X-Git-Url: http://git.bitcoin.ninja/index.cgi?a=blobdiff_plain;f=lightning%2Fsrc%2Fln%2Fpeer_handler.rs;h=8ca7532aef930a4a8cf5df4d86abf311c84ef344;hb=f53d13bcb8220b3ce39e51a4d20beb23b3930d1f;hp=b5e5ebef2cb53d0eea812474764ac45d96950c44;hpb=eecc3b722379be3fb9382ede84aef8ad2b41f660;p=rust-lightning diff --git a/lightning/src/ln/peer_handler.rs b/lightning/src/ln/peer_handler.rs index b5e5ebef..c09df175 100644 --- a/lightning/src/ln/peer_handler.rs +++ b/lightning/src/ln/peer_handler.rs @@ -19,36 +19,198 @@ use bitcoin::secp256k1::key::{SecretKey,PublicKey}; use ln::features::InitFeatures; use ln::msgs; -use ln::msgs::{ChannelMessageHandler, LightningError, RoutingMessageHandler}; +use ln::msgs::{ChannelMessageHandler, LightningError, NetAddress, RoutingMessageHandler}; use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager}; -use util::ser::{VecWriter, Writeable}; +use util::ser::{VecWriter, Writeable, Writer}; use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep}; use ln::wire; use ln::wire::Encode; -use util::byte_utils; +use util::atomic_counter::AtomicCounter; use util::events::{MessageSendEvent, MessageSendEventsProvider}; use util::logger::Logger; -use routing::network_graph::NetGraphMsgHandler; +use routing::network_graph::{NetworkGraph, NetGraphMsgHandler}; -use std::collections::{HashMap,hash_map,HashSet,LinkedList}; -use std::sync::{Arc, Mutex}; -use std::sync::atomic::{AtomicUsize, Ordering}; -use std::{cmp,error,hash,fmt}; -use std::ops::Deref; +use prelude::*; +use io; +use alloc::collections::LinkedList; +use sync::{Arc, Mutex}; +use core::{cmp, hash, fmt, mem}; +use core::ops::Deref; +use core::convert::Infallible; +#[cfg(feature = "std")] use std::error; use bitcoin::hashes::sha256::Hash as Sha256; use bitcoin::hashes::sha256::HashEngine as Sha256Engine; use bitcoin::hashes::{HashEngine, Hash}; +/// Handler for BOLT1-compliant messages. +pub trait CustomMessageHandler: wire::CustomMessageReader { + /// Called with the message type that was received and the buffer to be read. + /// Can return a `MessageHandlingError` if the message could not be handled. + fn handle_custom_message(&self, msg: Self::CustomMessage, sender_node_id: &PublicKey) -> Result<(), LightningError>; + + /// Gets the list of pending messages which were generated by the custom message + /// handler, clearing the list in the process. The first tuple element must + /// correspond to the intended recipients node ids. If no connection to one of the + /// specified node does not exist, the message is simply not sent to it. + fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)>; +} + +/// A dummy struct which implements `RoutingMessageHandler` without storing any routing information +/// or doing any processing. You can provide one of these as the route_handler in a MessageHandler. +pub struct IgnoringMessageHandler{} +impl MessageSendEventsProvider for IgnoringMessageHandler { + fn get_and_clear_pending_msg_events(&self) -> Vec { Vec::new() } +} +impl RoutingMessageHandler for IgnoringMessageHandler { + fn handle_node_announcement(&self, _msg: &msgs::NodeAnnouncement) -> Result { Ok(false) } + fn handle_channel_announcement(&self, _msg: &msgs::ChannelAnnouncement) -> Result { Ok(false) } + fn handle_channel_update(&self, _msg: &msgs::ChannelUpdate) -> Result { Ok(false) } + fn get_next_channel_announcements(&self, _starting_point: u64, _batch_amount: u8) -> + Vec<(msgs::ChannelAnnouncement, Option, Option)> { Vec::new() } + fn get_next_node_announcements(&self, _starting_point: Option<&PublicKey>, _batch_amount: u8) -> Vec { Vec::new() } + fn peer_connected(&self, _their_node_id: &PublicKey, _init: &msgs::Init) {} + fn handle_reply_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyChannelRange) -> Result<(), LightningError> { Ok(()) } + fn handle_reply_short_channel_ids_end(&self, _their_node_id: &PublicKey, _msg: msgs::ReplyShortChannelIdsEnd) -> Result<(), LightningError> { Ok(()) } + fn handle_query_channel_range(&self, _their_node_id: &PublicKey, _msg: msgs::QueryChannelRange) -> Result<(), LightningError> { Ok(()) } + fn handle_query_short_channel_ids(&self, _their_node_id: &PublicKey, _msg: msgs::QueryShortChannelIds) -> Result<(), LightningError> { Ok(()) } +} +impl Deref for IgnoringMessageHandler { + type Target = IgnoringMessageHandler; + fn deref(&self) -> &Self { self } +} + +// Implement Type for Infallible, note that it cannot be constructed, and thus you can never call a +// method that takes self for it. +impl wire::Type for Infallible { + fn type_id(&self) -> u16 { + unreachable!(); + } +} +impl Writeable for Infallible { + fn write(&self, _: &mut W) -> Result<(), io::Error> { + unreachable!(); + } +} + +impl wire::CustomMessageReader for IgnoringMessageHandler { + type CustomMessage = Infallible; + fn read(&self, _message_type: u16, _buffer: &mut R) -> Result, msgs::DecodeError> { + Ok(None) + } +} + +impl CustomMessageHandler for IgnoringMessageHandler { + fn handle_custom_message(&self, _msg: Infallible, _sender_node_id: &PublicKey) -> Result<(), LightningError> { + // Since we always return `None` in the read the handle method should never be called. + unreachable!(); + } + + fn get_and_clear_pending_msg(&self) -> Vec<(PublicKey, Self::CustomMessage)> { Vec::new() } +} + +/// A dummy struct which implements `ChannelMessageHandler` without having any channels. +/// You can provide one of these as the route_handler in a MessageHandler. +pub struct ErroringMessageHandler { + message_queue: Mutex> +} +impl ErroringMessageHandler { + /// Constructs a new ErroringMessageHandler + pub fn new() -> Self { + Self { message_queue: Mutex::new(Vec::new()) } + } + fn push_error(&self, node_id: &PublicKey, channel_id: [u8; 32]) { + self.message_queue.lock().unwrap().push(MessageSendEvent::HandleError { + action: msgs::ErrorAction::SendErrorMessage { + msg: msgs::ErrorMessage { channel_id, data: "We do not support channel messages, sorry.".to_owned() }, + }, + node_id: node_id.clone(), + }); + } +} +impl MessageSendEventsProvider for ErroringMessageHandler { + fn get_and_clear_pending_msg_events(&self) -> Vec { + let mut res = Vec::new(); + mem::swap(&mut res, &mut self.message_queue.lock().unwrap()); + res + } +} +impl ChannelMessageHandler for ErroringMessageHandler { + // Any messages which are related to a specific channel generate an error message to let the + // peer know we don't care about channels. + fn handle_open_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::OpenChannel) { + ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id); + } + fn handle_accept_channel(&self, their_node_id: &PublicKey, _their_features: InitFeatures, msg: &msgs::AcceptChannel) { + ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id); + } + fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &msgs::FundingCreated) { + ErroringMessageHandler::push_error(self, their_node_id, msg.temporary_channel_id); + } + fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &msgs::FundingSigned) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &msgs::FundingLocked) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_shutdown(&self, their_node_id: &PublicKey, _their_features: &InitFeatures, msg: &msgs::Shutdown) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &msgs::ClosingSigned) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &msgs::CommitmentSigned) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &msgs::RevokeAndACK) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &msgs::UpdateFee) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &msgs::ChannelReestablish) { + ErroringMessageHandler::push_error(self, their_node_id, msg.channel_id); + } + // msgs::ChannelUpdate does not contain the channel_id field, so we just drop them. + fn handle_channel_update(&self, _their_node_id: &PublicKey, _msg: &msgs::ChannelUpdate) {} + fn peer_disconnected(&self, _their_node_id: &PublicKey, _no_connection_possible: bool) {} + fn peer_connected(&self, _their_node_id: &PublicKey, _msg: &msgs::Init) {} + fn handle_error(&self, _their_node_id: &PublicKey, _msg: &msgs::ErrorMessage) {} +} +impl Deref for ErroringMessageHandler { + type Target = ErroringMessageHandler; + fn deref(&self) -> &Self { self } +} + /// Provides references to trait impls which handle different types of messages. pub struct MessageHandler where CM::Target: ChannelMessageHandler, RM::Target: RoutingMessageHandler { /// A message handler which handles messages specific to channels. Usually this is just a - /// ChannelManager object. + /// [`ChannelManager`] object or an [`ErroringMessageHandler`]. + /// + /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager pub chan_handler: CM, /// A message handler which handles messages updating our knowledge of the network channel - /// graph. Usually this is just a NetGraphMsgHandlerMonitor object. + /// graph. Usually this is just a [`NetGraphMsgHandler`] object or an + /// [`IgnoringMessageHandler`]. + /// + /// [`NetGraphMsgHandler`]: crate::routing::network_graph::NetGraphMsgHandler pub route_handler: RM, } @@ -58,32 +220,35 @@ pub struct MessageHandler where /// /// For efficiency, Clone should be relatively cheap for this type. /// -/// You probably want to just extend an int and put a file descriptor in a struct and implement -/// send_data. Note that if you are using a higher-level net library that may call close() itself, -/// be careful to ensure you don't have races whereby