1 //! Converts a rust crate into a rust crate containing a number of C-exported wrapper functions and
2 //! classes (which is exportable using cbindgen).
3 //! In general, supports convering:
4 //! * structs as a pointer to the underlying type (either owned or not owned),
5 //! * traits as a void-ptr plus a jump table,
6 //! * enums as an equivalent enum with all the inner fields mapped to the mapped types,
7 //! * certain containers (tuples, slices, Vecs, Options, and Results currently) to a concrete
8 //! version of a defined container template.
10 //! It also generates relevant memory-management functions and free-standing functions with
11 //! parameters mapped.
13 use std::collections::{HashMap, HashSet};
16 use std::io::{Read, Write};
20 use proc_macro2::{TokenTree, TokenStream, Span};
27 // *************************************
28 // *** Manually-expanded conversions ***
29 // *************************************
31 /// Because we don't expand macros, any code that we need to generated based on their contents has
32 /// to be completely manual. In this case its all just serialization, so its not too hard.
33 fn convert_macro<W: std::io::Write>(w: &mut W, macro_path: &syn::Path, stream: &TokenStream, types: &TypeResolver) {
34 assert_eq!(macro_path.segments.len(), 1);
35 match &format!("{}", macro_path.segments.iter().next().unwrap().ident) as &str {
36 "impl_writeable" | "impl_writeable_len_match" => {
37 let struct_for = if let TokenTree::Ident(i) = stream.clone().into_iter().next().unwrap() { i } else { unimplemented!(); };
38 if let Some(s) = types.maybe_resolve_ident(&struct_for) {
39 if !types.crate_types.opaques.get(&s).is_some() { return; }
40 writeln!(w, "#[no_mangle]").unwrap();
41 writeln!(w, "pub extern \"C\" fn {}_write(obj: &{}) -> crate::c_types::derived::CVec_u8Z {{", struct_for, struct_for).unwrap();
42 writeln!(w, "\tcrate::c_types::serialize_obj(unsafe {{ &(*(*obj).inner) }})").unwrap();
43 writeln!(w, "}}").unwrap();
44 writeln!(w, "#[no_mangle]").unwrap();
45 writeln!(w, "pub(crate) extern \"C\" fn {}_write_void(obj: *const c_void) -> crate::c_types::derived::CVec_u8Z {{", struct_for).unwrap();
46 writeln!(w, "\tcrate::c_types::serialize_obj(unsafe {{ &*(obj as *const native{}) }})", struct_for).unwrap();
47 writeln!(w, "}}").unwrap();
48 writeln!(w, "#[no_mangle]").unwrap();
49 writeln!(w, "pub extern \"C\" fn {}_read(ser: crate::c_types::u8slice) -> {} {{", struct_for, struct_for).unwrap();
50 writeln!(w, "\tif let Ok(res) = crate::c_types::deserialize_obj(ser) {{").unwrap();
51 writeln!(w, "\t\t{} {{ inner: Box::into_raw(Box::new(res)), is_owned: true }}", struct_for).unwrap();
52 writeln!(w, "\t}} else {{").unwrap();
53 writeln!(w, "\t\t{} {{ inner: std::ptr::null_mut(), is_owned: true }}", struct_for).unwrap();
54 writeln!(w, "\t}}\n}}").unwrap();
61 /// Convert "impl trait_path for for_ty { .. }" for manually-mapped types (ie (de)serialization)
62 fn maybe_convert_trait_impl<W: std::io::Write>(w: &mut W, trait_path: &syn::Path, for_ty: &syn::Type, types: &mut TypeResolver, generics: &GenericTypes) {
63 if let Some(t) = types.maybe_resolve_path(&trait_path, Some(generics)) {
66 let mut has_inner = false;
67 if let syn::Type::Path(ref p) = for_ty {
68 if let Some(ident) = single_ident_generic_path_to_ident(&p.path) {
69 for_obj = format!("{}", ident);
70 full_obj_path = for_obj.clone();
71 has_inner = types.c_type_has_inner_from_path(&types.resolve_path(&p.path, Some(generics)));
74 // We assume that anything that isn't a Path is somehow a generic that ends up in our
75 // derived-types module.
76 let mut for_obj_vec = Vec::new();
77 types.write_c_type(&mut for_obj_vec, for_ty, Some(generics), false);
78 full_obj_path = String::from_utf8(for_obj_vec).unwrap();
79 assert!(full_obj_path.starts_with(TypeResolver::generated_container_path()));
80 for_obj = full_obj_path[TypeResolver::generated_container_path().len() + 2..].into();
84 "util::ser::Writeable" => {
85 writeln!(w, "#[no_mangle]").unwrap();
86 writeln!(w, "pub extern \"C\" fn {}_write(obj: &{}) -> crate::c_types::derived::CVec_u8Z {{", for_obj, full_obj_path).unwrap();
88 let ref_type = syn::Type::Reference(syn::TypeReference {
89 and_token: syn::Token!(&)(Span::call_site()), lifetime: None, mutability: None,
90 elem: Box::new(for_ty.clone()) });
91 assert!(!types.write_from_c_conversion_new_var(w, &syn::Ident::new("obj", Span::call_site()), &ref_type, Some(generics)));
93 write!(w, "\tcrate::c_types::serialize_obj(").unwrap();
94 types.write_from_c_conversion_prefix(w, &ref_type, Some(generics));
95 write!(w, "unsafe {{ &*obj }}").unwrap();
96 types.write_from_c_conversion_suffix(w, &ref_type, Some(generics));
97 writeln!(w, ")").unwrap();
99 writeln!(w, "}}").unwrap();
101 writeln!(w, "#[no_mangle]").unwrap();
102 writeln!(w, "pub(crate) extern \"C\" fn {}_write_void(obj: *const c_void) -> crate::c_types::derived::CVec_u8Z {{", for_obj).unwrap();
103 writeln!(w, "\tcrate::c_types::serialize_obj(unsafe {{ &*(obj as *const native{}) }})", for_obj).unwrap();
104 writeln!(w, "}}").unwrap();
107 "util::ser::Readable"|"util::ser::ReadableArgs" => {
108 // Create the Result<Object, DecodeError> syn::Type
109 let mut err_segs = syn::punctuated::Punctuated::new();
110 err_segs.push(syn::PathSegment { ident: syn::Ident::new("ln", Span::call_site()), arguments: syn::PathArguments::None });
111 err_segs.push(syn::PathSegment { ident: syn::Ident::new("msgs", Span::call_site()), arguments: syn::PathArguments::None });
112 err_segs.push(syn::PathSegment { ident: syn::Ident::new("DecodeError", Span::call_site()), arguments: syn::PathArguments::None });
113 let mut args = syn::punctuated::Punctuated::new();
114 args.push(syn::GenericArgument::Type(for_ty.clone()));
115 args.push(syn::GenericArgument::Type(syn::Type::Path(syn::TypePath {
116 qself: None, path: syn::Path {
117 leading_colon: Some(syn::Token![::](Span::call_site())), segments: err_segs,
120 let mut res_segs = syn::punctuated::Punctuated::new();
121 res_segs.push(syn::PathSegment {
122 ident: syn::Ident::new("Result", Span::call_site()),
123 arguments: syn::PathArguments::AngleBracketed(syn::AngleBracketedGenericArguments {
124 colon2_token: None, lt_token: syn::Token![<](Span::call_site()), args, gt_token: syn::Token![>](Span::call_site()),
127 let res_ty = syn::Type::Path(syn::TypePath { qself: None, path: syn::Path {
128 leading_colon: None, segments: res_segs } });
130 writeln!(w, "#[no_mangle]").unwrap();
131 write!(w, "pub extern \"C\" fn {}_read(ser: crate::c_types::u8slice", for_obj).unwrap();
133 let mut arg_conv = Vec::new();
134 if t == "util::ser::ReadableArgs" {
135 write!(w, ", arg: ").unwrap();
136 assert!(trait_path.leading_colon.is_none());
137 let args_seg = trait_path.segments.iter().last().unwrap();
138 assert_eq!(format!("{}", args_seg.ident), "ReadableArgs");
139 if let syn::PathArguments::AngleBracketed(args) = &args_seg.arguments {
140 assert_eq!(args.args.len(), 1);
141 if let syn::GenericArgument::Type(args_ty) = args.args.iter().next().unwrap() {
142 types.write_c_type(w, args_ty, Some(generics), false);
144 assert!(!types.write_from_c_conversion_new_var(&mut arg_conv, &syn::Ident::new("arg", Span::call_site()), &args_ty, Some(generics)));
146 write!(&mut arg_conv, "\tlet arg_conv = ").unwrap();
147 types.write_from_c_conversion_prefix(&mut arg_conv, &args_ty, Some(generics));
148 write!(&mut arg_conv, "arg").unwrap();
149 types.write_from_c_conversion_suffix(&mut arg_conv, &args_ty, Some(generics));
150 } else { unreachable!(); }
151 } else { unreachable!(); }
153 write!(w, ") -> ").unwrap();
154 types.write_c_type(w, &res_ty, Some(generics), false);
155 writeln!(w, " {{").unwrap();
157 if t == "util::ser::ReadableArgs" {
158 w.write(&arg_conv).unwrap();
159 write!(w, ";\n\tlet res: ").unwrap();
160 // At least in one case we need type annotations here, so provide them.
161 types.write_rust_type(w, Some(generics), &res_ty);
162 writeln!(w, " = crate::c_types::deserialize_obj_arg(ser, arg_conv);").unwrap();
164 writeln!(w, "\tlet res = crate::c_types::deserialize_obj(ser);").unwrap();
166 write!(w, "\t").unwrap();
167 if types.write_to_c_conversion_new_var(w, &syn::Ident::new("res", Span::call_site()), &res_ty, Some(generics), false) {
168 write!(w, "\n\t").unwrap();
170 types.write_to_c_conversion_inline_prefix(w, &res_ty, Some(generics), false);
171 write!(w, "res").unwrap();
172 types.write_to_c_conversion_inline_suffix(w, &res_ty, Some(generics), false);
173 writeln!(w, "\n}}").unwrap();
180 /// Convert "TraitA : TraitB" to a single function name and return type.
