X-Git-Url: http://git.bitcoin.ninja/index.cgi?a=blobdiff_plain;f=c-bindings-gen%2Fsrc%2Fmain.rs;h=97f44a4c4c458e22ce017c0b8c53d8524077cea2;hb=76eed6fb43c1d675195aff896efb325828c76498;hp=a283c35d40d41d0612836ee3befdee6725f53182;hpb=c35ef17b94a8f4e9e019a2b63e0ed22110671b9c;p=ldk-c-bindings diff --git a/c-bindings-gen/src/main.rs b/c-bindings-gen/src/main.rs index a283c35..97f44a4 100644 --- a/c-bindings-gen/src/main.rs +++ b/c-bindings-gen/src/main.rs @@ -33,6 +33,16 @@ mod blocks; use types::*; use blocks::*; +const DEFAULT_IMPORTS: &'static str = " +use alloc::str::FromStr; +use core::ffi::c_void; +use core::convert::Infallible; +use bitcoin::hashes::Hash; +use crate::c_types::*; +#[cfg(feature=\"no-std\")] +use alloc::{vec::Vec, boxed::Box}; +"; + // ************************************* // *** Manually-expanded conversions *** // ************************************* @@ -82,9 +92,9 @@ fn maybe_convert_trait_impl(w: &mut W, trait_path: &syn::Path writeln!(w, "}}").unwrap(); } }, - "lightning::util::ser::Readable"|"lightning::util::ser::ReadableArgs" => { + "lightning::util::ser::Readable"|"lightning::util::ser::ReadableArgs"|"lightning::util::ser::MaybeReadable" => { // Create the Result syn::Type - let res_ty: syn::Type = parse_quote!(Result<#for_ty, ::ln::msgs::DecodeError>); + let mut res_ty: syn::Type = parse_quote!(Result<#for_ty, ::ln::msgs::DecodeError>); writeln!(w, "#[no_mangle]").unwrap(); writeln!(w, "/// Read a {} from a byte array, created by {}_write", for_obj, for_obj).unwrap(); @@ -109,6 +119,8 @@ fn maybe_convert_trait_impl(w: &mut W, trait_path: &syn::Path types.write_from_c_conversion_suffix(&mut arg_conv, &args_ty, Some(generics)); } else { unreachable!(); } } else { unreachable!(); } + } else if t == "lightning::util::ser::MaybeReadable" { + res_ty = parse_quote!(Result, ::ln::msgs::DecodeError>); } write!(w, ") -> ").unwrap(); types.write_c_type(w, &res_ty, Some(generics), false); @@ -116,12 +128,19 @@ fn maybe_convert_trait_impl(w: &mut W, trait_path: &syn::Path if t == "lightning::util::ser::ReadableArgs" { w.write(&arg_conv).unwrap(); - write!(w, ";\n\tlet res: ").unwrap(); - // At least in one case we need type annotations here, so provide them. - types.write_rust_type(w, Some(generics), &res_ty); + write!(w, ";\n").unwrap(); + } + + write!(w, "\tlet res: ").unwrap(); + // At least in one case we need type annotations here, so provide them. + types.write_rust_type(w, Some(generics), &res_ty); + + if t == "lightning::util::ser::ReadableArgs" { writeln!(w, " = crate::c_types::deserialize_obj_arg(ser, arg_conv);").unwrap(); + } else if t == "lightning::util::ser::MaybeReadable" { + writeln!(w, " = crate::c_types::maybe_deserialize_obj(ser);").unwrap(); } else { - writeln!(w, "\tlet res = crate::c_types::deserialize_obj(ser);").unwrap(); + writeln!(w, " = crate::c_types::deserialize_obj(ser);").unwrap(); } write!(w, "\t").unwrap(); if types.write_to_c_conversion_new_var(w, &format_ident!("res"), &res_ty, Some(generics), false) { @@ -161,11 +180,10 @@ fn write_trait_impl_field_assign(w: &mut W, trait_path: &str, /// Write out the impl block for a defined trait struct which has a supertrait fn do_write_impl_trait(w: &mut W, trait_path: &str, _trait_name: &syn::Ident, for_obj: &str) { -eprintln!("{}", trait_path); match trait_path { "lightning::util::ser::Writeable" => { writeln!(w, "impl {} for {} {{", trait_path, for_obj).unwrap(); - writeln!(w, "\tfn write(&self, w: &mut W) -> Result<(), ::std::io::Error> {{").unwrap(); + writeln!(w, "\tfn write(&self, w: &mut W) -> Result<(), crate::c_types::io::Error> {{").unwrap(); writeln!(w, "\t\tlet vec = (self.write)(self.this_arg);").unwrap(); writeln!(w, "\t\tw.write_all(vec.as_slice())").unwrap(); writeln!(w, "\t}}\n}}").unwrap(); @@ -174,11 +192,16 @@ eprintln!("{}", trait_path); } } +/// Returns true if an instance of the given type must never exist +fn is_type_unconstructable(path: &str) -> bool { + path == "core::convert::Infallible" || path == "crate::c_types::NotConstructable" +} + // ******************************* // *** Per-Type Printing Logic *** // ******************************* -macro_rules! walk_supertraits { ($t: expr, $types: expr, ($( $pat: pat => $e: expr),*) ) => { { +macro_rules! walk_supertraits { ($t: expr, $types: expr, ($( $($pat: pat)|* => $e: expr),*) ) => { { if $t.colon_token.is_some() { for st in $t.supertraits.iter() { match st { @@ -192,14 +215,14 @@ macro_rules! walk_supertraits { ($t: expr, $types: expr, ($( $pat: pat => $e: ex if let Some(types) = types_opt { if let Some(path) = types.maybe_resolve_path(&supertrait.path, None) { match (&path as &str, &supertrait.path.segments.iter().last().unwrap().ident) { - $( $pat => $e, )* + $( $($pat)|* => $e, )* } continue; } } if let Some(ident) = supertrait.path.get_ident() { match (&format!("{}", ident) as &str, &ident) { - $( $pat => $e, )* + $( $($pat)|* => $e, )* } } else if types_opt.is_some() { panic!("Supertrait unresolvable and not single-ident"); @@ -211,6 +234,18 @@ macro_rules! walk_supertraits { ($t: expr, $types: expr, ($( $pat: pat => $e: ex } } } } +macro_rules! get_module_type_resolver { + ($module: expr, $crate_libs: expr, $crate_types: expr) => { { + let module: &str = &$module; + let mut module_iter = module.rsplitn(2, "::"); + module_iter.next().unwrap(); + let module = module_iter.next().unwrap(); + let imports = ImportResolver::new(module.splitn(2, "::").next().unwrap(), &$crate_types.lib_ast.dependencies, + module, &$crate_types.lib_ast.modules.get(module).unwrap().items); + TypeResolver::new(module, imports, $crate_types) + } } +} + /// Prints a C-mapped trait object containing a void pointer and a jump table for each function in /// the original trait. /// Implements the native Rust trait and relevant parent traits for the new C-mapped trait. @@ -219,13 +254,31 @@ macro_rules! walk_supertraits { ($t: expr, $types: expr, ($( $pat: pat => $e: ex /// a concrete Deref to the Rust trait. fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, types: &mut TypeResolver<'b, 'a>, extra_headers: &mut File, cpp_headers: &mut File) { let trait_name = format!("{}", t.ident); + let implementable; match export_status(&t.attrs) { - ExportStatus::Export => {}, + ExportStatus::Export => { implementable = true; } + ExportStatus::NotImplementable => { implementable = false; }, ExportStatus::NoExport|ExportStatus::TestOnly => return, } writeln_docs(w, &t.attrs, ""); - let mut gen_types = GenericTypes::new(); + let mut gen_types = GenericTypes::new(None); + + // Add functions which may be required for supertrait implementations. + // Due to borrow checker limitations, we only support one in-crate supertrait here. + let supertrait_name; + let supertrait_resolver; + walk_supertraits!(t, Some(&types), ( + (s, _i) => { + if let Some(supertrait) = types.crate_types.traits.get(s) { + supertrait_name = s.to_string(); + supertrait_resolver = get_module_type_resolver!(supertrait_name, types.crate_libs, types.crate_types); + gen_types.learn_associated_types(&supertrait, &supertrait_resolver); + break; + } + } + ) ); + assert!(gen_types.learn_generics(&t.generics, types)); gen_types.learn_associated_types(&t, types); @@ -233,7 +286,9 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty writeln!(w, "\t/// An opaque pointer which is passed to your function implementations as an argument.").unwrap(); writeln!(w, "\t/// This has no meaning in the LDK, and can be NULL or any other value.").unwrap(); writeln!(w, "\tpub this_arg: *mut c_void,").unwrap(); - let mut generated_fields = Vec::new(); // Every field's (name, is_clonable) except this_arg, used in Clone generation + // We store every field's (name, Option, docs) except this_arg, used in Clone generation + // docs is only set if its a function which should be callable on the object itself in C++ + let mut generated_fields = Vec::new(); for item in t.items.iter() { match item { &syn::TraitItem::Method(ref m) => { @@ -245,13 +300,14 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty }, ExportStatus::Export => {}, ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } if m.default.is_some() { unimplemented!(); } let mut meth_gen_types = gen_types.push_ctx(); assert!(meth_gen_types.learn_generics(&m.sig.generics, types)); - writeln_docs(w, &m.attrs, "\t"); + writeln_fn_docs(w, &m.attrs, "\t", types, Some(&meth_gen_types), m.sig.inputs.iter(), &m.sig.output); if let syn::ReturnType::Type(_, rtype) = &m.sig.output { if let syn::Type::Reference(r) = &**rtype { @@ -266,19 +322,18 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty // happen) as well as provide an Option<>al function pointer which is // called when the trait method is called which allows updating on the fly. write!(w, "\tpub {}: ", m.sig.ident).unwrap(); - generated_fields.push((format!("{}", m.sig.ident), true)); + generated_fields.push((format!("{}", m.sig.ident), None, None)); types.write_c_type(w, &*r.elem, Some(&meth_gen_types), false); writeln!(w, ",").unwrap(); writeln!(w, "\t/// Fill in the {} field as a reference to it will be given to Rust after this returns", m.sig.ident).unwrap(); writeln!(w, "\t/// Note that this takes a pointer to this object, not the this_ptr like other methods do").unwrap(); writeln!(w, "\t/// This function pointer may be NULL if {} is filled in when this object is created and never needs updating.", m.sig.ident).unwrap(); writeln!(w, "\tpub set_{}: Option,", m.sig.ident, trait_name).unwrap(); - generated_fields.push((format!("set_{}", m.sig.ident), true)); + generated_fields.push((format!("set_{}", m.sig.ident), None, None)); // Note that cbindgen will now generate - // typedef struct Thing {..., set_thing: (const Thing*), ...} Thing; + // typedef struct Thing {..., set_thing: (const struct Thing*), ...} Thing; // which does not compile since Thing is not defined before it is used. writeln!(extra_headers, "struct LDK{};", trait_name).unwrap(); - writeln!(extra_headers, "typedef struct LDK{} LDK{};", trait_name, trait_name).unwrap(); continue; } // Sadly, this currently doesn't do what we want, but it should be easy to get @@ -286,8 +341,12 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty writeln!