X-Git-Url: http://git.bitcoin.ninja/index.cgi?a=blobdiff_plain;f=lightning%2Fsrc%2Fchain%2Fkeysinterface.rs;h=9a3baea8bb442a3c6928cca83559606a66de95ff;hb=28c9b56113ff1ebb1b505a2c979c55c1626aa06b;hp=80f734edbde3e0def17dcd23ceb903d564d969e2;hpb=cb83cfe366aaa07179cac1079694e9ea5c6cc9c6;p=rust-lightning diff --git a/lightning/src/chain/keysinterface.rs b/lightning/src/chain/keysinterface.rs index 80f734ed..9a3baea8 100644 --- a/lightning/src/chain/keysinterface.rs +++ b/lightning/src/chain/keysinterface.rs @@ -11,34 +11,115 @@ //! spendable on-chain outputs which the user owns and is responsible for using just as any other //! on-chain output which is theirs. -use bitcoin::blockdata::transaction::{Transaction, TxOut, SigHashType}; +use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType}; use bitcoin::blockdata::script::{Script, Builder}; use bitcoin::blockdata::opcodes; use bitcoin::network::constants::Network; use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber}; -use bitcoin::util::bip143; +use bitcoin::util::sighash; +use bitcoin::bech32::u5; use bitcoin::hashes::{Hash, HashEngine}; use bitcoin::hashes::sha256::HashEngine as Sha256State; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hashes::sha256d::Hash as Sha256dHash; use bitcoin::hash_types::WPubkeyHash; -use bitcoin::secp256k1::key::{SecretKey, PublicKey}; -use bitcoin::secp256k1::{Secp256k1, Signature, Signing}; -use bitcoin::secp256k1; +use bitcoin::secp256k1::{SecretKey, PublicKey}; +use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing}; +use bitcoin::secp256k1::ecdh::SharedSecret; +use bitcoin::secp256k1::ecdsa::RecoverableSignature; +use bitcoin::{secp256k1, Witness}; -use util::byte_utils; -use util::ser::{Writeable, Writer, Readable}; +use util::{byte_utils, transaction_utils}; +use util::crypto::{hkdf_extract_expand_twice, sign}; +use util::ser::{Writeable, Writer, Readable, ReadableArgs}; use chain::transaction::OutPoint; -use ln::chan_utils; -use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction}; +use ln::{chan_utils, PaymentPreimage}; +use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction}; use ln::msgs::UnsignedChannelAnnouncement; +use ln::script::ShutdownScript; + +use prelude::*; +use core::sync::atomic::{AtomicUsize, Ordering}; +use io::{self, Error}; +use ln::msgs::{DecodeError, MAX_VALUE_MSAT}; +use util::invoice::construct_invoice_preimage; + +/// Used as initial key material, to be expanded into multiple secret keys (but not to be used +/// directly). This is used within LDK to encrypt/decrypt inbound payment data. +/// (C-not exported) as we just use [u8; 32] directly +#[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)] +pub struct KeyMaterial(pub [u8; 32]); + +/// Information about a spendable output to a P2WSH script. See +/// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this. +#[derive(Clone, Debug, PartialEq)] +pub struct DelayedPaymentOutputDescriptor { + /// The outpoint which is spendable + pub outpoint: OutPoint, + /// Per commitment point to derive delayed_payment_key by key holder + pub per_commitment_point: PublicKey, + /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in + /// the witness_script. + pub to_self_delay: u16, + /// The output which is referenced by the given outpoint + pub output: TxOut, + /// The revocation point specific to the commitment transaction which was broadcast. Used to + /// derive the witnessScript for this output. + pub revocation_pubkey: PublicKey, + /// Arbitrary identification information returned by a call to + /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in + /// the channel to spend the output. + pub channel_keys_id: [u8; 32], + /// The value of the channel which this output originated from, possibly indirectly. + pub channel_value_satoshis: u64, +} +impl DelayedPaymentOutputDescriptor { + /// The maximum length a well-formed witness spending one of these should have. + // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus + // redeemscript push length. + pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1; +} -use std::sync::atomic::{AtomicUsize, Ordering}; -use std::io::Error; -use ln::msgs::DecodeError; +impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, { + (0, outpoint, required), + (2, per_commitment_point, required), + (4, to_self_delay, required), + (6, output, required), + (8, revocation_pubkey, required), + (10, channel_keys_id, required), + (12, channel_value_satoshis, required), +}); + +/// Information about a spendable output to our "payment key". See +/// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this. +#[derive(Clone, Debug, PartialEq)] +pub struct StaticPaymentOutputDescriptor { + /// The outpoint which is spendable + pub outpoint: OutPoint, + /// The output which is referenced by the given outpoint + pub output: TxOut, + /// Arbitrary identification information returned by a call to + /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in + /// the channel to spend the output. + pub channel_keys_id: [u8; 32], + /// The value of the channel which this transactions spends. + pub channel_value_satoshis: u64, +} +impl StaticPaymentOutputDescriptor { + /// The maximum length a well-formed witness spending one of these should have. + // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus + // redeemscript push length. + pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34; +} +impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, { + (0, outpoint, required), + (2, output, required), + (4, channel_keys_id, required), + (6, channel_value_satoshis, required), +}); /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to /// claim at any point in the future) an event is generated which you must track and be able to @@ -47,9 +128,9 @@ use ln::msgs::DecodeError; /// that txid/index, and any keys or other information required to sign. #[derive(Clone, Debug, PartialEq)] pub enum SpendableOutputDescriptor { - /// An output to a script which was provided via KeysInterface, thus you should already know - /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the - /// script_pubkey as it appears in the output. + /// An output to a script which was provided via KeysInterface directly, either from + /// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know + /// how to spend it. No secret keys are provided as rust-lightning was never given any key. /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC /// on-chain using the payment preimage or after it has timed out. StaticOutput { @@ -72,115 +153,45 @@ pub enum SpendableOutputDescriptor { /// /// To derive the delayed_payment key which is used to sign for this input, you must pass the /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in - /// ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to + /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to /// chan_utils::derive_private_key. The public key can be generated without the secret key /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in - /// ChannelKeys::pubkeys(). + /// Sign::pubkeys(). /// /// To derive the revocation_pubkey provided here (which is used in the witness /// script generation), you must pass the counterparty revocation_basepoint (which appears in the - /// call to ChannelKeys::ready_channel) and the provided per_commitment point + /// call to Sign::ready_channel) and the provided per_commitment point /// to chan_utils::derive_public_revocation_key. /// /// The witness script which is hashed and included in the output script_pubkey may be /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey /// (derived as above), and the to_self_delay contained here to /// chan_utils::get_revokeable_redeemscript. - // - // TODO: we need to expose utility methods in KeyManager to do all the relevant derivation. - DynamicOutputP2WSH { - /// The outpoint which is spendable - outpoint: OutPoint, - /// Per commitment point to derive delayed_payment_key by key holder - per_commitment_point: PublicKey, - /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in - /// the witness_script. - to_self_delay: u16, - /// The output which is referenced by the given outpoint - output: TxOut, - /// The channel keys state used to proceed to derivation of signing key. Must - /// be pass to KeysInterface::derive_channel_keys. - key_derivation_params: (u64, u64), - /// The revocation_pubkey used to derive witnessScript - revocation_pubkey: PublicKey - }, + DelayedPaymentOutput(DelayedPaymentOutputDescriptor), /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which - /// corresponds to the public key in ChannelKeys::pubkeys().payment_point). + /// corresponds to the public key in Sign::pubkeys().payment_point). /// The witness in the spending input, is, thus, simply: /// /// /// These are generally the result of our counterparty having broadcast the current state, /// allowing us to claim the non-HTLC-encumbered outputs immediately. - StaticOutputCounterpartyPayment { - /// The outpoint which is spendable - outpoint: OutPoint, - /// The output which is reference by the given outpoint - output: TxOut, - /// The channel keys state used to proceed to derivation of signing key. Must - /// be pass to KeysInterface::derive_channel_keys. - key_derivation_params: (u64, u64), - } -} - -impl Writeable for SpendableOutputDescriptor { - fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { - match self { - &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => { - 0u8.write(writer)?; - outpoint.write(writer)?; - output.write(writer)?; - }, - &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref key_derivation_params, ref revocation_pubkey } => { - 1u8.write(writer)?; - outpoint.write(writer)?; - per_commitment_point.write(writer)?; - to_self_delay.write(writer)?; - output.write(writer)?; - key_derivation_params.0.write(writer)?; - key_derivation_params.1.write(writer)?; - revocation_pubkey.write(writer)?; - }, - &SpendableOutputDescriptor::StaticOutputCounterpartyPayment { ref outpoint, ref output, ref key_derivation_params } => { - 2u8.write(writer)?; - outpoint.write(writer)?; - output.write(writer)?; - key_derivation_params.0.write(writer)?; - key_derivation_params.1.write(writer)?; - }, - } - Ok(()) - } + StaticPaymentOutput(StaticPaymentOutputDescriptor), } -impl Readable for SpendableOutputDescriptor { - fn read(reader: &mut R) -> Result { - match Readable::read(reader)? { - 0u8 => Ok(SpendableOutputDescriptor::StaticOutput { - outpoint: Readable::read(reader)?, - output: Readable::read(reader)?, - }), - 1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH { - outpoint: Readable::read(reader)?, - per_commitment_point: Readable::read(reader)?, - to_self_delay: Readable::read(reader)?, - output: Readable::read(reader)?, - key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?), - revocation_pubkey: Readable::read(reader)?, - }), - 2u8 => Ok(SpendableOutputDescriptor::StaticOutputCounterpartyPayment { - outpoint: Readable::read(reader)?, - output: Readable::read(reader)?, - key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?), - }), - _ => Err(DecodeError::InvalidValue), - } - } -} +impl_writeable_tlv_based_enum!(SpendableOutputDescriptor, + (0, StaticOutput) => { + (0, outpoint, required), + (2, output, required), + }, +; + (1, DelayedPaymentOutput), + (2, StaticPaymentOutput), +); -/// Set of lightning keys needed to operate a channel as described in BOLT 3. +/// A trait to sign lightning channel transactions as described in BOLT 3. /// /// Signing services could be implemented on a hardware wallet. In this case, -/// the current ChannelKeys would be a front-end on top of a communication +/// the current Sign would be a front-end on top of a communication /// channel connected to your secure device and lightning key material wouldn't /// reside on a hot server. Nevertheless, a this deployment would still need /// to trust the ChannelManager to avoid loss of funds as this latest component @@ -194,21 +205,13 @@ impl Readable for SpendableOutputDescriptor { /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted /// to act, as liveness and breach reply correctness are always going to be hard requirements /// of LN security model, orthogonal of key management issues. -/// -/// If you're implementing a custom signer, you almost certainly want to implement -/// Readable/Writable to serialize out a unique reference to this set of keys so -/// that you can serialize the full ChannelManager object. -/// -// (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly -// to the possibility of reentrancy issues by calling the user's code during our deserialization -// routine). -// TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create +// TODO: We should remove Clone by instead requesting a new Sign copy when we create // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors. -pub trait ChannelKeys : Send+Clone + Writeable { +pub trait BaseSign { /// Gets the per-commitment point for a specific commitment number /// /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards. - fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1) -> PublicKey; + fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1) -> PublicKey; /// Gets the commitment secret for a specific commitment number as part of the revocation process /// /// An external signer implementation should error here if the commitment was already signed @@ -217,21 +220,50 @@ pub trait ChannelKeys : Send+Clone + Writeable { /// May be called more than once for the same index. /// /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards. - /// TODO: return a Result so we can signal a validation error + // TODO: return a Result so we can signal a validation error fn release_commitment_secret(&self, idx: u64) -> [u8; 32]; + /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs. + /// + /// This is required in order for the signer to make sure that releasing a commitment + /// secret won't leave us without a broadcastable holder transaction. + /// Policy checks should be implemented in this function, including checking the amount + /// sent to us and checking the HTLCs. + /// + /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided. + /// A validating signer should ensure that an HTLC output is removed only when the matching + /// preimage is provided, or when the value to holder is restored. + /// + /// NOTE: all the relevant preimages will be provided, but there may also be additional + /// irrelevant or duplicate preimages. + fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec) -> Result<(), ()>; /// Gets the holder's channel public keys and basepoints fn pubkeys(&self) -> &ChannelPublicKeys; - /// Gets arbitrary identifiers describing the set of keys which are provided back to you in - /// some SpendableOutputDescriptor types. These should be sufficient to identify this - /// ChannelKeys object uniquely and lookup or re-derive its keys. - fn key_derivation_params(&self) -> (u64, u64); + /// Gets an arbitrary identifier describing the set of keys which are provided back to you in + /// some SpendableOutputDescriptor