1 //! Converts a rust crate into a rust crate containing a number of C-exported wrapper functions and
2 //! classes (which is exportable using cbindgen).
3 //! In general, supports convering:
4 //! * structs as a pointer to the underlying type (either owned or not owned),
5 //! * traits as a void-ptr plus a jump table,
6 //! * enums as an equivalent enum with all the inner fields mapped to the mapped types,
7 //! * certain containers (tuples, slices, Vecs, Options, and Results currently) to a concrete
8 //! version of a defined container template.
10 //! It also generates relevant memory-management functions and free-standing functions with
11 //! parameters mapped.
13 use std::collections::HashMap;
16 use std::io::{Read, Write};
20 use proc_macro2::{TokenTree, TokenStream, Span};
27 // *************************************
28 // *** Manually-expanded conversions ***
29 // *************************************
31 /// Because we don't expand macros, any code that we need to generated based on their contents has
32 /// to be completely manual. In this case its all just serialization, so its not too hard.
33 fn convert_macro<W: std::io::Write>(w: &mut W, macro_path: &syn::Path, stream: &TokenStream, types: &TypeResolver) {
34 assert_eq!(macro_path.segments.len(), 1);
35 match &format!("{}", macro_path.segments.iter().next().unwrap().ident) as &str {
36 "impl_writeable" | "impl_writeable_len_match" => {
37 let struct_for = if let TokenTree::Ident(i) = stream.clone().into_iter().next().unwrap() { i } else { unimplemented!(); };
38 if let Some(s) = types.maybe_resolve_ident(&struct_for) {
39 if !types.crate_types.opaques.get(&s).is_some() { return; }
40 writeln!(w, "#[no_mangle]").unwrap();
41 writeln!(w, "pub extern \"C\" fn {}_write(obj: *const {}) -> crate::c_types::derived::CVec_u8Z {{", struct_for, struct_for).unwrap();
42 writeln!(w, "\tcrate::c_types::serialize_obj(unsafe {{ &(*(*obj).inner) }})").unwrap();
43 writeln!(w, "}}").unwrap();
44 writeln!(w, "#[no_mangle]").unwrap();
45 writeln!(w, "pub(crate) extern \"C\" fn {}_write_void(obj: *const c_void) -> crate::c_types::derived::CVec_u8Z {{", struct_for).unwrap();
46 writeln!(w, "\tcrate::c_types::serialize_obj(unsafe {{ &*(obj as *const native{}) }})", struct_for).unwrap();
47 writeln!(w, "}}").unwrap();
48 writeln!(w, "#[no_mangle]").unwrap();
49 writeln!(w, "pub extern \"C\" fn {}_read(ser: crate::c_types::u8slice) -> {} {{", struct_for, struct_for).unwrap();
50 writeln!(w, "\tif let Ok(res) = crate::c_types::deserialize_obj(ser) {{").unwrap();
51 writeln!(w, "\t\t{} {{ inner: Box::into_raw(Box::new(res)), is_owned: true }}", struct_for).unwrap();
52 writeln!(w, "\t}} else {{").unwrap();
53 writeln!(w, "\t\t{} {{ inner: std::ptr::null_mut(), is_owned: true }}", struct_for).unwrap();
54 writeln!(w, "\t}}\n}}").unwrap();
61 /// Convert "impl trait_path for for_obj { .. }" for manually-mapped types (ie (de)serialization)
62 fn maybe_convert_trait_impl<W: std::io::Write>(w: &mut W, trait_path: &syn::Path, for_obj: &syn::Ident, types: &TypeResolver) {
63 if let Some(t) = types.maybe_resolve_path(&trait_path, None) {
64 let s = types.maybe_resolve_ident(for_obj).unwrap();
65 if !types.crate_types.opaques.get(&s).is_some() { return; }
67 "util::ser::Writeable" => {
68 writeln!(w, "#[no_mangle]").unwrap();
69 writeln!(w, "pub extern \"C\" fn {}_write(obj: *const {}) -> crate::c_types::derived::CVec_u8Z {{", for_obj, for_obj).unwrap();
70 writeln!(w, "\tcrate::c_types::serialize_obj(unsafe {{ &(*(*obj).inner) }})").unwrap();
71 writeln!(w, "}}").unwrap();
72 writeln!(w, "#[no_mangle]").unwrap();
73 writeln!(w, "pub(crate) extern \"C\" fn {}_write_void(obj: *const c_void) -> crate::c_types::derived::CVec_u8Z {{", for_obj).unwrap();
74 writeln!(w, "\tcrate::c_types::serialize_obj(unsafe {{ &*(obj as *const native{}) }})", for_obj).unwrap();
75 writeln!(w, "}}").unwrap();
77 "util::ser::Readable" => {
78 writeln!(w, "#[no_mangle]").unwrap();
79 writeln!(w, "pub extern \"C\" fn {}_read(ser: crate::c_types::u8slice) -> {} {{", for_obj, for_obj).unwrap();
80 writeln!(w, "\tif let Ok(res) = crate::c_types::deserialize_obj(ser) {{").unwrap();
81 writeln!(w, "\t\t{} {{ inner: Box::into_raw(Box::new(res)), is_owned: true }}", for_obj).unwrap();
82 writeln!(w, "\t}} else {{").unwrap();
83 writeln!(w, "\t\t{} {{ inner: std::ptr::null_mut(), is_owned: true }}", for_obj).unwrap();
84 writeln!(w, "\t}}\n}}").unwrap();
91 /// Convert "TraitA : TraitB" to a single function name and return type.
93 /// This is (obviously) somewhat over-specialized and only useful for TraitB's that only require a
94 /// single function (eg for serialization).
95 fn convert_trait_impl_field(trait_path: &str) -> (String, &'static str) {
97 "util::ser::Writeable" => ("write".to_owned(), "crate::c_types::derived::CVec_u8Z"),
98 _ => unimplemented!(),
102 /// Companion to convert_trait_impl_field, write an assignment for the function defined by it for
103 /// `for_obj` which implements the the trait at `trait_path`.
104 fn write_trait_impl_field_assign<W: std::io::Write>(w: &mut W, trait_path: &str, for_obj: &syn::Ident) {
106 "util::ser::Writeable" => {
107 writeln!(w, "\t\twrite: {}_write_void,", for_obj).unwrap();
109 _ => unimplemented!(),
113 /// Write out the impl block for a defined trait struct which has a supertrait
114 fn do_write_impl_trait<W: std::io::Write>(w: &mut W, trait_path: &str, trait_name: &syn::Ident, for_obj: &str) {
116 "util::events::MessageSendEventsProvider" => {
117 writeln!(w, "impl lightning::{} for {} {{", trait_path, for_obj).unwrap();
118 writeln!(w, "\tfn get_and_clear_pending_msg_events(&self) -> Vec<lightning::util::events::MessageSendEvent> {{").unwrap();
119 writeln!(w, "\t\t<crate::{} as lightning::{}>::get_and_clear_pending_msg_events(&self.{})", trait_path, trait_path, trait_name).unwrap();
120 writeln!(w, "\t}}\n}}").unwrap();
122 "util::ser::Writeable" => {
123 writeln!(w, "impl lightning::{} for {} {{", trait_path, for_obj).unwrap();
124 writeln!(w, "\tfn write<W: lightning::util::ser::Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {{").unwrap();
125 writeln!(w, "\t\tlet vec = (self.write)(self.this_arg);").unwrap();
126 writeln!(w, "\t\tw.write_all(vec.as_slice())").unwrap();
127 writeln!(w, "\t}}\n}}").unwrap();
133 // *******************************
134 // *** Per-Type Printing Logic ***
135 // *******************************
137 macro_rules! walk_supertraits { ($t: expr, $types: expr, ($( $pat: pat => $e: expr),*) ) => { {
138 if $t.colon_token.is_some() {
139 for st in $t.supertraits.iter() {
141 syn::TypeParamBound::Trait(supertrait) => {
142 if supertrait.paren_token.is_some() || supertrait.lifetimes.is_some() {
145 // First try to resolve path to find in-crate traits, but if that doesn't work
146 // assume its a prelude trait (eg Clone, etc) and just use the single ident.
147 if let Some(path) = $types.maybe_resolve_path(&supertrait.path, None) {
148 match (&path as &str, &supertrait.path.segments.iter().last().unwrap().ident) {
151 } else if let Some(ident) = supertrait.path.get_ident() {
152 match (&format!("{}", ident) as &str, &ident) {
156 panic!("Supertrait unresolvable and not single-ident");
159 syn::TypeParamBound::Lifetime(_) => unimplemented!(),
165 /// Prints a C-mapped trait object containing a void pointer and a jump table for each function in
166 /// the original trait.
167 /// Implements the native Rust trait and relevant parent traits for the new C-mapped trait.
169 /// Finally, implements Deref<MappedTrait> for MappedTrait which allows its use in types which need
170 /// a concrete Deref to the Rust trait.