(w, "\t#[must_use]").unwrap(); } + let mut cpp_docs = Vec::new(); + writeln_fn_docs(&mut cpp_docs, &m.attrs, "\t * ", types, Some(&meth_gen_types), m.sig.inputs.iter(), &m.sig.output); + let docs_string = "\t/**\n".to_owned() + &String::from_utf8(cpp_docs).unwrap().replace("///", "") + "\t */\n"; + write!(w, "\tpub {}: extern \"C\" fn (", m.sig.ident).unwrap(); - generated_fields.push((format!("{}", m.sig.ident), true)); + generated_fields.push((format!("{}", m.sig.ident), None, Some(docs_string))); write_method_params(w, &m.sig, "c_void", types, Some(&meth_gen_types), true, false); writeln!(w, ",").unwrap(); }, @@ -296,56 +355,60 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty } } // Add functions which may be required for supertrait implementations. - let mut requires_clone = false; - walk_supertraits!(t, Some(&types), ( - ("Clone", _) => requires_clone = true, - (_, _) => {} - ) ); walk_supertraits!(t, Some(&types), ( ("Clone", _) => { - writeln!(w, "\t/// Creates a copy of the object pointed to by this_arg, for a copy of this {}.", trait_name).unwrap(); - writeln!(w, "\t/// Note that the ultimate copy of the {} will have all function pointers the same as the original.", trait_name).unwrap(); - writeln!(w, "\t/// May be NULL if no action needs to be taken, the this_arg pointer will be copied into the new {}.", trait_name).unwrap(); - writeln!(w, "\tpub clone: Option *mut c_void>,").unwrap(); - generated_fields.push(("clone".to_owned(), true)); + writeln!(w, "\t/// Called, if set, after this {} has been cloned into a duplicate object.", trait_name).unwrap(); + writeln!(w, "\t/// The new {} is provided, and should be mutated as needed to perform a", trait_name).unwrap(); + writeln!(w, "\t/// deep copy of the object pointed to by this_arg or avoid any double-freeing.").unwrap(); + writeln!(w, "\tpub cloned: Option,", trait_name, trait_name).unwrap(); + generated_fields.push(("cloned".to_owned(), None, None)); }, - ("std::cmp::Eq", _) => { - writeln!(w, "\t/// Checks if two objects are equal given this object's this_arg pointer and another object.").unwrap(); + ("std::cmp::Eq", _)|("core::cmp::Eq", _) => { + let eq_docs = "Checks if two objects are equal given this object's this_arg pointer and another object."; + writeln!(w, "\t/// {}", eq_docs).unwrap(); writeln!(w, "\tpub eq: extern \"C\" fn (this_arg: *const c_void, other_arg: &{}) -> bool,", trait_name).unwrap(); - writeln!(extra_headers, "typedef struct LDK{} LDK{};", trait_name, trait_name).unwrap(); - generated_fields.push(("eq".to_owned(), true)); + generated_fields.push(("eq".to_owned(), None, Some(format!("\t/** {} */\n", eq_docs)))); }, - ("std::hash::Hash", _) => { - writeln!(w, "\t/// Calculate a succinct non-cryptographic hash for an object given its this_arg pointer.").unwrap(); - writeln!(w, "\t/// This is used, for example, for inclusion of this object in a hash map.").unwrap(); + ("std::hash::Hash", _)|("core::hash::Hash", _) => { + let hash_docs_a = "Calculate a succinct non-cryptographic hash for an object given its this_arg pointer."; + let hash_docs_b = "This is used, for example, for inclusion of this object in a hash map."; + writeln!(w, "\t/// {}", hash_docs_a).unwrap(); + writeln!(w, "\t/// {}", hash_docs_b).unwrap(); writeln!(w, "\tpub hash: extern \"C\" fn (this_arg: *const c_void) -> u64,").unwrap(); - generated_fields.push(("hash".to_owned(), true)); + generated_fields.push(("hash".to_owned(), None, + Some(format!("\t/**\n\t * {}\n\t * {}\n\t */\n", hash_docs_a, hash_docs_b)))); }, ("Send", _) => {}, ("Sync", _) => {}, + ("std::fmt::Debug", _)|("core::fmt::Debug", _) => { + let debug_docs = "Return a human-readable \"debug\" string describing this object"; + writeln!(w, "\t/// {}", debug_docs).unwrap(); + writeln!(w, "\tpub debug_str: extern \"C\" fn (this_arg: *const c_void) -> crate::c_types::Str,").unwrap(); + generated_fields.push(("debug_str".to_owned(), None, + Some(format!("\t/**\n\t * {}\n\t */\n", debug_docs)))); + }, (s, i) => { + // TODO: Both of the below should expose supertrait methods in C++, but doing so is + // nontrivial. generated_fields.push(if types.crate_types.traits.get(s).is_none() { let (docs, name, ret) = convert_trait_impl_field(s); writeln!(w, "\t/// {}", docs).unwrap(); writeln!(w, "\tpub {}: extern \"C\" fn (this_arg: *const c_void) -> {},", name, ret).unwrap(); - (name, true) // Assume clonable + (name, None, None) // Assume clonable } else { // For in-crate supertraits, just store a C-mapped copy of the supertrait as a member. writeln!(w, "\t/// Implementation of {} for this object.", i).unwrap(); - writeln!(w, "\tpub {}: crate::{},", i, s).unwrap(); let is_clonable = types.is_clonable(s); - if !is_clonable && requires_clone { - writeln!(w, "\t/// Creates a copy of the {}, for a copy of this {}.", i, trait_name).unwrap(); - writeln!(w, "\t/// Because {} doesn't natively support copying itself, you have to provide a full copy implementation here.", i).unwrap(); - writeln!(w, "\tpub {}_clone: extern \"C\" fn (orig_{}: &{}) -> {},", i, i, i, i).unwrap(); - } - (format!("{}", i), is_clonable) + writeln!(w, "\tpub {}: crate::{},", i, s).unwrap(); + (format!("{}", i), if !is_clonable { + Some(format!("crate::{}_clone_fields", s)) + } else { None }, None) }); } ) ); writeln!(w, "\t/// Frees any resources associated with this object given its this_arg pointer.").unwrap(); writeln!(w, "\t/// Does not need to free the outer struct containing function pointers and may be NULL is no resources need to be freed.").unwrap(); writeln!(w, "\tpub free: Option,").unwrap(); - generated_fields.push(("free".to_owned(), true)); + generated_fields.push(("free".to_owned(), None, None)); writeln!(w, "}}").unwrap(); macro_rules! impl_trait_for_c { @@ -361,8 +424,11 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty } let mut meth_gen_types = gen_types.push_ctx(); assert!(meth_gen_types.learn_generics(&m.sig.generics, $type_resolver)); + // Note that we do *not* use the method generics when printing "native" + // rust parts - if the method is generic, we need to print a generic + // method. write!(w, "\tfn {}", m.sig.ident).unwrap(); - $type_resolver.write_rust_generic_param(w, Some(&meth_gen_types), m.sig.generics.params.iter()); + $type_resolver.write_rust_generic_param(w, Some(&gen_types), m.sig.generics.params.iter()); write!(w, "(").unwrap(); for inp in m.sig.inputs.iter() { match inp { @@ -386,11 +452,11 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty ident.mutability.is_some() || ident.subpat.is_some() { unimplemented!(); } - write!(w, ", {}{}: ", if $type_resolver.skip_arg(&*arg.ty, Some(&meth_gen_types)) { "_" } else { "" }, ident.ident).unwrap(); + write!(w, ", mut {}{}: ", if $type_resolver.skip_arg(&*arg.ty, Some(&meth_gen_types)) { "_" } else { "" }, ident.ident).unwrap(); } _ => unimplemented!(), } - $type_resolver.write_rust_type(w, Some(&meth_gen_types), &*arg.ty); + $type_resolver.write_rust_type(w, Some(&gen_types), &*arg.ty); } } } @@ -398,7 +464,7 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty match &m.sig.output { syn::ReturnType::Type(_, rtype) => { write!(w, " -> ").unwrap(); - $type_resolver.write_rust_type(w, Some(&meth_gen_types), &*rtype) + $type_resolver.write_rust_type(w, Some(&gen_types), &*rtype) }, _ => {}, } @@ -424,20 +490,27 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty } write_method_var_decl_body(w, &m.sig, "\t", $type_resolver, Some(&meth_gen_types), true); write!(w, "(self{}.{})(", $impl_accessor, m.sig.ident).unwrap(); - write_method_call_params(w, &m.sig, "\t", $type_resolver, Some(&meth_gen_types), "", true); + let mut args = Vec::new(); + write_method_call_params(&mut args, &m.sig, "\t", $type_resolver, Some(&meth_gen_types), "", true); + w.write_all(String::from_utf8(args).unwrap().replace("self", &format!("self{}", $impl_accessor)).as_bytes()).unwrap(); writeln!(w, "\n\t}}").unwrap(); }, &syn::TraitItem::Type(ref t) => { if t.default.is_some() || t.generics.lt_token.is_some() { unimplemented!(); } let mut bounds_iter = t.bounds.iter(); - match bounds_iter.next().unwrap() { - syn::TypeParamBound::Trait(tr) => { - writeln!(w, "\ttype {} = crate::{};", t.ident, $type_resolver.resolve_path(&tr.path, Some(&gen_types))).unwrap(); - }, - _ => unimplemented!(), + loop { + match bounds_iter.next().unwrap() { + syn::TypeParamBound::Trait(tr) => { + writeln!(w, "\ttype {} = crate::{};", t.ident, $type_resolver.resolve_path(&tr.path, Some(&gen_types))).unwrap(); + for bound in bounds_iter { + if let syn::TypeParamBound::Trait(_) = bound { unimplemented!(); } + } + break; + }, + syn::TypeParamBound::Lifetime(_) => {}, + } } - if bounds_iter.next().is_some() { unimplemented!(); } }, _ => unimplemented!(), } @@ -445,56 +518,60 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty } } + writeln!(w, "unsafe impl Send for {} {{}}", trait_name).unwrap(); + writeln!(w, "unsafe impl Sync for {} {{}}", trait_name).unwrap(); + + writeln!(w, "#[no_mangle]").unwrap(); + writeln!(w, "pub(crate) extern \"C\" fn {}_clone_fields(orig: &{}) -> {} {{", trait_name, trait_name, trait_name).unwrap(); + writeln!(w, "\t{} {{", trait_name).unwrap(); + writeln!(w, "\t\tthis_arg: orig.this_arg,").unwrap(); + for (field, clone_fn, _) in generated_fields.iter() { + if let Some(f) = clone_fn { + // If the field isn't clonable, blindly assume its a trait and hope for the best. + writeln!(w, "\t\t{}: {}(&orig.{}),", field, f, field).unwrap(); + } else { + writeln!(w, "\t\t{}: Clone::clone(&orig.{}),", field, field).unwrap(); + } + } + writeln!(w, "\t}}\n}}").unwrap(); // Implement supertraits for the C-mapped struct. walk_supertraits!(t, Some(&types), ( - ("Send", _) => writeln!(w, "unsafe impl Send for {} {{}}", trait_name).unwrap(), - ("Sync", _) => writeln!(w, "unsafe impl Sync for {} {{}}", trait_name).unwrap(), - ("std::cmp::Eq", _) => { - writeln!(w, "impl std::cmp::Eq for {} {{}}", trait_name).unwrap(); - writeln!