X-Git-Url: http://git.bitcoin.ninja/index.cgi?a=blobdiff_plain;f=c-bindings-gen%2Fsrc%2Ftypes.rs;h=5fd874d3308ce04e362729d97dd13729115459e4;hb=0ef1156801165f50037165350be565209b805d89;hp=1e1bffa34b85e4fa52756d6abcd9d80936299030;hpb=f8078e127bd05d8056f13245656bcc0af8f3e08d;p=ldk-c-bindings diff --git a/c-bindings-gen/src/types.rs b/c-bindings-gen/src/types.rs index 1e1bffa..5fd874d 100644 --- a/c-bindings-gen/src/types.rs +++ b/c-bindings-gen/src/types.rs @@ -147,7 +147,7 @@ pub fn export_status(attrs: &[syn::Attribute]) -> ExportStatus { } pub fn assert_simple_bound(bound: &syn::TraitBound) { - if bound.paren_token.is_some() || bound.lifetimes.is_some() { unimplemented!(); } + if bound.paren_token.is_some() { unimplemented!(); } if let syn::TraitBoundModifier::Maybe(_) = bound.modifier { unimplemented!(); } } @@ -190,7 +190,7 @@ pub struct GenericTypes<'a, 'b> { self_ty: Option, parent: Option<&'b GenericTypes<'b, 'b>>, typed_generics: HashMap<&'a syn::Ident, String>, - default_generics: HashMap<&'a syn::Ident, (syn::Type, syn::Type)>, + default_generics: HashMap<&'a syn::Ident, (syn::Type, syn::Type, syn::Type)>, } impl<'a, 'p: 'a> GenericTypes<'a, 'p> { pub fn new(self_ty: Option) -> Self { @@ -226,20 +226,25 @@ impl<'a, 'p: 'a> GenericTypes<'a, 'p> { if non_lifetimes_processed { return false; } non_lifetimes_processed = true; if path != "std::ops::Deref" && path != "core::ops::Deref" { + let p = string_path_to_syn_path(&path); + let ref_ty = parse_quote!(&#p); + let mut_ref_ty = parse_quote!(&mut #p); + self.default_generics.insert(&type_param.ident, (syn::Type::Path(syn::TypePath { qself: None, path: p }), ref_ty, mut_ref_ty)); new_typed_generics.insert(&type_param.ident, Some(path)); - } else if trait_bound.path.segments.len() == 1 { + } else { // If we're templated on Deref, store // the reference type in `default_generics` which handles full // types and not just paths. if let syn::PathArguments::AngleBracketed(ref args) = trait_bound.path.segments[0].arguments { + assert_eq!(trait_bound.path.segments.len(), 1); for subargument in args.args.iter() { match subargument { syn::GenericArgument::Lifetime(_) => {}, syn::GenericArgument::Binding(ref b) => { if &format!("{}", b.ident) != "Target" { return false; } let default = &b.ty; - self.default_generics.insert(&type_param.ident, (parse_quote!(&#default), parse_quote!(&#default))); + self.default_generics.insert(&type_param.ident, (parse_quote!(&#default), parse_quote!(&#default), parse_quote!(&mut #default))); break 'bound_loop; }, _ => unimplemented!(), @@ -254,7 +259,7 @@ impl<'a, 'p: 'a> GenericTypes<'a, 'p> { } if let Some(default) = type_param.default.as_ref() { assert!(type_param.bounds.is_empty()); - self.default_generics.insert(&type_param.ident, (default.clone(), parse_quote!(&#default))); + self.default_generics.insert(&type_param.ident, (default.clone(), parse_quote!(&#default), parse_quote!(&mut #default))); } }, _ => {}, @@ -268,7 +273,8 @@ impl<'a, 'p: 'a> GenericTypes<'a, 'p> { if p.qself.is_some() { return false; } if p.path.leading_colon.is_some() { return false; } let mut p_iter = p.path.segments.iter(); - if let Some(gen) = new_typed_generics.get_mut(&p_iter.next().unwrap().ident) { + let p_ident = &p_iter.next().unwrap().ident; + if let Some(gen) = new_typed_generics.get_mut(p_ident) { if gen.is_some() { return false; } if &format!("{}", p_iter.next().unwrap().ident) != "Target" {return false; } @@ -281,7 +287,19 @@ impl<'a, 'p: 'a> GenericTypes<'a, 'p> { if non_lifetimes_processed { return false; } non_lifetimes_processed = true; assert_simple_bound(&trait_bound); - *gen = Some(types.resolve_path(&trait_bound.path, None)); + let resolved = types.resolve_path(&trait_bound.path, None); + let ty = syn::Type::Path(syn::TypePath { + qself: None, path: string_path_to_syn_path(&resolved) + }); + let ref_ty = parse_quote!(&#ty); + let mut_ref_ty = parse_quote!