182 /// This is (obviously) somewhat over-specialized and only useful for TraitB's that only require a
183 /// single function (eg for serialization).
184 fn convert_trait_impl_field(trait_path: &str) -> (String, &'static str) {
186 "util::ser::Writeable" => ("write".to_owned(), "crate::c_types::derived::CVec_u8Z"),
187 _ => unimplemented!(),
191 /// Companion to convert_trait_impl_field, write an assignment for the function defined by it for
192 /// `for_obj` which implements the the trait at `trait_path`.
193 fn write_trait_impl_field_assign<W: std::io::Write>(w: &mut W, trait_path: &str, for_obj: &syn::Ident) {
195 "util::ser::Writeable" => {
196 writeln!(w, "\t\twrite: {}_write_void,", for_obj).unwrap();
198 _ => unimplemented!(),
202 /// Write out the impl block for a defined trait struct which has a supertrait
203 fn do_write_impl_trait<W: std::io::Write>(w: &mut W, trait_path: &str, trait_name: &syn::Ident, for_obj: &str) {
205 "util::events::MessageSendEventsProvider" => {
206 writeln!(w, "impl lightning::{} for {} {{", trait_path, for_obj).unwrap();
207 writeln!(w, "\tfn get_and_clear_pending_msg_events(&self) -> Vec<lightning::util::events::MessageSendEvent> {{").unwrap();
208 writeln!(w, "\t\t<crate::{} as lightning::{}>::get_and_clear_pending_msg_events(&self.{})", trait_path, trait_path, trait_name).unwrap();
209 writeln!(w, "\t}}\n}}").unwrap();
211 "util::ser::Writeable" => {
212 writeln!(w, "impl lightning::{} for {} {{", trait_path, for_obj).unwrap();
213 writeln!(w, "\tfn write<W: lightning::util::ser::Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {{").unwrap();
214 writeln!(w, "\t\tlet vec = (self.write)(self.this_arg);").unwrap();
215 writeln!(w, "\t\tw.write_all(vec.as_slice())").unwrap();
216 writeln!(w, "\t}}\n}}").unwrap();
222 // *******************************
223 // *** Per-Type Printing Logic ***
224 // *******************************
226 macro_rules! walk_supertraits { ($t: expr, $types: expr, ($( $pat: pat => $e: expr),*) ) => { {
227 if $t.colon_token.is_some() {
228 for st in $t.supertraits.iter() {
230 syn::TypeParamBound::Trait(supertrait) => {
231 if supertrait.paren_token.is_some() || supertrait.lifetimes.is_some() {
234 // First try to resolve path to find in-crate traits, but if that doesn't work
235 // assume its a prelude trait (eg Clone, etc) and just use the single ident.
236 let types_opt: Option<&TypeResolver> = $types;
237 if let Some(types) = types_opt {
238 if let Some(path) = types.maybe_resolve_path(&supertrait.path, None) {
239 match (&path as &str, &supertrait.path.segments.iter().last().unwrap().ident) {
245 if let Some(ident) = supertrait.path.get_ident() {
246 match (&format!("{}", ident) as &str, &ident) {
249 } else if types_opt.is_some() {
250 panic!("Supertrait unresolvable and not single-ident");
253 syn::TypeParamBound::Lifetime(_) => unimplemented!(),
259 /// Prints a C-mapped trait object containing a void pointer and a jump table for each function in
260 /// the original trait.
261 /// Implements the native Rust trait and relevant parent traits for the new C-mapped trait.
263 /// Finally, implements Deref<MappedTrait> for MappedTrait which allows its use in types which need
264 /// a concrete Deref to the Rust trait.
265 fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, types: &mut TypeResolver<'b, 'a>, extra_headers: &mut File, cpp_headers: &mut File) {
266 let trait_name = format!("{}", t.ident);
267 match export_status(&t.attrs) {
268 ExportStatus::Export => {},
269 ExportStatus::NoExport|ExportStatus::TestOnly => return,
271 writeln_docs(w, &t.attrs, "");
273 let mut gen_types = GenericTypes::new();
274 assert!(gen_types.learn_generics(&t.generics, types));
275 gen_types.learn_associated_types(&t, types);
277 writeln!(w, "#[repr(C)]\npub struct {} {{", trait_name).unwrap();
278 writeln!(w, "\tpub this_arg: *mut c_void,").unwrap();
279 let mut generated_fields = Vec::new(); // Every field's name except this_arg, used in Clone generation
280 for item in t.items.iter() {
282 &syn::TraitItem::Method(ref m) => {
283 match export_status(&m.attrs) {
284 ExportStatus::NoExport => {
285 // NoExport in this context means we'll hit an unimplemented!() at runtime,
289 ExportStatus::Export => {},
290 ExportStatus::TestOnly => continue,
292 if m.default.is_some() { unimplemented!(); }
294 gen_types.push_ctx();
295 assert!(gen_types.learn_generics(&m.sig.generics, types));
297 writeln_docs(w, &m.attrs, "\t");
299 if let syn::ReturnType::Type(_, rtype) = &m.sig.output {
300 if let syn::Type::Reference(r) = &**rtype {
301 // We have to do quite a dance for trait functions which return references
302 // - they ultimately require us to have a native Rust object stored inside
303 // our concrete trait to return a reference to. However, users may wish to
304 // update the value to be returned each time the function is called (or, to
305 // make C copies of Rust impls equivalent, we have to be able to).
307 // Thus, we store a copy of the C-mapped type (which is just a pointer to
308 // the Rust type and a flag to indicate whether deallocation needs to
309 // happen) as well as provide an Option<>al function pointer which is
310 // called when the trait method is called which allows updating on the fly.
311 write!(w, "\tpub {}: ", m.sig.ident).unwrap();
312 generated_fields.push(format!("{}", m.sig.ident));
313 types.write_c_type(w, &*r.elem, Some(&gen_types), false);
314 writeln!(w, ",").unwrap();
315 writeln!(w, "\t/// Fill in the {} field as a reference to it will be given to Rust after this returns", m.sig.ident).unwrap();
316 writeln!(w, "\t/// Note that this takes a pointer to this object, not the this_ptr like other methods do").unwrap();
317 writeln!(w, "\t/// This function pointer may be NULL if {} is filled in when this object is created and never needs updating.", m.sig.ident).unwrap();
318 writeln!(w, "\tpub set_{}: Option<extern \"C\" fn(&{})>,", m.sig.ident, trait_name).unwrap();
319 generated_fields.push(format!("set_{}", m.sig.ident));
320 // Note that cbindgen will now generate
321 // typedef struct Thing {..., set_thing: (const Thing*), ...} Thing;
322 // which does not compile since Thing is not defined before it is used.
323 writeln!(extra_headers, "struct LDK{};", trait_name).unwrap();
324 writeln!(extra_headers, "typedef struct LDK{} LDK{};", trait_name, trait_name).unwrap();
328 // Sadly, this currently doesn't do what we want, but it should be easy to get
329 // cbindgen to support it. See https://github.com/eqrion/cbindgen/issues/531
330 writeln!(w, "\t#[must_use]").unwrap();
333 write!(w, "\tpub {}: extern \"C\" fn (", m.sig.ident).unwrap();
334 generated_fields.push(format!("{}", m.sig.ident));
335 write_method_params(w, &m.sig, "c_void", types, Some(&gen_types), true, false);
336 writeln!(w, ",").unwrap();
340 &syn::TraitItem::Type(_) => {},
341 _ => unimplemented!(),
344 // Add functions which may be required for supertrait implementations.
345 walk_supertraits!(t, Some(&types), (
347 writeln!(w, "\tpub clone: Option<extern \"C\" fn (this_arg: *const c_void) -> *mut c_void>,").unwrap();
348 generated_fields.push("clone".to_owned());
350 ("std::cmp::Eq", _) => {
351 writeln!(w, "\tpub eq: extern \"C\" fn (this_arg: *const c_void, other_arg: &{}) -> bool,", trait_name).unwrap();
352 writeln!(extra_headers, "typedef struct LDK{} LDK{};", trait_name, trait_name).unwrap();
353 generated_fields.push("eq".to_owned());
355 ("std::hash::Hash", _) => {
356 writeln!(w, "\tpub hash: extern \"C\" fn (this_arg: *const c_void) -> u64,").unwrap();
357 generated_fields.push("hash".to_owned());
359 ("Send", _) => {}, ("Sync", _) => {},
361 generated_fields.push(if types.crate_types.traits.get(s).is_none() {
362 let (name, ret) = convert_trait_impl_field(s);
363 writeln!(w, "\tpub {}: extern \"C\" fn (this_arg: *const c_void) -> {},", name, ret).unwrap();
366 // For in-crate supertraits, just store a C-mapped copy of the supertrait as a member.
367 writeln!(w, "\tpub {}: crate::{},", i, s).unwrap();
372 writeln!(w, "\tpub free: Option<extern \"C\" fn(this_arg: *mut c_void)>,").unwrap();
373 generated_fields.push("free".to_owned());
374 writeln!(w, "}}").unwrap();
375 // Implement supertraits for the C-mapped struct.
