1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Logic to connect off-chain channel management with on-chain transaction monitoring.
12 //! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to
13 //! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will
14 //! make those available as [`MonitorEvent`]s to be consumed.
16 //! [`ChainMonitor`] is parameterized by an optional chain source, which must implement the
17 //! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light
18 //! clients, such that transactions spending those outputs are included in block data.
20 //! [`ChainMonitor`] may be used directly to monitor channels locally or as a part of a distributed
21 //! setup to monitor channels remotely. In the latter case, a custom [`chain::Watch`] implementation
22 //! would be responsible for routing each update to a remote server and for retrieving monitor
23 //! events. The remote server would make use of [`ChainMonitor`] for block processing and for
24 //! servicing [`ChannelMonitor`] updates from the client.
26 use bitcoin::blockdata::block::Header;
27 use bitcoin::hash_types::{Txid, BlockHash};
30 use crate::chain::{ChannelMonitorUpdateStatus, Filter, WatchedOutput};
31 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator};
32 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, Balance, MonitorEvent, TransactionOutputs, WithChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
33 use crate::chain::transaction::{OutPoint, TransactionData};
34 use crate::ln::ChannelId;
35 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
37 use crate::events::{Event, EventHandler};
38 use crate::util::atomic_counter::AtomicCounter;
39 use crate::util::logger::{Logger, WithContext};
40 use crate::util::errors::APIError;
41 use crate::util::wakers::{Future, Notifier};
42 use crate::ln::channelmanager::ChannelDetails;
44 use crate::prelude::*;
45 use crate::sync::{RwLock, RwLockReadGuard, Mutex, MutexGuard};
47 use core::sync::atomic::{AtomicUsize, Ordering};
48 use bitcoin::secp256k1::PublicKey;
51 #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
52 /// A specific update's ID stored in a `MonitorUpdateId`, separated out to make the contents
54 pub(crate) enum UpdateOrigin {
55 /// An update that was generated by the `ChannelManager` (via our [`crate::chain::Watch`]
56 /// implementation). This corresponds to an actual [ChannelMonitorUpdate::update_id] field
57 /// and [ChannelMonitor::get_latest_update_id].
59 /// [ChannelMonitor::get_latest_update_id]: crate::chain::channelmonitor::ChannelMonitor::get_latest_update_id
60 /// [ChannelMonitorUpdate::update_id]: crate::chain::channelmonitor::ChannelMonitorUpdate::update_id
62 /// An update that was generated during blockchain processing. The ID here is specific to the
63 /// generating [ChannelMonitor] and does *not* correspond to any on-disk IDs.
65 /// [ChannelMonitor]: crate::chain::channelmonitor::ChannelMonitor
70 #[cfg(any(feature = "_test_utils", test))]
71 pub(crate) use update_origin::UpdateOrigin;
72 #[cfg(not(any(feature = "_test_utils", test)))]
73 use update_origin::UpdateOrigin;
75 /// An opaque identifier describing a specific [`Persist`] method call.
76 #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
77 pub struct MonitorUpdateId {
78 pub(crate) contents: UpdateOrigin,
81 impl MonitorUpdateId {
82 pub(crate) fn from_monitor_update(update: &ChannelMonitorUpdate) -> Self {
83 Self { contents: UpdateOrigin::OffChain(update.update_id) }
85 pub(crate) fn from_new_monitor<ChannelSigner: WriteableEcdsaChannelSigner>(monitor: &ChannelMonitor<ChannelSigner>) -> Self {
86 Self { contents: UpdateOrigin::OffChain(monitor.get_latest_update_id()) }
90 /// `Persist` defines behavior for persisting channel monitors: this could mean
91 /// writing once to disk, and/or uploading to one or more backup services.
93 /// Persistence can happen in one of two ways - synchronously completing before the trait method
94 /// calls return or asynchronously in the background.
96 /// # For those implementing synchronous persistence
98 /// * If persistence completes fully (including any relevant `fsync()` calls), the implementation
99 /// should return [`ChannelMonitorUpdateStatus::Completed`], indicating normal channel operation
102 /// * If persistence fails for some reason, implementations should consider returning
103 /// [`ChannelMonitorUpdateStatus::InProgress`] and retry all pending persistence operations in
104 /// the background with [`ChainMonitor::list_pending_monitor_updates`] and
105 /// [`ChainMonitor::get_monitor`].
