X-Git-Url: http://git.bitcoin.ninja/index.cgi?p=rust-lightning;a=blobdiff_plain;f=lightning%2Fsrc%2Fln%2Fchan_utils.rs;h=d576fd338cf692271ceb5ff85ffc6c31fd1b2ce0;hp=f6cbdc23b54d8eb940dd92f494e31e051241eaae;hb=29199fae4634425eb4307651b3b21d93580c8f42;hpb=7159d1546ae92281a7e0533813a6e7558f16354a diff --git a/lightning/src/ln/chan_utils.rs b/lightning/src/ln/chan_utils.rs index f6cbdc23..d576fd33 100644 --- a/lightning/src/ln/chan_utils.rs +++ b/lightning/src/ln/chan_utils.rs @@ -484,10 +484,30 @@ pub fn build_htlc_transaction(prev_hash: &Sha256dHash, feerate_per_kw: u64, to_s /// to broadcast. Eventually this will require a signer which is possibly external, but for now we /// just pass in the SecretKeys required. pub struct LocalCommitmentTransaction { - tx: Transaction, - pub(crate) local_keys: TxCreationKeys, - pub(crate) feerate_per_kw: u64, - pub(crate) per_htlc: Vec<(HTLCOutputInCommitment, Option)>, + // TODO: We should migrate away from providing the transaction, instead providing enough to + // allow the ChannelKeys to construct it from scratch. Luckily we already have HTLC data here, + // so we're probably most of the way there. + /// The commitment transaction itself, in unsigned form. + pub unsigned_tx: Transaction, + /// Our counterparty's signature for the transaction, above. + pub their_sig: Signature, + // Which order the signatures should go in when constructing the final commitment tx witness. + // The user should be able to reconstruc this themselves, so we don't bother to expose it. + our_sig_first: bool, + /// The key derivation parameters for this commitment transaction + pub local_keys: TxCreationKeys, + /// The feerate paid per 1000-weight-unit in this commitment transaction. This value is + /// controlled by the channel initiator. + pub feerate_per_kw: u64, + /// The HTLCs and remote htlc signatures which were included in this commitment transaction. + /// + /// Note that this includes all HTLCs, including ones which were considered dust and not + /// actually included in the transaction as it appears on-chain, but who's value is burned as + /// fees and not included in the to_local or to_remote outputs. + /// + /// The remote HTLC signatures in the second element will always be set for non-dust HTLCs, ie + /// those for which transaction_output_index.is_some(). + pub per_htlc: Vec<(HTLCOutputInCommitment, Option)>, } impl LocalCommitmentTransaction { #[cfg(test)] @@ -499,16 +519,19 @@ impl LocalCommitmentTransaction { }, script_sig: Default::default(), sequence: 0, - witness: vec![vec![], vec![], vec![]] + witness: vec![] }; let dummy_key = PublicKey::from_secret_key(&Secp256k1::new(), &SecretKey::from_slice(&[42; 32]).unwrap()); + let dummy_sig = Secp256k1::new().sign(&secp256k1::Message::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[42; 32]).unwrap()); Self { - tx: Transaction { + unsigned_tx: Transaction { version: 2, input: vec![dummy_input], output: Vec::new(), lock_time: 0, }, + their_sig: dummy_sig, + our_sig_first: false, local_keys: TxCreationKeys { per_commitment_point: dummy_key.clone(), revocation_key: dummy_key.clone(), @@ -524,23 +547,14 @@ impl LocalCommitmentTransaction { /// Generate a new LocalCommitmentTransaction based on a raw commitment transaction, /// remote signature and both parties keys - pub(crate) fn new_missing_local_sig(mut tx: Transaction, their_sig: &Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey, local_keys: TxCreationKeys, feerate_per_kw: u64, htlc_data: Vec<(HTLCOutputInCommitment, Option)>) -> LocalCommitmentTransaction { - if tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); } - if tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); } - - tx.input[0].witness.push(Vec::new()); // First is the multisig dummy - - if our_funding_key.serialize()[..] < their_funding_key.serialize()[..] { - tx.input[0].witness.push(Vec::new()); - tx.input[0].witness.push(their_sig.serialize_der().to_vec()); - tx.input[0].witness[2].push(SigHashType::All as u8); - } else { - tx.input[0].witness.push(their_sig.serialize_der().to_vec()); - tx.input[0].witness[1].push(SigHashType::All as u8); - tx.input[0].witness.push(Vec::new()); - } + pub(crate) fn new_missing_local_sig(unsigned_tx: Transaction, their_sig: Signature, our_funding_key: &PublicKey, their_funding_key: &PublicKey, local_keys: TxCreationKeys, feerate_per_kw: u64, htlc_data: Vec<(HTLCOutputInCommitment, Option)>) -> LocalCommitmentTransaction { + if unsigned_tx.input.len() != 1 { panic!("Tried to store a commitment transaction that had input count != 1!"); } + if unsigned_tx.input[0].witness.len() != 0 { panic!