X-Git-Url: http://git.bitcoin.ninja/index.cgi?p=rust-lightning;a=blobdiff_plain;f=lightning%2Fsrc%2Fln%2Fchan_utils.rs;h=c229819c3b64e6d3e875002c814190a1d40e153e;hp=43f567933fdf7ebe25f0dcbb8c79e826fcb1d97d;hb=07db23d102738d1e84e3d2cb36101cef92e1761d;hpb=5b24d3e3275b8ca7f0ea064cc1626c8e1def2ccb diff --git a/lightning/src/ln/chan_utils.rs b/lightning/src/ln/chan_utils.rs index 43f56793..c229819c 100644 --- a/lightning/src/ln/chan_utils.rs +++ b/lightning/src/ln/chan_utils.rs @@ -8,20 +8,19 @@ use bitcoin::blockdata::transaction::{TxIn,TxOut,OutPoint,Transaction, SigHashTy use bitcoin::consensus::encode::{self, Decodable, Encodable}; use bitcoin::util::bip143; -use bitcoin_hashes::{Hash, HashEngine}; -use bitcoin_hashes::sha256::Hash as Sha256; -use bitcoin_hashes::ripemd160::Hash as Ripemd160; -use bitcoin_hashes::hash160::Hash as Hash160; -use bitcoin_hashes::sha256d::Hash as Sha256dHash; +use bitcoin::hashes::{Hash, HashEngine}; +use bitcoin::hashes::sha256::Hash as Sha256; +use bitcoin::hashes::ripemd160::Hash as Ripemd160; +use bitcoin::hash_types::{Txid, PubkeyHash}; use ln::channelmanager::{PaymentHash, PaymentPreimage}; use ln::msgs::DecodeError; use util::ser::{Readable, Writeable, Writer, WriterWriteAdaptor}; use util::byte_utils; -use secp256k1::key::{SecretKey, PublicKey}; -use secp256k1::{Secp256k1, Signature}; -use secp256k1; +use bitcoin::secp256k1::key::{SecretKey, PublicKey}; +use bitcoin::secp256k1::{Secp256k1, Signature}; +use bitcoin::secp256k1; use std::{cmp, mem}; @@ -263,11 +262,9 @@ pub struct TxCreationKeys { pub(crate) b_htlc_key: PublicKey, /// A's Payment Key (which isn't allowed to be spent from for some delay) pub(crate) a_delayed_payment_key: PublicKey, - /// B's Payment Key - pub(crate) b_payment_key: PublicKey, } impl_writeable!(TxCreationKeys, 33*6, - { per_commitment_point, revocation_key, a_htlc_key, b_htlc_key, a_delayed_payment_key, b_payment_key }); + { per_commitment_point, revocation_key, a_htlc_key, b_htlc_key, a_delayed_payment_key }); /// One counterparty's public keys which do not change over the life of a channel. #[derive(Clone, PartialEq)] @@ -280,9 +277,10 @@ pub struct ChannelPublicKeys { /// a commitment transaction so that their counterparty can claim all available funds if they /// broadcast an old state. pub revocation_basepoint: PublicKey, - /// The base point which is used (with derive_public_key) to derive a per-commitment payment - /// public key which receives immediately-spendable non-HTLC-encumbered funds. - pub payment_basepoint: PublicKey, + /// The public key which receives our immediately spendable primary channel balance in + /// remote-broadcasted commitment transactions. This key is static across every commitment + /// transaction. + pub payment_point: PublicKey, /// The base point which is used (with derive_public_key) to derive a per-commitment payment /// public key which receives non-HTLC-encumbered funds which are only available for spending /// after some delay (or can be claimed via the revocation path). @@ -295,21 +293,20 @@ pub struct ChannelPublicKeys { impl_writeable!(ChannelPublicKeys, 33*5, { funding_pubkey, revocation_basepoint, - payment_basepoint, + payment_point, delayed_payment_basepoint, htlc_basepoint }); impl TxCreationKeys { - pub(crate) fn new(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_payment_base: &PublicKey, b_htlc_base: &PublicKey) -> Result { + pub(crate) fn new(secp_ctx: &Secp256k1, per_commitment_point: &PublicKey, a_delayed_payment_base: &PublicKey, a_htlc_base: &PublicKey, b_revocation_base: &PublicKey, b_htlc_base: &PublicKey) -> Result { Ok(TxCreationKeys { per_commitment_point: per_commitment_point.clone(), revocation_key: derive_public_revocation_key(&secp_ctx, &per_commitment_point, &b_revocation_base)?, a_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_htlc_base)?, b_htlc_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_htlc_base)?, a_delayed_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &a_delayed_payment_base)?, - b_payment_key: derive_public_key(&secp_ctx, &per_commitment_point, &b_payment_base)?, }) } } @@ -364,7 +361,7 @@ pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommit if htlc.offered { Builder::new().push_opcode(opcodes::all::OP_DUP) .push_opcode(opcodes::all::OP_HASH160) - .push_slice(&Hash160::hash(&revocation_key.serialize())[..]) + .push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..]) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_CHECKSIG) @@ -392,7 +389,7 @@ pub(crate) fn get_htlc_redeemscript_with_explicit_keys(htlc: &HTLCOutputInCommit } else { Builder::new().push_opcode(opcodes::all::OP_DUP) .push_opcode(opcodes::all::OP_HASH160) - .push_slice(&Hash160::hash(&revocation_key.serialize())[..]) + .push_slice(&PubkeyHash::hash(&revocation_key.serialize())[..]) .push_opcode(opcodes::all::OP_EQUAL) .push_opcode(opcodes::all::OP_IF) .push_opcode(opcodes::all::OP_CHECKSIG) @@ -447,7 +444,7 @@ pub fn make_funding_redeemscript(a: &PublicKey, b: &PublicKey) -> Script { } /// panics if htlc.transaction_output_index.is_none()! -pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_self_delay: u16, htlc: &HTLCOutputInCommitment, a_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction { +pub fn build_htlc_transaction(prev_hash: &Txid, feerate_per_kw: u64, to_self_delay: u16, htlc: &HTLCOutputInCommitment, a_delayed_payment_key: &PublicKey, revocation_key: &PublicKey) -> Transaction { let mut txins: Vec = Vec::new(); txins.push(TxIn { previous_output: OutPoint { @@ -484,10 +481,30 @@ pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_s /// to broadcast. Eventually this will require a signer which is possibly external, but for now we /// just pass in the SecretKeys required. pub struct LocalCommitmentTransaction { - tx: Transaction, - pub(crate) local_keys: TxCreationKeys, - pub(crate) feerate_per_kw: u64, - per_htlc: Vec<(HTLCOutputInCommitment, Option, Option)> + // TODO: We should migrate away from providing the transaction, instead providing enough to + // allow the ChannelKeys to construct it from scratch. Luckily we already have HTLC data here, + // so we're probably most of the way there. + /// The commitment transaction itself, in unsigned form. + pub unsigned_tx: Transaction, + /// Our counterparty's signature for the transaction, above. + pub their_sig: Signature, + // Which order the signatures should go in when constructing the final commitment tx witness. + // The user should be able to reconstruc this themselves, so we don't bother to expose it. + our_sig_first: bool, + /// The key derivation parameters for this commitment transaction + pub local_keys: TxCreationKeys, + /// The feerate paid per 1000-weight-unit in this commitment transaction. This value is + /// controlled by the channel initiator. + pub feerate_per_kw: u64, + /// The HTLCs and remote htlc signatures which were included in this commitment transaction. + /// + /// Note that this includes all HTLCs, including ones which were considered dust and not + /// actually included in the transaction as it appears on-chain, but who's value is burned as + /// fees and not included in the to_local or to_remote outputs. + /// + /// The remote HTLC signatures in the second element will always be set for non-dust HTLCs, ie + /// those for which transaction_output_index.is_some(). + pub per_htlc: Vec<(HTLCOutputInCommitment, Option)>, } impl LocalCommitmentTransaction { #[cfg(test)] @@ -499,23 +516,25 @@ impl LocalCommitmentTransaction { }, script_sig: Default::default(), sequence: 0, - witness: vec![vec![], vec![], vec![]] + witness: vec![] }; let dummy_key = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&[42; 32]).unwrap()); + let dummy_sig = Secp256k1::new().sign(&secp256k1::Message::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[42; 32]).unwrap()); Self { - tx: Transaction { + unsigned_tx: Transaction { version: 2, input: vec![dummy_input], output: Vec::new(), lock_time: 0, }, + their_sig: dummy_sig, + our_sig_first: false, local_keys: TxCreationKeys { per_commitment_point: dummy_key.clone(), revocation_key: dummy_key.clone(), a_htlc_key: dummy_key.clone(), b_htlc_key: dummy_key.clone(), a_delayed_payment_key: dummy_key.clone(), - b_payment_key: dummy_key.clone(), }, feerate_per_kw: 0, per_htlc: Vec::new() @@ -524,53 +543,27 @@ impl LocalCommitmentTransaction { /// Generate a new LocalCommitmentTransaction based on a raw commitment transaction, /// remote signature and both parties keys - pub(crate) fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey, local_keys: TxCreationKeys, feerate_per_kw: u64, mut htlc_data: Vec<(HTLCOutputInCommitment, Option)>) -> LocalCommitmentTransaction { - if tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); } - if tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); } - - tx.input[0].witness.push(Vec::new()); // First is the multisig dummy + pub(crate) fn new_missing_local_sig(unsigned_tx: Transaction, their_sig: Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey, local_keys: TxCreationKeys, feerate_per_kw: u64, htlc_data: Vec<(HTLCOutputInCommitment, Option)>) -> LocalCommitmentTransaction { + if unsigned_tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); } + if unsigned_tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); } - if our_funding_key.serialize()[..] < their_funding_key.serialize()[..] { - tx.input[0].witness.push(Vec::new()); - tx.input[0].witness.push(their_sig.serialize_der().to_vec()); - tx.input[0].witness[2].push(SigHashType::All as u8); - } else { - tx.input[0].witness.push(their_sig.serialize_der().to_vec()); - tx.input[0].witness[1].push(SigHashType::All as u8); - tx.input[0].witness.push(Vec::new()); - } - - Self { tx, + Self { + unsigned_tx, + their_sig, + our_sig_first: our_funding_key.serialize()[..] < their_funding_key.serialize()[..], local_keys, feerate_per_kw, - // TODO: Avoid the conversion of a Vec created likely just for this: - per_htlc: htlc_data.drain(..).map(|(a, b)| (a, b, None)).collect(), + per_htlc: htlc_data, } } /// Get the txid of the local commitment transaction contained in this /// LocalCommitmentTransaction - pub fn txid(&self) -> Sha256dHash { - self.tx.txid() + pub fn txid(&self) -> Txid { + self.unsigned_tx.txid() } - /// Check if LocalCommitmentTransaction has already been signed by us - pub fn has_local_sig(&self) -> bool { - if self.tx.input.len() != 1 { panic!("Commitment transactions must have input count == 1!"); } - if self.tx.input[0].witness.len() == 4 { - assert!(!self.tx.input[0].witness[1].is_empty()); - assert!(!self.tx.input[0].witness[2].is_empty()); - true - } else { - assert_eq!(self.tx.input[0].witness.len(), 3); - assert!(self.tx.input[0].witness[0].is_empty()); - assert!(self.tx.input[0].witness[1].is_empty() || self.tx.input[0].witness[2].is_empty()); - false - } - } - - /// Add local signature for LocalCommitmentTransaction, do nothing if signature is already - /// present + /// Gets our signature for the contained commitment transaction given our funding private key. /// /// Funding key is your key included in the 2-2 funding_outpoint lock. Should be provided /// by your ChannelKeys. @@ -578,80 +571,91 @@ impl LocalCommitmentTransaction { /// between your own funding key and your counterparty's. Currently, this is provided in /// ChannelKeys::sign_local_commitment() calls directly. /// Channel value is amount locked in funding_outpoint. - pub fn add_local_sig(&mut self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1) { - if self.has_local_sig() { return; } - let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.tx) - .sighash_all(&self.tx.input[0], funding_redeemscript, channel_value_satoshis)[..]); - let our_sig = secp_ctx.sign(&sighash, funding_key); - - if self.tx.input[0].witness[1].is_empty() { - self.tx.input[0].witness[1] = our_sig.serialize_der().to_vec(); - self.tx.input[0].witness[1].push(SigHashType::All as u8); + pub fn get_local_sig(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1) -> Signature { + let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.unsigned_tx) + .sighash_all(&self.unsigned_tx.input[0], funding_redeemscript, channel_value_satoshis)[..]); + secp_ctx.sign(&sighash, funding_key) + } + + pub(crate) fn add_local_sig(&self, funding_redeemscript: &Script, our_sig: Signature) -> Transaction { + let mut tx = self.unsigned_tx.clone(); + // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element. + tx.input[0].witness.push(Vec::new()); + + if self.our_sig_first { + tx.input[0].witness.push(our_sig.serialize_der().to_vec()); + tx.input[0].witness.push(self.their_sig.serialize_der().to_vec()); } else { - self.tx.input[0].witness[2] = our_sig.serialize_der().to_vec(); - self.tx.input[0].witness[2].push(SigHashType::All as u8); + tx.input[0].witness.push(self.their_sig.serialize_der().to_vec()); + tx.input[0].witness.push(our_sig.serialize_der().to_vec()); } + tx.input[0].witness[1].push(SigHashType::All as u8); + tx.input[0].witness[2].push(SigHashType::All as u8); - self.tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec()); + tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec()); + tx } - /// Get raw transaction without asserting if witness is complete - pub(crate) fn without_valid_witness(&self) -> &Transaction { &self.tx } - /// Get raw transaction with panics if witness is incomplete - pub fn with_valid_witness(&self) -> &Transaction { - assert!