; namespace org { namespace ldk { namespace structs { /** * A trait to describe an object which can get user secrets and key material. */ public class KeysInterface : CommonBase { internal readonly bindings.LDKKeysInterface bindings_instance; internal KeysInterface(object _dummy, long ptr) : base(ptr) { bindings_instance = null; } private KeysInterface(bindings.LDKKeysInterface arg) : base(bindings.LDKKeysInterface_new(arg)) { this.ptrs_to.AddLast(arg); this.bindings_instance = arg; } ~KeysInterface() { if (ptr != 0) { bindings.KeysInterface_free(ptr); } } public interface KeysInterfaceInterface { /** * Get node secret key based on the provided [`Recipient`]. * * The `node_id`/`network_key` is the public key that corresponds to this secret key. * * This method must return the same value each time it is called with a given [`Recipient`] * parameter. * * Errors if the [`Recipient`] variant is not supported by the implementation. */ Result_SecretKeyNoneZ get_node_secret(Recipient _recipient); /** * Get node id based on the provided [`Recipient`]. This public key corresponds to the secret in * [`get_node_secret`]. * * This method must return the same value each time it is called with a given [`Recipient`] * parameter. * * Errors if the [`Recipient`] variant is not supported by the implementation. * * [`get_node_secret`]: Self::get_node_secret */ Result_PublicKeyNoneZ get_node_id(Recipient _recipient); /** * Gets the ECDH shared secret of our [`node secret`] and `other_key`, multiplying by `tweak` if * one is provided. Note that this tweak can be applied to `other_key` instead of our node * secret, though this is less efficient. * * Errors if the [`Recipient`] variant is not supported by the implementation. * * [`node secret`]: Self::get_node_secret */ Result_SharedSecretNoneZ ecdh(Recipient _recipient, byte[] _other_key, Option_ScalarZ _tweak); /** * Get a script pubkey which we send funds to when claiming on-chain contestable outputs. * * This method should return a different value each time it is called, to avoid linking * on-chain funds across channels as controlled to the same user. */ byte[] get_destination_script(); /** * Get a script pubkey which we will send funds to when closing a channel. * * This method should return a different value each time it is called, to avoid linking * on-chain funds across channels as controlled to the same user. */ ShutdownScript get_shutdown_scriptpubkey(); /** * Get a new set of [`Sign`] for per-channel secrets. These MUST be unique even if you * restarted with some stale data! * * This method must return a different value each time it is called. */ byte[] generate_channel_keys_id(bool _inbound, long _channel_value_satoshis, UInt128 _user_channel_id); /** * Derives the private key material backing a `Signer`. * * To derive a new `Signer`, a fresh `channel_keys_id` should be obtained through * [`KeysInterface::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be * re-derived from its `channel_keys_id`, which can be obtained through its trait method * [`BaseSign::channel_keys_id`]. */ Sign derive_channel_signer(long _channel_value_satoshis, byte[] _channel_keys_id); /** * Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting * onion packets and for temporary channel IDs. There is no requirement that these be * persisted anywhere, though they must be unique across restarts. * * This method must return a different value each time it is called. */ byte[] get_secure_random_bytes(); /** * Reads a [`Signer`] for this [`KeysInterface`] from the given input stream. * This is only called during deserialization of other objects which contain * [`Sign`]-implementing objects (i.e., [`ChannelMonitor`]s and [`ChannelManager`]s). * The bytes are exactly those which `::write()` writes, and * contain no versioning scheme. You may wish to include your own version prefix and ensure * you've read all of the provided bytes to ensure no corruption occurred. * * This method is slowly being phased out -- it will only be called when reading objects * written by LDK versions prior to 0.0.113. * * [`Signer`]: Self::Signer * [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor * [`ChannelManager`]: crate::ln::channelmanager::ChannelManager */ Result_SignDecodeErrorZ read_chan_signer(byte[] _reader); /** * Sign an invoice. * By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of * this trait to parse the invoice and make sure they're signing what they expect, rather than * blindly signing the hash. * The `hrp` is ASCII bytes, while the invoice data is base32-encoded. * * The secret key used to sign the invoice is dependent on the [`Recipient`]. * * Errors if the [`Recipient`] variant is not supported by the implementation. */ Result_RecoverableSignatureNoneZ sign_invoice(byte[] _hrp_bytes, UInt5[] _invoice_data, Recipient _receipient); /** * Get secret key material as bytes for use in encrypting and decrypting inbound payment data. * * If the implementor of this trait supports [phantom node payments], then every node that is * intended to be included in the phantom invoice route hints must return the same value from * this method. * * This method must return the same value each time it is called. * * [phantom node payments]: PhantomKeysManager */ byte[] get_inbound_payment_key_material(); } private class LDKKeysInterfaceHolder { internal KeysInterface held; } private class LDKKeysInterfaceImpl : bindings.LDKKeysInterface { internal LDKKeysInterfaceImpl(KeysInterfaceInterface arg, LDKKeysInterfaceHolder impl_holder) { this.arg = arg; this.impl_holder = impl_holder; } private KeysInterfaceInterface arg; private LDKKeysInterfaceHolder impl_holder; public long get_node_secret(Recipient _recipient) { Result_SecretKeyNoneZ ret = arg.get_node_secret(_recipient); GC.KeepAlive(arg); long result = ret == null ? 0 : ret.clone_ptr(); return result; } public long get_node_id(Recipient _recipient) { Result_PublicKeyNoneZ ret = arg.get_node_id(_recipient); GC.KeepAlive(arg); long result = ret == null ? 0 : ret.clone_ptr(); return result; } public long ecdh(Recipient _recipient, byte[] _other_key, long _tweak) { org.ldk.structs.Option_ScalarZ _tweak_hu_conv = org.ldk.structs.Option_ScalarZ.constr_from_ptr(_tweak); if (_tweak_hu_conv != null) { _tweak_hu_conv.ptrs_to.AddLast(this); }; Result_SharedSecretNoneZ ret = arg.ecdh(_recipient, _other_key, _tweak_hu_conv); GC.KeepAlive(arg); long result = ret == null ? 0 : ret.clone_ptr(); return result; } public byte[] get_destination_script() { byte[] ret = arg.get_destination_script(); GC.KeepAlive(arg); return ret; } public long get_shutdown_scriptpubkey() { ShutdownScript ret = arg.get_shutdown_scriptpubkey(); GC.KeepAlive(arg); long result = ret == null ? 0 : ret.clone_ptr(); return result; } public byte[] generate_channel_keys_id(bool _inbound, long _channel_value_satoshis, byte[] _user_channel_id) { org.ldk.util.UInt128 _user_channel_id_conv = new org.ldk.util.UInt128(_user_channel_id); byte[] ret = arg.generate_channel_keys_id(_inbound, _channel_value_satoshis, _user_channel_id_conv); GC.KeepAlive(arg); byte[] result = InternalUtils.check_arr_len(ret, 32); return result; } public long derive_channel_signer(long _channel_value_satoshis, byte[] _channel_keys_id) { Sign ret = arg.derive_channel_signer(_channel_value_satoshis, _channel_keys_id); GC.KeepAlive(arg); long result = ret == null ? 0 : ret.clone_ptr(); if (impl_holder.held != null) { impl_holder.held.ptrs_to.AddLast(ret); }; return result; } public byte[] get_secure_random_bytes() { byte[] ret = arg.get_secure_random_bytes(); GC.KeepAlive(arg); byte[] result = InternalUtils.check_arr_len(ret, 32); return result; } public long read_chan_signer(byte[] _reader) { Result_SignDecodeErrorZ ret = arg.read_chan_signer(_reader); GC.KeepAlive(arg); long result = ret == null ? 0 : ret.clone_ptr(); return result; } public long sign_invoice(byte[] _hrp_bytes, byte[] _invoice_data, Recipient _receipient) { int _invoice_data_conv_7_len = _invoice_data.Length; UInt5[] _invoice_data_conv_7_arr = new UInt5[_invoice_data_conv_7_len]; for (int h = 0; h < _invoice_data_conv_7_len; h++) { byte _invoice_data_conv_7 = _invoice_data[h]; UInt5 _invoice_data_conv_7_conv = new UInt5(_invoice_data_conv_7); _invoice_data_conv_7_arr[h] = _invoice_data_conv_7_conv; } Result_RecoverableSignatureNoneZ ret = arg.sign_invoice(_hrp_bytes, _invoice_data_conv_7_arr, _receipient); GC.KeepAlive(arg); long result = ret == null ? 