you might register a new connection with an -/// fd which is the same as a previous one which has yet to be removed via -/// PeerManager::socket_disconnected(). +/// Two descriptors may compare equal (by [`cmp::Eq`] and [`hash::Hash`]) as long as the original +/// has been disconnected, the [`PeerManager`] has been informed of the disconnection (either by it +/// having triggered the disconnection or a call to [`PeerManager::socket_disconnected`]), and no +/// further calls to the [`PeerManager`] related to the original socket occur. This allows you to +/// use a file descriptor for your SocketDescriptor directly, however for simplicity you may wish +/// to simply use another value which is guaranteed to be globally unique instead. pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone { /// Attempts to send some data from the given slice to the peer. /// /// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected. - /// Note that in the disconnected case, socket_disconnected must still fire and further write - /// attempts may occur until that time. + /// Note that in the disconnected case, [`PeerManager::socket_disconnected`] must still be + /// called and further write attempts may occur until that time. /// - /// If the returned size is smaller than data.len(), a write_available event must - /// trigger the next time more data can be written. Additionally, until the a send_data event - /// completes fully, no further read_events should trigger on the same peer! + /// If the returned size is smaller than `data.len()`, a + /// [`PeerManager::write_buffer_space_avail`] call must be made the next time more data can be + /// written. Additionally, until a `send_data` event completes fully, no further + /// [`PeerManager::read_event`] calls should be made for the same peer! Because this is to + /// prevent denial-of-service issues, you should not read or buffer any data from the socket + /// until then. /// - /// If a read_event on this descriptor had previously returned true (indicating that read - /// events should be paused to prevent DoS in the send buffer), resume_read may be set - /// indicating that read events on this descriptor should resume. A resume_read of false does - /// *not* imply that further read events should be paused. + /// If a [`PeerManager::read_event`] call on this descriptor had previously returned true + /// (indicating that read events should be paused to prevent DoS in the send buffer), + /// `resume_read` may be set indicating that read events on this descriptor should resume. A + /// `resume_read` of false carries no meaning, and should not cause any action. fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize; - /// Disconnect the socket pointed to by this SocketDescriptor. Once this function returns, no - /// more calls to write_buffer_space_avail, read_event or socket_disconnected may be made with - /// this descriptor. No socket_disconnected call should be generated as a result of this call, - /// though races may occur whereby disconnect_socket is called after a call to - /// socket_disconnected but prior to socket_disconnected returning. + /// Disconnect the socket pointed to by this SocketDescriptor. + /// + /// You do *not* need to call [`PeerManager::socket_disconnected`] with this socket after this + /// call (doing so is a noop). fn disconnect_socket(&mut self); } @@ -106,6 +271,8 @@ impl fmt::Display for PeerHandleError { formatter.write_str("Peer Sent Invalid Data") } } + +#[cfg(feature = "std")] impl error::Error for PeerHandleError { fn description(&self) -> &str { "Peer Sent Invalid Data" @@ -118,11 +285,46 @@ enum InitSyncTracker{ NodesSyncing(PublicKey), } +/// The ratio between buffer sizes at which we stop sending initial sync messages vs when we stop +/// forwarding gossip messages to peers altogether. +const FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO: usize = 2; + +/// When the outbound buffer has this many messages, we'll stop reading bytes from the peer until +/// we have fewer than this many messages in the outbound buffer again. +/// We also use this as the target number of outbound gossip messages to keep in the write buffer, +/// refilled as we send bytes. +const OUTBOUND_BUFFER_LIMIT_READ_PAUSE: usize = 10; +/// When the outbound buffer has this many messages, we'll simply skip relaying gossip messages to +/// the peer. +const OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP: usize = OUTBOUND_BUFFER_LIMIT_READ_PAUSE * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO; + +/// If we've sent a ping, and are still awaiting a response, we may need to churn our way through +/// the socket receive buffer before receiving the ping. +/// +/// On a fairly old Arm64 board, with Linux defaults, this can take as long as 20 seconds, not +/// including any network delays, outbound traffic, or the same for messages from other peers. +/// +/// Thus, to avoid needlessly disconnecting a peer, we allow a peer to take this many timer ticks +/// per connected peer to respond to a ping, as long as they send us at least one message during +/// each tick, ensuring we aren't actually just disconnected. +/// With a timer tick interval of ten seconds, this translates to about 40 seconds per connected +/// peer. +/// +/// When we improve parallelism somewhat we should reduce this to e.g. this many timer ticks per +/// two connected peers, assuming most LDK-running systems have at least two cores. +const MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER: i8 = 4; + +/// This is the minimum number of messages we expect a peer to be able to handle within one timer +/// tick. Once we have sent this many messages since the last ping, we send a ping right away to +/// ensures we don't just fill up our send buffer and leave the peer with too many messages to +/// process before the next ping. +const BUFFER_DRAIN_MSGS_PER_TICK: usize = 32; + struct Peer { channel_encryptor: PeerChannelEncryptor, - outbound: bool, their_node_id: Option, their_features: Option, + their_net_address: Option, pending_outbound_buffer: LinkedList>, pending_outbound_buffer_first_msg_offset: usize, @@ -134,7 +336,9 @@ struct Peer { sync_status: InitSyncTracker, - awaiting_pong: bool, + msgs_sent_since_pong: usize, + awaiting_pong_timer_tick_intervals: i8, + received_message_since_timer_tick: bool, } impl Peer { @@ -164,25 +368,18 @@ impl Peer { struct PeerHolder { peers: HashMap, - /// Added to by do_read_event for cases where we pushed a message onto the send buffer but - /// didn't call do_attempt_write_data to avoid reentrancy. Cleared in process_events() - peers_needing_send: HashSet, /// Only add to this set when noise completes: node_id_to_descriptor: HashMap, } -#[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))] -fn _check_usize_is_32_or_64() { - // See below, less than 32 bit pointers may be unsafe here! - unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); } -} - /// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g. /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static /// lifetimes). Other times you can afford a reference, which is more efficient, in which case /// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents /// issues such as overly long function definitions. -pub type SimpleArcPeerManager = Arc>, Arc, Arc>>, Arc>>; +/// +/// (C-not exported) as Arcs don't make sense in bindings +pub type SimpleArcPeerManager = PeerManager>, Arc, Arc, Arc>>, Arc, Arc>; /// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference /// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't @@ -190,29 +387,41 @@ pub type SimpleArcPeerManager = Arc = PeerManager, &'e NetGraphMsgHandler<&'g C, &'f L>, &'f L>; +/// +/// (C-not exported) as Arcs don't make sense in bindings +pub type SimpleRefPeerManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, SD, M, T, F, C, L> = PeerManager, &'e NetGraphMsgHandler<&'g NetworkGraph, &'h C, &'f L>, &'f L, IgnoringMessageHandler>; -/// A PeerManager manages a set of peers, described by their SocketDescriptor and marshalls socket -/// events into messages which it passes on to its MessageHandlers. +/// A PeerManager manages a set of peers, described by their [`SocketDescriptor`] and marshalls +/// socket events into messages which it passes on to its [`MessageHandler`]. +/// +/// Locks are taken internally, so you must never assume that reentrancy from a +/// [`SocketDescriptor`] call back into [`PeerManager`] methods will not deadlock. +/// +/// Calls to [`read_event`] will decode relevant messages and pass them to the +/// [`ChannelMessageHandler`], likely doing message processing in-line. Thus, the primary form of +/// parallelism in Rust-Lightning is in calls to [`read_event`]. Note, however, that calls to any +/// [`PeerManager`] functions related to the same connection must occur only in serial, making new +/// calls only after previous ones have returned. /// /// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager /// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but /// essentially you should default to using a SimpleRefPeerManager, and use a /// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when /// you're using lightning-net-tokio. -pub struct PeerManager where +/// +/// [`read_event`]: PeerManager::read_event +pub struct PeerManager where CM::Target: ChannelMessageHandler, RM::Target: RoutingMessageHandler, - L::Target: Logger { + L::Target: Logger, + CMH::Target: CustomMessageHandler { message_handler: MessageHandler, peers: Mutex>, our_node_secret: SecretKey, ephemeral_key_midstate: Sha256Engine, + custom_message_handler: CMH, - // Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64 - // bits we will never realistically count into high: - peer_counter_low: AtomicUsize, - peer_counter_high: AtomicUsize, + peer_counter: AtomicCounter, logger: L, } @@ -242,16 +451,94 @@ macro_rules! encode_msg { }} } -/// Manages and reacts to connection events. You probably want to use file descriptors as PeerIds. -/// PeerIds may repeat, but only after socket_disconnected() has been called. -impl PeerManager where +impl PeerManager where CM::Target: ChannelMessageHandler, + L::Target: Logger { + /// Constructs a new PeerManager with the given ChannelMessageHandler. No routing message + /// handler is used and network graph messages are ignored. + /// + /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be + /// cryptographically secure random bytes. + /// + /// (C-not exported) as we can't export a PeerManager with a dummy route handler + pub fn new_channel_only(channel_message_handler: CM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self { + Self::new(MessageHandler { + chan_handler: channel_message_handler, + route_handler: IgnoringMessageHandler{}, + }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{}) + } +} + +impl PeerManager where RM::Target: RoutingMessageHandler, L::Target: Logger { + /// Constructs a new PeerManager with the given RoutingMessageHandler. No channel message + /// handler is used and messages related to channels will be ignored (or generate error + /// messages). Note that some other lightning implementations time-out connections after some + /// time if no channel is built with the peer. + /// + /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be + /// cryptographically secure random bytes. + /// + /// (C-not exported) as we can't export a PeerManager with a dummy channel handler + pub fn new_routing_only(routing_message_handler: RM, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self { + Self::new(MessageHandler { + chan_handler: ErroringMessageHandler::new(), + route_handler: routing_message_handler, + }, our_node_secret, ephemeral_random_data, logger, IgnoringMessageHandler{}) + } +} + +/// A simple wrapper that optionally prints " from " for an optional pubkey. +/// This works around `format!()` taking a reference to each argument, preventing +/// `if let Some(node_id) = peer.their_node_id { format!(.., node_id) } else { .. }` from compiling +/// due to lifetime errors. +struct OptionalFromDebugger<'a>(&'a Option); +impl core::fmt::Display for OptionalFromDebugger<'_> { + fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> { + if let Some(node_id) = self.0 { write!(f, " from {}", log_pubkey!(node_id)) } else { Ok(()) } + } +} + +/// A function used to filter out local or private addresses +/// https://www.iana.org./assignments/ipv4-address-space/ipv4-address-space.xhtml +/// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml +fn filter_addresses(ip_address: Option) -> Option { + match ip_address{ + // For IPv4 range 10.0.0.0 - 10.255.255.255 (10/8) + Some(NetAddress::IPv4{addr: [10, _, _, _], port: _}) => None, + // For IPv4 range 0.0.0.0 - 0.255.255.255 (0/8) + Some(NetAddress::IPv4{addr: [0, _, _, _], port: _}) => None, + // For IPv4 range 100.64.0.0 - 100.127.255.255 (100.64/10) + Some(NetAddress::IPv4{addr: [100, 64..=127, _, _], port: _}) => None, + // For IPv4 range 127.0.0.0 - 127.255.255.255 (127/8) + Some(NetAddress::IPv4{addr: [127, _, _, _], port: _}) => None, + // For IPv4 range 169.254.0.0 - 169.254.255.255 (169.254/16) + Some(NetAddress::IPv4{addr: [169, 254, _, _], port: _}) => None, + // For IPv4 range 172.16.0.0 - 172.31.255.255 (172.16/12) + Some(NetAddress::IPv4{addr: [172, 16..=31, _, _], port: _}) => None, + // For IPv4 range 192.168.0.0 - 192.168.255.255 (192.168/16) + Some(NetAddress::IPv4{addr: [192, 168, _, _], port: _}) => None, + // For IPv4 range 192.88.99.0 - 192.88.99.255 (192.88.99/24) + Some(NetAddress::IPv4{addr: [192, 88, 99, _], port: _}) => None, + // For IPv6 range 2000:0000:0000:0000:0000:0000:0000:0000 - 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (2000::/3) + Some(NetAddress::IPv6{addr: [0x20..=0x3F, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _], port: _}) => ip_address, + // For remaining addresses + Some(NetAddress::IPv6{addr: _, port: _}) => None, + Some(..) => ip_address, + None => None, + } +} + +impl PeerManager where + CM::Target: ChannelMessageHandler, + RM::Target: RoutingMessageHandler, + L::Target: Logger, + CMH::Target: CustomMessageHandler { /// Constructs a new PeerManager with the given message handlers and node_id secret key /// ephemeral_random_data is used to derive per-connection ephemeral keys and must be /// cryptographically secure random bytes. - pub fn new(message_handler: MessageHandler, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L) -> Self { + pub fn new(message_handler: MessageHandler, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: L, custom_message_handler: CMH) -> Self { let mut ephemeral_key_midstate = Sha256::engine(); ephemeral_key_midstate.input(ephemeral_random_data); @@ -259,14 +546,13 @@ impl PeerManager PeerManager SecretKey { let mut ephemeral_hash = self.ephemeral_key_midstate.clone(); - let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel); - let high = if low == 0 { - self.peer_counter_high.fetch_add(1, Ordering::AcqRel) - } else { - self.peer_counter_high.load(Ordering::Acquire) - }; - ephemeral_hash.input(&byte_utils::le64_to_array(low as u64)); - ephemeral_hash.input(&byte_utils::le64_to_array(high as u64)); + let counter = self.peer_counter.get_increment(); + ephemeral_hash.input(&counter.to_le_bytes()); SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!") } - /// Indicates a new outbound connection has been established to a node with the given node_id. + /// Indicates a new outbound connection has been established to a node with the given node_id + /// and an optional remote network address. + /// + /// The remote network address adds the option to report a remote IP address back to a connecting + /// peer using the init message. + /// The user should pass the remote network address of the host they are connected to. + /// /// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new /// descriptor but must disconnect the connection immediately. /// /// Returns a small number of bytes to send to the remote node (currently always 50). /// - /// Panics if descriptor is duplicative with some other descriptor which has not yet had a - /// socket_disconnected(). - pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result, PeerHandleError> { + /// Panics if descriptor is duplicative with some other descriptor which has not yet been + /// [`socket_disconnected()`]. + /// + /// [`socket_disconnected()`]: PeerManager::socket_disconnected + pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor, remote_network_address: Option) -> Result, PeerHandleError> { let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key()); let res = peer_encryptor.get_act_one().to_vec(); let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes @@ -314,9 +602,9 @@ impl PeerManager PeerManager Result<(), PeerHandleError> { + /// Panics if descriptor is duplicative with some other descriptor which has not yet been + /// [`socket_disconnected()`]. + /// + /// [`socket_disconnected()`]: PeerManager::socket_disconnected + pub fn new_inbound_connection(&self, descriptor: Descriptor, remote_network_address: Option) -> Result<(), PeerHandleError> { let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret); let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes let mut peers = self.peers.lock().unwrap(); if peers.peers.insert(descriptor, Peer { channel_encryptor: peer_encryptor, - outbound: false, their_node_id: None, their_features: None, + their_net_address: remote_network_address, pending_outbound_buffer: LinkedList::new(), pending_outbound_buffer_first_msg_offset: 0, @@ -365,7 +662,9 @@ impl PeerManager PeerManager { - { - log_trace!(self.logger, "Encoding and sending sync update message of type {} to {}", $msg.type_id(), log_pubkey!(peer.their_node_id.unwrap())); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg)[..])); - } - } - } - const MSG_BUFF_SIZE: usize = 10; while !peer.awaiting_write_event { - if peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE { + if peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE && peer.msgs_sent_since_pong < BUFFER_DRAIN_MSGS_PER_TICK { match peer.sync_status { InitSyncTracker::NoSyncRequested => {}, InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => { - let steps = ((MSG_BUFF_SIZE - peer.pending_outbound_buffer.len() + 2) / 3) as u8; + let steps = ((OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len() + 2) / 3) as u8; let all_messages = self.message_handler.route_handler.get_next_channel_announcements(c, steps); for &(ref announce, ref update_a_option, ref update_b_option) in all_messages.iter() { - encode_and_send_msg!(announce); + self.enqueue_message(peer, announce); if let &Some(ref update_a) = update_a_option { - encode_and_send_msg!(update_a); + self.enqueue_message(peer, update_a); } if let &Some(ref update_b) = update_b_option { - encode_and_send_msg!