(&mut #ty); + if types.crate_types.traits.get(&resolved).is_some() { + self.default_generics.insert(p_ident, (ty, ref_ty, mut_ref_ty)); + } else { + self.default_generics.insert(p_ident, (ref_ty.clone(), ref_ty, mut_ref_ty)); + } + + *gen = Some(resolved); } } } else { return false; } @@ -370,16 +388,20 @@ impl<'a, 'b, 'c: 'a + 'b> ResolveType<'c> for Option<&GenericTypes<'a, 'b>> { match ty { syn::Type::Path(p) => { if let Some(ident) = p.path.get_ident() { - if let Some((ty, _)) = us.default_generics.get(ident) { - return ty; + if let Some((ty, _, _)) = us.default_generics.get(ident) { + return self.resolve_type(ty); } } }, - syn::Type::Reference(syn::TypeReference { elem, .. }) => { + syn::Type::Reference(syn::TypeReference { elem, mutability, .. }) => { if let syn::Type::Path(p) = &**elem { if let Some(ident) = p.path.get_ident() { - if let Some((_, refty)) = us.default_generics.get(ident) { - return refty; + if let Some((_, refty, mut_ref_ty)) = us.default_generics.get(ident) { + if mutability.is_some() { + return self.resolve_type(mut_ref_ty); + } else { + return self.resolve_type(refty); + } } } } @@ -438,6 +460,10 @@ impl<'mod_lifetime, 'crate_lft: 'mod_lifetime> ImportResolver<'mod_lifetime, 'cr new_path = format!("{}::{}{}", crate_name, $ident, $path_suffix); let crate_name_ident = format_ident!("{}", crate_name); path.push(parse_quote!(#crate_name_ident)); + } else if format!("{}", $ident) == "self" { + let mut path_iter = partial_path.rsplitn(2, "::"); + path_iter.next().unwrap(); + new_path = path_iter.next().unwrap().to_owned(); } else { new_path = format!("{}{}{}", partial_path, $ident, $path_suffix); } @@ -452,7 +478,8 @@ impl<'mod_lifetime, 'crate_lft: 'mod_lifetime> ImportResolver<'mod_lifetime, 'cr }, syn::UseTree::Name(n) => { push_path!(n.ident, ""); - imports.insert(n.ident.clone(), (new_path, syn::Path { leading_colon: Some(syn::Token![::](Span::call_site())), segments: path })); + let imported_ident = syn::Ident::new(new_path.rsplitn(2, "::").next().unwrap(), Span::call_site()); + imports.insert(imported_ident, (new_path, syn::Path { leading_colon: Some(syn::Token![::](Span::call_site())), segments: path })); }, syn::UseTree::Group(g) => { for i in g.items.iter() { @@ -678,6 +705,7 @@ impl FullLibraryAST { let modname = if module != "" { module.clone() + "::" + &modident } else { + self.dependencies.insert(m.ident); modident.clone() }; self.load_module(modname, m.attrs, m.content.unwrap().1); @@ -711,6 +739,10 @@ impl FullLibraryAST { fn initial_clonable_types() -> HashSet { let mut res = HashSet::new(); res.insert("crate::c_types::u5".to_owned()); + res.insert("crate::c_types::FourBytes".to_owned()); + res.insert("crate::c_types::TwelveBytes".to_owned()); + res.insert("crate::c_types::SixteenBytes".to_owned()); + res.insert("crate::c_types::TwentyBytes".to_owned()); res.insert("crate::c_types::ThirtyTwoBytes".to_owned()); res.insert("crate::c_types::SecretKey".to_owned()); res.insert("crate::c_types::PublicKey".to_owned()); @@ -718,8 +750,17 @@ fn initial_clonable_types() -> HashSet { res.insert("crate::c_types::TxOut".to_owned()); res.insert("crate::c_types::Signature".to_owned()); res.insert("crate::c_types::RecoverableSignature".to_owned()); + res.insert("crate::c_types::Bech32Error".to_owned()); res.insert("crate::c_types::Secp256k1Error".to_owned()); res.insert("crate::c_types::IOError".to_owned()); + res.insert("crate::c_types::Error".to_owned()); + res.insert("crate::c_types::Str".to_owned()); + + // Because some types are manually-mapped to CVec_u8Z we may end up checking if its clonable + // before we ever get to constructing the type fully via + // `write_c_mangled_container_path_intern` (which will add it here too), so we have to manually + // add it on startup. + res.insert("crate::c_types::derived::CVec_u8Z".to_owned()); res } @@ -1299,20 +1340,33 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { "crate::c_types" } + /// This should just be a closure, but doing so gets an error like + /// error: reached the recursion limit while instantiating `types::TypeResolver::is_transpar...c/types.rs:1358:104: 1358:110]>>` + /// which implies the concrete function instantiation of `is_transparent_container` ends up + /// being recursive. + fn deref_type<'one, 'b: 'one> (obj: &'one &'b syn::Type) -> &'b syn::Type { *obj } + /// Returns true if the path containing the given args is a "transparent" container, ie an /// Option or a container which does not require a generated continer class. fn is_transparent_container<'i, I: Iterator>(&self, full_path: &str, _is_ref: bool, mut args: I, generics: Option<&GenericTypes>) -> bool { if full_path == "Option" { let inner = args.next().unwrap(); assert!