171 fn writeln_trait<'a, 'b, W: std::io::Write>(w: &mut W, t: &'a syn::ItemTrait, types: &mut TypeResolver<'b, 'a>, extra_headers: &mut File, cpp_headers: &mut File) {
172 let trait_name = format!("{}", t.ident);
173 match export_status(&t.attrs) {
174 ExportStatus::Export => {},
175 ExportStatus::NoExport|ExportStatus::TestOnly => return,
177 writeln_docs(w, &t.attrs, "");
179 let mut gen_types = GenericTypes::new();
180 assert!(gen_types.learn_generics(&t.generics, types));
181 gen_types.learn_associated_types(&t, types);
183 writeln!(w, "#[repr(C)]\npub struct {} {{", trait_name).unwrap();
184 writeln!(w, "\tpub this_arg: *mut c_void,").unwrap();
185 let mut generated_fields = Vec::new(); // Every field's name except this_arg, used in Clone generation
186 for item in t.items.iter() {
188 &syn::TraitItem::Method(ref m) => {
189 match export_status(&m.attrs) {
190 ExportStatus::NoExport => {
191 // NoExport in this context means we'll hit an unimplemented!() at runtime,
195 ExportStatus::Export => {},
196 ExportStatus::TestOnly => continue,
198 if m.default.is_some() { unimplemented!(); }
200 gen_types.push_ctx();
201 assert!(gen_types.learn_generics(&m.sig.generics, types));
203 writeln_docs(w, &m.attrs, "\t");
205 if let syn::ReturnType::Type(_, rtype) = &m.sig.output {
206 if let syn::Type::Reference(r) = &**rtype {
207 // We have to do quite a dance for trait functions which return references
208 // - they ultimately require us to have a native Rust object stored inside
209 // our concrete trait to return a reference to. However, users may wish to
210 // update the value to be returned each time the function is called (or, to
211 // make C copies of Rust impls equivalent, we have to be able to).
213 // Thus, we store a copy of the C-mapped type (which is just a pointer to
214 // the Rust type and a flag to indicate whether deallocation needs to
215 // happen) as well as provide an Option<>al function pointer which is
216 // called when the trait method is called which allows updating on the fly.
217 write!(w, "\tpub {}: ", m.sig.ident).unwrap();
218 generated_fields.push(format!("{}", m.sig.ident));
219 types.write_c_type(w, &*r.elem, Some(&gen_types), false);
220 writeln!(w, ",").unwrap();
221 writeln!(w, "\t/// Fill in the {} field as a reference to it will be given to Rust after this returns", m.sig.ident).unwrap();
222 writeln!(w, "\t/// Note that this takes a pointer to this object, not the this_ptr like other methods do").unwrap();
223 writeln!(w, "\t/// This function pointer may be NULL if {} is filled in when this object is created and never needs updating.", m.sig.ident).unwrap();
224 writeln!(w, "\tpub set_{}: Option<extern \"C\" fn(&{})>,", m.sig.ident, trait_name).unwrap();
225 generated_fields.push(format!("set_{}", m.sig.ident));
226 // Note that cbindgen will now generate
227 // typedef struct Thing {..., set_thing: (const Thing*), ...} Thing;
228 // which does not compile since Thing is not defined before it is used.
229 writeln!(extra_headers, "struct LDK{};", trait_name).unwrap();
230 writeln!(extra_headers, "typedef struct LDK{} LDK{};", trait_name, trait_name).unwrap();
234 // Sadly, this currently doesn't do what we want, but it should be easy to get
235 // cbindgen to support it. See https://github.com/eqrion/cbindgen/issues/531
236 writeln!(w, "\t#[must_use]").unwrap();
239 write!(w, "\tpub {}: extern \"C\" fn (", m.sig.ident).unwrap();
240 generated_fields.push(format!("{}", m.sig.ident));
241 write_method_params(w, &m.sig, "c_void", types, Some(&gen_types), true, false);
242 writeln!(w, ",").unwrap();
246 &syn::TraitItem::Type(_) => {},
247 _ => unimplemented!(),
250 // Add functions which may be required for supertrait implementations.
251 walk_supertraits!(t, types, (
253 writeln!(w, "\tpub clone: Option<extern \"C\" fn (this_arg: *const c_void) -> *mut c_void>,").unwrap();
254 generated_fields.push("clone".to_owned());
256 ("std::cmp::Eq", _) => {
257 writeln!(w, "\tpub eq: extern \"C\" fn (this_arg: *const c_void, other_arg: &{}) -> bool,", trait_name).unwrap();
258 writeln!(extra_headers, "typedef struct LDK{} LDK{};", trait_name, trait_name).unwrap();
259 generated_fields.push("eq".to_owned());
261 ("std::hash::Hash", _) => {
262 writeln!(w, "\tpub hash: extern \"C\" fn (this_arg: *const c_void) -> u64,").unwrap();
263 generated_fields.push("hash".to_owned());
265 ("Send", _) => {}, ("Sync", _) => {},
267 generated_fields.push(if types.crate_types.traits.get(s).is_none() {
268 let (name, ret) = convert_trait_impl_field(s);
269 writeln!(w, "\tpub {}: extern \"C\" fn (this_arg: *const c_void) -> {},", name, ret).unwrap();
272 // For in-crate supertraits, just store a C-mapped copy of the supertrait as a member.
273 writeln!(w, "\tpub {}: crate::{},", i, s).unwrap();
278 writeln!(w, "\tpub free: Option<extern \"C\" fn(this_arg: *mut c_void)>,").unwrap();
279 generated_fields.push("free".to_owned());
280 writeln!(w, "}}").unwrap();
281 // Implement supertraits for the C-mapped struct.
282 walk_supertraits!(t, types, (
283 ("Send", _) => writeln!(w, "unsafe impl Send for {} {{}}", trait_name).unwrap(),
284 ("Sync", _) => writeln!(w, "unsafe impl Sync for {} {{}}", trait_name).unwrap(),
285 ("std::cmp::Eq", _) => {
286 writeln!(w, "impl std::cmp::Eq for {} {{}}", trait_name).unwrap();
287 writeln!(w, "impl std::cmp::PartialEq for {} {{", trait_name).unwrap();
288 writeln!(w, "\tfn eq(&self, o: &Self) -> bool {{ (self.eq)(self.this_arg, o) }}\n}}").unwrap();
290 ("std::hash::Hash", _) => {
291 writeln!(w, "impl std::hash::Hash for {} {{", trait_name).unwrap();
292 writeln!(w, "\tfn hash<H: std::hash::Hasher>(&self, hasher: &mut H) {{ hasher.write_u64((self.hash)(self.this_arg)) }}\n}}").unwrap();
295 writeln!(w, "#[no_mangle]").unwrap();
296 writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", trait_name, trait_name, trait_name).unwrap();
297 writeln!(w, "\t{} {{", trait_name).unwrap();
298 writeln!(w, "\t\tthis_arg: if let Some(f) = orig.clone {{ (f)(orig.this_arg) }} else {{ orig.this_arg }},").unwrap();
299 for field in generated_fields.iter() {
300 writeln!(w, "\t\t{}: orig.{}.clone(),", field, field).unwrap();
302 writeln!(w, "\t}}\n}}").unwrap();
303 writeln!(w, "impl Clone for {} {{", trait_name).unwrap();
304 writeln!(w, "\tfn clone(&self) -> Self {{").unwrap();
305 writeln!(w, "\t\t{}_clone(self)", trait_name).unwrap();
306 writeln!(w, "\t}}\n}}").unwrap();
309 do_write_impl_trait(w, s, i, &trait_name);
313 // Finally, implement the original Rust trait for the newly created mapped trait.
314 writeln!(w, "\nuse {}::{}::{} as rust{};", types.orig_crate, types.module_path, t.ident, trait_name).unwrap();
315 write!(w, "impl rust{}", t.ident).unwrap();
316 maybe_write_generics(w, &t.generics, types, false);
317 writeln!(w, " for {} {{", trait_name).unwrap();
318 for item in t.items.iter() {
320 syn::TraitItem::Method(m) => {
321 if let ExportStatus::TestOnly = export_status(&m.attrs) { continue; }
322 if m.default.is_some() { unimplemented!(); }
323 if m.sig.constness.is_some() || m.sig.asyncness.is_some() || m.sig.unsafety.is_some() ||
324 m.sig.abi.is_some() || m.sig.variadic.is_some() {
327 gen_types.push_ctx();
328 assert!(gen_types.learn_generics(&m.sig.generics, types));
329 write!(w, "\tfn {}", m.sig.ident).unwrap();
330 types.write_rust_generic_param(w, Some(&gen_types), m.sig.generics.params.iter());
331 write!(w, "(").unwrap();
332 for inp in m.sig.inputs.iter() {
334 syn::FnArg::Receiver(recv) => {
335 if !recv.attrs.is_empty() || recv.reference.is_none() { unimplemented!(); }
336 write!(w, "&").unwrap();
337 if let Some(lft) = &recv.reference.as_ref().unwrap().1 {
338 write!(w, "'{} ", lft.ident).unwrap();
340 if recv.mutability.is_some() {
341 write!(w, "mut self").unwrap();
343 write!(w, "self").unwrap();
346 syn::FnArg::Typed(arg) => {
347 if !arg.attrs.is_empty() { unimplemented!(); }
349 syn::Pat::Ident(ident) => {
350 if !ident.attrs.is_empty() || ident.by_ref.is_some() ||
351 ident.mutability.is_some() || ident.subpat.is_some() {
354 write!(w, ", {}{}: ", if types.skip_arg(&*arg.ty, Some(&gen_types)) { "_" } else { "" }, ident.ident).unwrap();
356 _ => unimplemented!(),
358 types.write_rust_type(w, Some(&gen_types), &*arg.ty);
362 write!(w, ")").unwrap();
363 match &m.sig.output {
364 syn::ReturnType::Type(_, rtype) => {
365 write!(w, " -> ").unwrap();
366 types.write_rust_type(w, Some(&gen_types), &*rtype)
370 write!(w, " {{\n\t\t").unwrap();
371 match export_status(&m.attrs) {
372 ExportStatus::NoExport => {
377 if let syn::ReturnType::Type(_, rtype) = &m.sig.output {
378 if let syn::Type::Reference(r) = &**rtype {
379 assert_eq!(m.sig.inputs.len(), 1); // Must only take self!