(update_b); + self.enqueue_message(peer, update_b); } peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1); } @@ -404,10 +694,10 @@ impl PeerManager { - let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8; + let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8; let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps); for msg in all_messages.iter() { - encode_and_send_msg!(msg); + self.enqueue_message(peer, msg); peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id); } if all_messages.is_empty() || all_messages.len() != steps as usize { @@ -416,10 +706,10 @@ impl PeerManager unreachable!(), InitSyncTracker::NodesSyncing(key) => { - let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8; + let steps = (OUTBOUND_BUFFER_LIMIT_READ_PAUSE - peer.pending_outbound_buffer.len()) as u8; let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps); for msg in all_messages.iter() { - encode_and_send_msg!(msg); + self.enqueue_message(peer, msg); peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id); } if all_messages.is_empty() || all_messages.len() != steps as usize { @@ -428,6 +718,9 @@ impl PeerManager= BUFFER_DRAIN_MSGS_PER_TICK { + self.maybe_send_extra_ping(peer); + } if { let next_buff = match peer.pending_outbound_buffer.front() { @@ -435,7 +728,7 @@ impl PeerManager buff, }; - let should_be_reading = peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE; + let should_be_reading = peer.pending_outbound_buffer.len() < OUTBOUND_BUFFER_LIMIT_READ_PAUSE; let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..]; let data_sent = descriptor.send_data(pending, should_be_reading); peer.pending_outbound_buffer_first_msg_offset += data_sent; @@ -453,16 +746,23 @@ impl PeerManager Result<(), PeerHandleError> { let mut peers = self.peers.lock().unwrap(); match peers.peers.get_mut(descriptor) { - None => panic!("Descriptor for write_event is not already known to PeerManager"), + None => { + // This is most likely a simple race condition where the user found that the socket + // was writeable, then we told the user to `disconnect_socket()`, then they called + // this method. Return an error to make sure we get disconnected. + return Err(PeerHandleError { no_connection_possible: false }); + }, Some(peer) => { peer.awaiting_write_event = false; self.do_attempt_write_data(descriptor, peer); @@ -475,41 +775,59 @@ impl PeerManager Result { match self.do_read_event(peer_descriptor, data) { Ok(res) => Ok(res), Err(e) => { + log_trace!(self.logger, "Peer sent invalid data or we decided to disconnect due to a protocol error"); self.disconnect_event_internal(peer_descriptor, e.no_connection_possible); Err(e) } } } - /// Append a message to a peer's pending outbound/write buffer, and update the map of peers needing sends accordingly. - fn enqueue_message(&self, peers_needing_send: &mut HashSet, peer: &mut Peer, descriptor: Descriptor, message: &M) { - let mut buffer = VecWriter(Vec::new()); + /// Append a message to a peer's pending outbound/write buffer + fn enqueue_encoded_message(&self, peer: &mut Peer, encoded_message: &Vec) { + peer.msgs_sent_since_pong += 1; + peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..])); + } + + /// Append a message to a peer's pending outbound/write buffer + fn enqueue_message(&self, peer: &mut Peer, message: &M) { + let mut buffer = VecWriter(Vec::with_capacity(2048)); wire::write(message, &mut buffer).unwrap(); // crash if the write failed - let encoded_message = buffer.0; - log_trace!(self.logger, "Enqueueing message of type {} to {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap())); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_message[..])); - peers_needing_send.insert(descriptor); + if is_gossip_msg(message.type_id()) { + log_gossip!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap())); + } else { + log_trace!(self.logger, "Enqueueing message {:?} to {}", message, log_pubkey!(peer.their_node_id.unwrap())) + } + self.enqueue_encoded_message(peer, &buffer.0); } fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: &[u8]) -> Result { let pause_read = { let mut peers_lock = self.peers.lock().unwrap(); let peers = &mut *peers_lock; + let mut msgs_to_forward = Vec::new(); + let mut peer_node_id = None; let pause_read = match peers.peers.get_mut(peer_descriptor) { - None => panic!("Descriptor for read_event is not already known to PeerManager"), + None => { + // This is most likely a simple race condition where the user read some bytes + // from the socket, then we told the user to `disconnect_socket()`, then they + // called this method. Return an error to make sure we get disconnected. + return Err(PeerHandleError { no_connection_possible: false }); + }, Some(peer) => { assert!(peer.pending_read_buffer.len() > 0); assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos); @@ -534,21 +852,31 @@ impl PeerManager { //TODO: Try to push msg - log_trace!(self.logger, "Got Err handling message, disconnecting peer because {}", e.err); + log_debug!(self.logger, "Error handling message{}; disconnecting peer with: {}", OptionalFromDebugger(&peer.their_node_id), e.err); return Err(PeerHandleError{ no_connection_possible: false }); }, + msgs::ErrorAction::IgnoreAndLog(level) => { + log_given_level!(self.logger, level, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err); + continue + }, + msgs::ErrorAction::IgnoreDuplicateGossip => continue, // Don't even bother logging these msgs::ErrorAction::IgnoreError => { - log_trace!(self.logger, "Got Err handling message, ignoring because {}", e.err); + log_debug!(self.logger, "Error handling message{}; ignoring: {}", OptionalFromDebugger(&peer.their_node_id), e.err); continue; }, msgs::ErrorAction::SendErrorMessage { msg } => { - log_trace!(self.logger, "Got Err handling message, sending Error message because {}", e.err); - self.enqueue_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), &msg); + log_debug!(self.logger, "Error handling message{}; sending error message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err); + self.enqueue_message(peer, &msg); + continue; + }, + msgs::ErrorAction::SendWarningMessage { msg, log_level } => { + log_given_level!(self.logger, log_level, "Error handling message{}; sending warning message with: {}", OptionalFromDebugger(&peer.their_node_id), e.err); + self.enqueue_message(peer, &msg); continue; }, } } - }; + } } } @@ -561,7 +889,7 @@ impl PeerManager { - log_trace!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap())); + log_debug!(self.logger, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap())); entry.insert(peer_descriptor.clone()) }, }; @@ -584,8 +912,9 @@ impl PeerManager { let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..])); @@ -593,6 +922,10 @@ impl PeerManager { if peer.pending_read_is_header { @@ -611,38 +944,62 @@ impl PeerManager x, Err(e) => { match e { - msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }), - msgs::DecodeError::UnknownRequiredFeature => { - log_debug!(self.logger, "Got a channel/node announcement with an known required feature flag, you may want to update!"); + // Note that to avoid recursion we never call + // `do_attempt_write_data` from here, causing + // the messages enqueued here to not actually + // be sent before the peer is disconnected. + (msgs::DecodeError::UnknownRequiredFeature, Some(ty)) if is_gossip_msg(ty) => { + log_gossip!(self.logger, "Got a channel/node announcement with an unknown required feature flag, you may want to update!"); + continue; + } + (msgs::DecodeError::UnsupportedCompression, _) => { + log_gossip!(self.logger, "We don't support zlib-compressed message fields, sending a warning and ignoring message"); + self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unsupported message compression: zlib".to_owned() }); + continue; + } + (_, Some(ty)) if is_gossip_msg(ty) => { + log_gossip!(self.logger, "Got an invalid value while deserializing a gossip message"); + self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: "Unreadable/bogus gossip message".to_owned() }); continue; } - msgs::DecodeError::InvalidValue => { + (msgs::DecodeError::UnknownRequiredFeature, ty) => { + log_gossip!(self.logger, "Received a message with an unknown required feature flag or TLV, you may want to update!"); + self.enqueue_message(peer, &msgs::WarningMessage { channel_id: [0; 32], data: format!("Received an unknown required feature/TLV in message type {:?}", ty) }); + return Err(PeerHandleError { no_connection_possible: false }); + } + (msgs::DecodeError::UnknownVersion, _) => return Err(PeerHandleError { no_connection_possible: false }), + (msgs::DecodeError::InvalidValue, _) => { log_debug!(self.logger, "Got an invalid value while deserializing message"); return Err(PeerHandleError { no_connection_possible: false }); } - msgs::DecodeError::ShortRead => { + (msgs::DecodeError::ShortRead, _) => { log_debug!(self.logger, "Deserialization failed due to shortness of message"); return Err(PeerHandleError { no_connection_possible: false }); } - msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }), - msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }), + (msgs::DecodeError::BadLengthDescriptor, _) => return Err(PeerHandleError { no_connection_possible: false }), + (msgs::DecodeError::Io(_), _) => return Err(PeerHandleError { no_connection_possible: false }), } } }; - if let Err(handling_error) = self.handle_message(&mut peers.peers_needing_send, peer, peer_descriptor.clone(), message){ - match handling_error { + match self.handle_message(peer, message) { + Err(handling_error) => match handling_error { MessageHandlingError::PeerHandleError(e) => { return Err(e) }, MessageHandlingError::LightningError(e) => { try_potential_handleerror!