(args.next().is_none()); - match inner { - syn::Type::Reference(_) => true, + match generics.resolve_type(inner) { + syn::Type::Reference(r) => { + let elem = &*r.elem; + match elem { + syn::Type::Path(_) => + self.is_transparent_container(full_path, true, [elem].iter().map(Self::deref_type), generics), + _ => true, + } + }, syn::Type::Array(a) => { if let syn::Expr::Lit(l) = &a.len { if let syn::Lit::Int(i) = &l.lit { if i.base10_digits().parse::().unwrap() >= 32 { let mut buf = Vec::new(); - self.write_rust_type(&mut buf, generics, &a.elem); + self.write_rust_type(&mut buf, generics, &a.elem, false); let ty = String::from_utf8(buf).unwrap(); ty == "u8" } else { @@ -1327,8 +1381,20 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { if let Some(resolved) = self.maybe_resolve_path(&p.path, generics) { if self.c_type_has_inner_from_path(&resolved) { return true; } if self.is_primitive(&resolved) { return false; } - if self.c_type_from_path(&resolved, false, false).is_some() { true } else { false } - } else { true } + // We want to move to using `Option_` mappings where possible rather than + // manual mappings, as it makes downstream bindings simpler and is more + // clear for users. Thus, we default to false but override for a few + // types which had mappings defined when we were avoiding the `Option_`s. + match &resolved as &str { + "lightning::ln::PaymentSecret" => true, + "lightning::ln::PaymentHash" => true, + "lightning::ln::PaymentPreimage" => true, + "lightning::ln::channelmanager::PaymentId" => true, + "bitcoin::hash_types::BlockHash" => true, + "secp256k1::PublicKey"|"bitcoin::secp256k1::PublicKey" => true, + _ => false, + } + } else { unimplemented!(); } }, syn::Type::Tuple(_) => false, _ => unimplemented!(), @@ -1402,7 +1468,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { (".is_none() { core::ptr::null_mut() } else { ".to_owned(), format!("({}.unwrap())", var_access)) ], " }", ContainerPrefixLocation::OutsideConv)); } - } else if self.is_primitive(&inner_path) || self.c_type_from_path(&inner_path, false, false).is_none() { + } else if !self.is_transparent_container("Option", is_ref, [single_contained.unwrap()].iter().map(|a| *a), generics) { if self.is_primitive(&inner_path) || (!is_contained_ref && !is_ref) || only_contained_has_inner { let inner_name = self.get_c_mangled_container_type(vec![single_contained.unwrap()], generics, "Option").unwrap(); return Some(("if ", vec![ @@ -1423,12 +1489,18 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { } if let Some(t) = single_contained { if let syn::Type::Tuple(syn::TypeTuple { elems, .. }) = t { - assert!(elems.is_empty()); let inner_name = self.get_c_mangled_container_type(vec![single_contained.unwrap()], generics, "Option").unwrap(); - return Some(("if ", vec![ - (format!(".is_none() {{ {}::None }} else {{ {}::Some /*", - inner_name, inner_name), format!("")) - ], " */}", ContainerPrefixLocation::PerConv)); + if elems.is_empty() { + return Some(("if ", vec![ + (format!(".is_none() {{ {}::None }} else {{ {}::Some /* ", + inner_name, inner_name), format!("")) + ], " */ }", ContainerPrefixLocation::PerConv)); + } else { + return Some(("if ", vec![ + (format!(".is_none() {{ {}::None }} else {{ {}::Some(", + inner_name, inner_name), format!