107 /// Once a full [`ChannelMonitor`] has been persisted, all pending updates for that channel can
108 /// be marked as complete via [`ChainMonitor::channel_monitor_updated`].
110 /// If at some point no further progress can be made towards persisting the pending updates, the
111 /// node should simply shut down.
113 /// * If the persistence has failed and cannot be retried further (e.g. because of an outage),
114 /// [`ChannelMonitorUpdateStatus::UnrecoverableError`] can be used, though this will result in
115 /// an immediate panic and future operations in LDK generally failing.
117 /// # For those implementing asynchronous persistence
119 /// All calls should generally spawn a background task and immediately return
120 /// [`ChannelMonitorUpdateStatus::InProgress`]. Once the update completes,
121 /// [`ChainMonitor::channel_monitor_updated`] should be called with the corresponding
122 /// [`MonitorUpdateId`].
124 /// Note that unlike the direct [`chain::Watch`] interface,
125 /// [`ChainMonitor::channel_monitor_updated`] must be called once for *each* update which occurs.
127 /// If at some point no further progress can be made towards persisting a pending update, the node
128 /// should simply shut down. Until then, the background task should either loop indefinitely, or
129 /// persistence should be regularly retried with [`ChainMonitor::list_pending_monitor_updates`]
130 /// and [`ChainMonitor::get_monitor`] (note that if a full monitor is persisted all pending
131 /// monitor updates may be marked completed).
133 /// # Using remote watchtowers
135 /// Watchtowers may be updated as a part of an implementation of this trait, utilizing the async
136 /// update process described above while the watchtower is being updated. The following methods are
137 /// provided for bulding transactions for a watchtower:
138 /// [`ChannelMonitor::initial_counterparty_commitment_tx`],
139 /// [`ChannelMonitor::counterparty_commitment_txs_from_update`],
140 /// [`ChannelMonitor::sign_to_local_justice_tx`], [`TrustedCommitmentTransaction::revokeable_output_index`],
141 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`].
143 /// [`TrustedCommitmentTransaction::revokeable_output_index`]: crate::ln::chan_utils::TrustedCommitmentTransaction::revokeable_output_index
144 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`]: crate::ln::chan_utils::TrustedCommitmentTransaction::build_to_local_justice_tx
145 pub trait Persist<ChannelSigner: WriteableEcdsaChannelSigner> {
146 /// Persist a new channel's data in response to a [`chain::Watch::watch_channel`] call. This is
147 /// called by [`ChannelManager`] for new channels, or may be called directly, e.g. on startup.
149 /// The data can be stored any way you want, but the identifier provided by LDK is the
150 /// channel's outpoint (and it is up to you to maintain a correct mapping between the outpoint
151 /// and the stored channel data). Note that you **must** persist every new monitor to disk.
153 /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
154 /// if you return [`ChannelMonitorUpdateStatus::InProgress`].
156 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`
157 /// and [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
159 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
160 /// [`Writeable::write`]: crate::util::ser::Writeable::write
161 fn persist_new_channel(&self, channel_funding_outpoint: OutPoint, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> ChannelMonitorUpdateStatus;
163 /// Update one channel's data. The provided [`ChannelMonitor`] has already applied the given
166 /// Note that on every update, you **must** persist either the [`ChannelMonitorUpdate`] or the
167 /// updated monitor itself to disk/backups. See the [`Persist`] trait documentation for more
170 /// During blockchain synchronization operations, and in some rare cases, this may be called with
171 /// no [`ChannelMonitorUpdate`], in which case the full [`ChannelMonitor`] needs to be persisted.
172 /// Note that after the full [`ChannelMonitor`] is persisted any previous
173 /// [`ChannelMonitorUpdate`]s which were persisted should be discarded - they can no longer be
174 /// applied to the persisted [`ChannelMonitor`] as they were already applied.
176 /// If an implementer chooses to persist the updates only, they need to make
177 /// sure that all the updates are applied to the `ChannelMonitors` *before*
178 /// the set of channel monitors is given to the `ChannelManager`
179 /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
180 /// applying a monitor update to a monitor. If full `ChannelMonitors` are
181 /// persisted, then there is no need to persist individual updates.
183 /// Note that there could be a performance tradeoff between persisting complete
184 /// channel monitors on every update vs. persisting only updates and applying
185 /// them in batches. The size of each monitor grows `O(number of state updates)`
186 /// whereas updates are small and `O(1)`.