(w, "impl std::cmp::PartialEq for {} {{", trait_name).unwrap(); + ("std::cmp::Eq", _)|("core::cmp::Eq", _) => { + writeln!(w, "impl core::cmp::Eq for {} {{}}", trait_name).unwrap(); + writeln!(w, "impl core::cmp::PartialEq for {} {{", trait_name).unwrap(); writeln!(w, "\tfn eq(&self, o: &Self) -> bool {{ (self.eq)(self.this_arg, o) }}\n}}").unwrap(); }, - ("std::hash::Hash", _) => { - writeln!(w, "impl std::hash::Hash for {} {{", trait_name).unwrap(); - writeln!(w, "\tfn hash(&self, hasher: &mut H) {{ hasher.write_u64((self.hash)(self.this_arg)) }}\n}}").unwrap(); + ("std::hash::Hash", _)|("core::hash::Hash", _) => { + writeln!(w, "impl core::hash::Hash for {} {{", trait_name).unwrap(); + writeln!(w, "\tfn hash(&self, hasher: &mut H) {{ hasher.write_u64((self.hash)(self.this_arg)) }}\n}}").unwrap(); }, + ("Send", _) => {}, ("Sync", _) => {}, ("Clone", _) => { writeln!(w, "#[no_mangle]").unwrap(); writeln!(w, "/// Creates a copy of a {}", trait_name).unwrap(); writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", trait_name, trait_name, trait_name).unwrap(); - writeln!(w, "\t{} {{", trait_name).unwrap(); - writeln!(w, "\t\tthis_arg: if let Some(f) = orig.clone {{ (f)(orig.this_arg) }} else {{ orig.this_arg }},").unwrap(); - for (field, clonable) in generated_fields.iter() { - if *clonable { - writeln!(w, "\t\t{}: Clone::clone(&orig.{}),", field, field).unwrap(); - } else { - writeln!(w, "\t\t{}: (orig.{}_clone)(&orig.{}),", field, field, field).unwrap(); - writeln!(w, "\t\t{}_clone: orig.{}_clone,", field, field).unwrap(); - } - } - writeln!(w, "\t}}\n}}").unwrap(); + writeln!(w, "\tlet mut res = {}_clone_fields(orig);", trait_name).unwrap(); + writeln!(w, "\tif let Some(f) = orig.cloned {{ (f)(&mut res) }};").unwrap(); + writeln!(w, "\tres\n}}").unwrap(); writeln!(w, "impl Clone for {} {{", trait_name).unwrap(); writeln!(w, "\tfn clone(&self) -> Self {{").unwrap(); writeln!(w, "\t\t{}_clone(self)", trait_name).unwrap(); writeln!(w, "\t}}\n}}").unwrap(); }, + ("std::fmt::Debug", _)|("core::fmt::Debug", _) => { + writeln!(w, "impl core::fmt::Debug for {} {{", trait_name).unwrap(); + writeln!(w, "\tfn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {{").unwrap(); + writeln!(w, "\t\tf.write_str((self.debug_str)(self.this_arg).into_str())").unwrap(); + writeln!(w, "\t}}").unwrap(); + writeln!(w, "}}").unwrap(); + }, (s, i) => { if let Some(supertrait) = types.crate_types.traits.get(s) { - let mut module_iter = s.rsplitn(2, "::"); - module_iter.next().unwrap(); - let supertrait_module = module_iter.next().unwrap(); - let imports = ImportResolver::new(supertrait_module.splitn(2, "::").next().unwrap(), &types.crate_types.lib_ast.dependencies, - supertrait_module, &types.crate_types.lib_ast.modules.get(supertrait_module).unwrap().items); - let resolver = TypeResolver::new(&supertrait_module, imports, types.crate_types); + let resolver = get_module_type_resolver!(s, types.crate_libs, types.crate_types); writeln!(w, "impl {} for {} {{", s, trait_name).unwrap(); impl_trait_for_c!(supertrait, format!(".{}", i), &resolver); writeln!(w, "}}").unwrap(); - walk_supertraits!(supertrait, Some(&types), ( - ("Send", _) => writeln!(w, "unsafe impl Send for {} {{}}", trait_name).unwrap(), - ("Sync", _) => writeln!(w, "unsafe impl Sync for {} {{}}", trait_name).unwrap(), - _ => unimplemented!() - ) ); } else { do_write_impl_trait(w, s, i, &trait_name); } @@ -503,15 +580,19 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty // Finally, implement the original Rust trait for the newly created mapped trait. writeln!(w, "\nuse {}::{} as rust{};", types.module_path, t.ident, trait_name).unwrap(); - write!(w, "impl rust{}", t.ident).unwrap(); - maybe_write_generics(w, &t.generics, types, false); - writeln!(w, " for {} {{", trait_name).unwrap(); - impl_trait_for_c!(t, "", types); - writeln!(w, "}}\n").unwrap(); - writeln!(w, "// We're essentially a pointer already, or at least a set of pointers, so allow us to be used").unwrap(); - writeln!(w, "// directly as a Deref trait in higher-level structs:").unwrap(); - writeln!(w, "impl std::ops::Deref for {} {{\n\ttype Target = Self;", trait_name).unwrap(); - writeln!(w, "\tfn deref(&self) -> &Self {{\n\t\tself\n\t}}\n}}").unwrap(); + if implementable { + write!(w, "impl").unwrap(); + maybe_write_lifetime_generics(w, &t.generics, types); + write!(w, " rust{}", t.ident).unwrap(); + maybe_write_generics(w, &t.generics, types, false); + writeln!(w, " for {} {{", trait_name).unwrap(); + impl_trait_for_c!(t, "", types); + writeln!(w, "}}\n").unwrap(); + writeln!(w, "// We're essentially a pointer already, or at least a set of pointers, so allow us to be used").unwrap(); + writeln!(w, "// directly as a Deref trait in higher-level structs:").unwrap(); + writeln!(w, "impl core::ops::Deref for {} {{\n\ttype Target = Self;", trait_name).unwrap(); + writeln!(w, "\tfn deref(&self) -> &Self {{\n\t\tself\n\t}}\n}}").unwrap(); + } writeln!(w, "/// Calls the free function if one is set").unwrap(); writeln!(w, "#[no_mangle]\npub extern \"C\" fn {}_free(this_ptr: {}) {{ }}", trait_name, trait_name).unwrap(); @@ -521,7 +602,8 @@ fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, ty writeln!(w, "\t\t\tf(self.this_arg);").unwrap(); writeln!(w, "\t\t}}\n\t}}\n}}").unwrap(); - write_cpp_wrapper(cpp_headers, &trait_name, true); + write_cpp_wrapper(cpp_headers, &trait_name, true, Some(generated_fields.drain(..) + .filter_map(|(name, _, docs)| if let Some(docs) = docs { Some((name, docs)) } else { None }).collect())); } /// Write out a simple "opaque" type (eg structs) which contain a pointer to the native Rust type @@ -532,7 +614,7 @@ fn writeln_opaque(w: &mut W, ident: &syn::Ident, struct_name: // If we directly read the original type by its original name, cbindgen hits // https://github.com/eqrion/cbindgen/issues/286 Thus, instead, we import it as a temporary // name and then reference it by that name, which works around the issue. - write!(w, "\nuse {}::{} as native{}Import;\ntype native{} = native{}Import", types.module_path, ident, ident, ident, ident).unwrap(); + write!(w, "\nuse {}::{} as native{}Import;\npub(crate) type native{} = native{}Import", types.module_path, ident, ident, ident, ident).unwrap(); maybe_write_generics(w, &generics, &types, true); writeln!(w, ";\n").unwrap(); writeln!(extra_headers, "struct native{}Opaque;\ntypedef struct native{}Opaque LDKnative{};", ident, ident, ident).unwrap(); @@ -549,24 +631,30 @@ fn writeln_opaque(w: &mut W, ident: &syn::Ident, struct_name: writeln!(w, "}}\n").unwrap(); writeln!(w, "impl Drop for {} {{\n\tfn drop(&mut self) {{", struct_name).unwrap(); writeln!(w, "\t\tif self.is_owned && !<*mut native{}>::is_null(self.inner) {{", ident).unwrap(); - writeln!(w, "\t\t\tlet _ = unsafe {{ Box::from_raw(self.inner) }};\n\t\t}}\n\t}}\n}}").unwrap(); + writeln!(w, "\t\t\tlet _ = unsafe {{ Box::from_raw(ObjOps::untweak_ptr(self.inner)) }};\n\t\t}}\n\t}}\n}}").unwrap(); writeln!(w, "/// Frees any resources used by the {}, if is_owned is set and inner is non-NULL.", struct_name).unwrap(); writeln!(w, "#[no_mangle]\npub extern \"C\" fn {}_free(this_obj: {}) {{ }}", struct_name, struct_name).unwrap(); writeln!(w, "#[allow(unused)]").unwrap(); writeln!(w, "/// Used only if an object of this type is returned as a trait impl by a method").unwrap(); - writeln!(w, "extern \"C\" fn {}_free_void(this_ptr: *mut c_void) {{", struct_name).unwrap(); + writeln!(w, "pub(crate) extern \"C\" fn {}_free_void(this_ptr: *mut c_void) {{", struct_name).unwrap(); writeln!(w, "\tunsafe {{ let _ = Box::from_raw(this_ptr as *mut native{}); }}\n}}", struct_name).unwrap(); writeln!(w, "#[allow(unused)]").unwrap(); - writeln!(w, "/// When moving out of the pointer, we have to ensure we aren't a reference, this makes that easy").unwrap(); writeln!(w, "impl {} {{", struct_name).unwrap(); + writeln!(w, "\tpub(crate) fn get_native_ref(&self) -> &'static native{} {{", struct_name).unwrap(); + writeln!(w, "\t\tunsafe {{ &*ObjOps::untweak_ptr(self.inner) }}").unwrap(); + writeln!(w, "\t}}").unwrap(); + writeln!(w, "\tpub(crate) fn get_native_mut_ref(&self) -> &'static mut native{} {{", struct_name).unwrap(); + writeln!(w, "\t\tunsafe {{ &mut *ObjOps::untweak_ptr(self.inner) }}").unwrap(); + writeln!(w, "\t}}").unwrap(); + writeln!(w, "\t/// When moving out of the pointer, we have to ensure we aren't a reference, this makes that easy").unwrap(); writeln!(w, "\tpub(crate) fn take_inner(mut self) -> *mut native{} {{", struct_name).unwrap(); writeln!(w, "\t\tassert!(self.is_owned);").unwrap(); - writeln!(w, "\t\tlet ret = self.inner;").unwrap(); - writeln!(w, "\t\tself.inner = std::ptr::null_mut();").unwrap(); + writeln!(w, "\t\tlet ret = ObjOps::untweak_ptr(self.inner);").unwrap(); + writeln!(w, "\t\tself.inner = core::ptr::null_mut();").unwrap(); writeln!(w, "\t\tret").unwrap(); writeln!(w, "\t}}\n}}").unwrap(); - write_cpp_wrapper(cpp_headers, &format!("{}", ident), true); + write_cpp_wrapper(cpp_headers, &format!("{}", ident), true, None); } /// Writes out all the relevant mappings for a Rust struct, deferring to writeln_opaque to generate @@ -578,82 +666,144 @@ fn writeln_struct<'a, 'b, W: std::io::Write>(w: &mut W, s: &'a syn::ItemStruct, let struct_name = &format!("{}", s.ident); writeln_opaque(w, &s.ident, struct_name, &s.generics, &s.attrs, types, extra_headers, cpp_headers); - if let syn::Fields::Named(fields) = &s.fields { - let mut gen_types = GenericTypes::new(); - assert!(gen_types.learn_generics(&s.generics, types)); - - let mut all_fields_settable = true; - for field in fields.named.iter() { - if let syn::Visibility::Public(_) = field.vis { - let export = export_status(&field.attrs); + let mut self_path_segs = syn::punctuated::Punctuated::new(); + self_path_segs.push(s.ident.clone().into()); + let self_path = syn::Path { leading_colon: None, segments: self_path_segs}; + let mut gen_types = GenericTypes::new(Some(types.resolve_path(&self_path, None))); + assert!