("({}.unwrap())", var_access)) + ], ") }", ContainerPrefixLocation::PerConv)); + } } if let syn::Type::Reference(syn::TypeReference { elem, .. }) = t { if let syn::Type::Slice(_) = &**elem { @@ -1490,7 +1562,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { if let Some(t) = single_contained { match t { - syn::Type::Reference(_)|syn::Type::Path(_)|syn::Type::Slice(_) => { + syn::Type::Reference(_)|syn::Type::Path(_)|syn::Type::Slice(_)|syn::Type::Array(_) => { let mut v = Vec::new(); let ret_ref = self.write_empty_rust_val_check_suffix(generics, &mut v, t); let s = String::from_utf8(v).unwrap(); @@ -1612,7 +1684,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { } } - fn write_rust_path(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, path: &syn::Path) { + fn write_rust_path(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, path: &syn::Path, with_ref_lifetime: bool, generated_crate_ref: bool) { if let Some(resolved) = self.maybe_resolve_path(&path, generics_resolver) { if self.is_primitive(&resolved) { write!(w, "{}", path.get_ident().unwrap()).unwrap(); @@ -1621,16 +1693,16 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { // checking for "bitcoin" explicitly. if resolved.starts_with("bitcoin::") || Self::in_rust_prelude(&resolved) { write!(w, "{}", resolved).unwrap(); - // If we're printing a generic argument, it needs to reference the crate, otherwise - // the original crate: - } else if self.maybe_resolve_path(&path, None).as_ref() == Some(&resolved) { + } else if !generated_crate_ref { + // If we're printing a generic argument, it needs to reference the crate, otherwise + // the original crate. write!(w, "{}", self.real_rust_type_mapping(&resolved)).unwrap(); } else { write!(w, "crate::{}", resolved).unwrap(); } } if let syn::PathArguments::AngleBracketed(args) = &path.segments.iter().last().unwrap().arguments { - self.write_rust_generic_arg(w, generics_resolver, args.args.iter()); + self.write_rust_generic_arg(w, generics_resolver, args.args.iter(), with_ref_lifetime); } } else { if path.leading_colon.is_some() { @@ -1640,7 +1712,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { if idx != 0 { write!(w, "::").unwrap(); } write!(w, "{}", seg.ident).unwrap(); if let syn::PathArguments::AngleBracketed(args) = &seg.arguments { - self.write_rust_generic_arg(w, generics_resolver, args.args.iter()); + self.write_rust_generic_arg(w, generics_resolver, args.args.iter(), with_ref_lifetime); } } } @@ -1660,7 +1732,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { match bound { syn::TypeParamBound::Trait(tb) => { if tb.paren_token.is_some() || tb.lifetimes.is_some() { unimplemented!(); } - self.write_rust_path(w, generics_resolver, &tb.path); + self.write_rust_path(w, generics_resolver, &tb.path, false, false); }, _ => unimplemented!(), } @@ -1673,38 +1745,46 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { if had_params { write!(w, ">").unwrap(); } } - pub fn write_rust_generic_arg<'b, W: std::io::Write>(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, generics: impl Iterator) { + pub fn write_rust_generic_arg<'b, W: std::io::Write>(&self, w: &mut W, generics_resolver: Option<&GenericTypes>, generics: impl Iterator, with_ref_lifetime: bool) { write!(w, "<").unwrap(); for (idx, arg) in generics.enumerate() { if idx != 0 { write!(w, ", ").unwrap(); } match arg { - syn::GenericArgument::Type(t) => self.write_rust_type(w, generics_resolver, t), + syn::GenericArgument::Type(t) => self.write_rust_type(w, generics_resolver, t, with_ref_lifetime), _ => unimplemented!(), } } write!(w, ">").unwrap(); } - pub fn write_rust_type(&self, w: &mut W, generics: Option<&GenericTypes>, t: &syn::Type) { - match generics.resolve_type(t) { + fn do_write_rust_type(&self, w: &mut W, generics: Option<&GenericTypes>, t: &syn::Type, with_ref_lifetime: bool, force_crate_ref: bool) { + let real_ty = generics.resolve_type(t); + let mut generate_crate_ref = force_crate_ref || t != real_ty; + match real_ty { syn::Type::Path(p) => { if p.qself.is_some() { unimplemented!