(self.has_local_sig()); - &self.tx - } - - /// Add local signature for a htlc transaction, do nothing if a cached signed transaction is - /// already present - pub fn add_htlc_sig(&mut self, htlc_base_key: &SecretKey, htlc_index: u32, preimage: Option, local_csv: u16, secp_ctx: &Secp256k1) { + /// Get a signature for each HTLC which was included in the commitment transaction (ie for + /// which HTLCOutputInCommitment::transaction_output_index.is_some()). + /// + /// The returned Vec has one entry for each HTLC, and in the same order. For HTLCs which were + /// considered dust and not included, a None entry exists, for all others a signature is + /// included. + pub fn get_htlc_sigs(&self, htlc_base_key: &SecretKey, local_csv: u16, secp_ctx: &Secp256k1) -> Result>, ()> { let txid = self.txid(); - for this_htlc in self.per_htlc.iter_mut() { - if this_htlc.0.transaction_output_index == Some(htlc_index) { - if this_htlc.2.is_some() { return; } // we already have a cached htlc transaction at provided index - let mut htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, local_csv, &this_htlc.0, &self.local_keys.a_delayed_payment_key, &self.local_keys.revocation_key); - if !this_htlc.0.offered && preimage.is_none() { return; } // if we don't have preimage for HTLC-Success, don't try to generate - let htlc_secret = if !this_htlc.0.offered { preimage } else { None }; // if we have a preimage for HTLC-Timeout, don't use it that's likely a duplicate HTLC hash - if this_htlc.1.is_none() { return; } // we don't have any remote signature for this htlc - if htlc_tx.input.len() != 1 { return; } - if htlc_tx.input[0].witness.len() != 0 { return; } - - let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.local_keys.a_htlc_key, &self.local_keys.b_htlc_key, &self.local_keys.revocation_key); + let mut ret = Vec::with_capacity(self.per_htlc.len()); + let our_htlc_key = derive_private_key(secp_ctx, &self.local_keys.per_commitment_point, htlc_base_key).map_err(|_| ())?; - if let Ok(our_htlc_key) = derive_private_key(secp_ctx, &self.local_keys.per_commitment_point, htlc_base_key) { - let sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, this_htlc.0.amount_msat / 1000)[..]); - let our_sig = secp_ctx.sign(&sighash, &our_htlc_key); - - htlc_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy - - htlc_tx.input[0].witness.push(this_htlc.1.unwrap().serialize_der().to_vec()); - htlc_tx.input[0].witness.push(our_sig.serialize_der().to_vec()); - htlc_tx.input[0].witness[1].push(SigHashType::All as u8); - htlc_tx.input[0].witness[2].push(SigHashType::All as u8); - - if this_htlc.0.offered { - htlc_tx.input[0].witness.push(Vec::new()); - assert!(htlc_secret.is_none()); - } else { - htlc_tx.input[0].witness.push(htlc_secret.unwrap().0.to_vec()); - } + for this_htlc in self.per_htlc.iter() { + if this_htlc.0.transaction_output_index.is_some() { + let htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, local_csv, &this_htlc.0, &self.local_keys.a_delayed_payment_key, &self.local_keys.revocation_key); - htlc_tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec()); + let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.local_keys.a_htlc_key, &self.local_keys.b_htlc_key, &self.local_keys.revocation_key); - this_htlc.2 = Some(htlc_tx); - } else { return; } + let sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, this_htlc.0.amount_msat / 1000)[..]); + ret.push(Some(secp_ctx.sign(&sighash, &our_htlc_key))); + } else { + ret.push(None); } } + Ok(ret) } - /// Expose raw htlc transaction, guarante witness is complete if non-empty - pub fn htlc_with_valid_witness(&self, htlc_index: u32) -> &Option { - for this_htlc in self.per_htlc.iter() { - if this_htlc.0.transaction_output_index.unwrap() == htlc_index { - return &this_htlc.2; - } + + /// Gets a signed HTLC transaction given a preimage (for !htlc.offered) and the local HTLC transaction signature. + pub(crate) fn get_signed_htlc_tx(&self, htlc_index: usize, signature: &Signature, preimage: &Option, local_csv: u16) -> Transaction { + let txid = self.txid(); + let this_htlc = &self.per_htlc[htlc_index]; + assert!