380 writeln!(w, "if let Some(f) = self.set_{} {{", m.sig.ident).unwrap();
381 writeln!(w, "\t\t\t(f)(self);").unwrap();
382 write!(w, "\t\t}}\n\t\t").unwrap();
383 types.write_from_c_conversion_to_ref_prefix(w, &*r.elem, Some(&gen_types));
384 write!(w, "self.{}", m.sig.ident).unwrap();
385 types.write_from_c_conversion_to_ref_suffix(w, &*r.elem, Some(&gen_types));
386 writeln!(w, "\n\t}}").unwrap();
391 write_method_var_decl_body(w, &m.sig, "\t", types, Some(&gen_types), true);
392 write!(w, "(self.{})(", m.sig.ident).unwrap();
393 write_method_call_params(w, &m.sig, "\t", types, Some(&gen_types), "", true);
395 writeln!(w, "\n\t}}").unwrap();
398 &syn::TraitItem::Type(ref t) => {
399 if t.default.is_some() || t.generics.lt_token.is_some() { unimplemented!(); }
400 let mut bounds_iter = t.bounds.iter();
401 match bounds_iter.next().unwrap() {
402 syn::TypeParamBound::Trait(tr) => {
403 writeln!(w, "\ttype {} = crate::{};", t.ident, types.resolve_path(&tr.path, Some(&gen_types))).unwrap();
405 _ => unimplemented!(),
407 if bounds_iter.next().is_some() { unimplemented!(); }
409 _ => unimplemented!(),
412 writeln!(w, "}}\n").unwrap();
413 writeln!(w, "// We're essentially a pointer already, or at least a set of pointers, so allow us to be used").unwrap();
414 writeln!(w, "// directly as a Deref trait in higher-level structs:").unwrap();
415 writeln!(w, "impl std::ops::Deref for {} {{\n\ttype Target = Self;", trait_name).unwrap();
416 writeln!(w, "\tfn deref(&self) -> &Self {{\n\t\tself\n\t}}\n}}").unwrap();
418 writeln!(w, "/// Calls the free function if one is set").unwrap();
419 writeln!(w, "#[no_mangle]\npub extern \"C\" fn {}_free(this_ptr: {}) {{ }}", trait_name, trait_name).unwrap();
420 writeln!(w, "impl Drop for {} {{", trait_name).unwrap();
421 writeln!(w, "\tfn drop(&mut self) {{").unwrap();
422 writeln!(w, "\t\tif let Some(f) = self.free {{").unwrap();
423 writeln!(w, "\t\t\tf(self.this_arg);").unwrap();
424 writeln!(w, "\t\t}}\n\t}}\n}}").unwrap();
426 write_cpp_wrapper(cpp_headers, &trait_name, true);
427 types.trait_declared(&t.ident, t);
430 /// Write out a simple "opaque" type (eg structs) which contain a pointer to the native Rust type
431 /// and a flag to indicate whether Drop'ing the mapped struct drops the underlying Rust type.
433 /// Also writes out a _free function and a C++ wrapper which handles calling _free.
434 fn writeln_opaque<W: std::io::Write>(w: &mut W, ident: &syn::Ident, struct_name: &str, generics: &syn::Generics, attrs: &[syn::Attribute], types: &TypeResolver, extra_headers: &mut File, cpp_headers: &mut File) {
435 // If we directly read the original type by its original name, cbindgen hits
436 // https://github.com/eqrion/cbindgen/issues/286 Thus, instead, we import it as a temporary
437 // name and then reference it by that name, which works around the issue.
438 write!(w, "\nuse {}::{}::{} as native{}Import;\ntype native{} = native{}Import", types.orig_crate, types.module_path, ident, ident, ident, ident).unwrap();
439 maybe_write_generics(w, &generics, &types, true);
440 writeln!(w, ";\n").unwrap();
441 writeln!(extra_headers, "struct native{}Opaque;\ntypedef struct native{}Opaque LDKnative{};", ident, ident, ident).unwrap();
442 writeln_docs(w, &attrs, "");
443 writeln!(w, "#[must_use]\n#[repr(C)]\npub struct {} {{\n\t/// Nearly everywhere, inner must be non-null, however in places where", struct_name).unwrap();
444 writeln!(w, "\t/// the Rust equivalent takes an Option, it may be set to null to indicate None.").unwrap();
445 writeln!(w, "\tpub inner: *mut native{},\n\tpub is_owned: bool,\n}}\n", ident).unwrap();
446 writeln!(w, "impl Drop for {} {{\n\tfn drop(&mut self) {{", struct_name).unwrap();
447 writeln!(w, "\t\tif self.is_owned && !self.inner.is_null() {{").unwrap();
448 writeln!(w, "\t\t\tlet _ = unsafe {{ Box::from_raw(self.inner) }};\n\t\t}}\n\t}}\n}}").unwrap();
449 writeln!(w, "#[no_mangle]\npub extern \"C\" fn {}_free(this_ptr: {}) {{ }}", struct_name, struct_name).unwrap();
450 writeln!(w, "#[allow(unused)]").unwrap();
451 writeln!(w, "/// Used only if an object of this type is returned as a trait impl by a method").unwrap();
452 writeln!(w, "extern \"C\" fn {}_free_void(this_ptr: *mut c_void) {{", struct_name).unwrap();
453 writeln!(w, "\tunsafe {{ let _ = Box::from_raw(this_ptr as *mut native{}); }}\n}}", struct_name).unwrap();
454 writeln!(w, "#[allow(unused)]").unwrap();
455 writeln!(w, "/// When moving out of the pointer, we have to ensure we aren't a reference, this makes that easy").unwrap();
456 writeln!(w, "impl {} {{", struct_name).unwrap();
457 writeln!(w, "\tpub(crate) fn take_ptr(mut self) -> *mut native{} {{", struct_name).unwrap();
458 writeln!(w, "\t\tassert!(self.is_owned);").unwrap();
459 writeln!(w, "\t\tlet ret = self.inner;").unwrap();
460 writeln!(w, "\t\tself.inner = std::ptr::null_mut();").unwrap();
461 writeln!(w, "\t\tret").unwrap();
462 writeln!(w, "\t}}\n}}").unwrap();
464 'attr_loop: for attr in attrs.iter() {
465 let tokens_clone = attr.tokens.clone();
466 let mut token_iter = tokens_clone.into_iter();
467 if let Some(token) = token_iter.next() {
469 TokenTree::Group(g) => {
470 if format!("{}", single_ident_generic_path_to_ident(&attr.path).unwrap()) == "derive" {
471 for id in g.stream().into_iter() {
472 if let TokenTree::Ident(i) = id {
474 writeln!(w, "impl Clone for {} {{", struct_name).unwrap();
475 writeln!(w, "\tfn clone(&self) -> Self {{").unwrap();
476 writeln!(w, "\t\tSelf {{").unwrap();
477 writeln!(w, "\t\t\tinner: Box::into_raw(Box::new(unsafe {{ &*self.inner }}.clone())),").unwrap();
478 writeln!(w, "\t\t\tis_owned: true,").unwrap();
479 writeln!(w, "\t\t}}\n\t}}\n}}").unwrap();
480 writeln!(w, "#[allow(unused)]").unwrap();
481 writeln!(w, "/// Used only if an object of this type is returned as a trait impl by a method").unwrap();
482 writeln!(w, "pub(crate) extern \"C\" fn {}_clone_void(this_ptr: *const c_void) -> *mut c_void {{", struct_name).unwrap();
483 writeln!(w, "\tBox::into_raw(Box::new(unsafe {{ (*(this_ptr as *mut native{})).clone() }})) as *mut c_void", struct_name).unwrap();
484 writeln!(w, "}}").unwrap();
485 writeln!(w, "#[no_mangle]").unwrap();
486 writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", struct_name, struct_name, struct_name).unwrap();
487 writeln!(w, "\t{} {{ inner: Box::into_raw(Box::new(unsafe {{ &*orig.inner }}.clone())), is_owned: true }}", struct_name).unwrap();
488 writeln!(w, "}}").unwrap();
500 write_cpp_wrapper(cpp_headers, &format!("{}", ident), true);
503 fn declare_struct<'a, 'b>(s: &'a syn::ItemStruct, types: &mut TypeResolver<'b, 'a>) -> bool {
504 let export = export_status(&s.attrs);
506 ExportStatus::Export => {},
507 ExportStatus::TestOnly => return false,
508 ExportStatus::NoExport => {
509 types.struct_ignored(&s.ident);
514 types.struct_imported(&s.ident, format!("{}", s.ident));
518 /// Writes out all the relevant mappings for a Rust struct, deferring to writeln_opaque to generate
519 /// the struct itself, and then writing getters and setters for public, understood-type fields and
520 /// a constructor if every field is public.