(Err(e)); }, - } + }, + Ok(Some(msg)) => { + peer_node_id = Some(peer.their_node_id.expect("After noise is complete, their_node_id is always set")); + msgs_to_forward.push(msg); + }, + Ok(None) => {}, } } } @@ -650,12 +1007,14 @@ impl PeerManager 10 // pause_read + peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_READ_PAUSE // pause_read } }; + for msg in msgs_to_forward.drain(..) { + self.forward_broadcast_msg(peers, &msg, peer_node_id.as_ref()); + } + pause_read }; @@ -663,53 +1022,51 @@ impl PeerManager, peer: &mut Peer, peer_descriptor: Descriptor, message: wire::Message) -> Result<(), MessageHandlingError> { - log_trace!(self.logger, "Received message of type {} from {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap())); + /// Returns the message back if it needs to be broadcasted to all other peers. + fn handle_message( + &self, + peer: &mut Peer, + message: wire::Message<<::Target as wire::CustomMessageReader>::CustomMessage> + ) -> Result::Target as wire::CustomMessageReader>::CustomMessage>>, MessageHandlingError> { + if is_gossip_msg(message.type_id()) { + log_gossip!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap())); + } else { + log_trace!(self.logger, "Received message {:?} from {}", message, log_pubkey!(peer.their_node_id.unwrap())); + } + + peer.received_message_since_timer_tick = true; // Need an Init as first message if let wire::Message::Init(_) = message { } else if peer.their_features.is_none() { - log_trace!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap())); + log_debug!(self.logger, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap())); return Err(PeerHandleError{ no_connection_possible: false }.into()); } + let mut should_forward = None; + match message { // Setup and Control messages: wire::Message::Init(msg) => { if msg.features.requires_unknown_bits() { - log_info!(self.logger, "Peer features required unknown version bits"); + log_debug!(self.logger, "Peer features required unknown version bits"); return Err(PeerHandleError{ no_connection_possible: true }.into()); } if peer.their_features.is_some() { return Err(PeerHandleError{ no_connection_possible: false }.into()); } - log_info!( - self.logger, "Received peer Init message: data_loss_protect: {}, initial_routing_sync: {}, upfront_shutdown_script: {}, gossip_queries: {}, static_remote_key: {}, unknown flags (local and global): {}", - if msg.features.supports_data_loss_protect() { "supported" } else { "not supported"}, - if msg.features.initial_routing_sync() { "requested" } else { "not requested" }, - if msg.features.supports_upfront_shutdown_script() { "supported" } else { "not supported"}, - if msg.features.supports_gossip_queries() { "supported" } else { "not supported" }, - if msg.features.supports_static_remote_key() { "supported" } else { "not supported"}, - if msg.features.supports_unknown_bits() { "present" } else { "none" } - ); + log_info!(self.logger, "Received peer Init message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.features); if msg.features.initial_routing_sync() { peer.sync_status = InitSyncTracker::ChannelsSyncing(0); - peers_needing_send.insert(peer_descriptor.clone()); } if !msg.features.supports_static_remote_key() { log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting with no_connection_possible", log_pubkey!(peer.their_node_id.unwrap())); return Err(PeerHandleError{ no_connection_possible: true }.into()); } - if !peer.outbound { - let features = InitFeatures::known(); - let resp = msgs::Init { features }; - self.enqueue_message(peers_needing_send, peer, peer_descriptor.clone(), &resp); - } - - self.message_handler.route_handler.sync_routing_table(&peer.their_node_id.unwrap(), &msg); + self.message_handler.route_handler.peer_connected(&peer.their_node_id.unwrap(), &msg); self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg); peer.their_features = Some(msg.features); @@ -733,15 +1090,31 @@ impl PeerManager { + let mut data_is_printable = true; + for b in msg.data.bytes() { + if b < 32 || b > 126 { + data_is_printable = false; + break; + } + } + + if data_is_printable { + log_debug!(self.logger, "Got warning message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data); + } else { + log_debug!(self.logger, "Got warning message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap())); + } + }, wire::Message::Ping(msg) => { if msg.ponglen < 65532 { let resp = msgs::Pong { byteslen: msg.ponglen }; - self.enqueue_message(peers_needing_send, peer, peer_descriptor.clone(), &resp); + self.enqueue_message(peer, &resp); } }, wire::Message::Pong(_msg) => { - peer.awaiting_pong = false; + peer.awaiting_pong_timer_tick_intervals = 0; + peer.msgs_sent_since_pong = 0; }, // Channel messages: @@ -801,33 +1174,22 @@ impl PeerManager { - let should_forward = match self.message_handler.route_handler.handle_channel_announcement(&msg) { - Ok(v) => v, - Err(e) => { return Err(e.into()); }, - }; - - if should_forward { - // TODO: forward msg along to all our other peers! + if self.message_handler.route_handler.handle_channel_announcement(&msg) + .map_err(|e| -> MessageHandlingError { e.into() })? { + should_forward = Some(wire::Message::ChannelAnnouncement(msg)); } }, wire::Message::NodeAnnouncement(msg) => { - let should_forward = match self.message_handler.route_handler.handle_node_announcement(&msg) { - Ok(v) => v, - Err(e) => { return Err(e.into()); }, - }; - - if should_forward { - // TODO: forward msg along to all our other peers! + if self.message_handler.route_handler.handle_node_announcement(&msg) + .map_err(|e| -> MessageHandlingError { e.into() })? { + should_forward = Some(wire::Message::NodeAnnouncement(msg)); } }, wire::Message::ChannelUpdate(msg) => { - let should_forward = match self.message_handler.route_handler.handle_channel_update(&msg) { - Ok(v) => v, - Err(e) => { return Err(e.into()); }, - }; - - if should_forward { - // TODO: forward msg along to all our other peers! + self.message_handler.chan_handler.handle_channel_update(&peer.their_node_id.unwrap(), &msg); + if self.message_handler.route_handler.handle_channel_update(&msg) + .map_err(|e| -> MessageHandlingError { e.into() })? { + should_forward = Some(wire::Message::ChannelUpdate(msg)); } }, wire::Message::QueryShortChannelIds(msg) => { @@ -847,324 +1209,358 @@ impl PeerManager { - log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", msg_type); + wire::Message::Unknown(type_id) if message.is_even() => { + log_debug!(self.logger, "Received unknown even message of type {}, disconnecting peer!", type_id); // Fail the channel if message is an even, unknown type as per BOLT #1. return Err(PeerHandleError{ no_connection_possible: true }.into()); }, - wire::Message::Unknown(msg_type) => { - log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", msg_type); - } + wire::Message::Unknown(type_id) => { + log_trace!(self.logger, "Received unknown odd message of type {}, ignoring", type_id); + }, + wire::Message::Custom(custom) => { + self.custom_message_handler.handle_custom_message(custom, &peer.their_node_id.unwrap())?; + }, }; - Ok(()) + Ok(should_forward) + } + + fn forward_broadcast_msg(&self, peers: &mut PeerHolder, msg: &wire::Message<<::Target as wire::CustomMessageReader>::CustomMessage>, except_node: Option<&PublicKey>) { + match msg { + wire::Message::ChannelAnnouncement(ref msg) => { + log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced channel's counterparties: {:?}", except_node, msg); + let encoded_msg = encode_msg!(msg); + + for (_, peer) in peers.peers.iter_mut() { + if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() || + !peer.should_forward_channel_announcement(msg.contents.short_channel_id) { + continue + } + if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP + || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO + { + log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id); + continue; + } + if peer.their_node_id.as_ref() == Some(&msg.contents.node_id_1) || + peer.their_node_id.as_ref() == Some(&msg.contents.node_id_2) { + continue; + } + if except_node.is_some() && peer.their_node_id.as_ref() == except_node { + continue; + } + self.enqueue_encoded_message(peer, &encoded_msg); + } + }, + wire::Message::NodeAnnouncement(ref msg) => { + log_gossip!(self.logger, "Sending message to all peers except {:?} or the announced node: {:?}", except_node, msg); + let encoded_msg = encode_msg!(msg); + + for (_, peer) in peers.peers.iter_mut() { + if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() || + !peer.should_forward_node_announcement(msg.contents.node_id) { + continue + } + if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP + || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO + { + log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id); + continue; + } + if peer.their_node_id.as_ref() == Some(&msg.contents.node_id) { + continue; + } + if except_node.is_some() && peer.their_node_id.as_ref() == except_node { + continue; + } + self.enqueue_encoded_message(peer, &encoded_msg); + } + }, + wire::Message::ChannelUpdate(ref msg) => { + log_gossip!(self.logger, "Sending message to all peers except {:?}: {:?}", except_node, msg); + let encoded_msg = encode_msg!