188 /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
189 /// if you return [`ChannelMonitorUpdateStatus::InProgress`].
191 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`,
192 /// [`Writeable::write`] on [`ChannelMonitorUpdate`] for writing out an update, and
193 /// [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
195 /// [`Writeable::write`]: crate::util::ser::Writeable::write
196 fn update_persisted_channel(&self, channel_funding_outpoint: OutPoint, update: Option<&ChannelMonitorUpdate>, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> ChannelMonitorUpdateStatus;
199 struct MonitorHolder<ChannelSigner: WriteableEcdsaChannelSigner> {
200 monitor: ChannelMonitor<ChannelSigner>,
201 /// The full set of pending monitor updates for this Channel.
203 /// Note that this lock must be held during updates to prevent a race where we call
204 /// update_persisted_channel, the user returns a
205 /// [`ChannelMonitorUpdateStatus::InProgress`], and then calls channel_monitor_updated
206 /// immediately, racing our insertion of the pending update into the contained Vec.
208 /// Beyond the synchronization of updates themselves, we cannot handle user events until after
209 /// any chain updates have been stored on disk. Thus, we scan this list when returning updates
210 /// to the ChannelManager, refusing to return any updates for a ChannelMonitor which is still
211 /// being persisted fully to disk after a chain update.
213 /// This avoids the possibility of handling, e.g. an on-chain claim, generating a claim monitor
214 /// event, resulting in the relevant ChannelManager generating a PaymentSent event and dropping
215 /// the pending payment entry, and then reloading before the monitor is persisted, resulting in
216 /// the ChannelManager re-adding the same payment entry, before the same block is replayed,
217 /// resulting in a duplicate PaymentSent event.
218 pending_monitor_updates: Mutex<Vec<MonitorUpdateId>>,
219 /// The last block height at which no [`UpdateOrigin::ChainSync`] monitor updates were present
220 /// in `pending_monitor_updates`.
221 /// If it's been more than [`LATENCY_GRACE_PERIOD_BLOCKS`] since we started waiting on a chain
222 /// sync event, we let monitor events return to `ChannelManager` because we cannot hold them up
223 /// forever or we'll end up with HTLC preimages waiting to feed back into an upstream channel
224 /// forever, risking funds loss.
225 last_chain_persist_height: AtomicUsize,
228 impl<ChannelSigner: WriteableEcdsaChannelSigner> MonitorHolder<ChannelSigner> {
229 fn has_pending_offchain_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
230 pending_monitor_updates_lock.iter().any(|update_id|
231 if let UpdateOrigin::OffChain(_) = update_id.contents { true } else { false })
233 fn has_pending_chainsync_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
234 pending_monitor_updates_lock.iter().any(|update_id|
235 if let UpdateOrigin::ChainSync(_) = update_id.contents { true } else { false })
239 /// A read-only reference to a current ChannelMonitor.
241 /// Note that this holds a mutex in [`ChainMonitor`] and may block other events until it is
243 pub struct LockedChannelMonitor<'a, ChannelSigner: WriteableEcdsaChannelSigner> {
244 lock: RwLockReadGuard<'a, HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
245 funding_txo: OutPoint,
248 impl<ChannelSigner: WriteableEcdsaChannelSigner> Deref for LockedChannelMonitor<'_, ChannelSigner> {
249 type Target = ChannelMonitor<ChannelSigner>;
250 fn deref(&self) -> &ChannelMonitor<ChannelSigner> {
251 &self.lock.get(&self.funding_txo).expect("Checked at construction").monitor
255 /// An implementation of [`chain::Watch`] for monitoring channels.
257 /// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
258 /// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
259 /// or used independently to monitor channels remotely. See the [module-level documentation] for
262 /// Note that `ChainMonitor` should regularly trigger rebroadcasts/fee bumps of pending claims from
263 /// a force-closed channel. This is crucial in preventing certain classes of pinning attacks,
264 /// detecting substantial mempool feerate changes between blocks, and ensuring reliability if
265 /// broadcasting fails. We recommend invoking this every 30 seconds, or lower if running in an
266 /// environment with spotty connections, like on mobile.