521 fn writeln_struct<'a, 'b, W: std::io::Write>(w: &mut W, s: &'a syn::ItemStruct, types: &mut TypeResolver<'b, 'a>, extra_headers: &mut File, cpp_headers: &mut File) {
522 if !declare_struct(s, types) { return; }
524 let struct_name = &format!("{}", s.ident);
525 writeln_opaque(w, &s.ident, struct_name, &s.generics, &s.attrs, types, extra_headers, cpp_headers);
527 eprintln!("exporting fields for {}", struct_name);
528 if let syn::Fields::Named(fields) = &s.fields {
529 let mut gen_types = GenericTypes::new();
530 assert!(gen_types.learn_generics(&s.generics, types));
532 let mut all_fields_settable = true;
533 for field in fields.named.iter() {
534 if let syn::Visibility::Public(_) = field.vis {
535 let export = export_status(&field.attrs);
537 ExportStatus::Export => {},
538 ExportStatus::NoExport|ExportStatus::TestOnly => {
539 all_fields_settable = false;
544 if let Some(ident) = &field.ident {
545 let ref_type = syn::Type::Reference(syn::TypeReference {
546 and_token: syn::Token!(&)(Span::call_site()), lifetime: None, mutability: None,
547 elem: Box::new(field.ty.clone()) });
548 if types.understood_c_type(&ref_type, Some(&gen_types)) {
549 writeln_docs(w, &field.attrs, "");
550 write!(w, "#[no_mangle]\npub extern \"C\" fn {}_get_{}(this_ptr: &{}) -> ", struct_name, ident, struct_name).unwrap();
551 types.write_c_type(w, &ref_type, Some(&gen_types), true);
552 write!(w, " {{\n\tlet mut inner_val = &mut unsafe {{ &mut *this_ptr.inner }}.{};\n\t", ident).unwrap();
553 let local_var = types.write_to_c_conversion_new_var(w, &syn::Ident::new("inner_val", Span::call_site()), &ref_type, Some(&gen_types), true);
554 if local_var { write!(w, "\n\t").unwrap(); }
555 types.write_to_c_conversion_inline_prefix(w, &ref_type, Some(&gen_types), true);
557 write!(w, "inner_val").unwrap();
559 write!(w, "(*inner_val)").unwrap();
561 types.write_to_c_conversion_inline_suffix(w, &ref_type, Some(&gen_types), true);
562 writeln!(w, "\n}}").unwrap();
565 if types.understood_c_type(&field.ty, Some(&gen_types)) {
566 writeln_docs(w, &field.attrs, "");
567 write!(w, "#[no_mangle]\npub extern \"C\" fn {}_set_{}(this_ptr: &mut {}, mut val: ", struct_name, ident, struct_name).unwrap();
568 types.write_c_type(w, &field.ty, Some(&gen_types), false);
569 write!(w, ") {{\n\t").unwrap();
570 let local_var = types.write_from_c_conversion_new_var(w, &syn::Ident::new("val", Span::call_site()), &field.ty, Some(&gen_types));
571 if local_var { write!(w, "\n\t").unwrap(); }
572 write!(w, "unsafe {{ &mut *this_ptr.inner }}.{} = ", ident).unwrap();
573 types.write_from_c_conversion_prefix(w, &field.ty, Some(&gen_types));
574 write!(w, "val").unwrap();
575 types.write_from_c_conversion_suffix(w, &field.ty, Some(&gen_types));
576 writeln!(w, ";\n}}").unwrap();
577 } else { all_fields_settable = false; }
578 } else { all_fields_settable = false; }
579 } else { all_fields_settable = false; }
582 if all_fields_settable {
583 // Build a constructor!
584 write!(w, "#[must_use]\n#[no_mangle]\npub extern \"C\" fn {}_new(", struct_name).unwrap();
585 for (idx, field) in fields.named.iter().enumerate() {
586 if idx != 0 { write!(w, ", ").unwrap(); }
587 write!(w, "mut {}_arg: ", field.ident.as_ref().unwrap()).unwrap();
588 types.write_c_type(w, &field.ty, Some(&gen_types), false);
590 write!(w, ") -> {} {{\n\t", struct_name).unwrap();
591 for field in fields.named.iter() {
592 let field_name = format!("{}_arg", field.ident.as_ref().unwrap());
593 if types.write_from_c_conversion_new_var(w, &syn::Ident::new(&field_name, Span::call_site()), &field.ty, Some(&gen_types)) {
594 write!(w, "\n\t").unwrap();
597 writeln!(w, "{} {{ inner: Box::into_raw(Box::new(native{} {{", struct_name, s.ident).unwrap();
598 for field in fields.named.iter() {
599 write!(w, "\t\t{}: ", field.ident.as_ref().unwrap()).unwrap();
600 types.write_from_c_conversion_prefix(w, &field.ty, Some(&gen_types));
601 write!(w, "{}_arg", field.ident.as_ref().unwrap()).unwrap();
602 types.write_from_c_conversion_suffix(w, &field.ty, Some(&gen_types));
603 writeln!(w, ",").unwrap();
605 writeln!(w, "\t}})), is_owned: true }}\n}}").unwrap();
610 /// Prints a relevant conversion for impl *
612 /// For simple impl Struct {}s, this just outputs the wrapper functions as Struct_fn_name() { .. }.
614 /// For impl Trait for Struct{}s, this non-exported generates wrapper functions as
615 /// Trait_Struct_fn_name and a Struct_as_Trait(&struct) -> Trait function which returns a populated
616 /// Trait struct containing a pointer to the passed struct's inner field and the wrapper functions.
618 /// A few non-crate Traits are hard-coded including Default.
619 fn writeln_impl<W: std::io::Write>(w: &mut W, i: &syn::ItemImpl, types: &mut TypeResolver) {
620 if let &syn::Type::Path(ref p) = &*i.self_ty {
621 if p.qself.is_some() { unimplemented!(); }
622 if let Some(ident) = single_ident_generic_path_to_ident(&p.path) {
623 if let Some(resolved_path) = types.maybe_resolve_non_ignored_ident(&ident) {
624 let mut gen_types = GenericTypes::new();
625 if !gen_types.learn_generics(&i.generics, types) {
626 eprintln!("Not implementing anything for impl {} due to not understood generics", ident);
630 if i.defaultness.is_some() || i.unsafety.is_some() { unimplemented!(); }
631 if let Some(trait_path) = i.trait_.as_ref() {
632 if trait_path.0.is_some() { unimplemented!(); }
633 if types.understood_c_path(&trait_path.1) {
634 let full_trait_path = types.resolve_path(&trait_path.1, None);
635 let trait_obj = *types.crate_types.traits.get(&full_trait_path).unwrap();
636 // We learn the associated types maping from the original trait object.
637 // That's great, except that they are unresolved idents, so if we learn
638 // mappings from a trai defined in a different file, we may mis-resolve or
639 // fail to resolve the mapped types.
640 gen_types.learn_associated_types(trait_obj, types);
641 let mut impl_associated_types = HashMap::new();
642 for item in i.items.iter() {
644 syn::ImplItem::Type(t) => {
645 if let syn::Type::Path(p) = &t.ty {
646 if let Some(id) = single_ident_generic_path_to_ident(&p.path) {
647 impl_associated_types.insert(&t.ident, id);
655 let export = export_status(&trait_obj.attrs);
657 ExportStatus::Export => {},
658 ExportStatus::NoExport|ExportStatus::TestOnly => return,
661 // For cases where we have a concrete native object which implements a
662 // trait and need to return the C-mapped version of the trait, provide a
663 // From<> implementation which does all the work to ensure free is handled
664 // properly. This way we can call this method from deep in the
665 // type-conversion logic without actually knowing the concrete native type.