376 walk_supertraits!(t, Some(&types), (
377 ("Send", _) => writeln!(w, "unsafe impl Send for {} {{}}", trait_name).unwrap(),
378 ("Sync", _) => writeln!(w, "unsafe impl Sync for {} {{}}", trait_name).unwrap(),
379 ("std::cmp::Eq", _) => {
380 writeln!(w, "impl std::cmp::Eq for {} {{}}", trait_name).unwrap();
381 writeln!(w, "impl std::cmp::PartialEq for {} {{", trait_name).unwrap();
382 writeln!(w, "\tfn eq(&self, o: &Self) -> bool {{ (self.eq)(self.this_arg, o) }}\n}}").unwrap();
384 ("std::hash::Hash", _) => {
385 writeln!(w, "impl std::hash::Hash for {} {{", trait_name).unwrap();
386 writeln!(w, "\tfn hash<H: std::hash::Hasher>(&self, hasher: &mut H) {{ hasher.write_u64((self.hash)(self.this_arg)) }}\n}}").unwrap();
389 writeln!(w, "#[no_mangle]").unwrap();
390 writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", trait_name, trait_name, trait_name).unwrap();
391 writeln!(w, "\t{} {{", trait_name).unwrap();
392 writeln!(w, "\t\tthis_arg: if let Some(f) = orig.clone {{ (f)(orig.this_arg) }} else {{ orig.this_arg }},").unwrap();
393 for field in generated_fields.iter() {
394 writeln!(w, "\t\t{}: orig.{}.clone(),", field, field).unwrap();
396 writeln!(w, "\t}}\n}}").unwrap();
397 writeln!(w, "impl Clone for {} {{", trait_name).unwrap();
398 writeln!(w, "\tfn clone(&self) -> Self {{").unwrap();
399 writeln!(w, "\t\t{}_clone(self)", trait_name).unwrap();
400 writeln!(w, "\t}}\n}}").unwrap();
403 do_write_impl_trait(w, s, i, &trait_name);
407 // Finally, implement the original Rust trait for the newly created mapped trait.
408 writeln!(w, "\nuse {}::{}::{} as rust{};", types.orig_crate, types.module_path, t.ident, trait_name).unwrap();
409 write!(w, "impl rust{}", t.ident).unwrap();
410 maybe_write_generics(w, &t.generics, types, false);
411 writeln!(w, " for {} {{", trait_name).unwrap();
412 for item in t.items.iter() {
414 syn::TraitItem::Method(m) => {
415 if let ExportStatus::TestOnly = export_status(&m.attrs) { continue; }
416 if m.default.is_some() { unimplemented!(); }
417 if m.sig.constness.is_some() || m.sig.asyncness.is_some() || m.sig.unsafety.is_some() ||
418 m.sig.abi.is_some() || m.sig.variadic.is_some() {
421 gen_types.push_ctx();
422 assert!(gen_types.learn_generics(&m.sig.generics, types));
423 write!(w, "\tfn {}", m.sig.ident).unwrap();
424 types.write_rust_generic_param(w, Some(&gen_types), m.sig.generics.params.iter());
425 write!(w, "(").unwrap();
426 for inp in m.sig.inputs.iter() {
428 syn::FnArg::Receiver(recv) => {
429 if !recv.attrs.is_empty() || recv.reference.is_none() { unimplemented!(); }
430 write!(w, "&").unwrap();
431 if let Some(lft) = &recv.reference.as_ref().unwrap().1 {
432 write!(w, "'{} ", lft.ident).unwrap();
434 if recv.mutability.is_some() {
435 write!(w, "mut self").unwrap();
437 write!(w, "self").unwrap();
440 syn::FnArg::Typed(arg) => {
441 if !arg.attrs.is_empty() { unimplemented!(); }
443 syn::Pat::Ident(ident) => {
444 if !ident.attrs.is_empty() || ident.by_ref.is_some() ||
445 ident.mutability.is_some() || ident.subpat.is_some() {
448 write!(w, ", {}{}: ", if types.skip_arg(&*arg.ty, Some(&gen_types)) { "_" } else { "" }, ident.ident).unwrap();
450 _ => unimplemented!(),
452 types.write_rust_type(w, Some(&gen_types), &*arg.ty);
456 write!(w, ")").unwrap();
457 match &m.sig.output {
458 syn::ReturnType::Type(_, rtype) => {
459 write!(w, " -> ").unwrap();
460 types.write_rust_type(w, Some(&gen_types), &*rtype)
464 write!(w, " {{\n\t\t").unwrap();
465 match export_status(&m.attrs) {
466 ExportStatus::NoExport => {
471 if let syn::ReturnType::Type(_, rtype) = &m.sig.output {
472 if let syn::Type::Reference(r) = &**rtype {
473 assert_eq!(m.sig.inputs.len(), 1); // Must only take self!
474 writeln!(w, "if let Some(f) = self.set_{} {{", m.sig.ident).unwrap();
475 writeln!(w, "\t\t\t(f)(self);").unwrap();
476 write!(w, "\t\t}}\n\t\t").unwrap();
477 types.write_from_c_conversion_to_ref_prefix(w, &*r.elem, Some(&gen_types));
478 write!(w, "self.{}", m.sig.ident).unwrap();
479 types.write_from_c_conversion_to_ref_suffix(w, &*r.elem, Some(&gen_types));
480 writeln!(w, "\n\t}}").unwrap();
485 write_method_var_decl_body(w, &m.sig, "\t", types, Some(&gen_types), true);
486 write!(w, "(self.{})(", m.sig.ident).unwrap();
487 write_method_call_params(w, &m.sig, "\t", types, Some(&gen_types), "", true);
489 writeln!(w, "\n\t}}").unwrap();
492 &syn::TraitItem::Type(ref t) => {
493 if t.default.is_some() || t.generics.lt_token.is_some() { unimplemented!(); }
494 let mut bounds_iter = t.bounds.iter();
495 match bounds_iter.next().unwrap() {
496 syn::TypeParamBound::Trait(tr) => {
497 writeln!(w, "\ttype {} = crate::{};", t.ident, types.resolve_path(&tr.path, Some(&gen_types))).unwrap();
499 _ => unimplemented!(),
501 if bounds_iter.next().is_some() { unimplemented!(); }
503 _ => unimplemented!(),
506 writeln!(w, "}}\n").unwrap();
507 writeln!(w, "// We're essentially a pointer already, or at least a set of pointers, so allow us to be used").unwrap();
508 writeln!(w, "// directly as a Deref trait in higher-level structs:").unwrap();
509 writeln!(w, "impl std::ops::Deref for {} {{\n\ttype Target = Self;", trait_name).unwrap();
510 writeln!(w, "\tfn deref(&self) -> &Self {{\n\t\tself\n\t}}\n}}").unwrap();
512 writeln!(w, "/// Calls the free function if one is set").unwrap();
513 writeln!(w, "#[no_mangle]\npub extern \"C\" fn {}_free(this_ptr: {}) {{ }}", trait_name, trait_name).unwrap();
514 writeln!(w, "impl Drop for {} {{", trait_name).unwrap();
515 writeln!(w, "\tfn drop(&mut self) {{").unwrap();
516 writeln!(w, "\t\tif let Some(f) = self.free {{").unwrap();
517 writeln!(w, "\t\t\tf(self.this_arg);").unwrap();
518 writeln!(w, "\t\t}}\n\t}}\n}}").unwrap();
520 write_cpp_wrapper(cpp_headers, &trait_name, true);
521 types.trait_declared(&t.ident, t);
524 /// Write out a simple "opaque" type (eg structs) which contain a pointer to the native Rust type
525 /// and a flag to indicate whether Drop'ing the mapped struct drops the underlying Rust type.
527 /// Also writes out a _free function and a C++ wrapper which handles calling _free.
528 fn writeln_opaque<W: std::io::Write>(w: &mut W, ident: &syn::Ident, struct_name: &str, generics: &syn::Generics, attrs: &[syn::Attribute], types: &TypeResolver, extra_headers: &mut File, cpp_headers: &mut File) {
529 // If we directly read the original type by its original name, cbindgen hits
530 // https://github.com/eqrion/cbindgen/issues/286 Thus, instead, we import it as a temporary
531 // name and then reference it by that name, which works around the issue.
