X-Git-Url: http://git.bitcoin.ninja/index.cgi?a=blobdiff_plain;f=lightning%2Fsrc%2Fln%2Fchannelmanager.rs;h=1f3ad5541f1ba1d4697032d668c4f39765f29cb1;hb=5c2ff2cb30ef1639c80b275eea209a289dd91b77;hp=72f0bebdf1d3c1eb7cf9e505e75daaa286612884;hpb=4500270488e6ed918c5f6e07310eb4a384eb6e21;p=rust-lightning diff --git a/lightning/src/ln/channelmanager.rs b/lightning/src/ln/channelmanager.rs index 72f0bebd..1f3ad554 100644 --- a/lightning/src/ln/channelmanager.rs +++ b/lightning/src/ln/channelmanager.rs @@ -4090,7 +4090,8 @@ impl ChannelMana self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() }); } }, - MonitorEvent::CommitmentTxConfirmed(funding_outpoint) => { + MonitorEvent::CommitmentTxConfirmed(funding_outpoint) | + MonitorEvent::UpdateFailed(funding_outpoint) => { let mut channel_lock = self.channel_state.lock().unwrap(); let channel_state = &mut *channel_lock; let by_id = &mut channel_state.by_id; @@ -4106,7 +4107,12 @@ impl ChannelMana msg: update }); } - self.issue_channel_close_events(&chan, ClosureReason::CommitmentTxConfirmed); + let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event { + ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() } + } else { + ClosureReason::CommitmentTxConfirmed + }; + self.issue_channel_close_events(&chan, reason); pending_msg_events.push(events::MessageSendEvent::HandleError { node_id: chan.get_counterparty_node_id(), action: msgs::ErrorAction::SendErrorMessage { @@ -5440,20 +5446,25 @@ impl Writeable f /// /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation /// is: -/// 1) Deserialize all stored ChannelMonitors. -/// 2) Deserialize the ChannelManager by filling in this struct and calling: -/// <(BlockHash, ChannelManager)>::read(reader, args) -/// This may result in closing some Channels if the ChannelMonitor is newer than the stored -/// ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted. -/// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same -/// way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and -/// ChannelMonitor::get_funding_txo(). -/// 4) Reconnect blocks on your ChannelMonitors. -/// 5) Disconnect/connect blocks on the ChannelManager. -/// 6) Move the ChannelMonitors into your local chain::Watch. +/// 1) Deserialize all stored [`ChannelMonitor`]s. +/// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling: +/// `<(BlockHash, ChannelManager)>::read(reader, args)` +/// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored +/// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted. +/// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the +/// same way you would handle a [`chain::Filter`] call using +/// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`]. +/// 4) Reconnect blocks on your [`ChannelMonitor`]s. +/// 5) Disconnect/connect blocks on the [`ChannelManager`]. +/// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk. +/// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you +/// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in +/// the next step. +/// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a +/// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`]. /// -/// Note that the ordering of #4-6 is not of importance, however all three must occur before you -/// call any other methods on the newly-deserialized ChannelManager. +/// Note that the ordering of #4-7 is not of importance, however all four must occur before you +/// call any other methods on the newly-deserialized [`ChannelManager`]. /// /// Note that because some channels may be closed during deserialization, it is critical that you /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to @@ -5461,6 +5472,8 @@ impl Writeable f /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will /// not force-close the same channels but consider them live), you may end up revoking a state for /// which you've already broadcasted the transaction. +/// +/// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> where M::Target: chain::Watch, T::Target: BroadcasterInterface,