666 writeln!(w, "impl From<native{}> for crate::{} {{", ident, full_trait_path).unwrap();
667 writeln!(w, "\tfn from(obj: native{}) -> Self {{", ident).unwrap();
668 writeln!(w, "\t\tlet mut rust_obj = {} {{ inner: Box::into_raw(Box::new(obj)), is_owned: true }};", ident).unwrap();
669 writeln!(w, "\t\tlet mut ret = {}_as_{}(&rust_obj);", ident, trait_obj.ident).unwrap();
670 writeln!(w, "\t\t// We want to free rust_obj when ret gets drop()'d, not rust_obj, so wipe rust_obj's pointer and set ret's free() fn").unwrap();
671 writeln!(w, "\t\trust_obj.inner = std::ptr::null_mut();").unwrap();
672 writeln!(w, "\t\tret.free = Some({}_free_void);", ident).unwrap();
673 writeln!(w, "\t\tret\n\t}}\n}}").unwrap();
675 write!(w, "#[no_mangle]\npub extern \"C\" fn {}_as_{}(this_arg: *const {}) -> crate::{} {{\n", ident, trait_obj.ident, ident, full_trait_path).unwrap();
676 writeln!(w, "\tcrate::{} {{", full_trait_path).unwrap();
677 writeln!(w, "\t\tthis_arg: unsafe {{ (*this_arg).inner as *mut c_void }},").unwrap();
678 writeln!(w, "\t\tfree: None,").unwrap();
680 macro_rules! write_meth {
681 ($m: expr, $trait: expr, $indent: expr) => {
682 let trait_method = $trait.items.iter().filter_map(|item| {
683 if let syn::TraitItem::Method(t_m) = item { Some(t_m) } else { None }
684 }).find(|trait_meth| trait_meth.sig.ident == $m.sig.ident).unwrap();
685 match export_status(&trait_method.attrs) {
686 ExportStatus::Export => {},
687 ExportStatus::NoExport => {
688 write!(w, "{}\t\t//XXX: Need to export {}\n", $indent, $m.sig.ident).unwrap();
691 ExportStatus::TestOnly => continue,
694 let mut printed = false;
695 if let syn::ReturnType::Type(_, rtype) = &$m.sig.output {
696 if let syn::Type::Reference(r) = &**rtype {
697 write!(w, "\n\t\t{}{}: ", $indent, $m.sig.ident).unwrap();
698 types.write_empty_rust_val(Some(&gen_types), w, &*r.elem);
699 writeln!(w, ",\n{}\t\tset_{}: Some({}_{}_set_{}),", $indent, $m.sig.ident, ident, trait_obj.ident, $m.sig.ident).unwrap();
704 write!(w, "{}\t\t{}: {}_{}_{},\n", $indent, $m.sig.ident, ident, trait_obj.ident, $m.sig.ident).unwrap();
708 for item in trait_obj.items.iter() {
710 syn::TraitItem::Method(m) => {
711 write_meth!(m, trait_obj, "");
716 walk_supertraits!(trait_obj, types, (
718 writeln!(w, "\t\tclone: Some({}_clone_void),", ident).unwrap();
720 ("Sync", _) => {}, ("Send", _) => {},
721 ("std::marker::Sync", _) => {}, ("std::marker::Send", _) => {},
723 if let Some(supertrait_obj) = types.crate_types.traits.get(s) {
724 writeln!(w, "\t\t{}: crate::{} {{", t, s).unwrap();
725 writeln!(w, "\t\t\tthis_arg: unsafe {{ (*this_arg).inner as *mut c_void }},").unwrap();
726 writeln!(w, "\t\t\tfree: None,").unwrap();
727 for item in supertrait_obj.items.iter() {
729 syn::TraitItem::Method(m) => {
730 write_meth!(m, supertrait_obj, "\t");
735 write!(w, "\t\t}},\n").unwrap();
737 write_trait_impl_field_assign(w, s, ident);
741 write!(w, "\t}}\n}}\nuse {}::{} as {}TraitImport;\n", types.orig_crate, full_trait_path, trait_obj.ident).unwrap();
743 macro_rules! impl_meth {
744 ($m: expr, $trait: expr, $indent: expr) => {
745 let trait_method = $trait.items.iter().filter_map(|item| {
746 if let syn::TraitItem::Method(t_m) = item { Some(t_m) } else { None }
747 }).find(|trait_meth| trait_meth.sig.ident == $m.sig.ident).unwrap();
748 match export_status(&trait_method.attrs) {
749 ExportStatus::Export => {},
750 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
753 if let syn::ReturnType::Type(_, _) = &$m.sig.output {
754 writeln!(w, "#[must_use]").unwrap();
756 write!(w, "extern \"C\" fn {}_{}_{}(", ident, trait_obj.ident, $m.sig.ident).unwrap();
757 gen_types.push_ctx();
758 assert!(gen_types.learn_generics(&$m.sig.generics, types));
759 write_method_params(w, &$m.sig, "c_void", types, Some(&gen_types), true, true);
760 write!(w, " {{\n\t").unwrap();
761 write_method_var_decl_body(w, &$m.sig, "", types, Some(&gen_types), false);
762 let mut takes_self = false;
763 for inp in $m.sig.inputs.iter() {
764 if let syn::FnArg::Receiver(_) = inp {
769 write!(w, "unsafe {{ &mut *(this_arg as *mut native{}) }}.{}(", ident, $m.sig.ident).unwrap();
771 write!(w, "{}::{}::{}(", types.orig_crate, resolved_path, $m.sig.ident).unwrap();
774 let mut real_type = "".to_string();
775 match &$m.sig.output {
776 syn::ReturnType::Type(_, rtype) => {
777 if let Some(mut remaining_path) = first_seg_self(&*rtype) {
778 if let Some(associated_seg) = get_single_remaining_path_seg(&mut remaining_path) {
779 real_type = format!("{}", impl_associated_types.get(associated_seg).unwrap());
785 write_method_call_params(w, &$m.sig, "", types, Some(&gen_types), &real_type, false);
787 write!(w, "\n}}\n").unwrap();
788 if let syn::ReturnType::Type(_, rtype) = &$m.sig.output {
789 if let syn::Type::Reference(r) = &**rtype {
790 assert_eq!($m.sig.inputs.len(), 1); // Must only take self
791 writeln!(w, "extern \"C\" fn {}_{}_set_{}(trait_self_arg: &{}) {{", ident, trait_obj.ident, $m.sig.ident, trait_obj.ident).unwrap();
792 writeln!(w, "\t// This is a bit race-y in the general case, but for our specific use-cases today, we're safe").unwrap();
793 writeln!(w, "\t// Specifically, we must ensure that the first time we're called it can never be in parallel").unwrap();
794 write!(w, "\tif ").unwrap();
795 types.write_empty_rust_val_check(Some(&gen_types), w, &*r.elem, &format!("trait_self_arg.{}", $m.sig.ident));
796 writeln!(w, " {{").unwrap();
797 writeln!(w, "\t\tunsafe {{ &mut *(trait_self_arg as *const {} as *mut {}) }}.{} = {}_{}_{}(trait_self_arg.this_arg);", trait_obj.ident, trait_obj.ident, $m.sig.ident, ident, trait_obj.ident, $m.sig.ident).unwrap();
798 writeln!(w, "\t}}").unwrap();
799 writeln!(w, "}}").unwrap();
805 for item in i.items.iter() {
807 syn::ImplItem::Method(m) => {
808 impl_meth!(m, trait_obj, "");
810 syn::ImplItem::Type(_) => {},
811 _ => unimplemented!(),
814 walk_supertraits!(trait_obj, types, (
816 if let Some(supertrait_obj) = types.crate_types.traits.get(s).cloned() {
817 writeln!(w, "use {}::{} as native{}Trait;", types.orig_crate, s, t).unwrap();
818 for item in supertrait_obj.items.iter() {
820 syn::TraitItem::Method(m) => {
821 impl_meth!(m, supertrait_obj, "\t");
829 write!(w, "\n").unwrap();
830 } else if let Some(trait_ident) = trait_path.1.get_ident() {
831 //XXX: implement for other things like ToString
832 match &format!("{}", trait_ident) as &str {
835 write!(w, "#[must_use]\n#[no_mangle]\npub extern \"C\" fn {}_default() -> {} {{\n", ident, ident).unwrap();
836 write!(w, "\t{} {{ inner: Box::into_raw(Box::new(Default::default())), is_owned: true }}\n", ident).unwrap();
837 write!(w, "}}\n").unwrap();
840 // If we have no generics, try a manual implementation:
841 _ if p.path.get_ident().is_some() => maybe_convert_trait_impl(w, &trait_path.1, &ident, types),
844 } else if p.path.get_ident().is_some() {
845 // If we have no generics, try a manual implementation:
846 maybe_convert_trait_impl(w, &trait_path.1, &ident, types);
849 let declared_type = (*types.get_declared_type(&ident).unwrap()).clone();
850 for item in i.items.iter() {
852 syn::ImplItem::Method(m) => {
853 if let syn::Visibility::Public(_) = m.vis {
854 match export_status(&m.attrs) {
855 ExportStatus::Export => {},
856 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
858 if m.defaultness.is_some() { unimplemented!(); }
859 writeln_docs(w, &m.attrs, "");
860 if let syn::ReturnType::Type(_, _) = &m.sig.output {
861 writeln!(w, "#[must_use]").unwrap();
863 write!(w, "#[no_mangle]\npub extern \"C\" fn {}_{}(", ident, m.sig.ident).unwrap();
864 let ret_type = match &declared_type {
865 DeclType::MirroredEnum => format!("{}", ident),
866 DeclType::StructImported => format!("{}", ident),
867 _ => unimplemented!(),
869 gen_types.push_ctx();
870 assert!(gen_types.learn_generics(&m.sig.generics, types));
871 write_method_params(w, &m.sig, &ret_type, types, Some(&gen_types), false, true);
872 write!(w, " {{\n\t").unwrap();
873 write_method_var_decl_body(w, &m.sig, "", types, Some(&gen_types), false);
874 let mut takes_self = false;
875 let mut takes_mut_self = false;
876 for inp in m.sig.inputs.iter() {
877 if let syn::FnArg::Receiver(r) = inp {
879 if r.mutability.is_some() { takes_mut_self = true; }
883 write!(w, "unsafe {{ &mut (*(this_arg.inner as *mut native{})) }}.{}(", ident, m.sig.ident).unwrap();
884 } else if takes_self {
885 write!(w, "unsafe {{ &*this_arg.inner }}.{}(", m.sig.ident).unwrap();
887 write!(w, "{}::{}::{}(", types.orig_crate, resolved_path, m.sig.ident).unwrap();
889 write_method_call_params(w, &m.sig, "", types, Some(&gen_types), &ret_type, false);
891 writeln!(w, "\n}}\n").unwrap();
899 eprintln!("Not implementing anything for {} due to no-resolve (probably the type isn't pub or its marked not exported)", ident);
905 /// Returns true if the enum will be mapped as an opaue (ie struct with a pointer to the underlying
906 /// type), otherwise it is mapped into a transparent, C-compatible version of itself.