532 write!(w, "\nuse {}::{}::{} as native{}Import;\ntype native{} = native{}Import", types.orig_crate, types.module_path, ident, ident, ident, ident).unwrap();
533 maybe_write_generics(w, &generics, &types, true);
534 writeln!(w, ";\n").unwrap();
535 writeln!(extra_headers, "struct native{}Opaque;\ntypedef struct native{}Opaque LDKnative{};", ident, ident, ident).unwrap();
536 writeln_docs(w, &attrs, "");
537 writeln!(w, "#[must_use]\n#[repr(C)]\npub struct {} {{\n\t/// Nearly everywhere, inner must be non-null, however in places where", struct_name).unwrap();
538 writeln!(w, "\t/// the Rust equivalent takes an Option, it may be set to null to indicate None.").unwrap();
539 writeln!(w, "\tpub inner: *mut native{},\n\tpub is_owned: bool,\n}}\n", ident).unwrap();
540 writeln!(w, "impl Drop for {} {{\n\tfn drop(&mut self) {{", struct_name).unwrap();
541 writeln!(w, "\t\tif self.is_owned && !self.inner.is_null() {{").unwrap();
542 writeln!(w, "\t\t\tlet _ = unsafe {{ Box::from_raw(self.inner) }};\n\t\t}}\n\t}}\n}}").unwrap();
543 writeln!(w, "#[no_mangle]\npub extern \"C\" fn {}_free(this_ptr: {}) {{ }}", struct_name, struct_name).unwrap();
544 writeln!(w, "#[allow(unused)]").unwrap();
545 writeln!(w, "/// Used only if an object of this type is returned as a trait impl by a method").unwrap();
546 writeln!(w, "extern \"C\" fn {}_free_void(this_ptr: *mut c_void) {{", struct_name).unwrap();
547 writeln!(w, "\tunsafe {{ let _ = Box::from_raw(this_ptr as *mut native{}); }}\n}}", struct_name).unwrap();
548 writeln!(w, "#[allow(unused)]").unwrap();
549 writeln!(w, "/// When moving out of the pointer, we have to ensure we aren't a reference, this makes that easy").unwrap();
550 writeln!(w, "impl {} {{", struct_name).unwrap();
551 writeln!(w, "\tpub(crate) fn take_inner(mut self) -> *mut native{} {{", struct_name).unwrap();
552 writeln!(w, "\t\tassert!(self.is_owned);").unwrap();
553 writeln!(w, "\t\tlet ret = self.inner;").unwrap();
554 writeln!(w, "\t\tself.inner = std::ptr::null_mut();").unwrap();
555 writeln!(w, "\t\tret").unwrap();
556 writeln!(w, "\t}}\n}}").unwrap();
558 if attrs_derives_clone(attrs) {
559 writeln!(w, "impl Clone for {} {{", struct_name).unwrap();
560 writeln!(w, "\tfn clone(&self) -> Self {{").unwrap();
561 writeln!(w, "\t\tSelf {{").unwrap();
562 writeln!(w, "\t\t\tinner: if self.inner.is_null() {{ std::ptr::null_mut() }} else {{").unwrap();
563 writeln!(w, "\t\t\t\tBox::into_raw(Box::new(unsafe {{ &*self.inner }}.clone())) }},").unwrap();
564 writeln!(w, "\t\t\tis_owned: true,").unwrap();
565 writeln!(w, "\t\t}}\n\t}}\n}}").unwrap();
566 writeln!(w, "#[allow(unused)]").unwrap();
567 writeln!(w, "/// Used only if an object of this type is returned as a trait impl by a method").unwrap();
568 writeln!(w, "pub(crate) extern \"C\" fn {}_clone_void(this_ptr: *const c_void) -> *mut c_void {{", struct_name).unwrap();
569 writeln!(w, "\tBox::into_raw(Box::new(unsafe {{ (*(this_ptr as *mut native{})).clone() }})) as *mut c_void", struct_name).unwrap();
570 writeln!(w, "}}").unwrap();
571 writeln!(w, "#[no_mangle]").unwrap();
572 writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", struct_name, struct_name, struct_name).unwrap();
573 writeln!(w, "\torig.clone()").unwrap();
574 writeln!(w, "}}").unwrap();
577 write_cpp_wrapper(cpp_headers, &format!("{}", ident), true);
580 fn declare_struct<'a, 'b>(s: &'a syn::ItemStruct, types: &mut TypeResolver<'b, 'a>) -> bool {
581 let export = export_status(&s.attrs);
583 ExportStatus::Export => {},
584 ExportStatus::TestOnly => return false,
585 ExportStatus::NoExport => {
586 types.struct_ignored(&s.ident);
591 types.struct_imported(&s.ident);
595 /// Writes out all the relevant mappings for a Rust struct, deferring to writeln_opaque to generate
596 /// the struct itself, and then writing getters and setters for public, understood-type fields and
597 /// a constructor if every field is public.
598 fn writeln_struct<'a, 'b, W: std::io::Write>(w: &mut W, s: &'a syn::ItemStruct, types: &mut TypeResolver<'b, 'a>, extra_headers: &mut File, cpp_headers: &mut File) {
599 if !declare_struct(s, types) { return; }
601 let struct_name = &format!("{}", s.ident);
602 writeln_opaque(w, &s.ident, struct_name, &s.generics, &s.attrs, types, extra_headers, cpp_headers);
604 if let syn::Fields::Named(fields) = &s.fields {
605 let mut gen_types = GenericTypes::new();
606 assert!(gen_types.learn_generics(&s.generics, types));
608 let mut all_fields_settable = true;
609 for field in fields.named.iter() {
610 if let syn::Visibility::Public(_) = field.vis {
611 let export = export_status(&field.attrs);
613 ExportStatus::Export => {},
614 ExportStatus::NoExport|ExportStatus::TestOnly => {
615 all_fields_settable = false;
620 if let Some(ident) = &field.ident {
621 let ref_type = syn::Type::Reference(syn::TypeReference {
622 and_token: syn::Token!(&)(Span::call_site()), lifetime: None, mutability: None,
623 elem: Box::new(field.ty.clone()) });
624 if types.understood_c_type(&ref_type, Some(&gen_types)) {
625 writeln_docs(w, &field.attrs, "");
626 write!(w, "#[no_mangle]\npub extern \"C\" fn {}_get_{}(this_ptr: &{}) -> ", struct_name, ident, struct_name).unwrap();
627 types.write_c_type(w, &ref_type, Some(&gen_types), true);
628 write!(w, " {{\n\tlet mut inner_val = &mut unsafe {{ &mut *this_ptr.inner }}.{};\n\t", ident).unwrap();
629 let local_var = types.write_to_c_conversion_new_var(w, &syn::Ident::new("inner_val", Span::call_site()), &ref_type, Some(&gen_types), true);
630 if local_var { write!(w, "\n\t").unwrap(); }
631 types.write_to_c_conversion_inline_prefix(w, &ref_type, Some(&gen_types), true);
633 write!(w, "inner_val").unwrap();
635 write!(w, "(*inner_val)").unwrap();
637 types.write_to_c_conversion_inline_suffix(w, &ref_type, Some(&gen_types), true);
638 writeln!(w, "\n}}").unwrap();
641 if types.understood_c_type(&field.ty, Some(&gen_types)) {
642 writeln_docs(w, &field.attrs, "");
643 write!(w, "#[no_mangle]\npub extern \"C\" fn {}_set_{}(this_ptr: &mut {}, mut val: ", struct_name, ident, struct_name).unwrap();
644 types.write_c_type(w, &field.ty, Some(&gen_types), false);
645 write!(w, ") {{\n\t").unwrap();
646 let local_var = types.write_from_c_conversion_new_var(w, &syn::Ident::new("val", Span::call_site()), &field.ty, Some(&gen_types));
647 if local_var { write!(w, "\n\t").unwrap(); }
648 write!(w, "unsafe {{ &mut *this_ptr.inner }}.{} = ", ident).unwrap();
649 types.write_from_c_conversion_prefix(w, &field.ty, Some(&gen_types));
650 write!(w, "val").unwrap();
651 types.write_from_c_conversion_suffix(w, &field.ty, Some(&gen_types));
652 writeln!(w, ";\n}}").unwrap();
653 } else { all_fields_settable = false; }
654 } else { all_fields_settable = false; }
655 } else { all_fields_settable = false; }
658 if all_fields_settable {
659 // Build a constructor!
660 write!(w, "#[must_use]\n#[no_mangle]\npub extern \"C\" fn {}_new(", struct_name).unwrap();
661 for (idx, field) in fields.named.iter().enumerate() {
662 if idx != 0 { write!(w, ", ").unwrap(); }
663 write!(w, "mut {}_arg: ", field.ident.as_ref().unwrap()).unwrap();
664 types.write_c_type(w, &field.ty, Some(&gen_types), false);
666 write!(w, ") -> {} {{\n\t", struct_name).unwrap();
667 for field in fields.named.iter() {
668 let field_name = format!("{}_arg", field.ident.as_ref().unwrap());
669 if types.write_from_c_conversion_new_var(w, &syn::Ident::new(&field_name, Span::call_site()), &field.ty, Some(&gen_types)) {
670 write!(w, "\n\t").unwrap();
673 writeln!(w, "{} {{ inner: Box::into_raw(Box::new(native{} {{", struct_name, s.ident).unwrap();
674 for field in fields.named.iter() {
675 write!(w, "\t\t{}: ", field.ident.as_ref().unwrap()).unwrap();
676 types.write_from_c_conversion_prefix(w, &field.ty, Some(&gen_types));
677 write!(w, "{}_arg", field.ident.as_ref().unwrap()).unwrap();
678 types.write_from_c_conversion_suffix(w, &field.ty, Some(&gen_types));
679 writeln!(w, ",").unwrap();
681 writeln!(w, "\t}})), is_owned: true }}\n}}").unwrap();
686 /// Prints a relevant conversion for impl *
688 /// For simple impl Struct {}s, this just outputs the wrapper functions as Struct_fn_name() { .. }.
690 /// For impl Trait for Struct{}s, this non-exported generates wrapper functions as
691 /// Trait_Struct_fn_name and a Struct_as_Trait(&struct) -> Trait function which returns a populated
692 /// Trait struct containing a pointer to the passed struct's inner field and the wrapper functions.
694 /// A few non-crate Traits are hard-coded including Default.
695 fn writeln_impl<W: std::io::Write>(w: &mut W, i: &syn::ItemImpl, types: &mut TypeResolver) {
696 match export_status(&i.attrs) {
697 ExportStatus::Export => {},
698 ExportStatus::NoExport|ExportStatus::TestOnly => return,
701 if let syn::Type::Tuple(_) = &*i.self_ty {
702 if types.understood_c_type(&*i.self_ty, None) {
703 let mut gen_types = GenericTypes::new();
704 if !gen_types.learn_generics(&i.generics, types) {
705 eprintln!("Not implementing anything for `impl (..)` due to not understood generics");
709 if i.defaultness.is_some() || i.unsafety.is_some() { unimplemented!(); }
710 if let Some(trait_path) = i.trait_.as_ref() {
711 if trait_path.0.is_some() { unimplemented!(); }
712 if types.understood_c_path(&trait_path.1) {
713 eprintln!("Not implementing anything for `impl Trait for (..)` - we only support manual defines");
716 // Just do a manual implementation:
717 maybe_convert_trait_impl(w, &trait_path.1, &*i.self_ty, types, &gen_types);
720 eprintln!("Not implementing anything for plain `impl (..)` block - we only support `impl Trait for (..)` blocks");
726 if let &syn::Type::Path(ref p) = &*i.self_ty {
727 if p.qself.is_some() { unimplemented!(); }
728 if let Some(ident) = single_ident_generic_path_to_ident(&p.path) {
729 if let Some(resolved_path) = types.maybe_resolve_non_ignored_ident(&ident) {
730 let mut gen_types = GenericTypes::new();
731 if !gen_types.learn_generics(&i.generics, types) {
732 eprintln!("Not implementing anything for impl {} due to not understood generics", ident);
736 if i.defaultness.is_some() || i.unsafety.is_some() { unimplemented!(); }
737 if let Some(trait_path) = i.trait_.as_ref() {
738 if trait_path.0.is_some() { unimplemented!(); }
739 if types.understood_c_path(&trait_path.1) {
740 let full_trait_path = types.resolve_path(&trait_path.1, None);
741 let trait_obj = *types.crate_types.traits.get(&full_trait_path).unwrap();
742 // We learn the associated types maping from the original trait object.
