X-Git-Url: http://git.bitcoin.ninja/index.cgi?a=blobdiff_plain;f=lightning%2Fsrc%2Fchain%2Fkeysinterface.rs;h=be31036220a5a720e27d561697aad4a5daa7869c;hb=refs%2Fheads%2F2022-04-listen-filtered-blocks;hp=e1cc90674c0d44865555ee00dcd348ebcd1681c6;hpb=6e19d1f523e8c272060d7ad3b236b05008ff2a8f;p=rust-lightning diff --git a/lightning/src/chain/keysinterface.rs b/lightning/src/chain/keysinterface.rs index e1cc9067..be310362 100644 --- a/lightning/src/chain/keysinterface.rs +++ b/lightning/src/chain/keysinterface.rs @@ -31,7 +31,8 @@ use bitcoin::secp256k1::recovery::RecoverableSignature; use bitcoin::secp256k1; use util::{byte_utils, transaction_utils}; -use util::ser::{Writeable, Writer, Readable}; +use util::crypto::{hkdf_extract_expand_twice, sign}; +use util::ser::{Writeable, Writer, Readable, ReadableArgs}; use chain::transaction::OutPoint; use ln::{chan_utils, PaymentPreimage}; @@ -346,13 +347,17 @@ pub trait BaseSign { /// chosen to forgo their output as dust. fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1) -> Result; - /// Signs a channel announcement message with our funding key, proving it comes from one - /// of the channel participants. + /// Signs a channel announcement message with our funding key and our node secret key (aka + /// node_id or network_key), proving it comes from one of the channel participants. + /// + /// The first returned signature should be from our node secret key, the second from our + /// funding key. /// /// Note that if this fails or is rejected, the channel will not be publicly announced and /// our counterparty may (though likely will not) close the channel on us for violating the /// protocol. - fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) -> Result; + fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) + -> Result<(Signature, Signature), ()>; /// Set the counterparty static channel data, including basepoints, /// counterparty_selected/holder_selected_contest_delay and funding outpoint. @@ -375,15 +380,28 @@ pub trait BaseSign { pub trait Sign: BaseSign + Writeable + Clone { } +/// Specifies the recipient of an invoice, to indicate to [`KeysInterface::sign_invoice`] what node +/// secret key should be used to sign the invoice. +pub enum Recipient { + /// The invoice should be signed with the local node secret key. + Node, + /// The invoice should be signed with the phantom node secret key. This secret key must be the + /// same for all nodes participating in the [phantom node payment]. + /// + /// [phantom node payment]: PhantomKeysManager + PhantomNode, +} + /// A trait to describe an object which can get user secrets and key material. pub trait KeysInterface { /// A type which implements Sign which will be returned by get_channel_signer. type Signer : Sign; - /// Get node secret key (aka node_id or network_key). + /// Get node secret key (aka node_id or network_key) based on the provided [`Recipient`]. /// - /// This method must return the same value each time it is called. - fn get_node_secret(&self) -> SecretKey; + /// This method must return the same value each time it is called with a given `Recipient` + /// parameter. + fn get_node_secret(&self, recipient: Recipient) -> Result; /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs. /// /// This method should return a different value each time it is called, to avoid linking @@ -419,11 +437,22 @@ pub trait KeysInterface { /// this trait to parse the invoice and make sure they're signing what they expect, rather than /// blindly signing the hash. /// The hrp is ascii bytes, while the invoice data is base32. - fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5]) -> Result; + /// + /// The secret key used to sign the invoice is dependent on the [`Recipient`]. + fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result; /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data. /// + /// If the implementor of this trait supports [phantom node payments], then every node that is + /// intended to be included in the phantom invoice route hints must return the same value from + /// this method. + // This is because LDK avoids storing inbound payment data by encrypting payment data in the + // payment hash and/or payment secret, therefore for a payment to be receivable by multiple + // nodes, they must share the key that encrypts this payment data. + /// /// This method must return the same value each time it is called. + /// + /// [phantom node payments]: PhantomKeysManager fn get_inbound_payment_key_material(&self) -> KeyMaterial; } @@ -447,6 +476,8 @@ pub struct InMemorySigner { pub commitment_seed: [u8; 32], /// Holder public keys and basepoints pub(crate) holder_channel_pubkeys: ChannelPublicKeys, + /// Private key of our node secret, used for signing channel announcements + node_secret: SecretKey, /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance channel_parameters: Option, /// The total value of this channel @@ -459,6 +490,7 @@ impl InMemorySigner { /// Create a new InMemorySigner pub fn new( secp_ctx: &Secp256k1, + node_secret: SecretKey, funding_key: SecretKey, revocation_base_key: SecretKey, payment_key: SecretKey, @@ -478,6 +510,7 @@ impl InMemorySigner { delayed_payment_base_key, htlc_base_key, commitment_seed, + node_secret, channel_value_satoshis, holder_channel_pubkeys, channel_parameters: None, @@ -557,7 +590,7 @@ impl InMemorySigner { let remotepubkey = self.pubkeys().payment_point; let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Testnet).script_pubkey(); let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]); - let remotesig = secp_ctx.sign(&sighash, &self.payment_key); + let remotesig = sign(secp_ctx, &sighash, &self.payment_key); let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, key: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey(); if payment_script != descriptor.output.script_pubkey { return Err(()); } @@ -591,7 +624,7 @@ impl InMemorySigner { let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key); let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey); let sighash = hash_to_message!