907 fn is_enum_opaque(e: &syn::ItemEnum) -> bool {
908 for var in e.variants.iter() {
909 if let syn::Fields::Unit = var.fields {
910 } else if let syn::Fields::Named(fields) = &var.fields {
911 for field in fields.named.iter() {
912 match export_status(&field.attrs) {
913 ExportStatus::Export|ExportStatus::TestOnly => {},
914 ExportStatus::NoExport => return true,
924 fn declare_enum<'a, 'b>(e: &'a syn::ItemEnum, types: &mut TypeResolver<'b, 'a>) {
925 match export_status(&e.attrs) {
926 ExportStatus::Export => {},
927 ExportStatus::NoExport|ExportStatus::TestOnly => return,
930 if is_enum_opaque(e) {
931 types.enum_ignored(&e.ident);
933 types.mirrored_enum_declared(&e.ident);
937 /// Print a mapping of an enum. If all of the enum's fields are C-mapped in some form (or the enum
938 /// is unitary), we generate an equivalent enum with all types replaced with their C mapped
939 /// versions followed by conversion functions which map between the Rust version and the C mapped
941 fn writeln_enum<'a, 'b, W: std::io::Write>(w: &mut W, e: &'a syn::ItemEnum, types: &mut TypeResolver<'b, 'a>, extra_headers: &mut File, cpp_headers: &mut File) {
942 match export_status(&e.attrs) {
943 ExportStatus::Export => {},
944 ExportStatus::NoExport|ExportStatus::TestOnly => return,
947 if is_enum_opaque(e) {
948 eprintln!("Skipping enum {} as it contains non-unit fields", e.ident);
949 writeln_opaque(w, &e.ident, &format!("{}", e.ident), &e.generics, &e.attrs, types, extra_headers, cpp_headers);
952 writeln_docs(w, &e.attrs, "");
954 if e.generics.lt_token.is_some() {
958 let mut needs_free = false;
960 writeln!(w, "#[must_use]\n#[derive(Clone)]\n#[repr(C)]\npub enum {} {{", e.ident).unwrap();
961 for var in e.variants.iter() {
962 assert_eq!(export_status(&var.attrs), ExportStatus::Export); // We can't partially-export a mirrored enum
963 writeln_docs(w, &var.attrs, "\t");
964 write!(w, "\t{}", var.ident).unwrap();
965 if let syn::Fields::Named(fields) = &var.fields {
967 writeln!(w, " {{").unwrap();
968 for field in fields.named.iter() {
969 if export_status(&field.attrs) == ExportStatus::TestOnly { continue; }
970 write!(w, "\t\t{}: ", field.ident.as_ref().unwrap()).unwrap();
971 types.write_c_type(w, &field.ty, None, false);
972 writeln!(w, ",").unwrap();
974 write!(w, "\t}}").unwrap();
976 if var.discriminant.is_some() { unimplemented!(); }
977 writeln!(w, ",").unwrap();
979 writeln!(w, "}}\nuse {}::{}::{} as native{};\nimpl {} {{", types.orig_crate, types.module_path, e.ident, e.ident, e.ident).unwrap();
981 macro_rules! write_conv {
982 ($fn_sig: expr, $to_c: expr, $ref: expr) => {
983 writeln!(w, "\t#[allow(unused)]\n\tpub(crate) fn {} {{\n\t\tmatch {} {{", $fn_sig, if $to_c { "native" } else { "self" }).unwrap();
984 for var in e.variants.iter() {
985 write!(w, "\t\t\t{}{}::{} ", if $to_c { "native" } else { "" }, e.ident, var.ident).unwrap();
986 if let syn::Fields::Named(fields) = &var.fields {
987 write!(w, "{{").unwrap();
988 for field in fields.named.iter() {
989 if export_status(&field.attrs) == ExportStatus::TestOnly { continue; }
990 write!(w, "{}{}, ", if $ref { "ref " } else { "mut " }, field.ident.as_ref().unwrap()).unwrap();
992 write!(w, "}} ").unwrap();
994 write!(w, "=>").unwrap();
995 if let syn::Fields::Named(fields) = &var.fields {
996 write!(w, " {{\n\t\t\t\t").unwrap();
997 for field in fields.named.iter() {
998 if export_status(&field.attrs) == ExportStatus::TestOnly { continue; }
999 let mut sink = ::std::io::sink();
1000 let mut out: &mut dyn std::io::Write = if $ref { &mut sink } else { w };
1001 let new_var = if $to_c {
1002 types.write_to_c_conversion_new_var(&mut out, field.ident.as_ref().unwrap(), &field.ty, None, false)
1004 types.write_from_c_conversion_new_var(&mut out, field.ident.as_ref().unwrap(), &field.ty, None)
1006 if $ref || new_var {
1008 write!(w, "let mut {}_nonref = (*{}).clone();\n\t\t\t\t", field.ident.as_ref().unwrap(), field.ident.as_ref().unwrap()).unwrap();
1010 let nonref_ident = syn::Ident::new(&format!("{}_nonref", field.ident.as_ref().unwrap()), Span::call_site());
1012 types.write_to_c_conversion_new_var(w, &nonref_ident, &field.ty, None, false);
1014 types.write_from_c_conversion_new_var(w, &nonref_ident, &field.ty, None);
1016 write!(w, "\n\t\t\t\t").unwrap();
1019 write!(w, "\n\t\t\t\t").unwrap();
1023 } else { write!(w, " ").unwrap(); }
1024 write!(w, "{}{}::{}", if $to_c { "" } else { "native" }, e.ident, var.ident).unwrap();
1025 if let syn::Fields::Named(fields) = &var.fields {
1026 write!(w, " {{").unwrap();
1027 for field in fields.named.iter() {
1028 if export_status(&field.attrs) == ExportStatus::TestOnly { continue; }
1029 write!(w, "\n\t\t\t\t\t{}: ", field.ident.as_ref().unwrap()).unwrap();
1031 types.write_to_c_conversion_inline_prefix(w, &field.ty, None, false);
1033 types.write_from_c_conversion_prefix(w, &field.ty, None);
1036 field.ident.as_ref().unwrap(),
1037 if $ref { "_nonref" } else { "" }).unwrap();
1039 types.write_to_c_conversion_inline_suffix(w, &field.ty, None, false);
1041 types.write_from_c_conversion_suffix(w, &field.ty, None);
1043 write!(w, ",").unwrap();
1045 writeln!(w, "\n\t\t\t\t}}").unwrap();
1046 write!(w, "\t\t\t}}").unwrap();
1048 writeln!(w, ",").unwrap();
1050 writeln!(w, "\t\t}}\n\t}}").unwrap();
1054 write_conv!(format!("to_native(&self) -> native{}", e.ident), false, true);
1055 write_conv!(format!("into_native(self) -> native{}", e.ident), false, false);
1056 write_conv!(format!("from_native(native: &native{}) -> Self", e.ident), true, true);
1057 write_conv!(format!("native_into(native: native{}) -> Self", e.ident), true, false);
1058 writeln!(w, "}}").unwrap();
1061 writeln!(w, "#[no_mangle]\npub extern \"C\" fn {}_free(this_ptr: {}) {{ }}", e.ident, e.ident).unwrap();
1063 writeln!(w, "#[no_mangle]").unwrap();
1064 writeln!(w, "pub extern \"C\" fn {}_clone(orig: &{}) -> {} {{", e.ident, e.ident, e.ident).unwrap();
1065 writeln!(w, "\torig.clone()").unwrap();
1066 writeln!(w, "}}").unwrap();
1067 write_cpp_wrapper(cpp_headers, &format!("{}", e.ident), needs_free);