743 // That's great, except that they are unresolved idents, so if we learn
744 // mappings from a trai defined in a different file, we may mis-resolve or
745 // fail to resolve the mapped types.
746 gen_types.learn_associated_types(trait_obj, types);
747 let mut impl_associated_types = HashMap::new();
748 for item in i.items.iter() {
750 syn::ImplItem::Type(t) => {
751 if let syn::Type::Path(p) = &t.ty {
752 if let Some(id) = single_ident_generic_path_to_ident(&p.path) {
753 impl_associated_types.insert(&t.ident, id);
761 let export = export_status(&trait_obj.attrs);
763 ExportStatus::Export => {},
764 ExportStatus::NoExport|ExportStatus::TestOnly => return,
767 // For cases where we have a concrete native object which implements a
768 // trait and need to return the C-mapped version of the trait, provide a
769 // From<> implementation which does all the work to ensure free is handled
770 // properly. This way we can call this method from deep in the
771 // type-conversion logic without actually knowing the concrete native type.
772 writeln!(w, "impl From<native{}> for crate::{} {{", ident, full_trait_path).unwrap();
773 writeln!(w, "\tfn from(obj: native{}) -> Self {{", ident).unwrap();
774 writeln!(w, "\t\tlet mut rust_obj = {} {{ inner: Box::into_raw(Box::new(obj)), is_owned: true }};", ident).unwrap();
775 writeln!(w, "\t\tlet mut ret = {}_as_{}(&rust_obj);", ident, trait_obj.ident).unwrap();
776 writeln!(w, "\t\t// We want to free rust_obj when ret gets drop()'d, not rust_obj, so wipe rust_obj's pointer and set ret's free() fn").unwrap();
777 writeln!(w, "\t\trust_obj.inner = std::ptr::null_mut();").unwrap();
778 writeln!(w, "\t\tret.free = Some({}_free_void);", ident).unwrap();
779 writeln!(w, "\t\tret\n\t}}\n}}").unwrap();
781 write!(w, "#[no_mangle]\npub extern \"C\" fn {}_as_{}(this_arg: &{}) -> crate::{} {{\n", ident, trait_obj.ident, ident, full_trait_path).unwrap();
782 writeln!(w, "\tcrate::{} {{", full_trait_path).unwrap();
783 writeln!(w, "\t\tthis_arg: unsafe {{ (*this_arg).inner as *mut c_void }},").unwrap();
784 writeln!(w, "\t\tfree: None,").unwrap();
786 macro_rules! write_meth {
787 ($m: expr, $trait: expr, $indent: expr) => {
788 let trait_method = $trait.items.iter().filter_map(|item| {
789 if let syn::TraitItem::Method(t_m) = item { Some(t_m) } else { None }
790 }).find(|trait_meth| trait_meth.sig.ident == $m.sig.ident).unwrap();
791 match export_status(&trait_method.attrs) {
792 ExportStatus::Export => {},
793 ExportStatus::NoExport => {
794 write!(w, "{}\t\t//XXX: Need to export {}\n", $indent, $m.sig.ident).unwrap();
797 ExportStatus::TestOnly => continue,
800 let mut printed = false;
801 if let syn::ReturnType::Type(_, rtype) = &$m.sig.output {
802 if let syn::Type::Reference(r) = &**rtype {
803 write!(w, "\n\t\t{}{}: ", $indent, $m.sig.ident).unwrap();
804 types.write_empty_rust_val(Some(&gen_types), w, &*r.elem);
805 writeln!(w, ",\n{}\t\tset_{}: Some({}_{}_set_{}),", $indent, $m.sig.ident, ident, trait_obj.ident, $m.sig.ident).unwrap();
810 write!(w, "{}\t\t{}: {}_{}_{},\n", $indent, $m.sig.ident, ident, trait_obj.ident, $m.sig.ident).unwrap();
814 for item in trait_obj.items.iter() {
816 syn::TraitItem::Method(m) => {
817 write_meth!(m, trait_obj, "");
822 walk_supertraits!(trait_obj, Some(&types), (
824 writeln!(w, "\t\tclone: Some({}_clone_void),", ident).unwrap();
826 ("Sync", _) => {}, ("Send", _) => {},
827 ("std::marker::Sync", _) => {}, ("std::marker::Send", _) => {},
829 if let Some(supertrait_obj) = types.crate_types.traits.get(s) {
830 writeln!(w, "\t\t{}: crate::{} {{", t, s).unwrap();
831 writeln!(w, "\t\t\tthis_arg: unsafe {{ (*this_arg).inner as *mut c_void }},").unwrap();
832 writeln!(w, "\t\t\tfree: None,").unwrap();
833 for item in supertrait_obj.items.iter() {
835 syn::TraitItem::Method(m) => {
836 write_meth!(m, supertrait_obj, "\t");
841 write!(w, "\t\t}},\n").unwrap();
843 write_trait_impl_field_assign(w, s, ident);
847 write!(w, "\t}}\n}}\nuse {}::{} as {}TraitImport;\n", types.orig_crate, full_trait_path, trait_obj.ident).unwrap();
849 macro_rules! impl_meth {
850 ($m: expr, $trait: expr, $indent: expr) => {
851 let trait_method = $trait.items.iter().filter_map(|item| {
852 if let syn::TraitItem::Method(t_m) = item { Some(t_m) } else { None }
853 }).find(|trait_meth| trait_meth.sig.ident == $m.sig.ident).unwrap();
854 match export_status(&trait_method.attrs) {
855 ExportStatus::Export => {},
856 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
859 if let syn::ReturnType::Type(_, _) = &$m.sig.output {
860 writeln!(w, "#[must_use]").unwrap();
862 write!(w, "extern \"C\" fn {}_{}_{}(", ident, trait_obj.ident, $m.sig.ident).unwrap();
863 gen_types.push_ctx();
864 assert!(gen_types.learn_generics(&$m.sig.generics, types));
865 write_method_params(w, &$m.sig, "c_void", types, Some(&gen_types), true, true);
866 write!(w, " {{\n\t").unwrap();
867 write_method_var_decl_body(w, &$m.sig, "", types, Some(&gen_types), false);
868 let mut takes_self = false;
869 for inp in $m.sig.inputs.iter() {
870 if let syn::FnArg::Receiver(_) = inp {
875 write!(w, "unsafe {{ &mut *(this_arg as *mut native{}) }}.{}(", ident, $m.sig.ident).unwrap();
877 write!(w, "{}::{}::{}(", types.orig_crate, resolved_path, $m.sig.ident).unwrap();
880 let mut real_type = "".to_string();
881 match &$m.sig.output {
882 syn::ReturnType::Type(_, rtype) => {
883 if let Some(mut remaining_path) = first_seg_self(&*rtype) {
884 if let Some(associated_seg) = get_single_remaining_path_seg(&mut remaining_path) {
885 real_type = format!("{}", impl_associated_types.get(associated_seg).unwrap());
891 write_method_call_params(w, &$m.sig, "", types, Some(&gen_types), &real_type, false);
893 write!(w, "\n}}\n").unwrap();
894 if let syn::ReturnType::Type(_, rtype) = &$m.sig.output {
895 if let syn::Type::Reference(r) = &**rtype {
896 assert_eq!($m.sig.inputs.len(), 1); // Must only take self
897 writeln!(w, "extern \"C\" fn {}_{}_set_{}(trait_self_arg: &{}) {{", ident, trait_obj.ident, $m.sig.ident, trait_obj.ident).unwrap();
898 writeln!(w, "\t// This is a bit race-y in the general case, but for our specific use-cases today, we're safe").unwrap();
899 writeln!(w, "\t// Specifically, we must ensure that the first time we're called it can never be in parallel").unwrap();
900 write!(w, "\tif ").unwrap();
901 types.write_empty_rust_val_check(Some(&gen_types), w, &*r.elem, &format!("trait_self_arg.{}", $m.sig.ident));
902 writeln!(w, " {{").unwrap();
903 writeln!(w, "\t\tunsafe {{ &mut *(trait_self_arg as *const {} as *mut {}) }}.{} = {}_{}_{}(trait_self_arg.this_arg);", trait_obj.ident, trait_obj.ident, $m.sig.ident, ident, trait_obj.ident, $m.sig.ident).unwrap();
904 writeln!(w, "\t}}").unwrap();
905 writeln!(w, "}}").unwrap();
911 for item in i.items.iter() {
913 syn::ImplItem::Method(m) => {
914 impl_meth!(m, trait_obj, "");
916 syn::ImplItem::Type(_) => {},
917 _ => unimplemented!(),
920 walk_supertraits!(trait_obj, Some(&types), (
922 if let Some(supertrait_obj) = types.crate_types.traits.get(s).cloned() {
923 writeln!(w, "use {}::{} as native{}Trait;", types.orig_crate, s, t).unwrap();
924 for item in supertrait_obj.items.iter() {
926 syn::TraitItem::Method(m) => {
927 impl_meth!(m, supertrait_obj, "\t");
935 write!(w, "\n").unwrap();
936 } else if let Some(trait_ident) = trait_path.1.get_ident() {
937 //XXX: implement for other things like ToString
938 match &format!("{}", trait_ident) as &str {
941 write!(w, "#[must_use]\n#[no_mangle]\npub extern \"C\" fn {}_default() -> {} {{\n", ident, ident).unwrap();
942 write!(w, "\t{} {{ inner: Box::into_raw(Box::new(Default::default())), is_owned: true }}\n", ident).unwrap();
943 write!(w, "}}\n").unwrap();
946 // If we have no generics, try a manual implementation:
947 _ => maybe_convert_trait_impl(w, &trait_path.1, &*i.self_ty, types, &gen_types),
950 // If we have no generics, try a manual implementation:
951 maybe_convert_trait_impl(w, &trait_path.1, &*i.self_ty, types, &gen_types);
954 let declared_type = (*types.get_declared_type(&ident).unwrap()).clone();
955 for item in i.items.iter() {
957 syn::ImplItem::Method(m) => {