(); } - self.write_rust_path(w, generics, &p.path); + if let Some(resolved_ty) = self.maybe_resolve_path(&p.path, generics) { + generate_crate_ref |= self.maybe_resolve_path(&p.path, None).as_ref() != Some(&resolved_ty); + if self.crate_types.traits.get(&resolved_ty).is_none() { generate_crate_ref = false; } + } + self.write_rust_path(w, generics, &p.path, with_ref_lifetime, generate_crate_ref); }, syn::Type::Reference(r) => { write!(w, "&").unwrap(); if let Some(lft) = &r.lifetime { write!(w, "'{} ", lft.ident).unwrap(); + } else if with_ref_lifetime { + write!(w, "'static ").unwrap(); } if r.mutability.is_some() { write!(w, "mut ").unwrap(); } - self.write_rust_type(w, generics, &*r.elem); + self.do_write_rust_type(w, generics, &*r.elem, with_ref_lifetime, generate_crate_ref); }, syn::Type::Array(a) => { write!(w, "[").unwrap(); - self.write_rust_type(w, generics, &a.elem); + self.do_write_rust_type(w, generics, &a.elem, with_ref_lifetime, generate_crate_ref); if let syn::Expr::Lit(l) = &a.len { if let syn::Lit::Int(i) = &l.lit { write!(w, "; {}]", i).unwrap(); @@ -1713,20 +1793,24 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { } syn::Type::Slice(s) => { write!(w, "[").unwrap(); - self.write_rust_type(w, generics, &s.elem); + self.do_write_rust_type(w, generics, &s.elem, with_ref_lifetime, generate_crate_ref); write!(w, "]").unwrap(); }, syn::Type::Tuple(s) => { write!(w, "(").unwrap(); for (idx, t) in s.elems.iter().enumerate() { if idx != 0 { write!(w, ", ").unwrap(); } - self.write_rust_type(w, generics, &t); + self.do_write_rust_type(w, generics, &t, with_ref_lifetime, generate_crate_ref); } write!(w, ")").unwrap(); }, _ => unimplemented!(), } } + pub fn write_rust_type(&self, w: &mut W, generics: Option<&GenericTypes>, t: &syn::Type, with_ref_lifetime: bool) { + self.do_write_rust_type(w, generics, t, with_ref_lifetime, false); + } + /// Prints a constructor for something which is "uninitialized" (but obviously not actually /// unint'd memory). @@ -1786,7 +1870,6 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { syn::Type::Path(p) => { let resolved = self.resolve_path(&p.path, generics); if let Some(arr_ty) = self.is_real_type_array(&resolved) { - write!(w, ".data").unwrap(); return self.write_empty_rust_val_check_suffix(generics, w, &arr_ty); } if self.crate_types.opaques.get(&resolved).is_some() { @@ -1806,7 +1889,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { syn::Type::Array(a) => { if let syn::Expr::Lit(l) = &a.len { if let syn::Lit::Int(i) = &l.lit { - write!(w, " == [0; {}]", i.base10_digits()).unwrap(); + write!(w, ".data == [0; {}]", i.base10_digits()).unwrap(); EmptyValExpectedTy::NonPointer } else { unimplemented!(); } } else { unimplemented!(); } @@ -1974,6 +2057,8 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { write!(w, "{}", sliceconv(false, None)).unwrap(); } } + } else if let syn::Type::Array(_) = &*s.elem { + write!(w, "{}", sliceconv(false, Some(".map(|a| *a)"))).unwrap(); } else { unimplemented!(); } }, syn::Type::Tuple(t) => { @@ -2137,7 +2222,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { // For slices (and Options), we refuse to directly map them as is_ref when they // aren't opaque types containing an inner pointer. This is due to the fact that, // in both cases, the actual higher-level type is non-is_ref. - let ty_has_inner = if $args_len == 1 { + let (ty_has_inner, ty_is_trait) = if $args_len == 1 { let ty = $args_iter().next().unwrap(); if $container_type == "Slice" && to_c { // "To C ptr_for_ref" means "return the regular object with is_owned @@ -2147,12 +2232,14 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { } if let syn::Type::Reference(t) = ty { if let syn::Type::Path(p) = &*t.elem { - self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics)) - } else { false } + let resolved = self.resolve_path(&p.path, generics); + (self.c_type_has_inner_from_path(&resolved), self.crate_types.traits.get(&resolved).is_some()) + } else { (false, false) } } else if let syn::Type::Path(p) = ty { - self.c_type_has_inner_from_path(&self.resolve_path(&p.path, generics)) - } else { false } - } else { true }; + let