1070 fn writeln_fn<'a, 'b, W: std::io::Write>(w: &mut W, f: &'a syn::ItemFn, types: &mut TypeResolver<'b, 'a>) {
1071 match export_status(&f.attrs) {
1072 ExportStatus::Export => {},
1073 ExportStatus::NoExport|ExportStatus::TestOnly => return,
1075 writeln_docs(w, &f.attrs, "");
1077 let mut gen_types = GenericTypes::new();
1078 if !gen_types.learn_generics(&f.sig.generics, types) { return; }
1080 write!(w, "#[no_mangle]\npub extern \"C\" fn {}(", f.sig.ident).unwrap();
1081 write_method_params(w, &f.sig, "", types, Some(&gen_types), false, true);
1082 write!(w, " {{\n\t").unwrap();
1083 write_method_var_decl_body(w, &f.sig, "", types, Some(&gen_types), false);
1084 write!(w, "{}::{}::{}(", types.orig_crate, types.module_path, f.sig.ident).unwrap();
1085 write_method_call_params(w, &f.sig, "", types, Some(&gen_types), "", false);
1086 writeln!(w, "\n}}\n").unwrap();
1089 // ********************************
1090 // *** File/Crate Walking Logic ***
1091 // ********************************
1093 /// Simple utility to walk the modules in a crate - iterating over the modules (with file paths) in
1095 struct FileIter<'a, I: Iterator<Item = &'a syn::Item>> {
1101 impl<'a, I: Iterator<Item = &'a syn::Item>> Iterator for FileIter<'a, I> {
1102 type Item = (String, String, &'a syn::ItemMod);
1103 fn next(&mut self) -> std::option::Option<<Self as std::iter::Iterator>::Item> {
1105 match self.item_iter.next() {
1106 Some(syn::Item::Mod(m)) => {
1107 if let syn::Visibility::Public(_) = m.vis {
1108 match export_status(&m.attrs) {
1109 ExportStatus::Export => {},
1110 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1113 let f_path = format!("{}/{}.rs", (self.path.as_ref() as &Path).parent().unwrap().display(), m.ident);
1114 let new_mod = if self.module.is_empty() { format!("{}", m.ident) } else { format!("{}::{}", self.module, m.ident) };
1115 if let Ok(_) = File::open(&format!("{}/{}", self.in_dir, f_path)) {
1116 return Some((f_path, new_mod, m));
1119 format!("{}/{}/mod.rs", (self.path.as_ref() as &Path).parent().unwrap().display(), m.ident),
1125 None => return None,
1130 fn file_iter<'a>(file: &'a syn::File, in_dir: &'a str, path: &'a str, module: &'a str) ->
1131 impl Iterator<Item = (String, String, &'a syn::ItemMod)> + 'a {
1132 FileIter { in_dir, path, module, item_iter: file.items.iter() }
1135 /// A struct containing the syn::File AST for each file in the crate.
1136 struct FullLibraryAST {
1137 files: HashMap<String, syn::File>,
1140 /// Do the Real Work of mapping an original file to C-callable wrappers. Creates a new file at
1141 /// `out_path` and fills it with wrapper structs/functions to allow calling the things in the AST
1142 /// at `module` from C.
1143 fn convert_file<'a, 'b>(libast: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a>, in_dir: &str, out_dir: &str, path: &str, orig_crate: &str, module: &str, header_file: &mut File, cpp_header_file: &mut File) {
1144 let syntax = if let Some(ast) = libast.files.get(module) { ast } else { return };
1146 assert!(syntax.shebang.is_none()); // Not sure what this is, hope we dont have one
1148 let new_file_path = format!("{}/{}", out_dir, path);
1149 let _ = std::fs::create_dir((&new_file_path.as_ref() as &std::path::Path).parent().unwrap());
1150 let mut out = std::fs::OpenOptions::new().write(true).create(true).truncate(true)
1151 .open(new_file_path).expect("Unable to open new src file");
1153 assert_eq!(export_status(&syntax.attrs), ExportStatus::Export);
1154 writeln_docs(&mut out, &syntax.attrs, "");
1156 if path.ends_with("/lib.rs") {
1157 // Special-case the top-level lib.rs with various lint allows and a pointer to the c_types
1158 // and bitcoin hand-written modules.
1159 writeln!(out, "#![allow(unknown_lints)]").unwrap();
1160 writeln!(out, "#![allow(non_camel_case_types)]").unwrap();
1161 writeln!(out, "#![allow(non_snake_case)]").unwrap();
1162 writeln!(out, "#![allow(unused_imports)]").unwrap();
1163 writeln!(out, "#![allow(unused_variables)]").unwrap();
1164 writeln!(out, "#![allow(unused_mut)]").unwrap();
1165 writeln!(out, "#![allow(unused_parens)]").unwrap();
1166 writeln!(out, "#![allow(unused_unsafe)]").unwrap();
1167 writeln!(out, "#![allow(unused_braces)]").unwrap();
1168 writeln!(out, "mod c_types;").unwrap();
1169 writeln!(out, "mod bitcoin;").unwrap();
1171 writeln!(out, "\nuse std::ffi::c_void;\nuse bitcoin::hashes::Hash;\nuse crate::c_types::*;\n").unwrap();
1174 for (path, new_mod, m) in file_iter(&syntax, in_dir, path, &module) {
1175 writeln_docs(&mut out, &m.attrs, "");
1176 writeln!(out, "pub mod {};", m.ident).unwrap();
1177 convert_file(libast, crate_types, in_dir, out_dir, &path,
1178 orig_crate, &new_mod, header_file, cpp_header_file);
1181 eprintln!("Converting {} entries...", path);
1183 let mut type_resolver = TypeResolver::new(orig_crate, module, crate_types);
1185 // First pass over the items and fill in imports and file-declared objects in the type resolver
1186 for item in syntax.items.iter() {
1188 syn::Item::Use(u) => type_resolver.process_use(&mut out, &u),
1189 syn::Item::Struct(s) => {
1190 if let syn::Visibility::Public(_) = s.vis {
1191 declare_struct(&s, &mut type_resolver);
1194 syn::Item::Enum(e) => {
1195 if let syn::Visibility::Public(_) = e.vis {
1196 declare_enum(&e, &mut type_resolver);
1203 for item in syntax.items.iter() {
1205 syn::Item::Use(_) => {}, // Handled above
1206 syn::Item::Static(_) => {},
1207 syn::Item::Enum(e) => {
1208 if let syn::Visibility::Public(_) = e.vis {
1209 writeln_enum(&mut out, &e, &mut type_resolver, header_file, cpp_header_file);
1212 syn::Item::Impl(i) => {
1213 writeln_impl(&mut out, &i, &mut type_resolver);
1215 syn::Item::Struct(s) => {
1216 if let syn::Visibility::Public(_) = s.vis {
1217 writeln_struct(&mut out, &s, &mut type_resolver, header_file, cpp_header_file);
1220 syn::Item::Trait(t) => {
1221 if let syn::Visibility::Public(_) = t.vis {
1222 writeln_trait(&mut out, &t, &mut type_resolver, header_file, cpp_header_file);
1225 syn::Item::Mod(_) => {}, // We don't have to do anything - the top loop handles these.
1226 syn::Item::Const(c) => {
1227 // Re-export any primitive-type constants.