(msg); + + for (_, peer) in peers.peers.iter_mut() { + if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() || + !peer.should_forward_channel_announcement(msg.contents.short_channel_id) { + continue + } + if peer.pending_outbound_buffer.len() > OUTBOUND_BUFFER_LIMIT_DROP_GOSSIP + || peer.msgs_sent_since_pong > BUFFER_DRAIN_MSGS_PER_TICK * FORWARD_INIT_SYNC_BUFFER_LIMIT_RATIO + { + log_gossip!(self.logger, "Skipping broadcast message to {:?} as its outbound buffer is full", peer.their_node_id); + continue; + } + if except_node.is_some() && peer.their_node_id.as_ref() == except_node { + continue; + } + self.enqueue_encoded_message(peer, &encoded_msg); + } + }, + _ => debug_assert!(false, "We shouldn't attempt to forward anything but gossip messages"), + } } /// Checks for any events generated by our handlers and processes them. Includes sending most /// response messages as well as messages generated by calls to handler functions directly (eg - /// functions like ChannelManager::process_pending_htlc_forward or send_payment). + /// functions like [`ChannelManager::process_pending_htlc_forwards`] or [`send_payment`]). + /// + /// May call [`send_data`] on [`SocketDescriptor`]s. Thus, be very careful with reentrancy + /// issues! + /// + /// You don't have to call this function explicitly if you are using [`lightning-net-tokio`] + /// or one of the other clients provided in our language bindings. + /// + /// [`send_payment`]: crate::ln::channelmanager::ChannelManager::send_payment + /// [`ChannelManager::process_pending_htlc_forwards`]: crate::ln::channelmanager::ChannelManager::process_pending_htlc_forwards + /// [`send_data`]: SocketDescriptor::send_data pub fn process_events(&self) { { // TODO: There are some DoS attacks here where you can flood someone's outbound send // buffer by doing things like announcing channels on another node. We should be willing to // drop optional-ish messages when send buffers get full! + let mut peers_lock = self.peers.lock().unwrap(); let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events(); events_generated.append(&mut self.message_handler.route_handler.get_and_clear_pending_msg_events()); - let mut peers_lock = self.peers.lock().unwrap(); let peers = &mut *peers_lock; - for event in events_generated.drain(..) { - macro_rules! get_peer_for_forwarding { - ($node_id: expr, $handle_no_such_peer: block) => { - { - let descriptor = match peers.node_id_to_descriptor.get($node_id) { - Some(descriptor) => descriptor.clone(), - None => { - $handle_no_such_peer; - continue; - }, - }; - match peers.peers.get_mut(&descriptor) { + macro_rules! get_peer_for_forwarding { + ($node_id: expr) => { + { + match peers.node_id_to_descriptor.get($node_id) { + Some(descriptor) => match peers.peers.get_mut(&descriptor) { Some(peer) => { if peer.their_features.is_none() { - $handle_no_such_peer; continue; } - (descriptor, peer) + peer }, None => panic!("Inconsistent peers set state!"), - } + }, + None => { + continue; + }, } } } + } + for event in events_generated.drain(..) { match event { MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}", + log_debug!(self.logger, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}", log_pubkey!(node_id), log_bytes!(msg.temporary_channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Drop the pending channel? (or just let it timeout, but that sucks) - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}", + log_debug!(self.logger, "Handling SendOpenChannel event in peer_handler for node {} for channel {}", log_pubkey!(node_id), log_bytes!(msg.temporary_channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Drop the pending channel? (or just let it timeout, but that sucks) - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})", + log_debug!(self.logger, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})", log_pubkey!(node_id), log_bytes!(msg.temporary_channel_id), log_funding_channel_id!(msg.funding_txid, msg.funding_output_index)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: generate a DiscardFunding event indicating to the wallet that - //they should just throw away this funding transaction - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + // TODO: If the peer is gone we should generate a DiscardFunding event + // indicating to the wallet that they should just throw away this funding transaction + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}", + log_debug!(self.logger, "Handling SendFundingSigned event in peer_handler for node {} for channel {}", log_pubkey!(node_id), log_bytes!(msg.channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: generate a DiscardFunding event indicating to the wallet that - //they should just throw away this funding transaction - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}", + log_debug!(self.logger, "Handling SendFundingLocked event in peer_handler for node {} for channel {}", log_pubkey!(node_id), log_bytes!(msg.channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Do whatever we're gonna do for handling dropped messages - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})", + log_debug!(self.logger, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})", log_pubkey!(node_id), log_bytes!(msg.channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: generate a DiscardFunding event indicating to the wallet that - //they should just throw away this funding transaction - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => { - log_trace!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}", + log_debug!(self.logger, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}", log_pubkey!(node_id), update_add_htlcs.len(), update_fulfill_htlcs.len(), update_fail_htlcs.len(), log_bytes!(commitment_signed.channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Do whatever we're gonna do for handling dropped messages - }); + let peer = get_peer_for_forwarding!(node_id); for msg in update_add_htlcs { - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); + self.enqueue_message(peer, msg); } for msg in update_fulfill_htlcs { - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); + self.enqueue_message(peer, msg); } for msg in update_fail_htlcs { - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); + self.enqueue_message(peer, msg); } for msg in update_fail_malformed_htlcs { - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); + self.enqueue_message(peer, msg); } if let &Some(ref msg) = update_fee { - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); + self.enqueue_message(peer, msg); } - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_signed))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(peer, commitment_signed); }, MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}", + log_debug!(self.logger, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}", log_pubkey!(node_id), log_bytes!(msg.channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Do whatever we're gonna do for handling dropped messages - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}", + log_debug!(self.logger, "Handling SendClosingSigned event in peer_handler for node {} for channel {}", log_pubkey!(node_id), log_bytes!(msg.channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Do whatever we're gonna do for handling dropped messages - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendShutdown { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}", + log_debug!(self.logger, "Handling Shutdown event in peer_handler for node {} for channel {}", log_pubkey!(node_id), log_bytes!(msg.channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Do whatever we're gonna do for handling dropped messages - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => { - log_trace!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}", + log_debug!(self.logger, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}", log_pubkey!(node_id), log_bytes!(msg.channel_id)); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Do whatever we're gonna do for handling dropped messages - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, - MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => { - log_trace!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id); - if self.message_handler.route_handler.handle_channel_announcement(msg).is_ok() && self.message_handler.route_handler.handle_channel_update(update_msg).is_ok() { - let encoded_msg = encode_msg!(msg); - let encoded_update_msg = encode_msg!(update_msg); - - for (ref descriptor, ref mut peer) in peers.peers.iter_mut() { - if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() || - !peer.should_forward_channel_announcement(msg.contents.short_channel_id) { - continue - } - match peer.their_node_id { - None => continue, - Some(their_node_id) => { - if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 { - continue - } - } - } - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..])); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_update_msg[..])); - self.do_attempt_write_data(&mut (*descriptor).clone(), peer); - } + MessageSendEvent::BroadcastChannelAnnouncement { msg, update_msg } => { + log_debug!(self.logger, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id); + match self.message_handler.route_handler.handle_channel_announcement(&msg) { + Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) => + self.forward_broadcast_msg(peers, &wire::Message::ChannelAnnouncement(msg), None), + _ => {}, + } + match self.message_handler.route_handler.handle_channel_update(&update_msg) { + Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) => + self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(update_msg), None), + _ => {}, } }, - MessageSendEvent::BroadcastNodeAnnouncement { ref msg } => { - log_trace!