resolved = self.resolve_path(&p.path, generics); + (self.c_type_has_inner_from_path(&resolved), self.crate_types.traits.get(&resolved).is_some()) + } else { (false, false) } + } else { (true, false) }; // Options get a bunch of special handling, since in general we map Option<>al // types into the same C type as non-Option-wrapped types. This ends up being @@ -2176,7 +2263,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { // If the inner element contains an inner pointer, we will just use that, // avoiding the need to map elements to references. Otherwise we'll need to // do an extra mapping step. - needs_ref_map = !only_contained_has_inner && $container_type == "Option"; + needs_ref_map = !only_contained_has_inner && !ty_is_trait && $container_type == "Option"; } else { only_contained_type = Some(arg); only_contained_type_nonref = Some(arg); @@ -2324,6 +2411,12 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { ptr_for_ref = true; convert_container!("Slice", 1, || ty.iter()); unimplemented!("convert_container should return true as container_lookup should succeed for slices"); + } else if let syn::Type::Array(_) = &*s.elem { + is_ref = false; + ptr_for_ref = true; + let arr_elem = [(*s.elem).clone()]; + convert_container!("Slice", 1, || arr_elem.iter()); + unimplemented!("convert_container should return true as container_lookup should succeed for slices"); } else { unimplemented!() } }, syn::Type::Tuple(t) => { @@ -2424,10 +2517,11 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { // ****************************************************** fn write_template_generics<'b, W: std::io::Write>(&self, w: &mut W, args: &mut dyn Iterator, generics: Option<&GenericTypes>, is_ref: bool) -> bool { - for (idx, t) in args.enumerate() { + for (idx, orig_t) in args.enumerate() { if idx != 0 { write!(w, ", ").unwrap(); } + let t = generics.resolve_type(orig_t); if let syn::Type::Reference(r_arg) = t { assert!(!is_ref); // We don't currently support outer reference types for non-primitive inners @@ -2439,6 +2533,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { if let syn::Type::Path(p_arg) = &*r_arg.elem { let resolved = self.resolve_path(&p_arg.path, generics); assert!(self.crate_types.opaques.get(&resolved).is_some() || + self.crate_types.traits.get(&resolved).is_some() || self.c_type_from_path(&resolved, true, true).is_some(), "Template generics should be opaque or have a predefined mapping"); } else { unimplemented!(); } } else if let syn::Type::Path(p_arg) = t { @@ -2720,7 +2815,7 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { // lifetime, of which the only real available choice is `static`, obviously. write!(w, "&'static {}", crate_pfx).unwrap(); if !c_ty { - self.write_rust_path(w, generics, path); + self.write_rust_path(w, generics, path, with_ref_lifetime, false); } else { // We shouldn't be mapping references in types, so panic here unimplemented!(); @@ -2832,6 +2927,22 @@ impl<'a, 'c: 'a> TypeResolver<'a, 'c> { let mut segments = syn::punctuated::Punctuated::new(); segments.push(parse_quote!(Vec<#args>)); self.write_c_type_intern(w, &syn::Type::Path(syn::TypePath { qself: None, path: syn::Path { leading_colon: None, segments } }), generics, false, is_mut, ptr_for_ref, with_ref_lifetime, c_ty) + } else if let syn::Type::Array(a) = &*s.elem { + if let syn::Expr::Lit(l) = &a.len { + if let syn::Lit::Int(i) = &l.lit { + let mut buf = Vec::new(); + self.write_rust_type(&mut buf, generics, &*a.elem, false); + let arr_ty = String::from_utf8(buf).unwrap(); + + let arr_str = format!("[{}; {}]", arr_ty, i.base10_digits()); + let ty = self.c_type_from_path(&arr_str, false, ptr_for_ref).unwrap() + .rsplitn(2, "::").next().unwrap(); + + let mangled_container = format!("CVec_{}Z", ty); + write!(w, "{}::{}", Self::generated_container_path(), mangled_container).unwrap(); + self.check_create_container(mangled_container, "Vec", vec![&*s.elem], generics, false) + } else { false } + } else { false } } else { false } }, syn::Type::Tuple(t) => {