X-Git-Url: http://git.bitcoin.ninja/index.cgi?a=blobdiff_plain;f=lightning%2Fsrc%2Fln%2Fchannelmonitor.rs;h=ce37944ca2f7bfd5224b562d3c1de64471b5c59c;hb=cd13364d442faa1bb4edc433112e4000cbaf0d94;hp=e7e575a988a86c1dfd690f6e5694791b70881838;hpb=7de03e175b590e5b1173778186afaa6815f3512b;p=rust-lightning diff --git a/lightning/src/ln/channelmonitor.rs b/lightning/src/ln/channelmonitor.rs index e7e575a9..ce37944c 100644 --- a/lightning/src/ln/channelmonitor.rs +++ b/lightning/src/ln/channelmonitor.rs @@ -149,66 +149,6 @@ pub struct HTLCUpdate { } impl_writeable!(HTLCUpdate, 0, { payment_hash, payment_preimage, source }); -/// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between -/// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing -/// events to it, while also taking any add/update_monitor events and passing them to some remote -/// server(s). -/// -/// In general, you must always have at least one local copy in memory, which must never fail to -/// update (as it is responsible for broadcasting the latest state in case the channel is closed), -/// and then persist it to various on-disk locations. If, for some reason, the in-memory copy fails -/// to update (eg out-of-memory or some other condition), you must immediately shut down without -/// taking any further action such as writing the current state to disk. This should likely be -/// accomplished via panic!() or abort(). -/// -/// Note that any updates to a channel's monitor *must* be applied to each instance of the -/// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If -/// an update occurs and a remote watchtower is left with old state, it may broadcast transactions -/// which we have revoked, allowing our counterparty to claim all funds in the channel! -/// -/// User needs to notify implementors of ManyChannelMonitor when a new block is connected or -/// disconnected using their `block_connected` and `block_disconnected` methods. However, rather -/// than calling these methods directly, the user should register implementors as listeners to the -/// BlockNotifier and call the BlockNotifier's `block_(dis)connected` methods, which will notify -/// all registered listeners in one go. -pub trait ManyChannelMonitor: Send + Sync { - /// Adds a monitor for the given `funding_txo`. - /// - /// Implementer must also ensure that the funding_txo txid *and* outpoint are registered with - /// any relevant ChainWatchInterfaces such that the provided monitor receives block_connected - /// callbacks with the funding transaction, or any spends of it. - /// - /// Further, the implementer must also ensure that each output returned in - /// monitor.get_outputs_to_watch() is registered to ensure that the provided monitor learns about - /// any spends of any of the outputs. - /// - /// Any spends of outputs which should have been registered which aren't passed to - /// ChannelMonitors via block_connected may result in FUNDS LOSS. - fn add_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr>; - - /// Updates a monitor for the given `funding_txo`. - /// - /// Implementer must also ensure that the funding_txo txid *and* outpoint are registered with - /// any relevant ChainWatchInterfaces such that the provided monitor receives block_connected - /// callbacks with the funding transaction, or any spends of it. - /// - /// Further, the implementer must also ensure that each output returned in - /// monitor.get_watch_outputs() is registered to ensure that the provided monitor learns about - /// any spends of any of the outputs. - /// - /// Any spends of outputs which should have been registered which aren't passed to - /// ChannelMonitors via block_connected may result in FUNDS LOSS. - fn update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitorUpdate) -> Result<(), ChannelMonitorUpdateErr>; - - /// Used by ChannelManager to get list of HTLC resolved onchain and which needed to be updated - /// with success or failure. - /// - /// You should probably just call through to - /// ChannelMonitor::get_and_clear_pending_htlcs_updated() for each ChannelMonitor and return - /// the full list. - fn get_and_clear_pending_htlcs_updated(&self) -> Vec; -} - /// A simple implementation of a ManyChannelMonitor and ChainListener. Can be used to create a /// watchtower or watch our own channels. /// @@ -243,7 +183,7 @@ impl return Err(MonitorUpdateError("Channel monitor for given key is already present")), hash_map::Entry::Vacant(e) => e, }; - log_trace!