0 : ret.clone_ptr(); return result; } public byte[] get_inbound_payment_key_material() { byte[] ret = arg.get_inbound_payment_key_material(); GC.KeepAlive(arg); byte[] result = InternalUtils.check_arr_len(ret, 32); return result; } } public static KeysInterface new_impl(KeysInterfaceInterface arg) { LDKKeysInterfaceHolder impl_holder = new LDKKeysInterfaceHolder(); impl_holder.held = new KeysInterface(new LDKKeysInterfaceImpl(arg, impl_holder)); return impl_holder.held; } /** * Get node secret key based on the provided [`Recipient`]. * * The `node_id`/`network_key` is the public key that corresponds to this secret key. * * This method must return the same value each time it is called with a given [`Recipient`] * parameter. * * Errors if the [`Recipient`] variant is not supported by the implementation. */ public Result_SecretKeyNoneZ get_node_secret(Recipient recipient) { long ret = bindings.KeysInterface_get_node_secret(this.ptr, recipient); GC.KeepAlive(this); GC.KeepAlive(recipient); if (ret >= 0 && ret <= 4096) { return null; } Result_SecretKeyNoneZ ret_hu_conv = Result_SecretKeyNoneZ.constr_from_ptr(ret); return ret_hu_conv; } /** * Get node id based on the provided [`Recipient`]. This public key corresponds to the secret in * [`get_node_secret`]. * * This method must return the same value each time it is called with a given [`Recipient`] * parameter. * * Errors if the [`Recipient`] variant is not supported by the implementation. * * [`get_node_secret`]: Self::get_node_secret */ public Result_PublicKeyNoneZ get_node_id(Recipient recipient) { long ret = bindings.KeysInterface_get_node_id(this.ptr, recipient); GC.KeepAlive(this); GC.KeepAlive(recipient); if (ret >= 0 && ret <= 4096) { return null; } Result_PublicKeyNoneZ ret_hu_conv = Result_PublicKeyNoneZ.constr_from_ptr(ret); return ret_hu_conv; } /** * Gets the ECDH shared secret of our [`node secret`] and `other_key`, multiplying by `tweak` if * one is provided. Note that this tweak can be applied to `other_key` instead of our node * secret, though this is less efficient. * * Errors if the [`Recipient`] variant is not supported by the implementation. * * [`node secret`]: Self::get_node_secret */ public Result_SharedSecretNoneZ ecdh(Recipient recipient, byte[] other_key, org.ldk.structs.Option_ScalarZ tweak) { long ret = bindings.KeysInterface_ecdh(this.ptr, recipient, InternalUtils.check_arr_len(other_key, 33), tweak.ptr); GC.KeepAlive(this); GC.KeepAlive(recipient); GC.KeepAlive(other_key); GC.KeepAlive(tweak); if (ret >= 0 && ret <= 4096) { return null; } Result_SharedSecretNoneZ ret_hu_conv = Result_SharedSecretNoneZ.constr_from_ptr(ret); return ret_hu_conv; } /** * Get a script pubkey which we send funds to when claiming on-chain contestable outputs. * * This method should return a different value each time it is called, to avoid linking * on-chain funds across channels as controlled to the same user. */ public byte[] get_destination_script() { byte[] ret = bindings.KeysInterface_get_destination_script(this.ptr); GC.KeepAlive(this); return ret; } /** * Get a script pubkey which we will send funds to when closing a channel. * * This method should return a different value each time it is called, to avoid linking * on-chain funds across channels as controlled to the same user. */ public ShutdownScript get_shutdown_scriptpubkey() { long ret = bindings.KeysInterface_get_shutdown_scriptpubkey(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } org.ldk.structs.ShutdownScript ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.ShutdownScript(null, ret); } if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * Get a new set of [`Sign`] for per-channel secrets. These MUST be unique even if you * restarted with some stale data! * * This method must return a different value each time it is called. */ public byte[] generate_channel_keys_id(bool inbound, long channel_value_satoshis, org.ldk.util.UInt128 