(gen_types.learn_generics(&s.generics, types)); + + let mut all_fields_settable = true; + macro_rules! define_field { + ($new_name: expr, $real_name: expr, $field: expr) => { + if let syn::Visibility::Public(_) = $field.vis { + let export = export_status(&$field.attrs); match export { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => { all_fields_settable = false; continue }, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } - if let Some(ident) = &field.ident { - let ref_type = syn::Type::Reference(syn::TypeReference { - and_token: syn::Token!(&)(Span::call_site()), lifetime: None, mutability: None, - elem: Box::new(field.ty.clone()) }); + if let Some(ref_type) = types.create_ownable_reference(&$field.ty, Some(&gen_types)) { if types.understood_c_type(&ref_type, Some(&gen_types)) { - writeln_docs(w, &field.attrs, ""); - write!(w, "#[no_mangle]\npub extern \"C\" fn {}_get_{}(this_ptr: &{}) -> ", struct_name, ident, struct_name).unwrap(); + writeln_arg_docs(w, &$field.attrs, "", types, Some(&gen_types), vec![].drain(..), Some(&ref_type)); + write!(w, "#[no_mangle]\npub extern \"C\" fn {}_get_{}(this_ptr: &{}) -> ", struct_name, $new_name, struct_name).unwrap(); types.write_c_type(w, &ref_type, Some(&gen_types), true); - write!(w, " {{\n\tlet mut inner_val = &mut unsafe {{ &mut *this_ptr.inner }}.{};\n\t", ident).unwrap(); - let local_var = types.write_to_c_conversion_new_var(w, &format_ident!("inner_val"), &ref_type, Some(&gen_types), true); + write!(w, " {{\n\tlet mut inner_val = &mut this_ptr.get_native_mut_ref().{};\n\t", $real_name).unwrap(); + let local_var = types.write_to_c_conversion_from_ownable_ref_new_var(w, &format_ident!("inner_val"), &ref_type, Some(&gen_types)); if local_var { write!(w, "\n\t").unwrap(); } types.write_to_c_conversion_inline_prefix(w, &ref_type, Some(&gen_types), true); write!(w, "inner_val").unwrap(); types.write_to_c_conversion_inline_suffix(w, &ref_type, Some(&gen_types), true); writeln!(w, "\n}}").unwrap(); } + } - if types.understood_c_type(&field.ty, Some(&gen_types)) { - writeln_docs(w, &field.attrs, ""); - write!(w, "#[no_mangle]\npub extern \"C\" fn {}_set_{}(this_ptr: &mut {}, mut val: ", struct_name, ident, struct_name).unwrap(); - types.write_c_type(w, &field.ty, Some(&gen_types), false); - write!(w, ") {{\n\t").unwrap(); - let local_var = types.write_from_c_conversion_new_var(w, &format_ident!("val"), &field.ty, Some(&gen_types)); - if local_var { write!(w, "\n\t").unwrap(); } - write!(w, "unsafe {{ &mut *this_ptr.inner }}.{} = ", ident).unwrap(); - types.write_from_c_conversion_prefix(w, &field.ty, Some(&gen_types)); - write!(w, "val").unwrap(); - types.write_from_c_conversion_suffix(w, &field.ty, Some(&gen_types)); - writeln!(w, ";\n}}").unwrap(); - } else { all_fields_settable = false; } + if types.understood_c_type(&$field.ty, Some(&gen_types)) { + writeln_arg_docs(w, &$field.attrs, "", types, Some(&gen_types), vec![("val".to_owned(), &$field.ty)].drain(..), None); + write!(w, "#[no_mangle]\npub extern \"C\" fn {}_set_{}(this_ptr: &mut {}, mut val: ", struct_name, $new_name, struct_name).unwrap(); + types.write_c_type(w, &$field.ty, Some(&gen_types), false); + write!(w, ") {{\n\t").unwrap(); + let local_var = types.write_from_c_conversion_new_var(w, &format_ident!("val"), &$field.ty, Some(&gen_types)); + if local_var { write!(w, "\n\t").unwrap(); } + write!(w, "unsafe {{ &mut *ObjOps::untweak_ptr(this_ptr.inner) }}.{} = ", $real_name).unwrap(); + types.write_from_c_conversion_prefix(w, &$field.ty, Some(&gen_types)); + write!(w, "val").unwrap(); + types.write_from_c_conversion_suffix(w, &$field.ty, Some(&gen_types)); + writeln!(w, ";\n}}").unwrap(); } else { all_fields_settable = false; } } else { all_fields_settable = false; } } + } - if all_fields_settable { - // Build a constructor! - writeln!(w, "/// Constructs a new {} given each field", struct_name).unwrap(); - write!(w, "#[must_use]\n#[no_mangle]\npub extern \"C\" fn {}_new(", struct_name).unwrap(); - for (idx, field) in fields.named.iter().enumerate() { - if idx != 0 { write!(w, ", ").unwrap(); } - write!(w, "mut {}_arg: ", field.ident.as_ref().unwrap()).unwrap(); - types.write_c_type(w, &field.ty, Some(&gen_types), false); - } - write!(w, ") -> {} {{\n\t", struct_name).unwrap(); + match &s.fields { + syn::Fields::Named(fields) => { for field in fields.named.iter() { - let field_ident = format_ident!("{}_arg", field.ident.as_ref().unwrap()); - if types.write_from_c_conversion_new_var(w, &field_ident, &field.ty, Some(&gen_types)) { - write!(w, "\n\t").unwrap(); + if let Some(ident) = &field.ident { + define_field!(ident, ident, field); + } else { all_fields_settable = false; } + } + } + syn::Fields::Unnamed(fields) => { + for (idx, field) in fields.unnamed.iter().enumerate() { + define_field!(('a' as u8 + idx as u8) as char, ('0' as u8 + idx as u8) as char, field); + } + } + _ => unimplemented!() + } + + if all_fields_settable { + // Build a constructor! + writeln!(w, "/// Constructs a new {} given each field", struct_name).unwrap(); + write!(w, "#[must_use]\n#[no_mangle]\npub extern \"C\" fn {}_new(", struct_name).unwrap(); + + match &s.fields { + syn::Fields::Named(fields) => { + for (idx, field) in fields.named.iter().enumerate() { + if idx != 0 { write!(w, ", ").unwrap(); } + write!(w, "mut {}_arg: ", field.ident.as_ref().unwrap()).unwrap(); + types.write_c_type(w, &field.ty, Some(&gen_types), false); } } - writeln!(w, "{} {{ inner: Box::into_raw(Box::new(native{} {{", struct_name, s.ident).unwrap(); - for field in fields.named.iter() { - write!(w, "\t\t{}: ", field.ident.as_ref().unwrap()).unwrap(); - types.write_from_c_conversion_prefix(w, &field.ty, Some(&gen_types)); - write!(w, "{}_arg", field.ident.as_ref().unwrap()).unwrap(); - types.write_from_c_conversion_suffix(w, &field.ty, Some(&gen_types)); - writeln!(w, ",").unwrap(); + syn::Fields::Unnamed(fields) => { + for (idx, field) in fields.unnamed.iter().enumerate() { + if idx != 0 { write!(w, ", ").unwrap(); } + write!(w, "mut {}_arg: ", ('a' as u8 + idx as u8) as char).unwrap(); + types.write_c_type(w, &field.ty, Some(&gen_types), false); + } } - writeln!(w, "\t}})), is_owned: true }}\n}}").unwrap(); + _ => unreachable!() } + write!(w, ") -> {} {{\n\t", struct_name).unwrap(); + match &s.fields { + syn::Fields::Named(fields) => { + for field in fields.named.iter() { + let field_ident = format_ident!("{}_arg", field.ident.as_ref().unwrap()); + if types.write_from_c_conversion_new_var(w, &field_ident, &field.ty, Some(&gen_types)) { + write!(w, "\n\t").unwrap(); + } + } + }, + syn::Fields::Unnamed(fields) => { + for (idx, field) in fields.unnamed.iter().enumerate() { + let field_ident = format_ident!("{}_arg", ('a' as u8 + idx as u8) as char); + if types.write_from_c_conversion_new_var(w, &field_ident, &field.ty, Some(&gen_types)) { + write!(w, "\n\t").unwrap(); + } + } + }, + _ => unreachable!() + } + write!(w, "{} {{ inner: ObjOps::heap_alloc(", struct_name).unwrap(); + match &s.fields { + syn::Fields::Named(fields) => { + writeln!(w, "native{} {{", s.ident).unwrap(); + for field in fields.named.iter() { + write!(w, "\t\t{}: ", field.ident.as_ref().unwrap()).unwrap(); + types.write_from_c_conversion_prefix(w, &field.ty, Some(&gen_types)); + write!(w, "{}_arg", field.ident.as_ref().unwrap()).unwrap(); + types.write_from_c_conversion_suffix(w, &field.ty, Some(&gen_types)); + writeln!(w, ",").unwrap(); + } + write!(w, "\t}}").unwrap(); + }, + syn::Fields::Unnamed(fields) => { + assert!(s.generics.lt_token.is_none()); + writeln!(w, "{} (", types.maybe_resolve_ident(&s.ident).unwrap()).unwrap(); + for (idx, field) in fields.unnamed.iter().enumerate() { + write!(w, "\t\t").unwrap(); + types.write_from_c_conversion_prefix(w, &field.ty, Some(&gen_types)); + write!(w, "{}_arg", ('a' as u8 + idx as u8) as char).unwrap(); + types.write_from_c_conversion_suffix(w, &field.ty, Some(&gen_types)); + writeln!(w, ",").unwrap(); + } + write!(w, "\t)").unwrap(); + }, + _ => unreachable!() + } + writeln!(w, "), is_owned: true }}\n}}").unwrap(); } } @@ -670,11 +820,12 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ match export_status(&i.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => return, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } if let syn::Type::Tuple(_) = &*i.self_ty { if types.understood_c_type(&*i.self_ty, None) { - let mut gen_types = GenericTypes::new(); + let mut gen_types = GenericTypes::new(None); if !gen_types.learn_generics(&i.generics, types) { eprintln!("Not implementing anything for `impl (..)` due to not understood generics"); return; @@ -701,7 +852,12 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ if p.qself.is_some() { unimplemented!(); } if let Some(ident) = single_ident_generic_path_to_ident(&p.path) { if let Some(resolved_path) = types.maybe_resolve_non_ignored_ident(&ident) { - let mut gen_types = GenericTypes::new(); + if !types.understood_c_path(&p.path) { + eprintln!("Not implementing anything for impl {} as the type is not understood (probably C-not exported)", ident); + return; + } + + let mut gen_types = GenericTypes::new(Some(resolved_path.clone())); if !gen_types.learn_generics(&i.generics, types) { eprintln!("Not implementing anything for impl {} due to not understood generics", ident); return; @@ -713,11 +869,26 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ if types.understood_c_path(&trait_path.1) { let full_trait_path = types.resolve_path(&trait_path.1, None); let trait_obj = *types.crate_types.traits.get(&full_trait_path).unwrap(); + + let supertrait_name; + let supertrait_resolver; + walk_supertraits!(trait_obj, Some(&types), ( + (s, _i) => { + if let Some(supertrait) = types.crate_types.traits.get(s) { + supertrait_name = s.to_string(); + supertrait_resolver = get_module_type_resolver!(supertrait_name, types.crate_libs, types.crate_types); + gen_types.learn_associated_types(&supertrait, &supertrait_resolver); + break; + } + } + ) ); // We learn the associated types maping from the original trait object. // That's great, except that they are unresolved idents, so if we learn // mappings from a trai defined in a different file, we may mis-resolve or - // fail to resolve the mapped types. - gen_types.learn_associated_types(trait_obj, types); + // fail to resolve the mapped types. Thus, we have to construct a new + // resolver for the module that the trait was defined in here first. + let trait_resolver = get_module_type_resolver!