268 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
269 /// [module-level documentation]: crate::chain::chainmonitor
270 /// [`rebroadcast_pending_claims`]: Self::rebroadcast_pending_claims
271 pub struct ChainMonitor<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
272 where C::Target: chain::Filter,
273 T::Target: BroadcasterInterface,
274 F::Target: FeeEstimator,
276 P::Target: Persist<ChannelSigner>,
278 monitors: RwLock<HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
279 /// When we generate a [`MonitorUpdateId`] for a chain-event monitor persistence, we need a
280 /// unique ID, which we calculate by simply getting the next value from this counter. Note that
281 /// the ID is never persisted so it's ok that they reset on restart.
282 sync_persistence_id: AtomicCounter,
283 chain_source: Option<C>,
288 /// "User-provided" (ie persistence-completion/-failed) [`MonitorEvent`]s. These came directly
289 /// from the user and not from a [`ChannelMonitor`].
290 pending_monitor_events: Mutex<Vec<(OutPoint, ChannelId, Vec<MonitorEvent>, Option<PublicKey>)>>,
291 /// The best block height seen, used as a proxy for the passage of time.
292 highest_chain_height: AtomicUsize,
294 event_notifier: Notifier,
297 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> ChainMonitor<ChannelSigner, C, T, F, L, P>
298 where C::Target: chain::Filter,
299 T::Target: BroadcasterInterface,
300 F::Target: FeeEstimator,
302 P::Target: Persist<ChannelSigner>,
304 /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view
305 /// of a channel and reacting accordingly based on transactions in the given chain data. See
306 /// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
307 /// be returned by [`chain::Watch::release_pending_monitor_events`].
309 /// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
310 /// calls must not exclude any transactions matching the new outputs nor any in-block
311 /// descendants of such transactions. It is not necessary to re-fetch the block to obtain
312 /// updated `txdata`.
314 /// Calls which represent a new blockchain tip height should set `best_height`.
315 fn process_chain_data<FN>(&self, header: &Header, best_height: Option<u32>, txdata: &TransactionData, process: FN)
317 FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs>
319 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
320 let funding_outpoints = hash_set_from_iter(self.monitors.read().unwrap().keys().cloned());
321 for funding_outpoint in funding_outpoints.iter() {
322 let monitor_lock = self.monitors.read().unwrap();
323 if let Some(monitor_state) = monitor_lock.get(funding_outpoint) {
324 if self.update_monitor_with_chain_data(header, best_height, txdata, &process, funding_outpoint, &monitor_state).is_err() {
325 // Take the monitors lock for writing so that we poison it and any future
326 // operations going forward fail immediately.
327 core::mem::drop(monitor_lock);
328 let _poison = self.monitors.write().unwrap();
329 log_error!(self.logger, "{}", err_str);
330 panic!("{}", err_str);
335 // do some followup cleanup if any funding outpoints were added in between iterations
336 let monitor_states = self.monitors.write().unwrap();
337 for (funding_outpoint, monitor_state) in monitor_states.iter() {
338 if !funding_outpoints.contains(funding_outpoint) {
339 if self.update_monitor_with_chain_data(header, best_height, txdata, &process, funding_outpoint, &monitor_state).is_err() {
340 log_error!(self.logger, "{}", err_str);
341 panic!("{}", err_str);
346 if let Some(height) = best_height {
347 // If the best block height is being updated, update highest_chain_height under the
348 // monitors write lock.
349 let old_height = self.highest_chain_height.load(Ordering::Acquire);
350 let new_height = height as usize;
351 if new_height > old_height {
352 self.highest_chain_height.store(new_height, Ordering::Release);
357 fn update_monitor_with_chain_data<FN>(
358 &self, header: &Header, best_height: Option<u32>, txdata: &TransactionData,
359 process: FN, funding_outpoint: &OutPoint, monitor_state: &MonitorHolder<ChannelSigner>
360 ) -> Result<(), ()> where FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs> {
361 let monitor = &monitor_state.monitor;
362 let logger = WithChannelMonitor::from(&self.logger, &monitor);
365 txn_outputs = process(monitor, txdata);
366 let update_id = MonitorUpdateId {
367 contents: UpdateOrigin::ChainSync(self.sync_persistence_id.get_increment()),
369 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
370 if let Some(height) = best_height {
371 if !monitor_state.has_pending_chainsync_updates(&pending_monitor_updates) {
372 // If there are not ChainSync persists awaiting completion, go ahead and
373 // set last_chain_persist_height here - we wouldn't want the first
374 // InProgress to always immediately be considered "overly delayed".