types. This should be sufficient to identify this + /// Sign object uniquely and lookup or re-derive its keys. + fn channel_keys_id(&self) -> [u8; 32]; /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions. /// /// Note that if signing fails or is rejected, the channel will be force-closed. + /// + /// Policy checks should be implemented in this function, including checking the amount + /// sent to us and checking the HTLCs. + /// + /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided. + /// A validating signer should ensure that an HTLC output is removed only when the matching + /// preimage is provided, or when the value to holder is restored. + /// + /// NOTE: all the relevant preimages will be provided, but there may also be additional + /// irrelevant or duplicate preimages. // // TODO: Document the things someone using this interface should enforce before signing. - fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()>; + fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()>; + /// Validate the counterparty's revocation. + /// + /// This is required in order for the signer to make sure that the state has moved + /// forward and it is safe to sign the next counterparty commitment. + fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>; /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions. /// This will only ever be called with a non-revoked commitment_tx. This will be called with the @@ -247,21 +279,21 @@ pub trait ChannelKeys : Send+Clone + Writeable { // // TODO: Document the things someone using this interface should enforce before signing. // TODO: Key derivation failure should panic rather than Err - fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()>; + fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()>; /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment /// transactions which will be broadcasted later, after the channel has moved on to a newer /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever /// get called once. #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))] - fn unsafe_sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1) -> Result; + fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()>; - /// Create a signature for the given input in a transaction spending an HTLC or commitment - /// transaction output when our counterparty broadcasts an old state. + /// Create a signature for the given input in a transaction spending an HTLC transaction output + /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state. /// - /// A justice transaction may claim multiples outputs at the same time if timelocks are + /// A justice transaction may claim multiple outputs at the same time if timelocks are /// similar, but only a signature for the input at index `input` should be signed for here. - /// It may be called multiples time for same output(s) if a fee-bump is needed with regards + /// It may be called multiple times for same output(s) if a fee-bump is needed with regards /// to an upcoming timelock expiration. /// /// Amount is value of the output spent by this input, committed to in the BIP 143 signature. @@ -270,11 +302,26 @@ pub trait ChannelKeys : Send+Clone + Writeable { /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does /// not allow the spending of any funds by itself (you need our holder revocation_secret to do /// so). + fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1) -> Result; + + /// Create a signature for the given input in a transaction spending a commitment transaction + /// HTLC output when our counterparty broadcasts an old state. + /// + /// A justice transaction may claim multiple outputs at the same time if timelocks are + /// similar, but only a signature for the input at index `input` should be signed for here. + /// It may be called multiple times for same output(s) if a fee-bump is needed with regards + /// to an upcoming timelock expiration. /// - /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus - /// changing the format of the witness script (which is committed to in the BIP 143 - /// signatures). - fn sign_justice_transaction(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option, secp_ctx: &Secp256k1) -> Result; + /// Amount is value of the output spent by this input, committed to in the BIP 143 signature. + /// + /// per_commitment_key is revocation secret which was provided by our counterparty when they + /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does + /// not allow the spending of any funds by itself (you need our holder revocation_secret to do + /// so). + /// + /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script + /// (which is committed to in the BIP 143 signatures). + fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1) -> Result; /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment /// transaction, either offered or received. @@ -293,21 +340,25 @@ pub trait ChannelKeys : Send+Clone + Writeable { /// detected onchain. It has been generated by our counterparty and is used to derive /// channel state keys, which are then included in the witness script and committed to in the /// BIP 143 signature. - fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1) -> Result; + fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1) -> Result; /// Create a signature for a (proposed) closing transaction. /// /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have /// chosen to forgo their output as dust. - fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1) -> Result; + fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1) -> Result; - /// Signs a channel announcement message with our funding key, proving it comes from one - /// of the channel participants. + /// Signs a channel announcement message with our funding key and our node secret key (aka + /// node_id or network_key), proving it comes from one of the channel participants. + /// + /// The first returned signature should be from our node secret key, the second from our + /// funding key. /// /// Note that if this fails or is rejected, the channel will not be publicly announced and /// our counterparty may (though likely will not) close the channel on us for violating the /// protocol. - fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) -> Result; + fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) + -> Result<(Signature, Signature), ()>; /// Set the counterparty static channel data, including basepoints, /// counterparty_selected/holder_selected_contest_delay and funding outpoint. @@ -322,40 +373,104 @@ pub trait ChannelKeys : Send+Clone + Writeable { fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters); } +/// A cloneable signer. +/// +/// Although we require signers to be cloneable, it may be useful for developers to be able to use +/// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait, +/// which implies Sized, into this derived trait. +pub trait Sign: BaseSign + Writeable + Clone { +} + +/// Specifies the recipient of an invoice, to indicate to [`KeysInterface::sign_invoice`] what node +/// secret key should be used to sign the invoice. +pub enum Recipient { + /// The invoice should be signed with the local node secret key. + Node, + /// The invoice should be signed with the phantom node secret key. This secret key must be the + /// same for all nodes participating in the [phantom node payment]. + /// + /// [phantom node payment]: PhantomKeysManager + PhantomNode, +} + /// A trait to describe an object which can get user secrets and key material. -pub trait