(full_trait_path, types.crate_libs, types.crate_types); + gen_types.learn_associated_types(trait_obj, &trait_resolver); let mut impl_associated_types = HashMap::new(); for item in i.items.iter() { match item { @@ -734,7 +905,7 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ let export = export_status(&trait_obj.attrs); match export { - ExportStatus::Export => {}, + ExportStatus::Export|ExportStatus::NotImplementable => {}, ExportStatus::NoExport|ExportStatus::TestOnly => return, } @@ -743,20 +914,39 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ // From<> implementation which does all the work to ensure free is handled // properly. This way we can call this method from deep in the // type-conversion logic without actually knowing the concrete native type. + if !resolved_path.starts_with(types.module_path) { + if !first_seg_is_stdlib(resolved_path.split("::").next().unwrap()) { + writeln!(w, "use crate::{}::native{} as native{};", resolved_path.rsplitn(2, "::").skip(1).next().unwrap(), ident, ident).unwrap(); + writeln!(w, "use crate::{};", resolved_path).unwrap(); + writeln!(w, "use crate::{}_free_void;", resolved_path).unwrap(); + } else { + writeln!(w, "use {} as native{};", resolved_path, ident).unwrap(); + } + } writeln!(w, "impl From for crate::{} {{", ident, full_trait_path).unwrap(); writeln!(w, "\tfn from(obj: native{}) -> Self {{", ident).unwrap(); - writeln!(w, "\t\tlet mut rust_obj = {} {{ inner: Box::into_raw(Box::new(obj)), is_owned: true }};", ident).unwrap(); - writeln!(w, "\t\tlet mut ret = {}_as_{}(&rust_obj);", ident, trait_obj.ident).unwrap(); - writeln!(w, "\t\t// We want to free rust_obj when ret gets drop()'d, not rust_obj, so wipe rust_obj's pointer and set ret's free() fn").unwrap(); - writeln!(w, "\t\trust_obj.inner = std::ptr::null_mut();").unwrap(); - writeln!(w, "\t\tret.free = Some({}_free_void);", ident).unwrap(); - writeln!(w, "\t\tret\n\t}}\n}}").unwrap(); + if is_type_unconstructable(&resolved_path) { + writeln!(w, "\t\tunreachable!();").unwrap(); + } else { + writeln!(w, "\t\tlet mut rust_obj = {} {{ inner: ObjOps::heap_alloc(obj), is_owned: true }};", ident).unwrap(); + writeln!(w, "\t\tlet mut ret = {}_as_{}(&rust_obj);", ident, trait_obj.ident).unwrap(); + writeln!(w, "\t\t// We want to free rust_obj when ret gets drop()'d, not rust_obj, so wipe rust_obj's pointer and set ret's free() fn").unwrap(); + writeln!(w, "\t\trust_obj.inner = core::ptr::null_mut();").unwrap(); + writeln!(w, "\t\tret.free = Some({}_free_void);", ident).unwrap(); + writeln!(w, "\t\tret").unwrap(); + } + writeln!(w, "\t}}\n}}").unwrap(); + if is_type_unconstructable(&resolved_path) { + // We don't bother with Struct_as_Trait conversion for types which must + // never be instantiated, so just return early. + return; + } writeln!(w, "/// Constructs a new {} which calls the relevant methods on this_arg.", trait_obj.ident).unwrap(); writeln!(w, "/// This copies the `inner` pointer in this_arg and thus the returned {} must be freed before this_arg is", trait_obj.ident).unwrap(); write!(w, "#[no_mangle]\npub extern \"C\" fn {}_as_{}(this_arg: &{}) -> crate::{} {{\n", ident, trait_obj.ident, ident, full_trait_path).unwrap(); writeln!(w, "\tcrate::{} {{", full_trait_path).unwrap(); - writeln!(w, "\t\tthis_arg: unsafe {{ (*this_arg).inner as *mut c_void }},").unwrap(); + writeln!(w, "\t\tthis_arg: unsafe {{ ObjOps::untweak_ptr((*this_arg).inner) as *mut c_void }},").unwrap(); writeln!(w, "\t\tfree: None,").unwrap(); macro_rules! write_meth { @@ -771,6 +961,7 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ continue; }, ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } let mut printed = false; @@ -796,20 +987,18 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ } } let mut requires_clone = false; - walk_supertraits!(trait_obj, Some(&types), ( - ("Clone", _) => requires_clone = true, - (_, _) => {} - ) ); walk_supertraits!(trait_obj, Some(&types), ( ("Clone", _) => { - writeln!(w, "\t\tclone: Some({}_clone_void),", ident).unwrap(); + requires_clone = true; + writeln!(w, "\t\tcloned: Some({}_{}_cloned),", trait_obj.ident, ident).unwrap(); }, ("Sync", _) => {}, ("Send", _) => {}, ("std::marker::Sync", _) => {}, ("std::marker::Send", _) => {}, + ("core::fmt::Debug", _) => {}, (s, t) => { if let Some(supertrait_obj) = types.crate_types.traits.get(s) { writeln!(w, "\t\t{}: crate::{} {{", t, s).unwrap(); - writeln!(w, "\t\t\tthis_arg: unsafe {{ (*this_arg).inner as *mut c_void }},").unwrap(); + writeln!(w, "\t\t\tthis_arg: unsafe {{ ObjOps::untweak_ptr((*this_arg).inner) as *mut c_void }},").unwrap(); writeln!(w, "\t\t\tfree: None,").unwrap(); for item in supertrait_obj.items.iter() { match item { @@ -820,9 +1009,6 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ } } write!(w, "\t\t}},\n").unwrap(); - if !types.is_clonable(s) && requires_clone { - writeln!(w, "\t\t{}_clone: {}_{}_clone,", t, ident, t).unwrap(); - } } else { write_trait_impl_field_assign(w, s, ident); } @@ -831,13 +1017,14 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ writeln!(w, "\t}}\n}}\n").unwrap(); macro_rules! impl_meth { - ($m: expr, $trait_path: expr, $trait: expr, $indent: expr) => { + ($m: expr, $trait_meth: expr, $trait_path: expr, $trait: expr, $indent: expr) => { let trait_method = $trait.items.iter().filter_map(|item| { if let syn::TraitItem::Method(t_m) = item { Some(t_m) } else { None } }).find(|trait_meth| trait_meth.sig.ident == $m.sig.ident).unwrap(); match export_status(&trait_method.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } if let syn::ReturnType::Type(_, _) = &$m.sig.output { @@ -846,39 +1033,62 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ write!(w, "extern \"C\" fn {}_{}_{}(", ident, $trait.ident, $m.sig.ident).unwrap(); let mut meth_gen_types = gen_types.push_ctx(); assert!(meth_gen_types.learn_generics(&$m.sig.generics, types)); - write_method_params(w, &$m.sig, "c_void", types, Some(&meth_gen_types), true, true); - write!(w, " {{\n\t").unwrap(); - write_method_var_decl_body(w, &$m.sig, "", types, Some(&meth_gen_types), false); - let mut takes_self = false; + let mut uncallable_function = false; for inp in $m.sig.inputs.iter() { - if let syn::FnArg::Receiver(_) = inp { - takes_self = true; + match inp { + syn::FnArg::Typed(arg) => { + if types.skip_arg(&*arg.ty, Some(&meth_gen_types)) { continue; } + let mut c_type = Vec::new(); + types.write_c_type(&mut c_type, &*arg.ty, Some(&meth_gen_types), false); + if is_type_unconstructable(&String::from_utf8(c_type).unwrap()) { + uncallable_function = true; + } + } + _ => {} } } - - let mut t_gen_args = String::new(); - for (idx, _) in $trait.generics.params.iter().enumerate() { - if idx != 0 { t_gen_args += ", " }; - t_gen_args += "_" - } - if takes_self { - write!(w, ">::{}(unsafe {{ &mut *(this_arg as *mut native{}) }}, ", ident, $trait_path, t_gen_args, $m.sig.ident, ident).unwrap(); + if uncallable_function { + let mut trait_resolver = get_module_type_resolver!(full_trait_path, types.crate_libs, types.crate_types); + write_method_params(w, &$trait_meth.sig, "c_void", &mut trait_resolver, Some(&meth_gen_types), true, true); } else { - write!(w, ">::{}(", ident, $trait_path, t_gen_args, $m.sig.ident).unwrap(); + write_method_params(w, &$m.sig, "c_void", types, Some(&meth_gen_types), true, true); } + write!(w, " {{\n\t").unwrap(); + if uncallable_function { + write!(w, "unreachable!();").unwrap(); + } else { + write_method_var_decl_body(w, &$m.sig, "", types, Some(&meth_gen_types), false); + let mut takes_self = false; + for inp in $m.sig.inputs.iter() { + if let syn::FnArg::Receiver(_) = inp { + takes_self = true; + } + } - let mut real_type = "".to_string(); - match &$m.sig.output { - syn::ReturnType::Type(_, rtype) => { - if let Some(mut remaining_path) = first_seg_self(&*rtype) { - if let Some(associated_seg) = get_single_remaining_path_seg(&mut remaining_path) { - real_type = format!("{}", impl_associated_types.get(associated_seg).unwrap()); + let mut t_gen_args = String::new(); + for (idx, _) in $trait.generics.params.iter().enumerate() { + if idx != 0 { t_gen_args += ", " }; + t_gen_args += "_" + } + if takes_self { + write!(w, ">::{}(unsafe {{ &mut *(this_arg as *mut native{}) }}, ", ident, $trait_path, t_gen_args, $m.sig.ident, ident).unwrap(); + } else { + write!(w, ">::{}(", ident, $trait_path, t_gen_args, $m.sig.ident).unwrap(); + } + + let mut real_type = "".to_string(); + match &$m.sig.output { + syn::ReturnType::Type(_, rtype) => { + if let Some(mut remaining_path) = first_seg_self(&*rtype) { + if let Some(associated_seg) = get_single_remaining_path_seg(&mut remaining_path) { + real_type = format!("{}", impl_associated_types.get(associated_seg).unwrap()); + } } - } - }, - _ => {}, + }, + _ => {}, + } + write_method_call_params(w, &$m.sig, "", types, Some(&meth_gen_types), &real_type, false); } - write_method_call_params(w, &$m.sig, "", types, Some(&meth_gen_types), &real_type, false); write!(w, "\n}}\n").unwrap(); if let syn::ReturnType::Type(_, rtype) = &$m.sig.output { if let syn::Type::Reference(r) = &**rtype { @@ -897,51 +1107,109 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ } } - for item in i.items.iter() { + 'impl_item_loop: for item in i.items.iter() { match item { syn::ImplItem::Method(m) => { - impl_meth!(m, full_trait_path, trait_obj, ""); + for trait_item in trait_obj.items.iter() { + match trait_item { + syn::TraitItem::Method(meth) => { + if meth.sig.ident == m.sig.ident { + impl_meth!(m, meth, full_trait_path, trait_obj, ""); + continue 'impl_item_loop; + } + }, + _ => {}, + } + } + unreachable!(); }, syn::ImplItem::Type(_) => {}, _ => unimplemented!(), } } - walk_supertraits!