375 monitor_state.last_chain_persist_height.store(height as usize, Ordering::Release);
379 log_trace!(logger, "Syncing Channel Monitor for channel {}", log_funding_info!(monitor));
380 match self.persister.update_persisted_channel(*funding_outpoint, None, monitor, update_id) {
381 ChannelMonitorUpdateStatus::Completed =>
382 log_trace!(logger, "Finished syncing Channel Monitor for channel {}", log_funding_info!(monitor)),
383 ChannelMonitorUpdateStatus::InProgress => {
384 log_debug!(logger, "Channel Monitor sync for channel {} in progress, holding events until completion!", log_funding_info!(monitor));
385 pending_monitor_updates.push(update_id);
387 ChannelMonitorUpdateStatus::UnrecoverableError => {
393 // Register any new outputs with the chain source for filtering, storing any dependent
394 // transactions from within the block that previously had not been included in txdata.
395 if let Some(ref chain_source) = self.chain_source {
396 let block_hash = header.block_hash();
397 for (txid, mut outputs) in txn_outputs.drain(..) {
398 for (idx, output) in outputs.drain(..) {
399 // Register any new outputs with the chain source for filtering
400 let output = WatchedOutput {
401 block_hash: Some(block_hash),
402 outpoint: OutPoint { txid, index: idx as u16 },
403 script_pubkey: output.script_pubkey,
405 log_trace!(logger, "Adding monitoring for spends of outpoint {} to the filter", output.outpoint);
406 chain_source.register_output(output);
413 /// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
415 /// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
416 /// will call back to it indicating transactions and outputs of interest. This allows clients to
417 /// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
418 /// always need to fetch full blocks absent another means for determining which blocks contain
419 /// transactions relevant to the watched channels.
420 pub fn new(chain_source: Option<C>, broadcaster: T, logger: L, feeest: F, persister: P) -> Self {
422 monitors: RwLock::new(new_hash_map()),
423 sync_persistence_id: AtomicCounter::new(),
427 fee_estimator: feeest,
429 pending_monitor_events: Mutex::new(Vec::new()),
430 highest_chain_height: AtomicUsize::new(0),
431 event_notifier: Notifier::new(),
435 /// Gets the balances in the contained [`ChannelMonitor`]s which are claimable on-chain or
436 /// claims which are awaiting confirmation.
438 /// Includes the balances from each [`ChannelMonitor`] *except* those included in
439 /// `ignored_channels`, allowing you to filter out balances from channels which are still open
440 /// (and whose balance should likely be pulled from the [`ChannelDetails`]).
442 /// See [`ChannelMonitor::get_claimable_balances`] for more details on the exact criteria for
443 /// inclusion in the return value.
444 pub fn get_claimable_balances(&self, ignored_channels: &[&ChannelDetails]) -> Vec<Balance> {
445 let mut ret = Vec::new();
446 let monitor_states = self.monitors.read().unwrap();
447 for (_, monitor_state) in monitor_states.iter().filter(|(funding_outpoint, _)| {
448 for chan in ignored_channels {
449 if chan.funding_txo.as_ref() == Some(funding_outpoint) {
455 ret.append(&mut monitor_state.monitor.get_claimable_balances());
460 /// Gets the [`LockedChannelMonitor`] for a given funding outpoint, returning an `Err` if no
461 /// such [`ChannelMonitor`] is currently being monitored for.
463 /// Note that the result holds a mutex over our monitor set, and should not be held
465 pub fn get_monitor(&self, funding_txo: OutPoint) -> Result<LockedChannelMonitor<'_, ChannelSigner>, ()> {
466 let lock = self.monitors.read().unwrap();
467 if lock.get(&funding_txo).is_some() {
468 Ok(LockedChannelMonitor { lock, funding_txo })
474 /// Lists the funding outpoint and channel ID of each [`ChannelMonitor`] being monitored.
476 /// Note that [`ChannelMonitor`]s are not removed when a channel is closed as they are always
477 /// monitoring for on-chain state resolutions.