1228 if let syn::Visibility::Public(_) = c.vis {
1229 if let syn::Type::Path(p) = &*c.ty {
1230 let resolved_path = type_resolver.resolve_path(&p.path, None);
1231 if type_resolver.is_primitive(&resolved_path) {
1232 writeln!(out, "\n#[no_mangle]").unwrap();
1233 writeln!(out, "pub static {}: {} = {}::{}::{};", c.ident, resolved_path, orig_crate, module, c.ident).unwrap();
1238 syn::Item::Type(t) => {
1239 if let syn::Visibility::Public(_) = t.vis {
1240 match export_status(&t.attrs) {
1241 ExportStatus::Export => {},
1242 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1245 let mut process_alias = true;
1246 for tok in t.generics.params.iter() {
1247 if let syn::GenericParam::Lifetime(_) = tok {}
1248 else { process_alias = false; }
1252 syn::Type::Path(_) =>
1253 writeln_opaque(&mut out, &t.ident, &format!("{}", t.ident), &t.generics, &t.attrs, &type_resolver, header_file, cpp_header_file),
1259 syn::Item::Fn(f) => {
1260 if let syn::Visibility::Public(_) = f.vis {
1261 writeln_fn(&mut out, &f, &mut type_resolver);
1264 syn::Item::Macro(m) => {
1265 if m.ident.is_none() { // If its not a macro definition
1266 convert_macro(&mut out, &m.mac.path, &m.mac.tokens, &type_resolver);
1269 syn::Item::Verbatim(_) => {},
1270 syn::Item::ExternCrate(_) => {},
1271 _ => unimplemented!(),
1275 out.flush().unwrap();
1278 /// Load the AST for each file in the crate, filling the FullLibraryAST object
1279 fn load_ast(in_dir: &str, path: &str, module: String, ast_storage: &mut FullLibraryAST) {
1280 eprintln!("Loading {}{}...", in_dir, path);
1282 let mut file = File::open(format!("{}/{}", in_dir, path)).expect("Unable to open file");
1283 let mut src = String::new();
1284 file.read_to_string(&mut src).expect("Unable to read file");
1285 let syntax = syn::parse_file(&src).expect("Unable to parse file");
1287 assert_eq!(export_status(&syntax.attrs), ExportStatus::Export);
1289 for (path, new_mod, _) in file_iter(&syntax, in_dir, path, &module) {
1290 load_ast(in_dir, &path, new_mod, ast_storage);
1292 ast_storage.files.insert(module, syntax);
1295 /// Insert ident -> absolute Path resolutions into imports from the given UseTree and path-prefix.
1296 fn process_use_intern<'a>(u: &'a syn::UseTree, mut path: syn::punctuated::Punctuated<syn::PathSegment, syn::token::Colon2>, imports: &mut HashMap<&'a syn::Ident, syn::Path>) {
1298 syn::UseTree::Path(p) => {
1299 path.push(syn::PathSegment { ident: p.ident.clone(), arguments: syn::PathArguments::None });
1300 process_use_intern(&p.tree, path, imports);
1302 syn::UseTree::Name(n) => {
1303 path.push(syn::PathSegment { ident: n.ident.clone(), arguments: syn::PathArguments::None });
1304 imports.insert(&n.ident, syn::Path { leading_colon: Some(syn::Token![::](Span::call_site())), segments: path });
1306 syn::UseTree::Group(g) => {
1307 for i in g.items.iter() {
1308 process_use_intern(i, path.clone(), imports);
1315 /// Map all the Paths in a Type into absolute paths given a set of imports (generated via process_use_intern)
1316 fn resolve_imported_refs(imports: &HashMap<&syn::Ident, syn::Path>, mut ty: syn::Type) -> syn::Type {
1318 syn::Type::Path(p) => {
1319 if let Some(ident) = p.path.get_ident() {
1320 if let Some(newpath) = imports.get(ident) {
1321 p.path = newpath.clone();
1323 } else { unimplemented!(); }
1325 syn::Type::Reference(r) => {
1326 r.elem = Box::new(resolve_imported_refs(imports, (*r.elem).clone()));
1328 syn::Type::Slice(s) => {
1329 s.elem = Box::new(resolve_imported_refs(imports, (*s.elem).clone()));
1331 syn::Type::Tuple(t) => {
1332 for e in t.elems.iter_mut() {
1333 *e = resolve_imported_refs(imports, e.clone());
1336 _ => unimplemented!(),
1341 /// Walk the FullLibraryAST, deciding how things will be mapped and adding tracking to CrateTypes.
1342 fn walk_ast<'a>(in_dir: &str, path: &str, module: String, ast_storage: &'a FullLibraryAST, crate_types: &mut CrateTypes<'a>) {
1343 let syntax = if let Some(ast) = ast_storage.files.get(&module) { ast } else { return };
1344 assert_eq!(export_status(&syntax.attrs), ExportStatus::Export);
1346 for (path, new_mod, _) in file_iter(&syntax, in_dir, path, &module) {
1347 walk_ast(in_dir, &path, new_mod, ast_storage, crate_types);
1350 let mut import_maps = HashMap::new();
1352 for item in syntax.items.iter() {
1354 syn::Item::Use(u) => {
1355 process_use_intern(&u.tree, syn::punctuated::Punctuated::new(), &mut import_maps);
1357 syn::Item::Struct(s) => {
1358 if let syn::Visibility::Public(_) = s.vis {
1359 match export_status(&s.attrs) {
1360 ExportStatus::Export => {},
1361 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1363 let struct_path = format!("{}::{}", module, s.ident);
1364 crate_types.opaques.insert(struct_path, &s.ident);
1367 syn::Item::Trait(t) => {
1368 if let syn::Visibility::Public(_) = t.vis {
1369 match export_status(&t.attrs) {
1370 ExportStatus::Export => {},
1371 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1373 let trait_path = format!("{}::{}", module, t.ident);
1374 crate_types.traits.insert(trait_path, &t);
1377 syn::Item::Type(t) => {
1378 if let syn::Visibility::Public(_) = t.vis {
1379 match export_status(&t.attrs) {
1380 ExportStatus::Export => {},
1381 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1383 let type_path = format!("{}::{}", module, t.ident);
1384 let mut process_alias = true;
1385 for tok in t.generics.params.iter() {
1386 if let syn::GenericParam::Lifetime(_) = tok {}
1387 else { process_alias = false; }
1391 syn::Type::Path(_) => {
1392 // If its a path with no generics, assume we don't map the aliased type and map it opaque
1393 crate_types.opaques.insert(type_path, &t.ident);
1396 crate_types.type_aliases.insert(type_path, resolve_imported_refs(&import_maps, (*t.ty).clone()));
1402 syn::Item::Enum(e) if is_enum_opaque(e) => {
1403 if let syn::Visibility::Public(_) = e.vis {
1404 match export_status(&e.attrs) {
1405 ExportStatus::Export => {},
1406 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1408 let enum_path = format!("{}::{}", module, e.ident);
1409 crate_types.opaques.insert(enum_path, &e.ident);
1412 syn::Item::Enum(e) => {
1413 if let syn::Visibility::Public(_) = e.vis {
1414 match export_status(&e.attrs) {
1415 ExportStatus::Export => {},
1416 ExportStatus::NoExport|ExportStatus::TestOnly => continue,
1418 let enum_path = format!("{}::{}", module, e.ident);
1419 crate_types.mirrored_enums.insert(enum_path, &e);
1428 let args: Vec<String> = env::args().collect();
1429 if args.len() != 7 {
1430 eprintln!("Usage: source/dir target/dir source_crate_name derived_templates.rs extra/includes.h extra/cpp/includes.hpp");
1434 let mut derived_templates = std::fs::OpenOptions::new().write(true).create(true).truncate(true)
1435 .open(&args[4]).expect("Unable to open new header file");
1436 let mut header_file = std::fs::OpenOptions::new().write(true).create(true).truncate(true)
1437 .open(&args[5]).expect("Unable to open new header file");
1438 let mut cpp_header_file = std::fs::OpenOptions::new().write(true).create(true).truncate(true)
1439 .open(&args[6]).expect("Unable to open new header file");
1441 writeln!(header_file, "#if defined(__GNUC__)\n#define MUST_USE_STRUCT __attribute__((warn_unused))").unwrap();
1442 writeln!(header_file, "#else\n#define MUST_USE_STRUCT\n#endif").unwrap();
1443 writeln!(header_file, "#if defined(__GNUC__)\n#define MUST_USE_RES __attribute__((warn_unused_result))").unwrap();
1444 writeln!(header_file, "#else\n#define MUST_USE_RES\n#endif").unwrap();
1445 writeln!(cpp_header_file, "#include <string.h>\nnamespace LDK {{").unwrap();
1447 // First parse the full crate's ASTs, caching them so that we can hold references to the AST
1448 // objects in other datastructures:
1449 let mut libast = FullLibraryAST { files: HashMap::new() };
1450 load_ast(&args[1], "/lib.rs", "".to_string(), &mut libast);
1452 // ...then walk the ASTs tracking what types we will map, and how, so that we can resolve them
1453 // when parsing other file ASTs...
1454 let mut libtypes = CrateTypes { traits: HashMap::new(), opaques: HashMap::new(), mirrored_enums: HashMap::new(),
1455 type_aliases: HashMap::new(), templates_defined: HashMap::default(), template_file: &mut derived_templates };
1456 walk_ast(&args[1], "/lib.rs", "".to_string(), &libast, &mut libtypes);
1458 // ... finally, do the actual file conversion/mapping, writing out types as we go.
1459 convert_file(&libast, &mut libtypes, &args[1], &args[2], "/lib.rs", &args[3], "", &mut header_file, &mut cpp_header_file);
1461 // For container templates which we created while walking the crate, make sure we add C++
1462 // mapped types so that C++ users can utilize the auto-destructors available.
1463 for (ty, has_destructor) in libtypes.templates_defined.iter() {
1464 write_cpp_wrapper(&mut cpp_header_file, ty, *has_destructor);
1466 writeln!(cpp_header_file, "}}").unwrap();
1468 header_file.flush().unwrap();
1469 cpp_header_file.flush().unwrap();
1470 derived_templates.flush().unwrap();