(trait_obj, Some(&types), ( - (s, t) => { - if let Some(supertrait_obj) = types.crate_types.traits.get(s) { - if !types.is_clonable(s) && requires_clone { - writeln!(w, "extern \"C\" fn {}_{}_clone(orig: &crate::{}) -> crate::{} {{", ident, t, s, s).unwrap(); - writeln!(w, "\tcrate::{} {{", s).unwrap(); - writeln!(w, "\t\tthis_arg: orig.this_arg,").unwrap(); - writeln!(w, "\t\tfree: None,").unwrap(); - for item in supertrait_obj.items.iter() { - match item { - syn::TraitItem::Method(m) => { - write_meth!(m, supertrait_obj, ""); - }, - _ => {}, - } - } - write!(w, "\t}}\n}}\n").unwrap(); + if requires_clone { + writeln!(w, "extern \"C\" fn {}_{}_cloned(new_obj: &mut crate::{}) {{", trait_obj.ident, ident, full_trait_path).unwrap(); + writeln!(w, "\tnew_obj.this_arg = {}_clone_void(new_obj.this_arg);", ident).unwrap(); + writeln!(w, "\tnew_obj.free = Some({}_free_void);", ident).unwrap(); + walk_supertraits!(trait_obj, Some(&types), ( + (s, t) => { + if types.crate_types.traits.get(s).is_some() { + assert!(!types.is_clonable(s)); // We don't currently support cloning with a clonable supertrait + writeln!(w, "\tnew_obj.{}.this_arg = new_obj.this_arg;", t).unwrap(); + writeln!(w, "\tnew_obj.{}.free = None;", t).unwrap(); } } - } - ) ); + ) ); + writeln!(w, "}}").unwrap(); + } write!(w, "\n").unwrap(); - } else if path_matches_nongeneric(&trait_path.1, &["From"]) { + return; + } + if is_type_unconstructable(&resolved_path) { + // Don't bother exposing trait implementations for objects which cannot be + // instantiated. + return; + } + if path_matches_nongeneric(&trait_path.1, &["From"]) { } else if path_matches_nongeneric(&trait_path.1, &["Default"]) { writeln!(w, "/// Creates a \"default\" {}. See struct and individual field documentaiton for details on which values are used.", ident).unwrap(); write!(w, "#[must_use]\n#[no_mangle]\npub extern \"C\" fn {}_default() -> {} {{\n", ident, ident).unwrap(); - write!(w, "\t{} {{ inner: Box::into_raw(Box::new(Default::default())), is_owned: true }}\n", ident).unwrap(); + write!(w, "\t{} {{ inner: ObjOps::heap_alloc(Default::default()), is_owned: true }}\n", ident).unwrap(); write!(w, "}}\n").unwrap(); } else if path_matches_nongeneric(&trait_path.1, &["core", "cmp", "PartialEq"]) { + } else if path_matches_nongeneric(&trait_path.1, &["core", "cmp", "Eq"]) { + writeln!(w, "/// Checks if two {}s contain equal inner contents.", ident).unwrap(); + writeln!(w, "/// This ignores pointers and is_owned flags and looks at the values in fields.").unwrap(); + if types.c_type_has_inner_from_path(&resolved_path) { + writeln!(w, "/// Two objects with NULL inner values will be considered \"equal\" here.").unwrap(); + } + write!(w, "#[no_mangle]\npub extern \"C\" fn {}_eq(a: &{}, b: &{}) -> bool {{\n", ident, ident, ident).unwrap(); + if types.c_type_has_inner_from_path(&resolved_path) { + write!(w, "\tif a.inner == b.inner {{ return true; }}\n").unwrap(); + write!(w, "\tif a.inner.is_null() || b.inner.is_null() {{ return false; }}\n").unwrap(); + } + + let path = &p.path; + let ref_type: syn::Type = syn::parse_quote!(&#path); + assert!(!types.write_to_c_conversion_new_var(w, &format_ident!("a"), &*i.self_ty, Some(&gen_types), false), "We don't support new var conversions when comparing equality"); + + write!(w, "\tif ").unwrap(); + types.write_from_c_conversion_prefix(w, &ref_type, Some(&gen_types)); + write!(w, "a").unwrap(); + types.write_from_c_conversion_suffix(w, &ref_type, Some(&gen_types)); + write!(w, " == ").unwrap(); + types.write_from_c_conversion_prefix(w, &ref_type, Some(&gen_types)); + write!(w, "b").unwrap(); + types.write_from_c_conversion_suffix(w, &ref_type, Some(&gen_types)); + + writeln!(w, " {{ true }} else {{ false }}\n}}").unwrap(); + } else if path_matches_nongeneric(&trait_path.1, &["core", "hash", "Hash"]) { + writeln!(w, "/// Checks if two {}s contain equal inner contents.", ident).unwrap(); + write!(w, "#[no_mangle]\npub extern \"C\" fn {}_hash(o: &{}) -> u64 {{\n", ident, ident).unwrap(); + if types.c_type_has_inner_from_path(&resolved_path) { + write!(w, "\tif o.inner.is_null() {{ return 0; }}\n").unwrap(); + } + + let path = &p.path; + let ref_type: syn::Type = syn::parse_quote!(&#path); + assert!(!types.write_to_c_conversion_new_var(w, &format_ident!("a"), &*i.self_ty, Some(&gen_types), false), "We don't support new var conversions when comparing equality"); + + writeln!(w, "\t// Note that we'd love to use alloc::collections::hash_map::DefaultHasher but it's not in core").unwrap(); + writeln!(w, "\t#[allow(deprecated)]").unwrap(); + writeln!(w, "\tlet mut hasher = core::hash::SipHasher::new();").unwrap(); + write!(w, "\tcore::hash::Hash::hash(").unwrap(); + types.write_from_c_conversion_prefix(w, &ref_type, Some(&gen_types)); + write!(w, "o").unwrap(); + types.write_from_c_conversion_suffix(w, &ref_type, Some(&gen_types)); + writeln!(w, ", &mut hasher);").unwrap(); + writeln!(w, "\tcore::hash::Hasher::finish(&hasher)\n}}").unwrap(); } else if (path_matches_nongeneric(&trait_path.1, &["core", "clone", "Clone"]) || path_matches_nongeneric(&trait_path.1, &["Clone"])) && types.c_type_has_inner_from_path(&resolved_path) { writeln!(w, "impl Clone for {} {{", ident).unwrap(); writeln!(w, "\tfn clone(&self) -> Self {{").unwrap(); writeln!(w, "\t\tSelf {{").unwrap(); - writeln!(w, "\t\t\tinner: if <*mut native{}>::is_null(self.inner) {{ std::ptr::null_mut() }} else {{", ident).unwrap(); - writeln!(w, "\t\t\t\tBox::into_raw(Box::new(unsafe {{ &*self.inner }}.clone())) }},").unwrap(); + writeln!(w, "\t\t\tinner: if <*mut native{}>::is_null(self.inner) {{ core::ptr::null_mut() }} else {{", ident).unwrap(); + writeln!(w, "\t\t\t\tObjOps::heap_alloc(unsafe {{ &*ObjOps::untweak_ptr(self.inner) }}.clone()) }},").unwrap(); writeln!(w, "\t\t\tis_owned: true,").unwrap(); writeln!(w, "\t\t}}\n\t}}\n}}").unwrap(); writeln!(w, "#[allow(unused)]").unwrap(); @@ -953,6 +1221,39 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ writeln!(w, "/// Creates a copy of the {}", ident).unwrap(); writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", ident, ident, ident).unwrap(); writeln!(w, "\torig.clone()").unwrap(); + writeln!(w, "}}").unwrap(); + } else if path_matches_nongeneric(&trait_path.1, &["FromStr"]) { + if let Some(container) = types.get_c_mangled_container_type( + vec![&*i.self_ty, &syn::Type::Tuple(syn::TypeTuple { paren_token: Default::default(), elems: syn::punctuated::Punctuated::new() })], + Some(&gen_types), "Result") { + writeln!(w, "#[no_mangle]").unwrap(); + writeln!(w, "/// Read a {} object from a string", ident).unwrap(); + writeln!(w, "pub extern \"C\" fn {}_from_str(s: crate::c_types::Str) -> {} {{", ident, container).unwrap(); + writeln!(w, "\tmatch {}::from_str(s.into_str()) {{", resolved_path).unwrap(); + writeln!(w, "\t\tOk(r) => {{").unwrap(); + let new_var = types.write_to_c_conversion_new_var(w, &format_ident!("r"), &*i.self_ty, Some(&gen_types), false); + write!(w, "\t\t\tcrate::c_types::CResultTempl::ok(\n\t\t\t\t").unwrap(); + types.write_to_c_conversion_inline_prefix(w, &*i.self_ty, Some(&gen_types), false); + write!(w, "{}r", if new_var { "local_" } else { "" }).unwrap(); + types.write_to_c_conversion_inline_suffix(w, &*i.self_ty, Some(&gen_types), false); + writeln!(w, "\n\t\t\t)\n\t\t}},").unwrap(); + writeln!(w, "\t\tErr(e) => crate::c_types::CResultTempl::err(()),").unwrap(); + writeln!(w, "\t}}.into()\n}}").unwrap(); + } + } else if path_matches_nongeneric(&trait_path.1, &["Display"]) { + writeln!(w, "#[no_mangle]").unwrap(); + writeln!(w, "/// Get the string representation of a {} object", ident).unwrap(); + writeln!(w, "pub extern \"C\" fn {}_to_str(o: &crate::{}) -> Str {{", ident, resolved_path).unwrap(); + + let self_ty = &i.self_ty; + let ref_type: syn::Type = syn::parse_quote!(&#self_ty); + let new_var = types.write_from_c_conversion_new_var(w, &format_ident!("o"), &ref_type, Some(&gen_types)); + write!(w, "\tformat!(\"{{}}\", ").unwrap(); + types.write_from_c_conversion_prefix(w, &ref_type, Some(&gen_types)); + write!(w, "{}o", if new_var { "local_" } else { "" }).unwrap(); + types.write_from_c_conversion_suffix(w, &ref_type, Some(&gen_types)); + writeln!(w, ").into()").unwrap(); + writeln!(w, "}}").unwrap(); } else { //XXX: implement for other things like ToString @@ -968,37 +1269,50 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ match export_status(&m.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } + let mut meth_gen_types = gen_types.push_ctx(); + assert!(meth_gen_types.learn_generics(&m.sig.generics, types)); if m.defaultness.is_some() { unimplemented!(); } - writeln_docs(w, &m.attrs, ""); + writeln_fn_docs(w, &m.attrs, "", types, Some(&meth_gen_types), m.sig.inputs.iter(), &m.sig.output); if let syn::ReturnType::Type(_, _) = &m.sig.output { writeln!(w, "#[must_use]").unwrap(); } write!(w, "#[no_mangle]\npub extern \"C\" fn {}_{}(", ident, m.sig.ident).unwrap(); let ret_type = match &declared_type { DeclType::MirroredEnum => format!("{}", ident), - DeclType::StructImported => format!("{}", ident), + DeclType::StructImported {..} => format!("{}", ident), _ => unimplemented!(), }; - let mut meth_gen_types = gen_types.push_ctx(); - assert!(meth_gen_types.learn_generics(&m.sig.generics, types)); write_method_params(w, &m.sig, &ret_type, types, Some(&meth_gen_types), false, true); write!(w, " {{\n\t").unwrap(); write_method_var_decl_body(w, &m.sig, "", types, Some(&meth_gen_types), false); let mut takes_self = false; let mut takes_mut_self = false; + let mut takes_owned_self = false; for inp in m.sig.inputs.iter() { if let syn::FnArg::Receiver(r) = inp { takes_self = true; if r.mutability.is_some() { takes_mut_self = true; } + if r.reference.is_none() { takes_owned_self = true; } } } - if takes_mut_self { - write!(w, "unsafe {{ &mut (*(this_arg.inner as *mut native{})) }}.{}(", ident, m.sig.ident).unwrap(); - } else if takes_self { - write!(w, "unsafe {{ &*this_arg.inner }}.{}(", m.sig.ident).unwrap(); - } else { + if !takes_mut_self && !takes_self { write!