478 pub fn list_monitors(&self) -> Vec<(OutPoint, ChannelId)> {
479 self.monitors.read().unwrap().iter().map(|(outpoint, monitor_holder)| {
480 let channel_id = monitor_holder.monitor.channel_id();
481 (*outpoint, channel_id)
485 #[cfg(not(c_bindings))]
486 /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
487 pub fn list_pending_monitor_updates(&self) -> HashMap<OutPoint, Vec<MonitorUpdateId>> {
488 hash_map_from_iter(self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
489 (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
494 /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
495 pub fn list_pending_monitor_updates(&self) -> Vec<(OutPoint, Vec<MonitorUpdateId>)> {
496 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
497 (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
503 pub fn remove_monitor(&self, funding_txo: &OutPoint) -> ChannelMonitor<ChannelSigner> {
504 self.monitors.write().unwrap().remove(funding_txo).unwrap().monitor
507 /// Indicates the persistence of a [`ChannelMonitor`] has completed after
508 /// [`ChannelMonitorUpdateStatus::InProgress`] was returned from an update operation.
510 /// Thus, the anticipated use is, at a high level:
511 /// 1) This [`ChainMonitor`] calls [`Persist::update_persisted_channel`] which stores the
512 /// update to disk and begins updating any remote (e.g. watchtower/backup) copies,
513 /// returning [`ChannelMonitorUpdateStatus::InProgress`],
514 /// 2) once all remote copies are updated, you call this function with the
515 /// `completed_update_id` that completed, and once all pending updates have completed the
516 /// channel will be re-enabled.
517 // Note that we re-enable only after `UpdateOrigin::OffChain` updates complete, we don't
518 // care about `UpdateOrigin::ChainSync` updates for the channel state being updated. We
519 // only care about `UpdateOrigin::ChainSync` for returning `MonitorEvent`s.
521 /// Returns an [`APIError::APIMisuseError`] if `funding_txo` does not match any currently
522 /// registered [`ChannelMonitor`]s.
523 pub fn channel_monitor_updated(&self, funding_txo: OutPoint, completed_update_id: MonitorUpdateId) -> Result<(), APIError> {
524 let monitors = self.monitors.read().unwrap();
525 let monitor_data = if let Some(mon) = monitors.get(&funding_txo) { mon } else {
526 return Err(APIError::APIMisuseError { err: format!("No ChannelMonitor matching funding outpoint {:?} found", funding_txo) });
528 let mut pending_monitor_updates = monitor_data.pending_monitor_updates.lock().unwrap();
529 pending_monitor_updates.retain(|update_id| *update_id != completed_update_id);
531 match completed_update_id {
532 MonitorUpdateId { contents: UpdateOrigin::OffChain(_) } => {
533 // Note that we only check for `UpdateOrigin::OffChain` failures here - if
534 // we're being told that a `UpdateOrigin::OffChain` monitor update completed,
535 // we only care about ensuring we don't tell the `ChannelManager` to restore
536 // the channel to normal operation until all `UpdateOrigin::OffChain` updates
538 // If there's some `UpdateOrigin::ChainSync` update still pending that's okay
539 // - we can still update our channel state, just as long as we don't return
540 // `MonitorEvent`s from the monitor back to the `ChannelManager` until they
542 let monitor_is_pending_updates = monitor_data.has_pending_offchain_updates(&pending_monitor_updates);
543 if monitor_is_pending_updates {
544 // If there are still monitor updates pending, we cannot yet construct a
548 let channel_id = monitor_data.monitor.channel_id();
549 self.pending_monitor_events.lock().unwrap().push((funding_txo, channel_id, vec![MonitorEvent::Completed {
550 funding_txo, channel_id,
551 monitor_update_id: monitor_data.monitor.get_latest_update_id(),
552 }], monitor_data.monitor.get_counterparty_node_id()));
554 MonitorUpdateId { contents: UpdateOrigin::ChainSync(_) } => {
555 if !monitor_data.has_pending_chainsync_updates(&pending_monitor_updates) {
556 monitor_data.last_chain_persist_height.store(self.highest_chain_height.load(Ordering::Acquire), Ordering::Release);
557 // The next time release_pending_monitor_events is called, any events for this
558 // ChannelMonitor will be returned.
562 self.event_notifier.notify();
566 /// This wrapper avoids having to update some of our tests for now as they assume the direct
567 /// chain::Watch API wherein we mark a monitor fully-updated by just calling
568 /// channel_monitor_updated once with the highest ID.