user_channel_id) { byte[] ret = bindings.KeysInterface_generate_channel_keys_id(this.ptr, inbound, channel_value_satoshis, user_channel_id.getLEBytes()); GC.KeepAlive(this); GC.KeepAlive(inbound); GC.KeepAlive(channel_value_satoshis); GC.KeepAlive(user_channel_id); return ret; } /** * Derives the private key material backing a `Signer`. * * To derive a new `Signer`, a fresh `channel_keys_id` should be obtained through * [`KeysInterface::generate_channel_keys_id`]. Otherwise, an existing `Signer` can be * re-derived from its `channel_keys_id`, which can be obtained through its trait method * [`BaseSign::channel_keys_id`]. */ public Sign derive_channel_signer(long channel_value_satoshis, byte[] channel_keys_id) { long ret = bindings.KeysInterface_derive_channel_signer(this.ptr, channel_value_satoshis, InternalUtils.check_arr_len(channel_keys_id, 32)); GC.KeepAlive(this); GC.KeepAlive(channel_value_satoshis); GC.KeepAlive(channel_keys_id); if (ret >= 0 && ret <= 4096) { return null; } Sign ret_hu_conv = new Sign(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting * onion packets and for temporary channel IDs. There is no requirement that these be * persisted anywhere, though they must be unique across restarts. * * This method must return a different value each time it is called. */ public byte[] get_secure_random_bytes() { byte[] ret = bindings.KeysInterface_get_secure_random_bytes(this.ptr); GC.KeepAlive(this); return ret; } /** * Reads a [`Signer`] for this [`KeysInterface`] from the given input stream. * This is only called during deserialization of other objects which contain * [`Sign`]-implementing objects (i.e., [`ChannelMonitor`]s and [`ChannelManager`]s). * The bytes are exactly those which `::write()` writes, and * contain no versioning scheme. You may wish to include your own version prefix and ensure * you've read all of the provided bytes to ensure no corruption occurred. * * This method is slowly being phased out -- it will only be called when reading objects * written by LDK versions prior to 0.0.113. * * [`Signer`]: Self::Signer * [`ChannelMonitor`]: crate::chain::channelmonitor::ChannelMonitor * [`ChannelManager`]: crate::ln::channelmanager::ChannelManager */ public Result_SignDecodeErrorZ read_chan_signer(byte[] reader) { long ret = bindings.KeysInterface_read_chan_signer(this.ptr, reader); GC.KeepAlive(this); GC.KeepAlive(reader); if (ret >= 0 && ret <= 4096) { return null; } Result_SignDecodeErrorZ ret_hu_conv = Result_SignDecodeErrorZ.constr_from_ptr(ret); return ret_hu_conv; } /** * Sign an invoice. * By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of * this trait to parse the invoice and make sure they're signing what they expect, rather than * blindly signing the hash. * The `hrp` is ASCII bytes, while the invoice data is base32-encoded. * * The secret key used to sign the invoice is dependent on the [`Recipient`]. * * Errors if the [`Recipient`] variant is not supported by the implementation. */ public Result_RecoverableSignatureNoneZ sign_invoice(byte[] hrp_bytes, UInt5[] invoice_data, Recipient receipient) { long ret = bindings.KeysInterface_sign_invoice(this.ptr, hrp_bytes, invoice_data != null ? InternalUtils.convUInt5Array(invoice_data) : null, receipient); GC.KeepAlive(this); GC.KeepAlive(hrp_bytes); GC.KeepAlive(invoice_data); GC.KeepAlive(receipient); if (ret >= 0 && ret <= 4096) { return null; } Result_RecoverableSignatureNoneZ ret_hu_conv = Result_RecoverableSignatureNoneZ.constr_from_ptr(ret); return ret_hu_conv; } /** * Get secret key material as bytes for use in encrypting and decrypting inbound payment data. * * If the implementor of this trait supports [phantom node payments], then every node that is * intended to be included in the phantom invoice route hints must return the same value from * this method. * * This method must return the same value each time it is called. * * [phantom node payments]: PhantomKeysManager */ public byte[] get_inbound_payment_key_material() { byte[] ret = bindings.KeysInterface_get_inbound_payment_key_material(this.ptr); GC.KeepAlive(this); return ret; } } } } }