958 if let syn::Visibility::Public(_) = m.vis {
959 match export_status(&m.attrs) {
960 ExportStatus::Export => {},
961 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
963 if m.defaultness.is_some() { unimplemented!(); }
964 writeln_docs(w, &m.attrs, "");
965 if let syn::ReturnType::Type(_, _) = &m.sig.output {
966 writeln!(w, "#[must_use]").unwrap();
968 write!(w, "#[no_mangle]\npub extern \"C\" fn {}_{}(", ident, m.sig.ident).unwrap();
969 let ret_type = match &declared_type {
970 DeclType::MirroredEnum => format!("{}", ident),
971 DeclType::StructImported => format!("{}", ident),
972 _ => unimplemented!(),
974 gen_types.push_ctx();
975 assert!(gen_types.learn_generics(&m.sig.generics, types));
976 write_method_params(w, &m.sig, &ret_type, types, Some(&gen_types), false, true);
977 write!(w, " {{\n\t").unwrap();
978 write_method_var_decl_body(w, &m.sig, "", types, Some(&gen_types), false);
979 let mut takes_self = false;
980 let mut takes_mut_self = false;
981 for inp in m.sig.inputs.iter() {
982 if let syn::FnArg::Receiver(r) = inp {
984 if r.mutability.is_some() { takes_mut_self = true; }
988 write!(w, "unsafe {{ &mut (*(this_arg.inner as *mut native{})) }}.{}(", ident, m.sig.ident).unwrap();
989 } else if takes_self {
990 write!(w, "unsafe {{ &*this_arg.inner }}.{}(", m.sig.ident).unwrap();
992 write!(w, "{}::{}::{}(", types.orig_crate, resolved_path, m.sig.ident).unwrap();
994 write_method_call_params(w, &m.sig, "", types, Some(&gen_types), &ret_type, false);
996 writeln!(w, "\n}}\n").unwrap();
1004 eprintln!("Not implementing anything for {} due to no-resolve (probably the type isn't pub or its marked not exported)", ident);
1010 /// Returns true if the enum will be mapped as an opaue (ie struct with a pointer to the underlying
1011 /// type), otherwise it is mapped into a transparent, C-compatible version of itself.
1012 fn is_enum_opaque(e: &syn::ItemEnum) -> bool {
1013 for var in e.variants.iter() {
1014 if let syn::Fields::Unit = var.fields {
1015 } else if let syn::Fields::Named(fields) = &var.fields {
1016 for field in fields.named.iter() {
1017 match export_status(&field.attrs) {
1018 ExportStatus::Export|ExportStatus::TestOnly => {},
1019 ExportStatus::NoExport => return true,
1029 fn declare_enum<'a, 'b>(e: &'a syn::ItemEnum, types: &mut TypeResolver<'b, 'a>) {
1030 match export_status(&e.attrs) {
1031 ExportStatus::Export => {},
1032 ExportStatus::NoExport|ExportStatus::TestOnly => return,
1035 if is_enum_opaque(e) {
1036 types.enum_ignored(&e.ident);
1038 types.mirrored_enum_declared(&e.ident);
1042 /// Print a mapping of an enum. If all of the enum's fields are C-mapped in some form (or the enum
1043 /// is unitary), we generate an equivalent enum with all types replaced with their C mapped
1044 /// versions followed by conversion functions which map between the Rust version and the C mapped
1046 fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, types: &mut TypeResolver<'b, 'a>, extra_headers: &mut File, cpp_headers: &mut File) {
1047 match export_status(&e.attrs) {
1048 ExportStatus::Export => {},
1049 ExportStatus::NoExport|ExportStatus::TestOnly => return,
1052 if is_enum_opaque(e) {
1053 eprintln!("Skipping enum {} as it contains non-unit fields", e.ident);
1054 writeln_opaque(w, &e.ident, &format!("{}", e.ident), &e.generics, &e.attrs, types, extra_headers, cpp_headers);
1057 writeln_docs(w, &e.attrs, "");
1059 if e.generics.lt_token.is_some() {
1063 let mut needs_free = false;
1065 writeln!(w, "#[must_use]\n#[derive(Clone)]\n#[repr(C)]\npub enum {} {{", e.ident).unwrap();
1066 for var in e.variants.iter() {
1067 assert_eq!(export_status(&var.attrs), ExportStatus::Export); // We can't partially-export a mirrored enum
1068 writeln_docs(w, &var.attrs, "\t");
1069 write!(w, "\t{}", var.ident).unwrap();
1070 if let syn::Fields::Named(fields) = &var.fields {
1072 writeln!(w, " {{").unwrap();
1073 for field in fields.named.iter() {
1074 if export_status(&field.attrs) == ExportStatus::TestOnly { continue; }
1075 write!(w, "\t\t{}: ", field.ident.as_ref().unwrap()).unwrap();
1076 types.write_c_type(w, &field.ty, None, false);
1077 writeln!(w, ",").unwrap();
1079 write!(w, "\t}}").unwrap();
1081 if var.discriminant.is_some() { unimplemented!(); }
1082 writeln!(w, ",").unwrap();
1084 writeln!(w, "}}\nuse {}::{}::{} as native{};\nimpl {} {{", types.orig_crate, types.module_path, e.ident, e.ident, e.ident).unwrap();
1086 macro_rules! write_conv {
1087 ($fn_sig: expr, $to_c: expr, $ref: expr) => {
1088 writeln!(w, "\t#[allow(unused)]\n\tpub(crate) fn {} {{\n\t\tmatch {} {{", $fn_sig, if $to_c { "native" } else { "self" }).unwrap();
1089 for var in e.variants.iter() {
1090 write!(w, "\t\t\t{}{}::{} ", if $to_c { "native" } else { "" }, e.ident, var.ident).unwrap();
1091 if let syn::Fields::Named(fields) = &var.fields {
1092 write!(w, "{{").unwrap();
1093 for field in fields.named.iter() {
1094 if export_status(&field.attrs) == ExportStatus::TestOnly { continue; }
1095 write!(w, "{}{}, ", if $ref { "ref " } else { "mut " }, field.ident.as_ref().unwrap()).unwrap();
1097 write!(w, "}} ").unwrap();
1099 write!(w, "=>").unwrap();
1100 if let syn::Fields::Named(fields) = &var.fields {
1101 write!(w, " {{\n\t\t\t\t").unwrap();
1102 for field in fields.named.iter() {
1103 if export_status(&field.attrs) == ExportStatus::TestOnly { continue; }
1104 let mut sink = ::std::io::sink();
1105 let mut out: &mut dyn std::io::Write = if $ref { &mut sink } else { w };
1106 let new_var = if $to_c {
1107 types.write_to_c_conversion_new_var(&mut out, field.ident.as_ref().unwrap(), &field.ty, None, false)
1109 types.write_from_c_conversion_new_var(&mut out, field.ident.as_ref().unwrap(), &field.ty, None)
1111 if $ref || new_var {
1113 write!(w, "let mut {}_nonref = (*{}).clone();\n\t\t\t\t", field.ident.as_ref().unwrap(), field.ident.as_ref().unwrap()).unwrap();
1115 let nonref_ident = syn::Ident::new(&format!("{}_nonref", field.ident.as_ref().unwrap()), Span::call_site());
1117 types.write_to_c_conversion_new_var(w, &nonref_ident, &field.ty, None, false);
1119 types.write_from_c_conversion_new_var(w, &nonref_ident, &field.ty, None);
1121 write!(w, "\n\t\t\t\t").unwrap();
1124 write!(w, "\n\t\t\t\t").unwrap();
1128 } else { write!(w, " ").unwrap(); }
1129 write!(w, "{}{}::{}", if $to_c { "" } else { "native" }, e.ident, var.ident).unwrap();
1130 if let syn::Fields::Named(fields) = &var.fields {
1131 write!(w, " {{").unwrap();
1132 for field in fields.named.iter() {
1133 if export_status(&field.attrs) == ExportStatus::TestOnly { continue; }
1134 write!(w, "\n\t\t\t\t\t{}: ", field.ident.as_ref().unwrap()).unwrap();
1136 types.write_to_c_conversion_inline_prefix(w, &field.ty, None, false);
1138 types.write_from_c_conversion_prefix(w, &field.ty, None);
1141 field.ident.as_ref().unwrap(),
1142 if $ref { "_nonref" } else { "" }).unwrap();
1144 types.write_to_c_conversion_inline_suffix(w, &field.ty, None, false);
1146 types.write_from_c_conversion_suffix(w, &field.ty, None);
1148 write!(w, ",").unwrap();
1150 writeln!(w, "\n\t\t\t\t}}").unwrap();
1151 write!(w, "\t\t\t}}").unwrap();
1153 writeln!(w, ",").unwrap();
1155 writeln!(w, "\t\t}}\n\t}}").unwrap();
1159 write_conv!(format!("to_native(&self) -> native{}", e.ident), false, true);
1160 write_conv!(format!("into_native(self) -> native{}", e.ident), false, false);
1161 write_conv!(format!("from_native(native: &native{}) -> Self", e.ident), true, true);
1162 write_conv!(format!("native_into(native: native{}) -> Self", e.ident), true, false);
1163 writeln!(w, "}}").unwrap();
1166 writeln!(w, "#[no_mangle]\npub extern \"C\" fn {}_free(this_ptr: {}) {{ }}", e.ident, e.ident).unwrap();
1168 writeln!(w, "#[no_mangle]").unwrap();
1169 writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", e.ident, e.ident, e.ident).unwrap();
1170 writeln!(w, "\torig.clone()").unwrap();
1171 writeln!(w, "}}").unwrap();
1172 write_cpp_wrapper(cpp_headers, &format!("{}", e.ident), needs_free);
1175 fn writeln_fn<'a, 'b, W: std::io::Write>(w: &mut W, f: &'a syn::ItemFn, types: &mut TypeResolver<'b, 'a>) {
1176 match export_status(&f.attrs) {
1177 ExportStatus::Export => {},