KeysInterface: Send + Sync { - /// A type which implements ChannelKeys which will be returned by get_channel_keys. - type ChanKeySigner : ChannelKeys; +pub trait KeysInterface { + /// A type which implements Sign which will be returned by get_channel_signer. + type Signer : Sign; - /// Get node secret key (aka node_id or network_key) - fn get_node_secret(&self) -> SecretKey; - /// Get destination redeemScript to encumber static protocol exit points. + /// Get node secret key based on the provided [`Recipient`]. + /// + /// The node_id/network_key is the public key that corresponds to this secret key. + /// + /// This method must return the same value each time it is called with a given `Recipient` + /// parameter. + fn get_node_secret(&self, recipient: Recipient) -> Result; + /// Gets the ECDH shared secret of our [`node secret`] and `other_key`, multiplying by `tweak` if + /// one is provided. Note that this tweak can be applied to `other_key` instead of our node + /// secret, though this is less efficient. + /// + /// [`node secret`]: Self::get_node_secret + fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&[u8; 32]>) -> Result; + /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs. + /// + /// This method should return a different value each time it is called, to avoid linking + /// on-chain funds across channels as controlled to the same user. fn get_destination_script(&self) -> Script; - /// Get shutdown_pubkey to use as PublicKey at channel closure - fn get_shutdown_pubkey(&self) -> PublicKey; - /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you + /// Get a script pubkey which we will send funds to when closing a channel. + /// + /// This method should return a different value each time it is called, to avoid linking + /// on-chain funds across channels as controlled to the same user. + fn get_shutdown_scriptpubkey(&self) -> ShutdownScript; + /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you /// restarted with some stale data! - fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner; + /// + /// This method must return a different value each time it is called. + fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer; /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting /// onion packets and for temporary channel IDs. There is no requirement that these be /// persisted anywhere, though they must be unique across restarts. + /// + /// This method must return a different value each time it is called. fn get_secure_random_bytes(&self) -> [u8; 32]; - /// Reads a `ChanKeySigner` for this `KeysInterface` from the given input stream. + /// Reads a `Signer` for this `KeysInterface` from the given input stream. /// This is only called during deserialization of other objects which contain - /// `ChannelKeys`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s). - /// The bytes are exactly those which `::write()` writes, and + /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s). + /// The bytes are exactly those which `::write()` writes, and /// contain no versioning scheme. You may wish to include your own version prefix and ensure /// you've read all of the provided bytes to ensure no corruption occurred. - fn read_chan_signer(&self, reader: &[u8]) -> Result; + fn read_chan_signer(&self, reader: &[u8]) -> Result; + + /// Sign an invoice. + /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of + /// this trait to parse the invoice and make sure they're signing what they expect, rather than + /// blindly signing the hash. + /// The hrp is ascii bytes, while the invoice data is base32. + /// + /// The secret key used to sign the invoice is dependent on the [`Recipient`]. + fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result; + + /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data. + /// + /// If the implementor of this trait supports [phantom node payments], then every node that is + /// intended to be included in the phantom invoice route hints must return the same value from + /// this method. + // This is because LDK avoids storing inbound payment data by encrypting payment data in the + // payment hash and/or payment secret, therefore for a payment to be receivable by multiple + // nodes, they must share the key that encrypts this payment data. + /// + /// This method must return the same value each time it is called. + /// + /// [phantom node payments]: PhantomKeysManager + fn get_inbound_payment_key_material(&self) -> KeyMaterial; } #[derive(Clone)] -/// A simple implementation of ChannelKeys that just keeps the private keys in memory. +/// A simple implementation of Sign that just keeps the private keys in memory. /// /// This implementation performs no policy checks and is insufficient by itself as /// a secure external signer. -pub struct InMemoryChannelKeys { +pub struct InMemorySigner { /// Private key of anchor tx pub funding_key: SecretKey, /// Holder secret key for blinded revocation pubkey @@ -370,18 +485,21 @@ pub struct InMemoryChannelKeys { pub commitment_seed: [u8; 32], /// Holder public keys and basepoints pub(crate) holder_channel_pubkeys: ChannelPublicKeys, + /// Private key of our node secret, used for signing channel announcements + node_secret: SecretKey, /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance channel_parameters: Option, /// The total value of this channel channel_value_satoshis: u64, /// Key derivation parameters - key_derivation_params: (u64, u64), + channel_keys_id: [u8; 32], } -impl InMemoryChannelKeys { - /// Create a new InMemoryChannelKeys +impl InMemorySigner { + /// Create a new InMemorySigner pub fn new( secp_ctx: &Secp256k1, + node_secret: SecretKey, funding_key: SecretKey, revocation_base_key: SecretKey, payment_key: SecretKey, @@ -389,22 +507,23 @@ impl InMemoryChannelKeys { htlc_base_key: SecretKey, commitment_seed: [u8; 32], channel_value_satoshis: u64, - key_derivation_params: (u64, u64)) -> InMemoryChannelKeys { + channel_keys_id: [u8; 32]) -> InMemorySigner { let holder_channel_pubkeys = - InMemoryChannelKeys::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key, + InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key, &payment_key, &delayed_payment_base_key, &htlc_base_key); - InMemoryChannelKeys { + InMemorySigner { funding_key, revocation_base_key, payment_key, delayed_payment_base_key, htlc_base_key, commitment_seed, + node_secret, channel_value_satoshis, holder_channel_pubkeys, channel_parameters: None, - key_derivation_params, + channel_keys_id, } } @@ -455,10 +574,81 @@ impl InMemoryChannelKeys { pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters { self.channel_parameters.as_ref().unwrap() } + + /// Whether anchors should be used. + /// Will panic if ready_channel wasn't called. + pub fn opt_anchors(&self) -> bool { + self.get_channel_parameters().opt_anchors.is_some() + } + + /// Sign the single input of spend_tx at index `input_idx` which spends the output + /// described by descriptor, returning the witness stack for the input. + /// + /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig, + /// is not spending the outpoint described by `descriptor.outpoint`, + /// or if an output descriptor script_pubkey does not match the one we can spend. + pub fn sign_counterparty_payment_input(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1) -> Result>, ()> { + // TODO: We really should be taking the SigHashCache as a parameter here instead of + // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only + // so that we can check them. This requires upstream rust-bitcoin changes (as well as + // bindings updates to support SigHashCache objects). + if spend_tx.input.len() <= input_idx { return Err(()); } + if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); } + if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); } + + let remotepubkey = self.pubkeys().payment_point; + let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey(); + let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]); + let remotesig = sign(secp_ctx, &sighash, &self.payment_key); + let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey(); + + if payment_script != descriptor.output.script_pubkey { return Err(()); } + + let mut witness = Vec::with_capacity(2); + witness.push(remotesig.serialize_der().to_vec()); + witness[0].push(EcdsaSighashType::All as u8); + witness.push(remotepubkey.serialize().to_vec()); + Ok(witness) + } + + /// Sign the single input of spend_tx at index `input_idx` which spends the output + /// described by descriptor, returning the witness stack for the input. + /// + /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig, + /// is not spending the outpoint described by `descriptor.outpoint`, does not have a + /// sequence set to `descriptor.to_self_delay`, or if an output descriptor + /// script_pubkey does not match the one we can spend. + pub fn sign_dynamic_p2wsh_input(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1) -> Result>, ()> { + // TODO: We really should be taking the SigHashCache as a parameter here instead of + // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only + // so that we can check them. This requires upstream rust-bitcoin changes (as well as + // bindings updates to support SigHashCache objects). + if spend_tx.input.len() <= input_idx { return Err(()); } + if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); } + if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); } + if spend_tx.input[input_idx].sequence != descriptor.to_self_delay as u32 { return Err(()); } + + let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key) + .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted."); + let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key); + let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey); + let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]); + let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key); + let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey(); + + if descriptor.output.script_pubkey != payment_script { return Err(()); } + + let mut witness = Vec::with_capacity(3); + witness.push(local_delayedsig.serialize_der().to_vec()); + witness[0].push(EcdsaSighashType::All as u8); + witness.push(vec!()); //MINIMALIF + witness.push(witness_script.clone().into_bytes()); + Ok(witness) + } } -impl ChannelKeys for InMemoryChannelKeys { - fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1) -> PublicKey { +impl BaseSign for InMemorySigner { + fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1) -> PublicKey { let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap(); PublicKey::from_secret_key(secp_ctx, &commitment_secret) } @@ -467,10 +657,14 @@ impl ChannelKeys for InMemoryChannelKeys { chan_utils::build_commitment_secret(&self.commitment_seed, idx) } + fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec) -> Result<(), ()> { + Ok(()) + } + fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys } - fn key_derivation_params(&self) -> (u64, u64) { self.key_derivation_params } + fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id } - fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()> { + fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()> { let trusted_tx = commitment_tx.trust(); let keys = trusted_tx.keys(); @@ -483,100 +677,95 @@ impl ChannelKeys for InMemoryChannelKeys { let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len()); for htlc in commitment_tx.htlcs() { - let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key); - let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys); - let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]); - let holder_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) { - Ok(s) => s, - Err(_) => return Err(()), - }; - htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key)); + let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key); + let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys); + let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All }; + let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]); + let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?; + htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key)); } Ok((commitment_sig, htlc_sigs)) } - fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()> { + fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> { + Ok(()) + } + + fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()> { let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key); let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey); - let sig = commitment_tx.trust().built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx); - let channel_parameters = self.get_channel_parameters(); let trusted_tx = commitment_tx.trust(); + let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx); + let channel_parameters = self.get_channel_parameters(); let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?; Ok((sig, htlc_sigs)) } #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))] - fn unsafe_sign_holder_commitment(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1) -> Result { + fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1) -> Result<(Signature, Vec), ()> { let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key); - let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey); - Ok(commitment_tx.trust().built_transaction().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx)) + let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey); + let trusted_tx = commitment_tx.trust(); + let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx); + let channel_parameters = self.get_channel_parameters(); + let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?; + Ok((sig, htlc_sigs)) } - fn sign_justice_transaction(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option, secp_ctx: &Secp256k1) -> Result { - let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) { - Ok(revocation_key) => revocation_key, - Err(_) => return Err(()) - }; + fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1) -> Result { + let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?; let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key); - let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) { - Ok(revocation_pubkey) => revocation_pubkey, - Err(_) => return Err(()) - }; - let witness_script = if let &Some(ref htlc) = htlc { - let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) { - Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey, - Err(_) => return Err(()) - }; - let holder_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) { - Ok(holder_htlcpubkey) => holder_htlcpubkey, - Err(_) => return Err(()) - }; - chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey) - } else { - let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) { - Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey, - Err(_) => return Err(()) - }; + let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?; + let witness_script = { + let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?; chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey) }; - let