(self.logger, "Got new Channel Monitor for channel {}", log_bytes!(monitor.funding_info.0.to_channel_id()[..])); - self.chain_monitor.install_watch_tx(&monitor.funding_info.0.txid, &monitor.funding_info.1); - self.chain_monitor.install_watch_outpoint((monitor.funding_info.0.txid, monitor.funding_info.0.index as u32), &monitor.funding_info.1); - for (txid, outputs) in monitor.get_outputs_to_watch().iter() { - for (idx, script) in outputs.iter().enumerate() { - self.chain_monitor.install_watch_outpoint((*txid, idx as u32), script); + { + let funding_txo = monitor.get_funding_txo(); + log_trace!(self.logger, "Got new Channel Monitor for channel {}", log_bytes!(funding_txo.0.to_channel_id()[..])); + self.chain_monitor.install_watch_tx(&funding_txo.0.txid, &funding_txo.1); + self.chain_monitor.install_watch_outpoint((funding_txo.0.txid, funding_txo.0.index as u32), &funding_txo.1); + for (txid, outputs) in monitor.get_outputs_to_watch().iter() { + for (idx, script) in outputs.iter().enumerate() { + self.chain_monitor.install_watch_outpoint((*txid, idx as u32), script); + } } } entry.insert(monitor); @@ -320,12 +263,14 @@ impl ManyChannelMonitor for SimpleManyChannelMonitor +impl ManyChannelMonitor for SimpleManyChannelMonitor where T::Target: BroadcasterInterface, F::Target: FeeEstimator, L::Target: Logger, C::Target: ChainWatchInterface, { + type Keys = ChanSigner; + fn add_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr> { match self.add_monitor_by_key(funding_txo, monitor) { Ok(_) => Ok(()), @@ -424,7 +369,7 @@ struct LocalSignedTx { b_htlc_key: PublicKey, delayed_payment_key: PublicKey, per_commitment_point: PublicKey, - feerate_per_kw: u64, + feerate_per_kw: u32, htlc_outputs: Vec<(HTLCOutputInCommitment, Option, Option)>, } @@ -870,6 +815,70 @@ pub struct ChannelMonitor { secp_ctx: Secp256k1, //TODO: dedup this a bit... } +/// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between +/// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing +/// events to it, while also taking any add/update_monitor events and passing them to some remote +/// server(s). +/// +/// In general, you must always have at least one local copy in memory, which must never fail to +/// update (as it is responsible for broadcasting the latest state in case the channel is closed), +/// and then persist it to various on-disk locations. If, for some reason, the in-memory copy fails +/// to update (eg out-of-memory or some other condition), you must immediately shut down without +/// taking any further action such as writing the current state to disk. This should likely be +/// accomplished via panic!() or abort(). +/// +/// Note that any updates to a channel's monitor *must* be applied to each instance of the +/// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If +/// an update occurs and a remote watchtower is left with old state, it may broadcast transactions +/// which we have revoked, allowing our counterparty to claim all funds in the channel! +/// +/// User needs to notify implementors of ManyChannelMonitor when a new block is connected or +/// disconnected using their `block_connected` and `block_disconnected` methods. However, rather +/// than calling these methods directly, the user should register implementors as listeners to the +/// BlockNotifier and call the BlockNotifier's `block_(dis)connected` methods, which will notify +/// all registered listeners in one go. +pub trait ManyChannelMonitor: Send + Sync { + /// The concrete type which signs for transactions and provides access to our channel public + /// keys. + type Keys: ChannelKeys; + + /// Adds a monitor for the given `funding_txo`. + /// + /// Implementer must also ensure that the funding_txo txid *and* outpoint are registered with + /// any relevant ChainWatchInterfaces such that the provided monitor receives block_connected + /// callbacks with the funding transaction, or any spends of it. + /// + /// Further, the implementer must also ensure that each output returned in + /// monitor.get_outputs_to_watch() is registered to ensure that the provided monitor learns about + /// any spends of any of the outputs. + /// + /// Any spends of outputs