1178 ExportStatus::NoExport|ExportStatus::TestOnly => return,
1180 writeln_docs(w, &f.attrs, "");
1182 let mut gen_types = GenericTypes::new();
1183 if !gen_types.learn_generics(&f.sig.generics, types) { return; }
1185 write!(w, "#[no_mangle]\npub extern \"C\" fn {}(", f.sig.ident).unwrap();
1186 write_method_params(w, &f.sig, "", types, Some(&gen_types), false, true);
1187 write!(w, " {{\n\t").unwrap();
1188 write_method_var_decl_body(w, &f.sig, "", types, Some(&gen_types), false);
1189 write!(w, "{}::{}::{}(", types.orig_crate, types.module_path, f.sig.ident).unwrap();
1190 write_method_call_params(w, &f.sig, "", types, Some(&gen_types), "", false);
1191 writeln!(w, "\n}}\n").unwrap();
1194 // ********************************
1195 // *** File/Crate Walking Logic ***
1196 // ********************************
1198 /// Simple utility to walk the modules in a crate - iterating over the modules (with file paths) in
1200 struct FileIter<'a, I: Iterator<Item = &'a syn::Item>> {
1206 impl<'a, I: Iterator<Item = &'a syn::Item>> Iterator for FileIter<'a, I> {
1207 type Item = (String, String, &'a syn::ItemMod);
1208 fn next(&mut self) -> std::option::Option<<Self as std::iter::Iterator>::Item> {
1210 match self.item_iter.next() {
1211 Some(syn::Item::Mod(m)) => {
1212 if let syn::Visibility::Public(_) = m.vis {
1213 match export_status(&m.attrs) {
1214 ExportStatus::Export => {},
1215 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1218 let f_path = format!("{}/{}.rs", (self.path.as_ref() as &Path).parent().unwrap().display(), m.ident);
1219 let new_mod = if self.module.is_empty() { format!("{}", m.ident) } else { format!("{}::{}", self.module, m.ident) };
1220 if let Ok(_) = File::open(&format!("{}/{}", self.in_dir, f_path)) {
1221 return Some((f_path, new_mod, m));
1224 format!("{}/{}/mod.rs", (self.path.as_ref() as &Path).parent().unwrap().display(), m.ident),
1230 None => return None,
1235 fn file_iter<'a>(file: &'a syn::File, in_dir: &'a str, path: &'a str, module: &'a str) ->
1236 impl Iterator<Item = (String, String, &'a syn::ItemMod)> + 'a {
1237 FileIter { in_dir, path, module, item_iter: file.items.iter() }
1240 /// A struct containing the syn::File AST for each file in the crate.
1241 struct FullLibraryAST {
1242 files: HashMap<String, syn::File>,
1245 /// Do the Real Work of mapping an original file to C-callable wrappers. Creates a new file at
1246 /// `out_path` and fills it with wrapper structs/functions to allow calling the things in the AST
1247 /// at `module` from C.
1248 fn convert_file<'a, 'b>(libast: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a>, in_dir: &str, out_dir: &str, path: &str, orig_crate: &str, module: &str, header_file: &mut File, cpp_header_file: &mut File) {
1249 let syntax = if let Some(ast) = libast.files.get(module) { ast } else { return };
1251 assert!(syntax.shebang.is_none()); // Not sure what this is, hope we dont have one
1253 let new_file_path = format!("{}/{}", out_dir, path);
1254 let _ = std::fs::create_dir((&new_file_path.as_ref() as &std::path::Path).parent().unwrap());
1255 let mut out = std::fs::OpenOptions::new().write(true).create(true).truncate(true)
1256 .open(new_file_path).expect("Unable to open new src file");
1258 assert_eq!(export_status(&syntax.attrs), ExportStatus::Export);
1259 writeln_docs(&mut out, &syntax.attrs, "");
1261 if path.ends_with("/lib.rs") {
1262 // Special-case the top-level lib.rs with various lint allows and a pointer to the c_types
1263 // and bitcoin hand-written modules.
1264 writeln!(out, "#![allow(unknown_lints)]").unwrap();
1265 writeln!(out, "#![allow(non_camel_case_types)]").unwrap();
1266 writeln!(out, "#![allow(non_snake_case)]").unwrap();
1267 writeln!(out, "#![allow(unused_imports)]").unwrap();
1268 writeln!(out, "#![allow(unused_variables)]").unwrap();
1269 writeln!(out, "#![allow(unused_mut)]").unwrap();
1270 writeln!(out, "#![allow(unused_parens)]").unwrap();
1271 writeln!(out, "#![allow(unused_unsafe)]").unwrap();
1272 writeln!(out, "#![allow(unused_braces)]").unwrap();
1273 writeln!(out, "mod c_types;").unwrap();
1274 writeln!(out, "mod bitcoin;").unwrap();
1276 writeln!(out, "\nuse std::ffi::c_void;\nuse bitcoin::hashes::Hash;\nuse crate::c_types::*;\n").unwrap();
1279 for (path, new_mod, m) in file_iter(&syntax, in_dir, path, &module) {
1280 writeln_docs(&mut out, &m.attrs, "");
1281 writeln!(out, "pub mod {};", m.ident).unwrap();
1282 convert_file(libast, crate_types, in_dir, out_dir, &path,
1283 orig_crate, &new_mod, header_file, cpp_header_file);
1286 eprintln!("Converting {} entries...", path);
1288 let mut type_resolver = TypeResolver::new(orig_crate, module, crate_types);
1290 // First pass over the items and fill in imports and file-declared objects in the type resolver
1291 for item in syntax.items.iter() {
1293 syn::Item::Use(u) => type_resolver.process_use(&mut out, &u),
1294 syn::Item::Struct(s) => {
1295 if let syn::Visibility::Public(_) = s.vis {
1296 declare_struct(&s, &mut type_resolver);
1299 syn::Item::Enum(e) => {
1300 if let syn::Visibility::Public(_) = e.vis {
1301 declare_enum(&e, &mut type_resolver);
1308 for item in syntax.items.iter() {
1310 syn::Item::Use(_) => {}, // Handled above
1311 syn::Item::Static(_) => {},
1312 syn::Item::Enum(e) => {
1313 if let syn::Visibility::Public(_) = e.vis {
1314 writeln_enum(&mut out, &e, &mut type_resolver, header_file, cpp_header_file);
1317 syn::Item::Impl(i) => {
1318 writeln_impl(&mut out, &i, &mut type_resolver);
1320 syn::Item::Struct(s) => {
1321 if let syn::Visibility::Public(_) = s.vis {
1322 writeln_struct(&mut out, &s, &mut type_resolver, header_file, cpp_header_file);
1325 syn::Item::Trait(t) => {
1326 if let syn::Visibility::Public(_) = t.vis {
1327 writeln_trait(&mut out, &t, &mut type_resolver, header_file, cpp_header_file);
1330 syn::Item::Mod(_) => {}, // We don't have to do anything - the top loop handles these.
1331 syn::Item::Const(c) => {
1332 // Re-export any primitive-type constants.
1333 if let syn::Visibility::Public(_) = c.vis {
1334 if let syn::Type::Path(p) = &*c.ty {
1335 let resolved_path = type_resolver.resolve_path(&p.path, None);
1336 if type_resolver.is_primitive(&resolved_path) {
1337 writeln!(out, "\n#[no_mangle]").unwrap();
1338 writeln!(out, "pub static {}: {} = {}::{}::{};", c.ident, resolved_path, orig_crate, module, c.ident).unwrap();
1343 syn::Item::Type(t) => {
1344 if let syn::Visibility::Public(_) = t.vis {
1345 match export_status(&t.attrs) {
1346 ExportStatus::Export => {},
1347 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1350 let mut process_alias = true;
1351 for tok in t.generics.params.iter() {
1352 if let syn::GenericParam::Lifetime(_) = tok {}
1353 else { process_alias = false; }
1357 syn::Type::Path(_) =>
1358 writeln_opaque(&mut out, &t.ident, &format!("{}", t.ident), &t.generics, &t.attrs, &type_resolver, header_file, cpp_header_file),
1364 syn::Item::Fn(f) => {
1365 if let syn::Visibility::Public(_) = f.vis {
1366 writeln_fn(&mut out, &f, &mut type_resolver);
1369 syn::Item::Macro(m) => {
1370 if m.ident.is_none() { // If its not a macro definition
1371 convert_macro(&mut out, &m.mac.path, &m.mac.tokens, &type_resolver);
1374 syn::Item::Verbatim(_) => {},
1375 syn::Item::ExternCrate(_) => {},
1376 _ => unimplemented!(),
1380 out.flush().unwrap();
1383 /// Load the AST for each file in the crate, filling the FullLibraryAST object
1384 fn load_ast(in_dir: &str, path: &str, module: String, ast_storage: &mut FullLibraryAST) {
1385 eprintln!("Loading {}{}...", in_dir, path);
1387 let mut file = File::open(format!("{}/{}", in_dir, path)).expect("Unable to open file");
1388 let mut src = String::new();
1389 file.read_to_string(&mut src).expect("Unable to read file");
1390 let syntax = syn::parse_file(&src).expect("Unable to parse file");
1392 assert_eq!(export_status(&syntax.attrs), ExportStatus::Export);
1394 for (path, new_mod, _) in file_iter(&syntax, in_dir, path, &module) {
1395 load_ast(in_dir, &path, new_mod, ast_storage);
1397 ast_storage.files.insert(module, syntax);
1400 /// Insert ident -> absolute Path resolutions into imports from the given UseTree and path-prefix.