mut sighash_parts = bip143::SigHashCache::new(justice_tx); - let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]); - return Ok(secp_ctx.sign(&sighash, &revocation_key)) + let mut sighash_parts = sighash::SighashCache::new(justice_tx); + let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]); + return Ok(sign(secp_ctx, &sighash, &revocation_key)) + } + + fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1) -> Result { + let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?; + let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key); + let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?; + let witness_script = { + let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?; + let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?; + chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey) + }; + let mut sighash_parts = sighash::SighashCache::new(justice_tx); + let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]); + return Ok(sign(secp_ctx, &sighash, &revocation_key)) } - fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1) -> Result { + fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1) -> Result { if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) { let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) { if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) { if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) { - chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey) + chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey) } else { return Err(()) } } else { return Err(()) } } else { return Err(()) }; - let mut sighash_parts = bip143::SigHashCache::new(htlc_tx); - let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]); - return Ok(secp_ctx.sign(&sighash, &htlc_key)) + let mut sighash_parts = sighash::SighashCache::new(htlc_tx); + let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]); + return Ok(sign(secp_ctx, &sighash, &htlc_key)) } Err(()) } - fn sign_closing_transaction(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1) -> Result { - if closing_tx.input.len() != 1 { return Err(()); } - if closing_tx.input[0].witness.len() != 0 { return Err(()); } - if closing_tx.output.len() > 2 { return Err(()); } - + fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1) -> Result { let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key); let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey); - - let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx) - .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]); - Ok(secp_ctx.sign(&sighash, &self.funding_key)) + Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx)) } - fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) -> Result { + fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) + -> Result<(Signature, Signature), ()> { let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]); - Ok(secp_ctx.sign(&msghash, &self.funding_key)) + Ok((sign(secp_ctx, &msghash, &self.node_secret), sign(secp_ctx, &msghash, &self.funding_key))) } fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) { @@ -586,8 +775,15 @@ impl ChannelKeys for InMemoryChannelKeys { } } -impl Writeable for InMemoryChannelKeys { +const SERIALIZATION_VERSION: u8 = 1; +const MIN_SERIALIZATION_VERSION: u8 = 1; + +impl Sign for InMemorySigner {} + +impl Writeable for InMemorySigner { fn write(&self, writer: &mut W) -> Result<(), Error> { + write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION); + self.funding_key.write(writer)?; self.revocation_base_key.write(writer)?; self.payment_key.write(writer)?; @@ -596,15 +792,18 @@ impl Writeable for InMemoryChannelKeys { self.commitment_seed.write(writer)?; self.channel_parameters.write(writer)?; self.channel_value_satoshis.write(writer)?; - self.key_derivation_params.0.write(writer)?; - self.key_derivation_params.1.write(writer)?; + self.channel_keys_id.write(writer)?; + + write_tlv_fields!(writer, {}); Ok(()) } } -impl Readable for InMemoryChannelKeys { - fn read(reader: &mut R) -> Result { +impl ReadableArgs for InMemorySigner { + fn read(reader: &mut R, node_secret: SecretKey) -> Result { + let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION); + let funding_key = Readable::read(reader)?; let revocation_base_key = Readable::read(reader)?; let payment_key = Readable::read(reader)?; @@ -615,23 +814,25 @@ impl Readable for InMemoryChannelKeys { let channel_value_satoshis = Readable::read(reader)?; let secp_ctx = Secp256k1::signing_only(); let holder_channel_pubkeys = - InMemoryChannelKeys::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key, + InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key, &payment_key, &delayed_payment_base_key, &htlc_base_key); - let params_1 = Readable::read(reader)?; - let params_2 = Readable::read(reader)?; + let keys_id = Readable::read(reader)?; + + read_tlv_fields!(reader, {}); - Ok(InMemoryChannelKeys { + Ok(InMemorySigner { funding_key, revocation_base_key, payment_key, delayed_payment_base_key, htlc_base_key, + node_secret, commitment_seed, channel_value_satoshis, holder_channel_pubkeys, channel_parameters: counterparty_channel_data, - key_derivation_params: (params_1, params_2), + channel_keys_id: keys_id, }) } } @@ -643,15 +844,24 @@ impl Readable for InMemoryChannelKeys { /// ChannelMonitor closes may use seed/1' /// Cooperative closes may use seed/2' /// The two close keys may be needed to claim on-chain funds! +/// +/// This struct cannot be used for nodes that wish to support receiving phantom payments; +/// [`PhantomKeysManager`] must be used instead. +/// +/// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any +/// previously issued invoices and attempts to pay previous invoices will fail. pub struct KeysManager { - secp_ctx: Secp256k1, + secp_ctx: Secp256k1, node_secret: SecretKey, + inbound_payment_key: KeyMaterial, destination_script: Script, shutdown_pubkey: PublicKey, channel_master_key: ExtendedPrivKey, channel_child_index: AtomicUsize, + rand_bytes_master_key: ExtendedPrivKey, rand_bytes_child_index: AtomicUsize, + rand_bytes_unique_start: Sha256State, seed: [u8; 32], starting_time_secs: u64, @@ -678,14 +888,15 @@ impl KeysManager { /// Note that until the 0.1 release there is no guarantee of backward compatibility between /// versions. Once the library is more fully supported, the docs will be updated to include a /// detailed description of the guarantee. - pub fn new(seed: &[u8; 32], network: Network, starting_time_secs: u64, starting_time_nanos: u32) -> Self { - let secp_ctx = Secp256k1::signing_only(); - match ExtendedPrivKey::new_master(network.clone(), seed) { + pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self { + let secp_ctx = Secp256k1::new(); + // Note that when we aren't serializing the key, network doesn't matter + match ExtendedPrivKey::new_master(Network::Testnet, seed) { Ok(master_key) => { - let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key; + let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key; let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) { Ok(destination_key) => { - let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes()); + let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes()); Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0) .push_slice(&wpubkey_hash.into_inner()) .into_script() @@ -693,54 +904,63 @@ impl KeysManager { Err(_) => panic!("Your RNG is busted"), }; let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) { - Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key, + Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key, Err(_) => panic!