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler"); - if self.message_handler.route_handler.handle_node_announcement(msg).is_ok() { - let encoded_msg = encode_msg!(msg); - - for (ref descriptor, ref mut peer) in peers.peers.iter_mut() { - if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() || - !peer.should_forward_node_announcement(msg.contents.node_id) { - continue - } - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..])); - self.do_attempt_write_data(&mut (*descriptor).clone(), peer); - } + MessageSendEvent::BroadcastNodeAnnouncement { msg } => { + log_debug!(self.logger, "Handling BroadcastNodeAnnouncement event in peer_handler"); + match self.message_handler.route_handler.handle_node_announcement(&msg) { + Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) => + self.forward_broadcast_msg(peers, &wire::Message::NodeAnnouncement(msg), None), + _ => {}, } }, - MessageSendEvent::BroadcastChannelUpdate { ref msg } => { - log_trace!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id); - if self.message_handler.route_handler.handle_channel_update(msg).is_ok() { - let encoded_msg = encode_msg!(msg); - - for (ref descriptor, ref mut peer) in peers.peers.iter_mut() { - if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() || - !peer.should_forward_channel_announcement(msg.contents.short_channel_id) { - continue - } - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..])); - self.do_attempt_write_data(&mut (*descriptor).clone(), peer); - } + MessageSendEvent::BroadcastChannelUpdate { msg } => { + log_debug!(self.logger, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id); + match self.message_handler.route_handler.handle_channel_update(&msg) { + Ok(_) | Err(LightningError { action: msgs::ErrorAction::IgnoreDuplicateGossip, .. }) => + self.forward_broadcast_msg(peers, &wire::Message::ChannelUpdate(msg), None), + _ => {}, } }, - MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => { - self.message_handler.route_handler.handle_htlc_fail_channel_update(update); + MessageSendEvent::SendChannelUpdate { ref node_id, ref msg } => { + log_trace!(self.logger, "Handling SendChannelUpdate event in peer_handler for node {} for channel {}", + log_pubkey!(node_id), msg.contents.short_channel_id); + let peer = get_peer_for_forwarding!(node_id); + peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); }, MessageSendEvent::HandleError { ref node_id, ref action } => { match *action { msgs::ErrorAction::DisconnectPeer { ref msg } => { if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) { - peers.peers_needing_send.remove(&descriptor); if let Some(mut peer) = peers.peers.remove(&descriptor) { if let Some(ref msg) = *msg { log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}", log_pubkey!(node_id), msg.data); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); + self.enqueue_message(&mut peer, msg); // This isn't guaranteed to work, but if there is enough free // room in the send buffer, put the error message there... self.do_attempt_write_data(&mut descriptor, &mut peer); } else { - log_trace!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id)); + log_gossip!(self.logger, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id)); } } descriptor.disconnect_socket(); self.message_handler.chan_handler.peer_disconnected(&node_id, false); } }, - msgs::ErrorAction::IgnoreError => {}, + msgs::ErrorAction::IgnoreAndLog(level) => { + log_given_level!(self.logger, level, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id)); + }, + msgs::ErrorAction::IgnoreDuplicateGossip => {}, + msgs::ErrorAction::IgnoreError => { + log_debug!(self.logger, "Received a HandleError event to be ignored for node {}", log_pubkey!(node_id)); + }, msgs::ErrorAction::SendErrorMessage { ref msg } => { log_trace!(self.logger, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}", log_pubkey!(node_id), msg.data); - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, { - //TODO: Do whatever we're gonna do for handling dropped messages - }); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); + }, + msgs::ErrorAction::SendWarningMessage { ref msg, ref log_level } => { + log_given_level!(self.logger, *log_level, "Handling SendWarningMessage HandleError event in peer_handler for node {} with message {}", + log_pubkey!(node_id), + msg.data); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, } }, MessageSendEvent::SendChannelRangeQuery { ref node_id, ref msg } => { - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {}); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); }, MessageSendEvent::SendShortIdsQuery { ref node_id, ref msg } => { - let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {}); - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg))); - self.do_attempt_write_data(&mut descriptor, peer); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); + } + MessageSendEvent::SendReplyChannelRange { ref node_id, ref msg } => { + log_gossip!(self.logger, "Handling SendReplyChannelRange event in peer_handler for node {} with num_scids={} first_blocknum={} number_of_blocks={}, sync_complete={}", + log_pubkey!(node_id), + msg.short_channel_ids.len(), + msg.first_blocknum, + msg.number_of_blocks, + msg.sync_complete); + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); + } + MessageSendEvent::SendGossipTimestampFilter { ref node_id, ref msg } => { + self.enqueue_message(get_peer_for_forwarding!(node_id), msg); } } } - for mut descriptor in peers.peers_needing_send.drain() { - match peers.peers.get_mut(&descriptor) { - Some(peer) => self.do_attempt_write_data(&mut descriptor, peer), - None => panic!("Inconsistent peers set state!"), - } + for (node_id, msg) in self.custom_message_handler.get_and_clear_pending_msg() { + self.enqueue_message(get_peer_for_forwarding!(&node_id), &msg); + } + + for (descriptor, peer) in peers.peers.iter_mut() { + self.do_attempt_write_data(&mut (*descriptor).clone(), peer); } } } /// Indicates that the given socket descriptor's connection is now closed. - /// - /// This must only be called if the socket has been disconnected by the peer or your own - /// decision to disconnect it and must NOT be called in any case where other parts of this - /// library (eg PeerHandleError, explicit disconnect_socket calls) instruct you to disconnect - /// the peer. - /// - /// Panics if the descriptor was not previously registered in a successful new_*_connection event. pub fn socket_disconnected(&self, descriptor: &Descriptor) { self.disconnect_event_internal(descriptor, false); } fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) { let mut peers = self.peers.lock().unwrap(); - peers.peers_needing_send.remove(descriptor); let peer_option = peers.peers.remove(descriptor); match peer_option { - None => panic!("Descriptor for disconnect_event is not already known to PeerManager"), + None => { + // This is most likely a simple race condition where the user found that the socket + // was disconnected, then we told the user to `disconnect_socket()`, then they + // called this method. Either way we're disconnected, return. + }, Some(peer) => { match peer.their_node_id { Some(node_id) => { + log_trace!(self.logger, + "Handling disconnection of peer {}, with {}future connection to the peer possible.", + log_pubkey!(node_id), if no_connection_possible { "no " } else { "" }); peers.node_id_to_descriptor.remove(&node_id); self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible); }, @@ -1176,38 +1572,101 @@ impl PeerManager 0 && !peer.received_message_since_timer_tick) + || peer.awaiting_pong_timer_tick_intervals as u64 > + MAX_BUFFER_DRAIN_TICK_INTERVALS_PER_PEER as u64 * peer_count as u64 + { descriptors_needing_disconnect.push(descriptor.clone()); match peer.their_node_id { Some(node_id) => { @@ -1215,30 +1674,25 @@ impl PeerManager { - // This can't actually happen as we should have hit - // is_ready_for_encryption() previously on this same peer. - unreachable!