1401 fn process_use_intern<'a>(u: &'a syn::UseTree, mut path: syn::punctuated::Punctuated<syn::PathSegment, syn::token::Colon2>, imports: &mut HashMap<&'a syn::Ident, syn::Path>) {
1403 syn::UseTree::Path(p) => {
1404 path.push(syn::PathSegment { ident: p.ident.clone(), arguments: syn::PathArguments::None });
1405 process_use_intern(&p.tree, path, imports);
1407 syn::UseTree::Name(n) => {
1408 path.push(syn::PathSegment { ident: n.ident.clone(), arguments: syn::PathArguments::None });
1409 imports.insert(&n.ident, syn::Path { leading_colon: Some(syn::Token![::](Span::call_site())), segments: path });
1411 syn::UseTree::Group(g) => {
1412 for i in g.items.iter() {
1413 process_use_intern(i, path.clone(), imports);
1420 /// Map all the Paths in a Type into absolute paths given a set of imports (generated via process_use_intern)
1421 fn resolve_imported_refs(imports: &HashMap<&syn::Ident, syn::Path>, mut ty: syn::Type) -> syn::Type {
1423 syn::Type::Path(p) => {
1424 if let Some(ident) = p.path.get_ident() {
1425 if let Some(newpath) = imports.get(ident) {
1426 p.path = newpath.clone();
1428 } else { unimplemented!(); }
1430 syn::Type::Reference(r) => {
1431 r.elem = Box::new(resolve_imported_refs(imports, (*r.elem).clone()));
1433 syn::Type::Slice(s) => {
1434 s.elem = Box::new(resolve_imported_refs(imports, (*s.elem).clone()));
1436 syn::Type::Tuple(t) => {
1437 for e in t.elems.iter_mut() {
1438 *e = resolve_imported_refs(imports, e.clone());
1441 _ => unimplemented!(),
1446 /// Walk the FullLibraryAST, deciding how things will be mapped and adding tracking to CrateTypes.
1447 fn walk_ast<'a>(in_dir: &str, path: &str, module: String, ast_storage: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a>) {
1448 let syntax = if let Some(ast) = ast_storage.files.get(&module) { ast } else { return };
1449 assert_eq!(export_status(&syntax.attrs), ExportStatus::Export);
1451 for (path, new_mod, _) in file_iter(&syntax, in_dir, path, &module) {
1452 walk_ast(in_dir, &path, new_mod, ast_storage, crate_types);
1455 let mut import_maps = HashMap::new();
1457 for item in syntax.items.iter() {
1459 syn::Item::Use(u) => {
1460 process_use_intern(&u.tree, syn::punctuated::Punctuated::new(), &mut import_maps);
1462 syn::Item::Struct(s) => {
1463 if let syn::Visibility::Public(_) = s.vis {
1464 match export_status(&s.attrs) {
1465 ExportStatus::Export => {},
1466 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1468 let struct_path = format!("{}::{}", module, s.ident);
1469 if attrs_derives_clone(&s.attrs) {
1470 crate_types.clonable_types.insert("crate::".to_owned() + &struct_path);
1473 crate_types.opaques.insert(struct_path, &s.ident);
1476 syn::Item::Trait(t) => {
1477 if let syn::Visibility::Public(_) = t.vis {
1478 match export_status(&t.attrs) {
1479 ExportStatus::Export => {},
1480 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1482 let trait_path = format!("{}::{}", module, t.ident);
1483 walk_supertraits!(t, None, (
1485 crate_types.clonable_types.insert("crate::".to_owned() + &trait_path);
1489 crate_types.traits.insert(trait_path, &t);
1492 syn::Item::Type(t) => {
1493 if let syn::Visibility::Public(_) = t.vis {
1494 match export_status(&t.attrs) {
1495 ExportStatus::Export => {},
1496 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1498 let type_path = format!("{}::{}", module, t.ident);
1499 let mut process_alias = true;
1500 for tok in t.generics.params.iter() {
1501 if let syn::GenericParam::Lifetime(_) = tok {}
1502 else { process_alias = false; }
1506 syn::Type::Path(_) => {
1507 // If its a path with no generics, assume we don't map the aliased type and map it opaque
1508 crate_types.opaques.insert(type_path, &t.ident);
1511 crate_types.type_aliases.insert(type_path, resolve_imported_refs(&import_maps, (*t.ty).clone()));
1517 syn::Item::Enum(e) if is_enum_opaque(e) => {
1518 if let syn::Visibility::Public(_) = e.vis {
1519 match export_status(&e.attrs) {
1520 ExportStatus::Export => {},
1521 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1523 let enum_path = format!("{}::{}", module, e.ident);
1524 if attrs_derives_clone(&e.attrs) {
1525 crate_types.clonable_types.insert("crate::".to_owned() + &enum_path);
1527 crate_types.opaques.insert(enum_path, &e.ident);
1530 syn::Item::Enum(e) => {
1531 if let syn::Visibility::Public(_) = e.vis {
1532 match export_status(&e.attrs) {
1533 ExportStatus::Export => {},
1534 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1536 let enum_path = format!("{}::{}", module, e.ident);
1537 if attrs_derives_clone(&e.attrs) {
1538 crate_types.clonable_types.insert("crate::".to_owned() + &enum_path);
1540 crate_types.mirrored_enums.insert(enum_path, &e);
1549 let args: Vec<String> = env::args().collect();
1550 if args.len() != 7 {
1551 eprintln!("Usage: source/dir target/dir source_crate_name derived_templates.rs extra/includes.h extra/cpp/includes.hpp");
1555 let mut derived_templates = std::fs::OpenOptions::new().write(true).create(true).truncate(true)
1556 .open(&args[4]).expect("Unable to open new header file");
1557 let mut header_file = std::fs::OpenOptions::new().write(true).create(true).truncate(true)
1558 .open(&args[5]).expect("Unable to open new header file");
1559 let mut cpp_header_file = std::fs::OpenOptions::new().write(true).create(true).truncate(true)
1560 .open(&args[6]).expect("Unable to open new header file");
1562 writeln!(header_file, "#if defined(__GNUC__)").unwrap();
1563 writeln!(header_file, "#define MUST_USE_STRUCT __attribute__((warn_unused))").unwrap();
1564 writeln!(header_file, "#define MUST_USE_RES __attribute__((warn_unused_result))").unwrap();
1565 writeln!(header_file, "#else").unwrap();
1566 writeln!(header_file, "#define MUST_USE_STRUCT").unwrap();
1567 writeln!(header_file, "#define MUST_USE_RES").unwrap();
1568 writeln!(header_file, "#endif").unwrap();
1569 writeln!(header_file, "#if defined(__clang__)").unwrap();
1570 writeln!(header_file, "#define NONNULL_PTR _Nonnull").unwrap();
1571 writeln!(header_file, "#else").unwrap();
1572 writeln!(header_file, "#define NONNULL_PTR").unwrap();
1573 writeln!(header_file, "#endif").unwrap();
1574 writeln!(cpp_header_file, "#include <string.h>\nnamespace LDK {{").unwrap();
1576 // First parse the full crate's ASTs, caching them so that we can hold references to the AST
1577 // objects in other datastructures:
1578 let mut libast = FullLibraryAST { files: HashMap::new() };
1579 load_ast(&args[1], "/lib.rs", "".to_string(), &mut libast);
1581 // ...then walk the ASTs tracking what types we will map, and how, so that we can resolve them
1582 // when parsing other file ASTs...
1583 let mut libtypes = CrateTypes { traits: HashMap::new(), opaques: HashMap::new(), mirrored_enums: HashMap::new(),
1584 type_aliases: HashMap::new(), templates_defined: HashMap::default(), template_file: &mut derived_templates,
1585 clonable_types: HashSet::new() };
1586 walk_ast(&args[1], "/lib.rs", "".to_string(), &libast, &mut libtypes);
1588 // ... finally, do the actual file conversion/mapping, writing out types as we go.
1589 convert_file(&libast, &mut libtypes, &args[1], &args[2], "/lib.rs", &args[3], "", &mut header_file, &mut cpp_header_file);
1591 // For container templates which we created while walking the crate, make sure we add C++
1592 // mapped types so that C++ users can utilize the auto-destructors available.
1593 for (ty, has_destructor) in libtypes.templates_defined.iter() {
1594 write_cpp_wrapper(&mut cpp_header_file, ty, *has_destructor);
1596 writeln!(cpp_header_file, "}}").unwrap();
1598 header_file.flush().unwrap();
1599 cpp_header_file.flush().unwrap();
1600 derived_templates.flush().unwrap();