using org.ldk.impl; using org.ldk.enums; using org.ldk.util; using System; namespace org { namespace ldk { namespace structs { /** * [`ScoreLookUp`] implementation using channel success probability distributions. * * Channels are tracked with upper and lower liquidity bounds - when an HTLC fails at a channel, * we learn that the upper-bound on the available liquidity is lower than the amount of the HTLC. * When a payment is forwarded through a channel (but fails later in the route), we learn the * lower-bound on the channel's available liquidity must be at least the value of the HTLC. * * These bounds are then used to determine a success probability using the formula from * Optimally Reliable & Cheap Payment Flows on the Lightning Network* by Rene Pickhardt * and Stefan Richter [[1]] (i.e. `(upper_bound - payment_amount) / (upper_bound - lower_bound)`). * 6762, 1070 * This probability is combined with the [`liquidity_penalty_multiplier_msat`] and * [`liquidity_penalty_amount_multiplier_msat`] parameters to calculate a concrete penalty in * milli-satoshis. The penalties, when added across all hops, have the property of being linear in * terms of the entire path's success probability. This allows the router to directly compare * penalties for different paths. See the documentation of those parameters for the exact formulas. * * The liquidity bounds are decayed by halving them every [`liquidity_offset_half_life`]. * * Further, we track the history of our upper and lower liquidity bounds for each channel, * allowing us to assign a second penalty (using [`historical_liquidity_penalty_multiplier_msat`] * and [`historical_liquidity_penalty_amount_multiplier_msat`]) based on the same probability * formula, but using the history of a channel rather than our latest estimates for the liquidity * bounds. * * # Note * * Mixing the `no-std` feature between serialization and deserialization results in undefined * behavior. * * [1]: https://arxiv.org/abs/2107.05322 * [`liquidity_penalty_multiplier_msat`]: ProbabilisticScoringFeeParameters::liquidity_penalty_multiplier_msat * [`liquidity_penalty_amount_multiplier_msat`]: ProbabilisticScoringFeeParameters::liquidity_penalty_amount_multiplier_msat * [`liquidity_offset_half_life`]: ProbabilisticScoringDecayParameters::liquidity_offset_half_life * [`historical_liquidity_penalty_multiplier_msat`]: ProbabilisticScoringFeeParameters::historical_liquidity_penalty_multiplier_msat * [`historical_liquidity_penalty_amount_multiplier_msat`]: ProbabilisticScoringFeeParameters::historical_liquidity_penalty_amount_multiplier_msat */ public class ProbabilisticScorer : CommonBase { internal ProbabilisticScorer(object _dummy, long ptr) : base(ptr) { } ~ProbabilisticScorer() { if (ptr != 0) { bindings.ProbabilisticScorer_free(ptr); } } /** * Creates a new scorer using the given scoring parameters for sending payments from a node * through a network graph. */ public static ProbabilisticScorer of(org.ldk.structs.ProbabilisticScoringDecayParameters decay_params, org.ldk.structs.NetworkGraph network_graph, org.ldk.structs.Logger logger) { long ret = bindings.ProbabilisticScorer_new(decay_params == null ? 0 : decay_params.ptr, network_graph == null ? 0 : network_graph.ptr, logger.ptr); GC.KeepAlive(decay_params); GC.KeepAlive(network_graph); GC.KeepAlive(logger); if (ret >= 0 && ret <= 4096) { return null; } org.ldk.structs.ProbabilisticScorer ret_hu_conv = null; if (ret < 0 || ret > 4096) { ret_hu_conv = new org.ldk.structs.ProbabilisticScorer(null, ret); } if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(ret_hu_conv); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(decay_params); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(network_graph); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(logger); }; return ret_hu_conv; } /** * Dump the contents of this scorer into the configured logger. * * Note that this writes roughly one line per channel for which we have a liquidity estimate, * which may be a substantial amount of log output. */ public void debug_log_liquidity_stats() { bindings.ProbabilisticScorer_debug_log_liquidity_stats(this.ptr); GC.KeepAlive(this); } /** * Query the estimated minimum and maximum liquidity available for sending a payment over the * channel with `scid` towards the given `target` node. */ public Option_C2Tuple_u64u64ZZ estimated_channel_liquidity_range(long scid, org.ldk.structs.NodeId target) { long ret = bindings.ProbabilisticScorer_estimated_channel_liquidity_range(this.ptr, scid, target == null ? 0 : target.ptr); GC.KeepAlive(this); GC.KeepAlive(scid); GC.KeepAlive(target); if (ret >= 0 && ret <= 4096) { return null; } org.ldk.structs.Option_C2Tuple_u64u64ZZ ret_hu_conv = org.ldk.structs.Option_C2Tuple_u64u64ZZ.constr_from_ptr(ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; if (this != null) { this.ptrs_to.AddLast(target); }; return ret_hu_conv; } /** * Query the historical estimated minimum and maximum liquidity available for sending a * payment over the channel with `scid` towards the given `target` node. * * Returns two sets of 32 buckets. The first set describes the lower-bound liquidity history, * the second set describes the upper-bound liquidity history. Each bucket describes the * relative frequency at which we've seen a liquidity bound in the bucket's range relative to * the channel's total capacity, on an arbitrary scale. Because the values are slowly decayed, * more recent data points are weighted more heavily than older datapoints. * * Note that