(); - }, + None => {}, } return false; } + peer.received_message_since_timer_tick = false; - if !peer.channel_encryptor.is_ready_for_encryption() { - // The peer needs to complete its handshake before we can exchange messages + if peer.awaiting_pong_timer_tick_intervals > 0 { + peer.awaiting_pong_timer_tick_intervals += 1; return true; } + peer.awaiting_pong_timer_tick_intervals = 1; let ping = msgs::Ping { ponglen: 0, byteslen: 64, }; - peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(&ping))); - - let mut descriptor_clone = descriptor.clone(); - self.do_attempt_write_data(&mut descriptor_clone, peer); + self.enqueue_message(peer, &ping); + self.do_attempt_write_data(&mut (descriptor.clone()), &mut *peer); - peer.awaiting_pong = true; true }); @@ -1249,19 +1703,33 @@ impl PeerManager bool { + match type_id { + msgs::ChannelAnnouncement::TYPE | + msgs::ChannelUpdate::TYPE | + msgs::NodeAnnouncement::TYPE | + msgs::QueryChannelRange::TYPE | + msgs::ReplyChannelRange::TYPE | + msgs::QueryShortChannelIds::TYPE | + msgs::ReplyShortChannelIdsEnd::TYPE => true, + _ => false + } +} + #[cfg(test)] mod tests { - use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor}; + use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor, IgnoringMessageHandler, filter_addresses}; use ln::msgs; + use ln::msgs::NetAddress; use util::events; use util::test_utils; use bitcoin::secp256k1::Secp256k1; use bitcoin::secp256k1::key::{SecretKey, PublicKey}; - use std; - use std::sync::{Arc, Mutex}; - use std::sync::atomic::Ordering; + use prelude::*; + use sync::{Arc, Mutex}; + use core::sync::atomic::Ordering; #[derive(Clone)] struct FileDescriptor { @@ -1274,8 +1742,8 @@ mod tests { } } impl Eq for FileDescriptor { } - impl std::hash::Hash for FileDescriptor { - fn hash(&self, hasher: &mut H) { + impl core::hash::Hash for FileDescriptor { + fn hash(&self, hasher: &mut H) { self.fd.hash(hasher) } } @@ -1310,28 +1778,30 @@ mod tests { cfgs } - fn create_network<'a>(peer_count: usize, cfgs: &'a Vec) -> Vec> { + fn create_network<'a>(peer_count: usize, cfgs: &'a Vec) -> Vec> { let mut peers = Vec::new(); for i in 0..peer_count { let node_secret = SecretKey::from_slice(&[42 + i as u8; 32]).unwrap(); let ephemeral_bytes = [i as u8; 32]; let msg_handler = MessageHandler { chan_handler: &cfgs[i].chan_handler, route_handler: &cfgs[i].routing_handler }; - let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger); + let peer = PeerManager::new(msg_handler, node_secret, &ephemeral_bytes, &cfgs[i].logger, IgnoringMessageHandler {}); peers.push(peer); } peers } - fn establish_connection<'a>(peer_a: &PeerManager, peer_b: &PeerManager) -> (FileDescriptor, FileDescriptor) { + fn establish_connection<'a>(peer_a: &PeerManager, peer_b: &PeerManager) -> (FileDescriptor, FileDescriptor) { let secp_ctx = Secp256k1::new(); let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret); let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) }; let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) }; - let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap(); - peer_a.new_inbound_connection(fd_a.clone()).unwrap(); + let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone(), None).unwrap(); + peer_a.new_inbound_connection(fd_a.clone(), None).unwrap(); assert_eq!(peer_a.read_event(&mut fd_a, &initial_data).unwrap(), false); + peer_a.process_events(); assert_eq!(peer_b.read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false); + peer_b.process_events(); assert_eq!(peer_a.read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false); (fd_a.clone(), fd_b.clone()) } @@ -1369,11 +1839,13 @@ mod tests { assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1); // peers[0] awaiting_pong is set to true, but the Peer is still connected - peers[0].timer_tick_occured(); + peers[0].timer_tick_occurred(); + peers[0].process_events(); assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1); - // Since timer_tick_occured() is called again when awaiting_pong is true, all Peers are disconnected - peers[0].timer_tick_occured(); + // Since timer_tick_occurred() is called again when awaiting_pong is true, all Peers are disconnected + peers[0].timer_tick_occurred(); + peers[0].process_events(); assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0); } @@ -1393,9 +1865,23 @@ mod tests { // than can fit into a peer's buffer). let (mut fd_a, mut fd_b) = establish_connection(&peers[0], &peers[1]); - // Make each peer to read the messages that the other peer just wrote to them. - peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(); - peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(); + // Make each peer to read the messages that the other peer just wrote to them. Note that + // due to the max-messagse-before-ping limits this may take a few iterations to complete. + for _ in 0..150/super::BUFFER_DRAIN_MSGS_PER_TICK + 1 { + peers[0].process_events(); + let b_read_data = fd_a.outbound_data.lock().unwrap().split_off(0); + assert!(!b_read_data.is_empty()); + + peers[1].read_event(&mut fd_b, &b_read_data).unwrap(); + peers[1].process_events(); + + let a_read_data = fd_b.outbound_data.lock().unwrap().split_off(0); + assert!(!a_read_data.is_empty()); + peers[0].read_event(&mut fd_a, &a_read_data).unwrap(); + + peers[1].process_events(); + assert_eq!(fd_b.outbound_data.lock().unwrap().len(), 0, "Until B receives data, it shouldn't send more messages"); + } // Check that each peer has received the expected number of channel updates and channel // announcements. @@ -1404,4 +1890,133 @@ mod tests { assert_eq!(cfgs[1].routing_handler.chan_upds_recvd.load(Ordering::Acquire), 100); assert_eq!(cfgs[1].routing_handler.chan_anns_recvd.load(Ordering::Acquire), 50); } + + #[test] + fn test_handshake_timeout() { + // Tests that we time out a peer still waiting on handshake completion after a full timer + // tick. + let cfgs = create_peermgr_cfgs(2); + cfgs[0].routing_handler.request_full_sync.store(true, Ordering::Release); + cfgs[1].routing_handler.request_full_sync.store(true, Ordering::Release); + let peers = create_network(2, &cfgs); + + let secp_ctx = Secp256k1::new(); + let a_id = PublicKey::from_secret_key(&secp_ctx, &peers[0].our_node_secret); + let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) }; + let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) }; + let initial_data = peers[1].new_outbound_connection(a_id, fd_b.clone(), None).unwrap(); + peers[0].new_inbound_connection(fd_a.clone(), None).unwrap(); + + // If we get a single timer tick before completion, that's fine + assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1); + peers[0].timer_tick_occurred(); + assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1); + + assert_eq!(peers[0].read_event(&mut fd_a, &initial_data).unwrap(), false); + peers[0].process_events(); + assert_eq!(peers[1].read_event(&mut fd_b, &fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false); + peers[1].process_events(); + + // ...but if we get a second timer tick, we should disconnect the peer + peers[0].timer_tick_occurred(); + assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0); + + assert!(peers[0].read_event(&mut fd_a, &fd_b.outbound_data.lock().unwrap().split_off(0)).is_err()); + } + + #[test] + fn test_filter_addresses(){ + // Tests the filter_addresses function. + + // For (10/8) + let ip_address = NetAddress::IPv4{addr: [10, 0, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [10, 0, 255, 201], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [10, 255, 255, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For (0/8) + let ip_address = NetAddress::IPv4{addr: [0, 0, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [0, 0, 255, 187], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [0, 255, 255, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For (100.64/10) + let ip_address = NetAddress::IPv4{addr: [100, 64, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [100, 78, 255, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [100, 127, 255, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For (127/8) + let ip_address = NetAddress::IPv4{addr: [127, 0, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [127, 65, 73, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [127, 255, 255, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For (169.254/16) + let ip_address = NetAddress::IPv4{addr: [169, 254, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [169, 254, 221, 101], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [169, 254, 255, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For (172.16/12) + let ip_address = NetAddress::IPv4{addr: [172, 16, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [172, 27, 101, 23], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [172, 31, 255, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For (192.168/16) + let ip_address = NetAddress::IPv4{addr: [192, 168, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [192, 168, 205, 159], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [192, 168, 255, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For (192.88.99/24) + let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 140], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv4{addr: [192, 88, 99, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For other IPv4 addresses + let ip_address = NetAddress::IPv4{addr: [188, 255, 99, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone())); + let ip_address = NetAddress::IPv4{addr: [123, 8, 129, 14], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone())); + let ip_address = NetAddress::IPv4{addr: [2, 88, 9, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone())); + + // For (2000::/3) + let ip_address = NetAddress::IPv6{addr: [32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone())); + let ip_address = NetAddress::IPv6{addr: [45, 34, 209, 190, 0, 123, 55, 34, 0, 0, 3, 27, 201, 0, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone())); + let ip_address = NetAddress::IPv6{addr: [63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), Some(ip_address.clone())); + + // For other IPv6 addresses + let ip_address = NetAddress::IPv6{addr: [24, 240, 12, 32, 0, 0, 0, 0, 20, 97, 0, 32, 121, 254, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv6{addr: [68, 23, 56, 63, 0, 0, 2, 7, 75, 109, 0, 39, 0, 0, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + let ip_address = NetAddress::IPv6{addr: [101, 38, 140, 230, 100, 0, 30, 98, 0, 26, 0, 0, 57, 96, 0, 0], port: 1000}; + assert_eq!(filter_addresses(Some(ip_address.clone())), None); + + // For (None) + assert_eq!(filter_addresses(None), None); + } }