(&bip143::SigHashCache::new(spend_tx).signature_hash(input_idx, &witness_script, descriptor.output.value, SigHashType::All)[..]); - let local_delayedsig = secp_ctx.sign(&sighash, &delayed_payment_key); + let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key); let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey(); if descriptor.output.script_pubkey != payment_script { return Err(()); } @@ -640,7 +673,7 @@ impl BaseSign for InMemorySigner { let htlc_sighashtype = if self.opt_anchors() { SigHashType::SinglePlusAnyoneCanPay } else { SigHashType::All }; let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype)[..]); let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?; - htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key)); + htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key)); } Ok((commitment_sig, htlc_sigs)) @@ -681,7 +714,7 @@ impl BaseSign for InMemorySigner { }; let mut sighash_parts = bip143::SigHashCache::new(justice_tx); let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]); - return Ok(secp_ctx.sign(&sighash, &revocation_key)) + return Ok(sign(secp_ctx, &sighash, &revocation_key)) } fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1) -> Result { @@ -695,7 +728,7 @@ impl BaseSign for InMemorySigner { }; let mut sighash_parts = bip143::SigHashCache::new(justice_tx); let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]); - return Ok(secp_ctx.sign(&sighash, &revocation_key)) + return Ok(sign(secp_ctx, &sighash, &revocation_key)) } fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1) -> Result { @@ -709,7 +742,7 @@ impl BaseSign for InMemorySigner { } else { return Err(()) }; let mut sighash_parts = bip143::SigHashCache::new(htlc_tx); let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]); - return Ok(secp_ctx.sign(&sighash, &htlc_key)) + return Ok(sign(secp_ctx, &sighash, &htlc_key)) } Err(()) } @@ -720,9 +753,10 @@ impl BaseSign for InMemorySigner { Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx)) } - fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) -> Result { + fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1) + -> Result<(Signature, Signature), ()> { let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]); - Ok(secp_ctx.sign(&msghash, &self.funding_key)) + Ok((sign(secp_ctx, &msghash, &self.node_secret), sign(secp_ctx, &msghash, &self.funding_key))) } fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) { @@ -757,8 +791,8 @@ impl Writeable for InMemorySigner { } } -impl Readable for InMemorySigner { - fn read(reader: &mut R) -> Result { +impl ReadableArgs for InMemorySigner { + fn read(reader: &mut R, node_secret: SecretKey) -> Result { let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION); let funding_key = Readable::read(reader)?; @@ -784,6 +818,7 @@ impl Readable for InMemorySigner { payment_key, delayed_payment_base_key, htlc_base_key, + node_secret, commitment_seed, channel_value_satoshis, holder_channel_pubkeys, @@ -800,6 +835,12 @@ impl Readable for InMemorySigner { /// ChannelMonitor closes may use seed/1' /// Cooperative closes may use seed/2' /// The two close keys may be needed to claim on-chain funds! +/// +/// This struct cannot be used for nodes that wish to support receiving phantom payments; +/// [`PhantomKeysManager`] must be used instead. +/// +/// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any +/// previously issued invoices and attempts to pay previous invoices will fail. pub struct KeysManager { secp_ctx: Secp256k1, node_secret: SecretKey, @@ -937,6 +978,7 @@ impl KeysManager { InMemorySigner::new( &self.secp_ctx, + self.node_secret, funding_key, revocation_base_key, payment_key, @@ -953,7 +995,7 @@ impl KeysManager { /// transaction will have a feerate, at least, of the given value. /// /// Returns `Err(())` if the output value is greater than the input value minus required fee, - /// if a descriptor was duplicated, or if an output descriptor script_pubkey + /// if a descriptor was duplicated, or if an output descriptor `script_pubkey` /// does not match the one we can spend. /// /// We do not enforce that outputs meet the dust limit or that any output scripts are standard. @@ -1060,7 +1102,7 @@ impl KeysManager { if payment_script != output.script_pubkey { return Err(()); }; let sighash = hash_to_message!