which should have been registered which aren't passed to + /// ChannelMonitors via block_connected may result in FUNDS LOSS. + fn add_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr>; + + /// Updates a monitor for the given `funding_txo`. + /// + /// Implementer must also ensure that the funding_txo txid *and* outpoint are registered with + /// any relevant ChainWatchInterfaces such that the provided monitor receives block_connected + /// callbacks with the funding transaction, or any spends of it. + /// + /// Further, the implementer must also ensure that each output returned in + /// monitor.get_watch_outputs() is registered to ensure that the provided monitor learns about + /// any spends of any of the outputs. + /// + /// Any spends of outputs which should have been registered which aren't passed to + /// ChannelMonitors via block_connected may result in FUNDS LOSS. + fn update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitorUpdate) -> Result<(), ChannelMonitorUpdateErr>; + + /// Used by ChannelManager to get list of HTLC resolved onchain and which needed to be updated + /// with success or failure. + /// + /// You should probably just call through to + /// ChannelMonitor::get_and_clear_pending_htlcs_updated() for each ChannelMonitor and return + /// the full list. + fn get_and_clear_pending_htlcs_updated(&self) -> Vec; +} + #[cfg(any(test, feature = "fuzztarget"))] /// Used only in testing and fuzztarget to check serialization roundtrips don't change the /// underlying object @@ -1022,7 +1031,7 @@ impl ChannelMonitor { writer.write_all(&$local_tx.delayed_payment_key.serialize())?; writer.write_all(&$local_tx.per_commitment_point.serialize())?; - writer.write_all(&byte_utils::be64_to_array($local_tx.feerate_per_kw))?; + writer.write_all(&byte_utils::be32_to_array($local_tx.feerate_per_kw))?; writer.write_all(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64))?; for &(ref htlc_output, ref sig, ref htlc_source) in $local_tx.htlc_outputs.iter() { serialize_htlc_in_commitment!(htlc_output); @@ -1402,8 +1411,8 @@ impl ChannelMonitor { } /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for. - pub fn get_funding_txo(&self) -> OutPoint { - self.funding_info.0 + pub fn get_funding_txo(&self) -> &(OutPoint, Script) { + &self.funding_info } /// Gets a list of txids, with their output scripts (in the order they appear in the @@ -1635,7 +1644,7 @@ impl ChannelMonitor { self.remote_payment_script = { // Note that the Network here is ignored as we immediately drop the address for the // script_pubkey version - let payment_hash160 = WPubkeyHash::hash(&PublicKey::from_secret_key(&self.secp_ctx, &self.keys.payment_key()).serialize()); + let payment_hash160 = WPubkeyHash::hash(&self.keys.pubkeys().payment_point.serialize()); Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_hash160[..]).into_script() }; @@ -2199,7 +2208,7 @@ impl ChannelMonitor { break; } } else if self.remote_payment_script == outp.script_pubkey { - spendable_output = Some(SpendableOutputDescriptor::DynamicOutputP2WPKH { + spendable_output = Some(SpendableOutputDescriptor::StaticOutputRemotePayment { outpoint: BitcoinOutPoint { txid: tx.txid(), vout: i as u32 }, output: outp.clone(), key_derivation_params: self.keys.key_derivation_params(), @@ -2361,7 +2370,7 @@ impl Readable for (BlockHash, ChannelMonitor let b_htlc_key = Readable::read(reader)?; let delayed_payment_key = Readable::read(reader)?; let per_commitment_point = Readable::read(reader)?; - let feerate_per_kw: u64 = Readable::read(reader)?; + let feerate_per_kw: u32 = Readable::read(reader)?; let htlcs_len: u64 = Readable::read(reader)?; let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128)); @@ -2538,7 +2547,6 @@ mod tests { use util::test_utils::TestLogger; use bitcoin::secp256k1::key::{SecretKey,PublicKey}; use bitcoin::secp256k1::Secp256k1; - use rand::{thread_rng,Rng}; use std::sync::Arc; use chain::keysinterface::InMemoryChannelKeys; @@ -2552,10 +2560,8 @@ mod tests { let mut preimages = Vec::new(); { - let mut rng = thread_rng(); - for _ in 0..20 { - let mut preimage = PaymentPreimage([0; 32]); - rng.fill_bytes(&mut preimage.0[..]); + for i in 0..20 { + let preimage = PaymentPreimage([i; 32]); let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner()); preimages.push((preimage, hash)); }