the range of each bucket varies by its location to provide more granular results * at the edges of a channel's capacity, where it is more likely to sit. * * When scoring, the estimated probability that an upper-/lower-bound lies in a given bucket * is calculated by dividing that bucket's value with the total value of all buckets. * * For example, using a lower bucket count for illustrative purposes, a value of * `[0, 0, 0, ..., 0, 32]` indicates that we believe the probability of a bound being very * close to the channel's capacity to be 100%, and have never (recently) seen it in any other * bucket. A value of `[31, 0, 0, ..., 0, 0, 32]` indicates we've seen the bound being both * in the top and bottom bucket, and roughly with similar (recent) frequency. * * Because the datapoints are decayed slowly over time, values will eventually return to * `Some(([1; 32], [1; 32]))` and then to `None` once no datapoints remain. * * In order to fetch a single success probability from the buckets provided here, as used in * the scoring model, see [`Self::historical_estimated_payment_success_probability`]. */ public Option_C2Tuple_ThirtyTwoU16sThirtyTwoU16sZZ historical_estimated_channel_liquidity_probabilities(long scid, org.ldk.structs.NodeId target) { long ret = bindings.ProbabilisticScorer_historical_estimated_channel_liquidity_probabilities(this.ptr, scid, target == null ? 0 : target.ptr); GC.KeepAlive(this); GC.KeepAlive(scid); GC.KeepAlive(target); if (ret >= 0 && ret <= 4096) { return null; } org.ldk.structs.Option_C2Tuple_ThirtyTwoU16sThirtyTwoU16sZZ ret_hu_conv = org.ldk.structs.Option_C2Tuple_ThirtyTwoU16sThirtyTwoU16sZZ.constr_from_ptr(ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; if (this != null) { this.ptrs_to.AddLast(target); }; return ret_hu_conv; } /** * Query the probability of payment success sending the given `amount_msat` over the channel * with `scid` towards the given `target` node, based on the historical estimated liquidity * bounds. * * These are the same bounds as returned by * [`Self::historical_estimated_channel_liquidity_probabilities`] (but not those returned by * [`Self::estimated_channel_liquidity_range`]). */ public Option_f64Z historical_estimated_payment_success_probability(long scid, org.ldk.structs.NodeId target, long amount_msat, org.ldk.structs.ProbabilisticScoringFeeParameters _params) { long ret = bindings.ProbabilisticScorer_historical_estimated_payment_success_probability(this.ptr, scid, target == null ? 0 : target.ptr, amount_msat, _params == null ? 0 : _params.ptr); GC.KeepAlive(this); GC.KeepAlive(scid); GC.KeepAlive(target); GC.KeepAlive(amount_msat); GC.KeepAlive(_params); if (ret >= 0 && ret <= 4096) { return null; } org.ldk.structs.Option_f64Z ret_hu_conv = org.ldk.structs.Option_f64Z.constr_from_ptr(ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; if (this != null) { this.ptrs_to.AddLast(target); }; if (this != null) { this.ptrs_to.AddLast(_params); }; return ret_hu_conv; } /** * Constructs a new ScoreLookUp which calls the relevant methods on this_arg. * This copies the `inner` pointer in this_arg and thus the returned ScoreLookUp must be freed before this_arg is */ public ScoreLookUp as_ScoreLookUp() { long ret = bindings.ProbabilisticScorer_as_ScoreLookUp(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } ScoreLookUp ret_hu_conv = new ScoreLookUp(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * Constructs a new ScoreUpdate which calls the relevant methods on this_arg. * This copies the `inner` pointer in this_arg and thus the returned ScoreUpdate must be freed before this_arg is */ public ScoreUpdate as_ScoreUpdate() { long ret = bindings.ProbabilisticScorer_as_ScoreUpdate(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } ScoreUpdate ret_hu_conv = new ScoreUpdate(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * Constructs a new Score which calls the relevant methods on this_arg. * This copies the `inner` pointer in this_arg and thus the returned Score must be freed before this_arg is */ public Score as_Score() { long ret = bindings.ProbabilisticScorer_as_Score(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } Score ret_hu_conv = new Score(null, ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(this); }; return ret_hu_conv; } /** * Serialize the ProbabilisticScorer object into a byte array which can be read by ProbabilisticScorer_read */ public byte[] write() { long ret = bindings.ProbabilisticScorer_write(this.ptr); GC.KeepAlive(this); if (ret >= 0 && ret <= 4096) { return null; } byte[] ret_conv = InternalUtils.decodeUint8Array(ret); return ret_conv; } /** * Read a ProbabilisticScorer from a byte array, created by ProbabilisticScorer_write */ public static Result_ProbabilisticScorerDecodeErrorZ read(byte[] ser, org.ldk.structs.ProbabilisticScoringDecayParameters arg_a, org.ldk.structs.NetworkGraph arg_b, org.ldk.structs.Logger arg_c) { long ret = bindings.ProbabilisticScorer_read(InternalUtils.encodeUint8Array(ser), arg_a == null ? 0 : arg_a.ptr, arg_b == null ? 0 : arg_b.ptr, arg_c.ptr); GC.KeepAlive(ser); GC.KeepAlive(arg_a); GC.KeepAlive(arg_b); GC.KeepAlive(arg_c); if (ret >= 0 && ret <= 4096) { return null; } Result_ProbabilisticScorerDecodeErrorZ ret_hu_conv = Result_ProbabilisticScorerDecodeErrorZ.constr_from_ptr(ret); if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(arg_a); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(arg_b); }; if (ret_hu_conv != null) { ret_hu_conv.ptrs_to.AddLast(arg_c); }; return ret_hu_conv; } } } } }