(&bip143::SigHashCache::new(&spend_tx).signature_hash(input_idx, &witness_script, output.value, SigHashType::All)[..]); - let sig = secp_ctx.sign(&sighash, &secret.private_key.key); + let sig = sign(secp_ctx, &sighash, &secret.private_key.key); spend_tx.input[input_idx].witness.push(sig.serialize_der().to_vec()); spend_tx.input[input_idx].witness[0].push(SigHashType::All as u8); spend_tx.input[input_idx].witness.push(pubkey.key.serialize().to_vec()); @@ -1081,8 +1123,11 @@ impl KeysManager { impl KeysInterface for KeysManager { type Signer = InMemorySigner; - fn get_node_secret(&self) -> SecretKey { - self.node_secret.clone() + fn get_node_secret(&self, recipient: Recipient) -> Result { + match recipient { + Recipient::Node => Ok(self.node_secret.clone()), + Recipient::PhantomNode => Err(()) + } } fn get_inbound_payment_key_material(&self) -> KeyMaterial { @@ -1119,12 +1164,116 @@ impl KeysInterface for KeysManager { } fn read_chan_signer(&self, reader: &[u8]) -> Result { - InMemorySigner::read(&mut io::Cursor::new(reader)) + InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone()) + } + + fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result { + let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data); + let secret = match recipient { + Recipient::Node => self.get_node_secret(Recipient::Node)?, + Recipient::PhantomNode => return Err(()), + }; + Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret)) + } +} + +/// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node +/// payments. +/// +/// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be +/// paid to one of multiple nodes. This works because we encode the invoice route hints such that +/// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment +/// itself without ever needing to forward to this fake node. +/// +/// Phantom node payments are useful for load balancing between multiple LDK nodes. They also +/// provide some fault tolerance, because payers will automatically retry paying other provided +/// nodes in the case that one node goes down. +/// +/// Note that multi-path payments are not supported in phantom invoices for security reasons. +// In the hypothetical case that we did support MPP phantom payments, there would be no way for +// nodes to know when the full payment has been received (and the preimage can be released) without +// significantly compromising on our safety guarantees. I.e., if we expose the ability for the user +// to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage +// is released too early. +// +/// Switching between this struct and [`KeysManager`] will invalidate any previously issued +/// invoices and attempts to pay previous invoices will fail. +pub struct PhantomKeysManager { + inner: KeysManager, + inbound_payment_key: KeyMaterial, + phantom_secret: SecretKey, +} + +impl KeysInterface for PhantomKeysManager { + type Signer = InMemorySigner; + + fn get_node_secret(&self, recipient: Recipient) -> Result { + match recipient { + Recipient::Node => self.inner.get_node_secret(Recipient::Node), + Recipient::PhantomNode => Ok(self.phantom_secret.clone()), + } + } + + fn get_inbound_payment_key_material(&self) -> KeyMaterial { + self.inbound_payment_key.clone() + } + + fn get_destination_script(&self) -> Script { + self.inner.get_destination_script() + } + + fn get_shutdown_scriptpubkey(&self) -> ShutdownScript { + self.inner.get_shutdown_scriptpubkey() + } + + fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer { + self.inner.get_channel_signer(inbound, channel_value_satoshis) + } + + fn get_secure_random_bytes(&self) -> [u8; 32] { + self.inner.get_secure_random_bytes() + } + + fn read_chan_signer(&self, reader: &[u8]) -> Result { + self.inner.read_chan_signer(reader) } - fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5]) -> Result { + fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result { let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data); - Ok(self.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &self.get_node_secret())) + let secret = self.get_node_secret(recipient)?; + Ok(self.inner.secp_ctx.sign_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret)) + } +} + +impl PhantomKeysManager { + /// Constructs a `PhantomKeysManager` given a 32-byte seed and an additional `cross_node_seed` + /// that is shared across all nodes that intend to participate in [phantom node payments] together. + /// + /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and + /// `starting_time_nanos`. + /// + /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the + /// same across restarts, or else inbound payments may fail. + /// + /// [phantom node payments]: PhantomKeysManager + pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self { + let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos); + let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed); + Self { + inner, + inbound_payment_key: KeyMaterial(inbound_key), + phantom_secret: SecretKey::from_slice(&phantom_key).unwrap(), + } + } + + /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method. + pub fn spend_spendable_outputs(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1) -> Result { + self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx) + } + + /// See [`KeysManager::derive_channel_keys`] for documentation on this method. + pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner { + self.inner.derive_channel_keys(channel_value_satoshis, params) } }