569 #[cfg(any(test, fuzzing))]
570 pub fn force_channel_monitor_updated(&self, funding_txo: OutPoint, monitor_update_id: u64) {
571 let monitors = self.monitors.read().unwrap();
572 let (counterparty_node_id, channel_id) = if let Some(m) = monitors.get(&funding_txo) {
573 (m.monitor.get_counterparty_node_id(), m.monitor.channel_id())
575 (None, ChannelId::v1_from_funding_outpoint(funding_txo))
577 self.pending_monitor_events.lock().unwrap().push((funding_txo, channel_id, vec![MonitorEvent::Completed {
581 }], counterparty_node_id));
582 self.event_notifier.notify();
585 #[cfg(any(test, feature = "_test_utils"))]
586 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
587 use crate::events::EventsProvider;
588 let events = core::cell::RefCell::new(Vec::new());
589 let event_handler = |event: events::Event| events.borrow_mut().push(event);
590 self.process_pending_events(&event_handler);
594 /// Processes any events asynchronously in the order they were generated since the last call
595 /// using the given event handler.
597 /// See the trait-level documentation of [`EventsProvider`] for requirements.
599 /// [`EventsProvider`]: crate::events::EventsProvider
600 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
603 // Sadly we can't hold the monitors read lock through an async call. Thus we have to do a
604 // crazy dance to process a monitor's events then only remove them once we've done so.
605 let mons_to_process = self.monitors.read().unwrap().keys().cloned().collect::<Vec<_>>();
606 for funding_txo in mons_to_process {
608 super::channelmonitor::process_events_body!(
609 self.monitors.read().unwrap().get(&funding_txo).map(|m| &m.monitor), ev, handler(ev).await);
613 /// Gets a [`Future`] that completes when an event is available either via
614 /// [`chain::Watch::release_pending_monitor_events`] or
615 /// [`EventsProvider::process_pending_events`].
617 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
618 /// [`ChainMonitor`] and should instead register actions to be taken later.
620 /// [`EventsProvider::process_pending_events`]: crate::events::EventsProvider::process_pending_events
621 pub fn get_update_future(&self) -> Future {
622 self.event_notifier.get_future()
625 /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
626 /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
627 /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
628 /// invoking this every 30 seconds, or lower if running in an environment with spotty
629 /// connections, like on mobile.
630 pub fn rebroadcast_pending_claims(&self) {
631 let monitors = self.monitors.read().unwrap();
632 for (_, monitor_holder) in &*monitors {
633 monitor_holder.monitor.rebroadcast_pending_claims(
634 &*self.broadcaster, &*self.fee_estimator, &self.logger
639 /// Triggers rebroadcasts of pending claims from force-closed channels after a transaction
640 /// signature generation failure.
642 /// `monitor_opt` can be used as a filter to only trigger them for a specific channel monitor.
643 pub fn signer_unblocked(&self, monitor_opt: Option<OutPoint>) {
644 let monitors = self.monitors.read().unwrap();
645 if let Some(funding_txo) = monitor_opt {
646 if let Some(monitor_holder) = monitors.get(&funding_txo) {
647 monitor_holder.monitor.signer_unblocked(
648 &*self.broadcaster, &*self.fee_estimator, &self.logger
652 for (_, monitor_holder) in &*monitors {
653 monitor_holder.monitor.signer_unblocked(
654 &*self.broadcaster, &*self.fee_estimator, &self.logger
661 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
662 chain::Listen for ChainMonitor<ChannelSigner, C, T, F, L, P>
664 C::Target: chain::Filter,
665 T::Target: BroadcasterInterface,
666 F::Target: FeeEstimator,
668 P::Target: Persist<ChannelSigner>,
670 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
671 log_debug!(self.logger, "New best block {} at height {} provided via block_connected", header.block_hash(), height);
672 self.process_chain_data(header, Some(height), &txdata, |monitor, txdata| {
673 monitor.block_connected(
674 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &self.logger)
678 fn block_disconnected(&self, header: &Header, height: u32) {
679 let monitor_states = self.monitors.read().unwrap();
680 log_debug!(self.logger, "Latest block {} at height {} removed via block_disconnected", header.block_hash(), height);
681 for monitor_state in monitor_states.values() {
682 monitor_state.monitor.block_disconnected(
683 header, height, &*self.broadcaster, &*self.fee_estimator, &self.logger);
688 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
689 chain::Confirm for ChainMonitor<ChannelSigner, C, T, F, L, P>
691 C::Target: chain::Filter,
692 T::Target: BroadcasterInterface,
693 F::Target: FeeEstimator,
695 P::Target: Persist<ChannelSigner>,
697 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
698 log_debug!(self.logger, "{} provided transactions confirmed at height {} in block {}", txdata.len(), height, header.block_hash());
699 self.process_chain_data(header, None, txdata, |monitor, txdata| {
700 monitor.transactions_confirmed(
701 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &self.logger)
705 fn transaction_unconfirmed(&self, txid: &Txid) {
706 log_debug!(self.logger, "Transaction {} reorganized out of chain", txid);
707 let monitor_states = self.monitors.read().unwrap();
708 for monitor_state in monitor_states.values() {
709 monitor_state.monitor.transaction_unconfirmed(txid, &*self.broadcaster, &*self.fee_estimator, &self.logger);
713 fn best_block_updated(&self, header: &Header, height: u32) {
714 log_debug!(self.logger, "New best block {} at height {} provided via best_block_updated", header.block_hash(), height);
715 self.process_chain_data(header, Some(height), &[], |monitor, txdata| {
716 // While in practice there shouldn't be any recursive calls when given empty txdata,
717 // it's still possible if a chain::Filter implementation returns a transaction.