(this_htlc.0.transaction_output_index.is_some()); + // if we don't have preimage for an HTLC-Success, we can't generate an HTLC transaction. + if !this_htlc.0.offered && preimage.is_none() { unreachable!(); } + // Further, we should never be provided the preimage for an HTLC-Timeout transaction. + if this_htlc.0.offered && preimage.is_some() { unreachable!(); } + + let mut htlc_tx = build_htlc_transaction(&txid, self.feerate_per_kw, local_csv, &this_htlc.0, &self.local_keys.a_delayed_payment_key, &self.local_keys.revocation_key); + // Channel should have checked that we have a remote signature for this HTLC at + // creation, and we should have a sensible htlc transaction: + assert!(this_htlc.1.is_some()); + + let htlc_redeemscript = get_htlc_redeemscript_with_explicit_keys(&this_htlc.0, &self.local_keys.a_htlc_key, &self.local_keys.b_htlc_key, &self.local_keys.revocation_key); + + // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element. + htlc_tx.input[0].witness.push(Vec::new()); + + htlc_tx.input[0].witness.push(this_htlc.1.unwrap().serialize_der().to_vec()); + htlc_tx.input[0].witness.push(signature.serialize_der().to_vec()); + htlc_tx.input[0].witness[1].push(SigHashType::All as u8); + htlc_tx.input[0].witness[2].push(SigHashType::All as u8); + + if this_htlc.0.offered { + // Due to BIP146 (MINIMALIF) this must be a zero-length element to relay. + htlc_tx.input[0].witness.push(Vec::new()); + } else { + htlc_tx.input[0].witness.push(preimage.unwrap().0.to_vec()); } - &None + + htlc_tx.input[0].witness.push(htlc_redeemscript.as_bytes().to_vec()); + htlc_tx } } impl PartialEq for LocalCommitmentTransaction { @@ -662,49 +666,53 @@ impl PartialEq for LocalCommitmentTransaction { } impl Writeable for LocalCommitmentTransaction { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { - if let Err(e) = self.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) { + if let Err(e) = self.unsigned_tx.consensus_encode(&mut WriterWriteAdaptor(writer)) { match e { encode::Error::Io(e) => return Err(e), _ => panic!("local tx must have been well-formed!"), } } + self.their_sig.write(writer)?; + self.our_sig_first.write(writer)?; self.local_keys.write(writer)?; self.feerate_per_kw.write(writer)?; writer.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?; - for &(ref htlc, ref sig, ref htlc_tx) in self.per_htlc.iter() { + for &(ref htlc, ref sig) in self.per_htlc.iter() { htlc.write(writer)?; sig.write(writer)?; - htlc_tx.write(writer)?; } Ok(()) } } impl Readable for LocalCommitmentTransaction { fn read(reader: &mut R) -> Result { - let tx = match Transaction::consensus_decode(reader.by_ref()) { + let unsigned_tx = match Transaction::consensus_decode(reader.by_ref()) { Ok(tx) => tx, Err(e) => match e { encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)), _ => return Err(DecodeError::InvalidValue), }, }; + let their_sig = Readable::read(reader)?; + let our_sig_first = Readable::read(reader)?; let local_keys = Readable::read(reader)?; let feerate_per_kw = Readable::read(reader)?; let htlcs_count: u64 = Readable::read(reader)?; - let mut per_htlc = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / mem::size_of::<(HTLCOutputInCommitment, Option, Option)>())); + let mut per_htlc = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / mem::size_of::<(HTLCOutputInCommitment, Option)>())); for _ in 0..htlcs_count { let htlc: HTLCOutputInCommitment = Readable::read(reader)?; let sigs = Readable::read(reader)?; - let htlc_tx = Readable::read(reader)?; - per_htlc.push((htlc, sigs, htlc_tx)); + per_htlc.push((htlc, sigs)); } - if tx.input.len() != 1 { + if unsigned_tx.input.len() != 1 { // Ensure tx didn't hit the 0-input ambiguity case. return Err(DecodeError::InvalidValue); } Ok(Self { - tx, + unsigned_tx, + their_sig, + our_sig_first, local_keys, feerate_per_kw, per_htlc,