(w, "{}::{}(", resolved_path, m.sig.ident).unwrap(); + } else { + match &declared_type { + DeclType::MirroredEnum => write!(w, "this_arg.to_native().{}(", m.sig.ident).unwrap(), + DeclType::StructImported {..} => { + if takes_owned_self { + write!(w, "(*unsafe {{ Box::from_raw(this_arg.take_inner()) }}).{}(", m.sig.ident).unwrap(); + } else if takes_mut_self { + write!(w, "unsafe {{ &mut (*ObjOps::untweak_ptr(this_arg.inner as *mut native{})) }}.{}(", ident, m.sig.ident).unwrap(); + } else { + write!(w, "unsafe {{ &*ObjOps::untweak_ptr(this_arg.inner) }}.{}(", m.sig.ident).unwrap(); + } + }, + _ => unimplemented!(), + } } write_method_call_params(w, &m.sig, "", types, Some(&meth_gen_types), &ret_type, false); writeln!(w, "\n}}\n").unwrap(); @@ -1069,6 +1383,23 @@ fn writeln_impl(w: &mut W, i: &syn::ItemImpl, types: &mut Typ } } +/// Replaces upper case charachters with underscore followed by lower case except the first +/// charachter and repeated upper case characthers (which are only made lower case). +fn camel_to_snake_case(camel: &str) -> String { + let mut res = "".to_string(); + let mut last_upper = -1; + for (idx, c) in camel.chars().enumerate() { + if c.is_uppercase() { + if last_upper != idx as isize - 1 { res.push('_'); } + res.push(c.to_lowercase().next().unwrap()); + last_upper = idx as isize; + } else { + res.push(c); + } + } + res +} + /// Print a mapping of an enum. If all of the enum's fields are C-mapped in some form (or the enum /// is unitary), we generate an equivalent enum with all types replaced with their C mapped @@ -1078,6 +1409,7 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type match export_status(&e.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => return, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } if is_enum_opaque(e) { @@ -1087,41 +1419,78 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type } writeln_docs(w, &e.attrs, ""); - if e.generics.lt_token.is_some() { - unimplemented!(); - } + let mut gen_types = GenericTypes::new(None); + assert!(gen_types.learn_generics(&e.generics, types)); let mut needs_free = false; + let mut constr = Vec::new(); writeln!(w, "#[must_use]\n#[derive(Clone)]\n#[repr(C)]\npub enum {} {{", e.ident).unwrap(); for var in e.variants.iter() { assert_eq!(export_status(&var.attrs), ExportStatus::Export); // We can't partially-export a mirrored enum writeln_docs(w, &var.attrs, "\t"); write!(w, "\t{}", var.ident).unwrap(); + writeln!(&mut constr, "#[no_mangle]\n/// Utility method to constructs a new {}-variant {}", var.ident, e.ident).unwrap(); + let constr_name = camel_to_snake_case(&format!("{}", var.ident)); + write!(&mut constr, "pub extern \"C\" fn {}_{}(", e.ident, constr_name).unwrap(); + let mut empty_tuple_variant = false; if let syn::Fields::Named(fields) = &var.fields { needs_free = true; writeln!(w, " {{").unwrap(); - for field in fields.named.iter() { + for (idx, field) in fields.named.iter().enumerate() { if export_status(&field.attrs) == ExportStatus::TestOnly { continue; } - writeln_docs(w, &field.attrs, "\t\t"); + writeln_field_docs(w, &field.attrs, "\t\t", types, Some(&gen_types), &field.ty); write!(w, "\t\t{}: ", field.ident.as_ref().unwrap()).unwrap(); - types.write_c_type(w, &field.ty, None, false); + write!(&mut constr, "{}{}: ", if idx != 0 { ", " } else { "" }, field.ident.as_ref().unwrap()).unwrap(); + types.write_c_type(w, &field.ty, Some(&gen_types), false); + types.write_c_type(&mut constr, &field.ty, Some(&gen_types), false); writeln!(w, ",").unwrap(); } write!(w, "\t}}").unwrap(); } else if let syn::Fields::Unnamed(fields) = &var.fields { - needs_free = true; - write!(w, "(").unwrap(); - for (idx, field) in fields.unnamed.iter().enumerate() { - if export_status(&field.attrs) == ExportStatus::TestOnly { continue; } - types.write_c_type(w, &field.ty, None, false); - if idx != fields.unnamed.len() - 1 { - write!(w, ",").unwrap(); + if fields.unnamed.len() == 1 { + let mut empty_check = Vec::new(); + types.write_c_type(&mut empty_check, &fields.unnamed[0].ty, Some(&gen_types), false); + if empty_check.is_empty() { + empty_tuple_variant = true; + } + } + if !empty_tuple_variant { + needs_free = true; + write!(w, "(").unwrap(); + for (idx, field) in fields.unnamed.iter().enumerate() { + if export_status(&field.attrs) == ExportStatus::TestOnly { continue; } + write!(&mut constr, "{}: ", ('a' as u8 + idx as u8) as char).unwrap(); + types.write_c_type(w, &field.ty, Some(&gen_types), false); + types.write_c_type(&mut constr, &field.ty, Some(&gen_types), false); + if idx != fields.unnamed.len() - 1 { + write!(w, ",").unwrap(); + write!(&mut constr, ",").unwrap(); + } } + write!(w, ")").unwrap(); } - write!(w, ")").unwrap(); } if var.discriminant.is_some() { unimplemented!(); } + write!(&mut constr, ") -> {} {{\n\t{}::{}", e.ident, e.ident, var.ident).unwrap(); + if let syn::Fields::Named(fields) = &var.fields { + writeln!(&mut constr, " {{").unwrap(); + for field in fields.named.iter() { + writeln!(&mut constr, "\t\t{},", field.ident.as_ref().unwrap()).unwrap(); + } + writeln!(&mut constr, "\t}}").unwrap(); + } else if let syn::Fields::Unnamed(fields) = &var.fields { + if !empty_tuple_variant { + write!(&mut constr, "(").unwrap(); + for idx in 0..fields.unnamed.len() { + write!(&mut constr, "{}, ", ('a' as u8 + idx as u8) as char).unwrap(); + } + writeln!(&mut constr, ")").unwrap(); + } else { + writeln!(&mut constr, "").unwrap(); + } + } + writeln!(&mut constr, "}}").unwrap(); writeln!(w, ",").unwrap(); } writeln!(w, "}}\nuse {}::{} as native{};\nimpl {} {{", types.module_path, e.ident, e.ident, e.ident).unwrap(); @@ -1131,6 +1500,7 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type writeln!(w, "\t#[allow(unused)]\n\tpub(crate) fn {} {{\n\t\tmatch {} {{", $fn_sig, if $to_c { "native" } else { "self" }).unwrap(); for var in e.variants.iter() { write!(w, "\t\t\t{}{}::{} ", if $to_c { "native" } else { "" }, e.ident, var.ident).unwrap(); + let mut empty_tuple_variant = false; if let syn::Fields::Named(fields) = &var.fields { write!(w, "{{").unwrap(); for field in fields.named.iter() { @@ -1139,12 +1509,21 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type } write!(w, "}} ").unwrap(); } else if let syn::Fields::Unnamed(fields) = &var.fields { - write!(w, "(").unwrap(); - for (idx, field) in fields.unnamed.iter().enumerate() { - if export_status(&field.attrs) == ExportStatus::TestOnly { continue; } - write!(w, "{}{}, ", if $ref { "ref " } else { "mut " }, ('a' as u8 + idx as u8) as char).unwrap(); + if fields.unnamed.len() == 1 { + let mut empty_check = Vec::new(); + types.write_c_type(&mut empty_check, &fields.unnamed[0].ty, Some(&gen_types), false); + if empty_check.is_empty() { + empty_tuple_variant = true; + } + } + if !empty_tuple_variant || $to_c { + write!(w, "(").unwrap(); + for (idx, field) in fields.unnamed.iter().enumerate() { + if export_status(&field.attrs) == ExportStatus::TestOnly { continue; } + write!(w, "{}{}, ", if $ref { "ref " } else { "mut " }, ('a' as u8 + idx as u8) as char).unwrap(); + } + write!(w, ") ").unwrap(); } - write!(w, ") ").unwrap(); } write!(w, "=>").unwrap(); @@ -1154,9 +1533,9 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type let mut sink = ::std::io::sink(); let mut out: &mut dyn std::io::Write = if $ref { &mut sink } else { w }; let new_var = if $to_c { - types.write_to_c_conversion_new_var(&mut out, $field_ident, &$field.ty, None, false) + types.write_to_c_conversion_new_var(&mut out, $field_ident, &$field.ty, Some(&gen_types), false) } else { - types.write_from_c_conversion_new_var(&mut out, $field_ident, &$field.ty, None) + types.write_from_c_conversion_new_var(&mut out, $field_ident, &$field.ty, Some(&gen_types)) }; if $ref || new_var { if $ref { @@ -1164,9 +1543,9 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type if new_var { let nonref_ident = format_ident!("{}_nonref", $field_ident); if $to_c { - types.write_to_c_conversion_new_var(w, &nonref_ident, &$field.ty, None, false); + types.write_to_c_conversion_new_var(w, &nonref_ident, &$field.ty, Some(&gen_types), false); } else { - types.write_from_c_conversion_new_var(w, &nonref_ident, &$field.ty, None); + types.write_from_c_conversion_new_var(w, &nonref_ident, &$field.ty, Some(&gen_types)); } write!(w, "\n\t\t\t\t").unwrap(); } @@ -1184,7 +1563,9 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type } else if let syn::Fields::Unnamed(fields) = &var.fields { write!(w, " {{\n\t\t\t\t").unwrap(); for (idx, field) in fields.unnamed.iter().enumerate() { - handle_field_a!(field, &format_ident!("{}", ('a' as u8 + idx as u8) as char)); + if !empty_tuple_variant { + handle_field_a!(field, &format_ident!("{}", ('a' as u8 + idx as u8) as char)); + } } } else { write!(w, " ").unwrap(); } @@ -1194,16 +1575,16 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type ($field: expr, $field_ident: expr) => { { if export_status(&$field.attrs) == ExportStatus::TestOnly { continue; } if $to_c { - types.write_to_c_conversion_inline_prefix(w, &$field.ty, None, false); + types.write_to_c_conversion_inline_prefix(w, &$field.ty, Some(&gen_types), false); } else { - types.write_from_c_conversion_prefix(w, &$field.ty, None); + types.write_from_c_conversion_prefix(w, &$field.ty, Some(&gen_types)); } write!(w, "{}{}", $field_ident, if $ref { "_nonref" } else { "" }).unwrap(); if $to_c { - types.write_to_c_conversion_inline_suffix(w, &$field.ty, None, false); + types.write_to_c_conversion_inline_suffix(w, &$field.ty, Some(&gen_types), false); } else { - types.write_from_c_conversion_suffix(w, &$field.ty, None); + types.write_from_c_conversion_suffix(w, &$field.ty, Some(&gen_types)); } write!(w, ",").unwrap(); } } @@ -1219,12 +1600,14 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type writeln!(w, "\n\t\t\t\t}}").unwrap(); write!(w, "\t\t\t}}").unwrap(); } else if let syn::Fields::Unnamed(fields) = &var.fields { - write!(w, " (").unwrap(); - for (idx, field) in fields.unnamed.iter().enumerate() { - write!(w, "\n\t\t\t\t\t").unwrap(); - handle_field_b!(field, &format_ident!("{}", ('a' as u8 + idx as u8) as char)); + if !empty_tuple_variant || !