("Your RNG is busted"), }; let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted"); let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted"); + let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key; + let mut inbound_pmt_key_bytes = [0; 32]; + inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]); - KeysManager { + let mut rand_bytes_unique_start = Sha256::engine(); + rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs)); + rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos)); + rand_bytes_unique_start.input(seed); + + let mut res = KeysManager { secp_ctx, node_secret, + inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes), + destination_script, shutdown_pubkey, + channel_master_key, channel_child_index: AtomicUsize::new(0), + rand_bytes_master_key, rand_bytes_child_index: AtomicUsize::new(0), + rand_bytes_unique_start, seed: *seed, starting_time_secs, starting_time_nanos, - } + }; + let secp_seed = res.get_secure_random_bytes(); + res.secp_ctx.seeded_randomize(&secp_seed); + res }, Err(_) => panic!("Your rng is busted"), } } - fn derive_unique_start(&self) -> Sha256State { - let mut unique_start = Sha256::engine(); - unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs)); - unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos)); - unique_start.input(&self.seed); - unique_start - } - /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation - /// parameters. + /// Derive an old Sign containing per-channel secrets based on a key derivation parameters. + /// /// Key derivation parameters are accessible through a per-channel secrets - /// ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of + /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of /// onchain output detection for which a corresponding delayed_payment_key must be derived. - pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params_1: u64, params_2: u64) -> InMemoryChannelKeys { - let chan_id = ((params_1 & 0xFFFF_FFFF_0000_0000) >> 32) as u32; + pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner { + let chan_id = byte_utils::slice_to_be64(¶ms[0..8]); + assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us let mut unique_start = Sha256::engine(); - unique_start.input(&byte_utils::be64_to_array(params_2)); - unique_start.input(&byte_utils::be32_to_array(params_1 as u32)); + unique_start.input(params); unique_start.input(&self.seed); // We only seriously intend to rely on the channel_master_key for true secure // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie // starting_time provided in the constructor) to be unique. - let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id).expect("key space exhausted")).expect("Your RNG is busted"); - unique_start.input(&child_privkey.private_key.key[..]); + let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted"); + unique_start.input(&child_privkey.private_key[..]); let seed = Sha256::from_engine(unique_start).into_inner(); @@ -765,8 +985,9 @@ impl KeysManager { let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key); let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key); - InMemoryChannelKeys::new( + InMemorySigner::new( &self.secp_ctx, + self.node_secret, funding_key, revocation_base_key, payment_key, @@ -774,44 +995,316 @@ impl KeysManager { htlc_base_key, commitment_seed, channel_value_satoshis, - (params_1, params_2), + params.clone() ) } + + /// Creates a Transaction which spends the given descriptors to the given outputs, plus an + /// output to the given change destination (if sufficient change value remains). The + /// transaction will have a feerate, at least, of the given value. + /// + /// Returns `Err(())` if the output value is greater than the input value minus required fee, + /// if a descriptor was duplicated, or if an output descriptor `script_pubkey` + /// does not match the one we can spend. + /// + /// We do not enforce that outputs meet the dust limit or that any output scripts are standard. + /// + /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used + /// this KeysManager or one of the `InMemorySigner` created by this KeysManager. + pub fn spend_spendable_outputs(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1) -> Result { + let mut input = Vec::new(); + let mut input_value = 0; + let mut witness_weight = 0; + let mut output_set = HashSet::with_capacity(descriptors.len()); + for outp in descriptors { + match outp { + SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => { + input.push(TxIn { + previous_output: descriptor.outpoint.into_bitcoin_outpoint(), + script_sig: Script::new(), + sequence: 0, + witness: Witness::new(), + }); + witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH; + input_value += descriptor.output.value; + if !output_set.insert(descriptor.outpoint) { return Err(()); } + }, + SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => { + input.push(TxIn { + previous_output: descriptor.outpoint.into_bitcoin_outpoint(), + script_sig: Script::new(), + sequence: descriptor.to_self_delay as u32, + witness: Witness::new(), + }); + witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH; + input_value += descriptor.output.value; + if !output_set.insert(descriptor.outpoint) { return Err(()); } + }, + SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => { + input.push(TxIn { + previous_output: outpoint.into_bitcoin_outpoint(), + script_sig: Script::new(), + sequence: 0, + witness: Witness::new(), + }); + witness_weight += 1 + 73 + 34; + input_value += output.value; + if !output_set.insert(*outpoint) { return Err(()); } + } + } + if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); } + } + let mut spend_tx = Transaction { + version: 2, + lock_time: 0, + input, + output: outputs, + }; + let expected_max_weight = + transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?; + + let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None; + let mut input_idx = 0; + for outp in descriptors { + match outp { + SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => { + if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id { + keys_cache = Some(( + self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id), + descriptor.channel_keys_id)); + } + spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?); + }, + SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => { + if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id { + keys_cache = Some(( + self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id), + descriptor.channel_keys_id)); + } + spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?); + }, + SpendableOutputDescriptor::StaticOutput { ref output, .. } => { + let derivation_idx = if output.script_pubkey == self.destination_script { + 1 + } else { + 2 + }; + let secret = { + // Note that when we aren't serializing the key, network doesn't matter + match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) { + Ok(master_key) => { + match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) { + Ok(key) => key, + Err(_) => panic!("Your RNG is busted"), + } + } + Err(_) => panic!("Your rng is busted"), + } + }; + let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub(); + if derivation_idx == 2 { + assert_eq!