("Tried to store a signed commitment transaction?"); } - Self { tx, + Self { + unsigned_tx, + their_sig, + our_sig_first: our_funding_key.serialize()[..] < their_funding_key.serialize()[..], local_keys, feerate_per_kw, per_htlc: htlc_data, @@ -550,22 +564,7 @@ impl LocalCommitmentTransaction { /// Get the txid of the local commitment transaction contained in this /// LocalCommitmentTransaction pub fn txid(&self) -> Sha256dHash { - self.tx.txid() - } - - /// Check if LocalCommitmentTransaction has already been signed by us - pub(crate) fn has_local_sig(&self) -> bool { - if self.tx.input.len() != 1 { panic!("Commitment transactions must have input count == 1!"); } - if self.tx.input[0].witness.len() == 4 { - assert!(!self.tx.input[0].witness[1].is_empty()); - assert!(!self.tx.input[0].witness[2].is_empty()); - true - } else { - assert_eq!(self.tx.input[0].witness.len(), 3); - assert!(self.tx.input[0].witness[0].is_empty()); - assert!(self.tx.input[0].witness[1].is_empty() || self.tx.input[0].witness[2].is_empty()); - false - } + self.unsigned_tx.txid() } /// Gets our signature for the contained commitment transaction given our funding private key. @@ -577,32 +576,28 @@ impl LocalCommitmentTransaction { /// ChannelKeys::sign_local_commitment() calls directly. /// Channel value is amount locked in funding_outpoint. pub fn get_local_sig(&self, funding_key: &SecretKey, funding_redeemscript: &Script, channel_value_satoshis: u64, secp_ctx: &Secp256k1) -> Signature { - let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.tx) - .sighash_all(&self.tx.input[0], funding_redeemscript, channel_value_satoshis)[..]); + let sighash = hash_to_message!(&bip143::SighashComponents::new(&self.unsigned_tx) + .sighash_all(&self.unsigned_tx.input[0], funding_redeemscript, channel_value_satoshis)[..]); secp_ctx.sign(&sighash, funding_key) } + pub(crate) fn add_local_sig(&self, funding_redeemscript: &Script, our_sig: Signature) -> Transaction { + let mut tx = self.unsigned_tx.clone(); + // First push the multisig dummy, note that due to BIP147 (NULLDUMMY) it must be a zero-length element. + tx.input[0].witness.push(Vec::new()); - pub(crate) fn add_local_sig(&mut self, funding_redeemscript: &Script, our_sig: Signature) { - if self.has_local_sig() { return; } - - if self.tx.input[0].witness[1].is_empty() { - self.tx.input[0].witness[1] = our_sig.serialize_der().to_vec(); - self.tx.input[0].witness[1].push(SigHashType::All as u8); + if self.our_sig_first { + tx.input[0].witness.push(our_sig.serialize_der().to_vec()); + tx.input[0].witness.push(self.their_sig.serialize_der().to_vec()); } else { - self.tx.input[0].witness[2] = our_sig.serialize_der().to_vec(); - self.tx.input[0].witness[2].push(SigHashType::All as u8); + tx.input[0].witness.push(self.their_sig.serialize_der().to_vec()); + tx.input[0].witness.push(our_sig.serialize_der().to_vec()); } + tx.input[0].witness[1].push(SigHashType::All as u8); + tx.input[0].witness[2].push(SigHashType::All as u8); - self.tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec()); - } - - /// Get raw transaction without asserting if witness is complete - pub(crate) fn without_valid_witness(&self) -> &Transaction { &self.tx } - /// Get raw transaction with panics if witness is incomplete - pub(crate) fn with_valid_witness(&self) -> &Transaction { - assert!(self.has_local_sig()); - &self.tx + tx.input[0].witness.push(funding_redeemscript.as_bytes().to_vec()); + tx } /// Get a signature for each HTLC which was included in the commitment transaction (ie for @@ -679,12 +674,14 @@ impl PartialEq for LocalCommitmentTransaction { } impl Writeable for LocalCommitmentTransaction { fn write(&self, writer: &mut W) -> Result<(), ::std::io::Error> { - if let Err(e) = self.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) { + if let Err(e) = self.unsigned_tx.consensus_encode(&mut WriterWriteAdaptor(writer)) { match e { encode::Error::Io(e) => return Err(e), _ => panic!("local tx must have been well-formed!"), } } + self.their_sig.write(writer)?; + self.our_sig_first.write(writer)?; self.local_keys.write(writer)?; self.feerate_per_kw.write(writer)?; writer.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?; @@ -697,13 +694,15 @@ impl Writeable for LocalCommitmentTransaction { } impl Readable for LocalCommitmentTransaction { fn read(reader: &mut R) -> Result { - let tx = match Transaction::consensus_decode(reader.by_ref()) { + let unsigned_tx = match Transaction::consensus_decode(reader.by_ref()) { Ok(tx) => tx, Err(e) => match e { encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)), _ => return Err(DecodeError::InvalidValue), }, }; + let their_sig = Readable::read(reader)?; + let our_sig_first = Readable::read(reader)?; let local_keys = Readable::read(reader)?; let feerate_per_kw = Readable::read(reader)?; let htlcs_count: u64 = Readable::read(reader)?; @@ -714,12 +713,14 @@ impl Readable for LocalCommitmentTransaction { per_htlc.push((htlc, sigs)); } - if tx.input.len() != 1 { + if unsigned_tx.input.len() != 1 { // Ensure tx didn't hit the 0-input ambiguity case. return Err(DecodeError::InvalidValue); } Ok(Self { - tx, + unsigned_tx, + their_sig, + our_sig_first, local_keys, feerate_per_kw, per_htlc,