$to_c { + write!(w, " (").unwrap(); + for (idx, field) in fields.unnamed.iter().enumerate() { + write!(w, "\n\t\t\t\t\t").unwrap(); + handle_field_b!(field, &format_ident!("{}", ('a' as u8 + idx as u8) as char)); + } + writeln!(w, "\n\t\t\t\t)").unwrap(); } - writeln!(w, "\n\t\t\t\t)").unwrap(); write!(w, "\t\t\t}}").unwrap(); } writeln!(w, ",").unwrap(); @@ -1248,24 +1631,36 @@ fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, type writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", e.ident, e.ident, e.ident).unwrap(); writeln!(w, "\torig.clone()").unwrap(); writeln!(w, "}}").unwrap(); - write_cpp_wrapper(cpp_headers, &format!("{}", e.ident), needs_free); + w.write_all(&constr).unwrap(); + write_cpp_wrapper(cpp_headers, &format!("{}", e.ident), needs_free, None); } fn writeln_fn<'a, 'b, W: std::io::Write>(w: &mut W, f: &'a syn::ItemFn, types: &mut TypeResolver<'b, 'a>) { match export_status(&f.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => return, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } - writeln_docs(w, &f.attrs, ""); - - let mut gen_types = GenericTypes::new(); + let mut gen_types = GenericTypes::new(None); if !gen_types.learn_generics(&f.sig.generics, types) { return; } + writeln_fn_docs(w, &f.attrs, "", types, Some(&gen_types), f.sig.inputs.iter(), &f.sig.output); + write!(w, "#[no_mangle]\npub extern \"C\" fn {}(", f.sig.ident).unwrap(); + + write_method_params(w, &f.sig, "", types, Some(&gen_types), false, true); write!(w, " {{\n\t").unwrap(); write_method_var_decl_body(w, &f.sig, "", types, Some(&gen_types), false); - write!(w, "{}::{}(", types.module_path, f.sig.ident).unwrap(); + write!(w, "{}::{}", types.module_path, f.sig.ident).unwrap(); + + let mut function_generic_args = Vec::new(); + maybe_write_generics(&mut function_generic_args, &f.sig.generics, types, true); + if !function_generic_args.is_empty() { + write!(w, "::{}", String::from_utf8(function_generic_args).unwrap()).unwrap(); + } + write!(w, "(").unwrap(); + write_method_call_params(w, &f.sig, "", types, Some(&gen_types), "", false); writeln!(w, "\n}}\n").unwrap(); } @@ -1274,6 +1669,35 @@ fn writeln_fn<'a, 'b, W: std::io::Write>(w: &mut W, f: &'a syn::ItemFn, types: & // *** File/Crate Walking Logic *** // ******************************** +fn convert_priv_mod<'a, 'b: 'a, W: std::io::Write>(w: &mut W, libast: &'b FullLibraryAST, crate_types: &CrateTypes<'b>, out_dir: &str, mod_path: &str, module: &'b syn::ItemMod) { + // We want to ignore all items declared in this module (as they are not pub), but we still need + // to give the ImportResolver any use statements, so we copy them here. + let mut use_items = Vec::new(); + for item in module.content.as_ref().unwrap().1.iter() { + if let syn::Item::Use(_) = item { + use_items.push(item); + } + } + let import_resolver = ImportResolver::from_borrowed_items(mod_path.splitn(2, "::").next().unwrap(), &libast.dependencies, mod_path, &use_items); + let mut types = TypeResolver::new(mod_path, import_resolver, crate_types); + + writeln!(w, "mod {} {{\n{}", module.ident, DEFAULT_IMPORTS).unwrap(); + for item in module.content.as_ref().unwrap().1.iter() { + match item { + syn::Item::Mod(m) => convert_priv_mod(w, libast, crate_types, out_dir, &format!("{}::{}", mod_path, module.ident), m), + syn::Item::Impl(i) => { + if let &syn::Type::Path(ref p) = &*i.self_ty { + if p.path.get_ident().is_some() { + writeln_impl(w, i, &mut types); + } + } + }, + _ => {}, + } + } + writeln!(w, "}}").unwrap(); +} + /// Do the Real Work of mapping an original file to C-callable wrappers. Creates a new file at /// `out_path` and fills it with wrapper structs/functions to allow calling the things in the AST /// at `module` from C. @@ -1318,11 +1742,19 @@ fn convert_file<'a, 'b>(libast: &'a FullLibraryAST, crate_types: &CrateTypes<'a> writeln!(out, "#![allow(unused_parens)]").unwrap(); writeln!(out, "#![allow(unused_unsafe)]").unwrap(); writeln!(out, "#![allow(unused_braces)]").unwrap(); - writeln!(out, "#![deny(missing_docs)]").unwrap(); + // TODO: We need to map deny(missing_docs) in the source crate(s) + //writeln!(out, "#![deny(missing_docs)]").unwrap(); + + writeln!(out, "#![cfg_attr(not(feature = \"std\"), no_std)]").unwrap(); + writeln!(out, "#[cfg(not(any(feature = \"std\", feature = \"no-std\")))]").unwrap(); + writeln!(out, "compile_error!(\"at least one of the `std` or `no-std` features must be enabled\");").unwrap(); + writeln!(out, "extern crate alloc;").unwrap(); + + writeln!(out, "pub mod version;").unwrap(); writeln!(out, "pub mod c_types;").unwrap(); writeln!(out, "pub mod bitcoin;").unwrap(); } else { - writeln!(out, "\nuse std::ffi::c_void;\nuse bitcoin::hashes::Hash;\nuse crate::c_types::*;\n").unwrap(); + writeln!(out, "{}", DEFAULT_IMPORTS).unwrap(); } for m in submods { @@ -1356,14 +1788,16 @@ fn convert_file<'a, 'b>(libast: &'a FullLibraryAST, crate_types: &CrateTypes<'a> writeln_trait(&mut out, &t, &mut type_resolver, header_file, cpp_header_file); } }, - syn::Item::Mod(_) => {}, // We don't have to do anything - the top loop handles these. + syn::Item::Mod(m) => { + convert_priv_mod(&mut out, libast, crate_types, out_dir, &format!("{}::{}", module, m.ident), m); + }, syn::Item::Const(c) => { // Re-export any primitive-type constants. if let syn::Visibility::Public(_) = c.vis { if let syn::Type::Path(p) = &*c.ty { let resolved_path = type_resolver.resolve_path(&p.path, None); if type_resolver.is_primitive(&resolved_path) { - writeln_docs(&mut out, &c.attrs, ""); + writeln_field_docs(&mut out, &c.attrs, "", &mut type_resolver, None, &*c.ty); writeln!(out, "\n#[no_mangle]").unwrap(); writeln!(out, "pub static {}: {} = {}::{};", c.ident, resolved_path, module, c.ident).unwrap(); } @@ -1375,6 +1809,7 @@ fn convert_file<'a, 'b>(libast: &'a FullLibraryAST, crate_types: &CrateTypes<'a> match export_status(&t.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } let mut process_alias = true; @@ -1446,15 +1881,16 @@ fn walk_ast<'a>(ast_storage: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a match export_status(&s.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } let struct_path = format!("{}::{}", module, s.ident); - crate_types.opaques.insert(struct_path, &s.ident); + crate_types.opaques.insert(struct_path, (&s.ident, &s.generics)); } }, syn::Item::Trait(t) => { if let syn::Visibility::Public(_) = t.vis { match export_status(&t.attrs) { - ExportStatus::Export => {}, + ExportStatus::Export|ExportStatus::NotImplementable => {}, ExportStatus::NoExport|ExportStatus::TestOnly => continue, } let trait_path = format!("{}::{}", module, t.ident); @@ -1472,6 +1908,7 @@ fn walk_ast<'a>(ast_storage: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a match export_status(&t.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } let type_path = format!("{}::{}", module, t.ident); let mut process_alias = true; @@ -1492,7 +1929,7 @@ fn walk_ast<'a>(ast_storage: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a hash_map::Entry::Vacant(e) => { e.insert(vec![(path_obj, args_obj)]); }, } - crate_types.opaques.insert(type_path, t_ident); + crate_types.opaques.insert(type_path, (t_ident, &t.generics)); }, _ => { crate_types.type_aliases.insert(type_path, import_resolver.resolve_imported_refs((*t.ty).clone())); @@ -1506,9 +1943,10 @@ fn walk_ast<'a>(ast_storage: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a match export_status(&e.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } let enum_path = format!("{}::{}", module, e.ident); - crate_types.opaques.insert(enum_path, &e.ident); + crate_types.opaques.insert(enum_path, (&e.ident, &e.generics)); } }, syn::Item::Enum(e) => { @@ -1516,6 +1954,7 @@ fn walk_ast<'a>(ast_storage: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a match export_status(&e.attrs) { ExportStatus::Export => {}, ExportStatus::NoExport|ExportStatus::TestOnly => continue, + ExportStatus::NotImplementable => panic!("(C-not implementable) must only appear on traits"), } let enum_path = format!("{}::{}", module, e.ident); crate_types.mirrored_enums.insert(enum_path, &e); @@ -1524,7 +1963,8 @@ fn walk_ast<'a>(ast_storage: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a syn::Item::Impl(i) => { if let &syn::Type::Path(ref p) = &*i.self_ty { if let Some(trait_path) = i.trait_.as_ref() { - if path_matches_nongeneric(&trait_path.1, &["core", "clone", "Clone"]) { + if path_matches_nongeneric(&trait_path.1, &["core", "clone", "Clone"]) || + path_matches_nongeneric(&trait_path.1, &["Clone"]) { if let Some(full_path) = import_resolver.maybe_resolve_path(&p.path, None) { crate_types.set_clonable("crate::".to_owned() + &full_path); } @@ -1556,6 +1996,7 @@ fn main() { let mut derived_templates = std::fs::OpenOptions::new().write(true).create(true).truncate(true) .open(&args[2]).expect("Unable to open new header file"); + writeln!(&mut derived_templates, "{}", DEFAULT_IMPORTS).unwrap(); let mut header_file = std::fs::OpenOptions::new().write(true).create(true).truncate(true) .open(&args[3]).expect("Unable to open new header file"); let mut cpp_header_file = std::fs::OpenOptions::new().write(true).create(true).truncate(true) @@ -1575,6 +2016,9 @@ fn main() { writeln!(header_file, "#endif").unwrap(); writeln!(cpp_header_file, "#include \nnamespace LDK {{").unwrap(); + // Write a few manually-defined types into the C++ header file + write_cpp_wrapper(&mut cpp_header_file, "Str", true, None); + // First parse the full crate's ASTs, caching them so that we can hold references to the AST // objects in other datastructures: let mut lib_src = String::new(); @@ -1593,7 +2037,7 @@ fn main() { // For container templates which we created while walking the crate, make sure we add C++ // mapped types so that C++ users can utilize the auto-destructors available. for (ty, has_destructor) in libtypes.templates_defined.borrow().iter() { - write_cpp_wrapper(&mut cpp_header_file, ty, *has_destructor); + write_cpp_wrapper(&mut cpp_header_file, ty, *has_destructor, None); } writeln!(cpp_header_file, "}}").unwrap();