(pubkey.inner, self.shutdown_pubkey); + } + let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey(); + let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey(); + + if payment_script != output.script_pubkey { return Err(()); }; + + let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]); + let sig = sign(secp_ctx, &sighash, &secret.private_key); + let mut sig_ser = sig.serialize_der().to_vec(); + sig_ser.push(EcdsaSighashType::All as u8); + spend_tx.input[input_idx].witness.push(sig_ser); + spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec()); + }, + } + input_idx += 1; + } + + debug_assert!(expected_max_weight >= spend_tx.weight()); + // Note that witnesses with a signature vary somewhat in size, so allow + // `expected_max_weight` to overshoot by up to 3 bytes per input. + debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3); + + Ok(spend_tx) + } } impl KeysInterface for KeysManager { - type ChanKeySigner = InMemoryChannelKeys; + type Signer = InMemorySigner; - fn get_node_secret(&self) -> SecretKey { - self.node_secret.clone() + fn get_node_secret(&self, recipient: Recipient) -> Result { + match recipient { + Recipient::Node => Ok(self.node_secret.clone()), + Recipient::PhantomNode => Err(()) + } + } + + fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&[u8; 32]>) -> Result { + let mut node_secret = self.get_node_secret(recipient)?; + if let Some(tweak) = tweak { + node_secret.mul_assign(tweak).map_err(|_| ())?; + } + Ok(SharedSecret::new(other_key, &node_secret)) + } + + fn get_inbound_payment_key_material(&self) -> KeyMaterial { + self.inbound_payment_key.clone() } fn get_destination_script(&self) -> Script { self.destination_script.clone() } - fn get_shutdown_pubkey(&self) -> PublicKey { - self.shutdown_pubkey.clone() + fn get_shutdown_scriptpubkey(&self) -> ShutdownScript { + ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone()) } - fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner { + fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer { let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel); - let ix_and_nanos: u64 = (child_ix as u64) << 32 | (self.starting_time_nanos as u64); - self.derive_channel_keys(channel_value_satoshis, ix_and_nanos, self.starting_time_secs) + assert!(child_ix <= core::u32::MAX as usize); + let mut id = [0; 32]; + id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64)); + id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64)); + id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs)); + self.derive_channel_keys(channel_value_satoshis, &id) } fn get_secure_random_bytes(&self) -> [u8; 32] { - let mut sha = self.derive_unique_start(); + let mut sha = self.rand_bytes_unique_start.clone(); let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel); let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted"); - sha.input(&child_privkey.private_key.key[..]); + sha.input(&child_privkey.private_key[..]); sha.input(b"Unique Secure Random Bytes Salt"); Sha256::from_engine(sha).into_inner() } - fn read_chan_signer(&self, reader: &[u8]) -> Result { - InMemoryChannelKeys::read(&mut std::io::Cursor::new(reader)) + fn read_chan_signer(&self, reader: &[u8]) -> Result { + InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone()) } + + fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result { + let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data); + let secret = match recipient { + Recipient::Node => self.get_node_secret(Recipient::Node)?, + Recipient::PhantomNode => return Err(()), + }; + Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret)) + } +} + +/// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node +/// payments. +/// +/// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be +/// paid to one of multiple nodes. This works because we encode the invoice route hints such that +/// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment +/// itself without ever needing to forward to this fake node. +/// +/// Phantom node payments are useful for load balancing between multiple LDK nodes. They also +/// provide some fault tolerance, because payers will automatically retry paying other provided +/// nodes in the case that one node goes down. +/// +/// Note that multi-path payments are not supported in phantom invoices for security reasons. +// In the hypothetical case that we did support MPP phantom payments, there would be no way for +// nodes to know when the full payment has been received (and the preimage can be released) without +// significantly compromising on our safety guarantees. I.e., if we expose the ability for the user +// to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage +// is released too early. +// +/// Switching between this struct and [`KeysManager`] will invalidate any previously issued +/// invoices and attempts to pay previous invoices will fail. +pub struct PhantomKeysManager { + inner: KeysManager, + inbound_payment_key: KeyMaterial, + phantom_secret: SecretKey, +} + +impl KeysInterface for PhantomKeysManager { + type Signer = InMemorySigner; + + fn get_node_secret(&self, recipient: Recipient) -> Result { + match recipient { + Recipient::Node => self.inner.get_node_secret(Recipient::Node), + Recipient::PhantomNode => Ok(self.phantom_secret.clone()), + } + } + + fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&[u8; 32]>) -> Result { + let mut node_secret = self.get_node_secret(recipient)?; + if let Some(tweak) = tweak { + node_secret.mul_assign(tweak).map_err(|_| ())?; + } + Ok(SharedSecret::new(other_key, &node_secret)) + } + + fn get_inbound_payment_key_material(&self) -> KeyMaterial { + self.inbound_payment_key.clone() + } + + fn get_destination_script(&self) -> Script { + self.inner.get_destination_script() + } + + fn get_shutdown_scriptpubkey(&self) -> ShutdownScript { + self.inner.get_shutdown_scriptpubkey() + } + + fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer { + self.inner.get_channel_signer(inbound, channel_value_satoshis) + } + + fn get_secure_random_bytes(&self) -> [u8; 32] { + self.inner.get_secure_random_bytes() + } + + fn read_chan_signer(&self, reader: &[u8]) -> Result { + self.inner.read_chan_signer(reader) + } + + fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result { + let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data); + let secret = self.get_node_secret(recipient)?; + Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret)) + } +} + +impl PhantomKeysManager { + /// Constructs a `PhantomKeysManager` given a 32-byte seed and an additional `cross_node_seed` + /// that is shared across all nodes that intend to participate in [phantom node payments] together. + /// + /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and + /// `starting_time_nanos`. + /// + /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the + /// same across restarts, or else inbound payments may fail. + /// + /// [phantom node payments]: PhantomKeysManager + pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self { + let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos); + let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed); + Self { + inner, + inbound_payment_key: KeyMaterial(inbound_key), + phantom_secret: SecretKey::from_slice(&phantom_key).unwrap(), + } + } + + /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method. + pub fn spend_spendable_outputs(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1) -> Result { + self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx) + } + + /// See [`KeysManager::derive_channel_keys`] for documentation on this method. + pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner { + self.inner.derive_channel_keys(channel_value_satoshis, params) + } +} + +// Ensure that BaseSign can have a vtable +#[test] +pub fn dyn_sign() { + let _signer: Box; }