718 debug_assert!(txdata.is_empty());
719 monitor.best_block_updated(
720 header, height, &*self.broadcaster, &*self.fee_estimator, &self.logger
725 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
726 let mut txids = Vec::new();
727 let monitor_states = self.monitors.read().unwrap();
728 for monitor_state in monitor_states.values() {
729 txids.append(&mut monitor_state.monitor.get_relevant_txids());
732 txids.sort_unstable_by(|a, b| a.0.cmp(&b.0).then(b.1.cmp(&a.1)));
733 txids.dedup_by_key(|(txid, _, _)| *txid);
738 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref , T: Deref , F: Deref , L: Deref , P: Deref >
739 chain::Watch<ChannelSigner> for ChainMonitor<ChannelSigner, C, T, F, L, P>
740 where C::Target: chain::Filter,
741 T::Target: BroadcasterInterface,
742 F::Target: FeeEstimator,
744 P::Target: Persist<ChannelSigner>,
746 fn watch_channel(&self, funding_outpoint: OutPoint, monitor: ChannelMonitor<ChannelSigner>) -> Result<ChannelMonitorUpdateStatus, ()> {
747 let logger = WithChannelMonitor::from(&self.logger, &monitor);
748 let mut monitors = self.monitors.write().unwrap();
749 let entry = match monitors.entry(funding_outpoint) {
750 hash_map::Entry::Occupied(_) => {
751 log_error!(logger, "Failed to add new channel data: channel monitor for given outpoint is already present");
754 hash_map::Entry::Vacant(e) => e,
756 log_trace!(logger, "Got new ChannelMonitor for channel {}", log_funding_info!(monitor));
757 let update_id = MonitorUpdateId::from_new_monitor(&monitor);
758 let mut pending_monitor_updates = Vec::new();
759 let persist_res = self.persister.persist_new_channel(funding_outpoint, &monitor, update_id);
761 ChannelMonitorUpdateStatus::InProgress => {
762 log_info!(logger, "Persistence of new ChannelMonitor for channel {} in progress", log_funding_info!(monitor));
763 pending_monitor_updates.push(update_id);
765 ChannelMonitorUpdateStatus::Completed => {
766 log_info!(logger, "Persistence of new ChannelMonitor for channel {} completed", log_funding_info!(monitor));
768 ChannelMonitorUpdateStatus::UnrecoverableError => {
769 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
770 log_error!(logger, "{}", err_str);
771 panic!("{}", err_str);
774 if let Some(ref chain_source) = self.chain_source {
775 monitor.load_outputs_to_watch(chain_source , &self.logger);
777 entry.insert(MonitorHolder {
779 pending_monitor_updates: Mutex::new(pending_monitor_updates),
780 last_chain_persist_height: AtomicUsize::new(self.highest_chain_height.load(Ordering::Acquire)),
785 fn update_channel(&self, funding_txo: OutPoint, update: &ChannelMonitorUpdate) -> ChannelMonitorUpdateStatus {
786 // `ChannelMonitorUpdate`'s `channel_id` is `None` prior to 0.0.121 and all channels in those
787 // versions are V1-established. For 0.0.121+ the `channel_id` fields is always `Some`.
788 let channel_id = update.channel_id.unwrap_or(ChannelId::v1_from_funding_outpoint(funding_txo));
789 // Update the monitor that watches the channel referred to by the given outpoint.
790 let monitors = self.monitors.read().unwrap();
791 match monitors.get(&funding_txo) {
793 let logger = WithContext::from(&self.logger, update.counterparty_node_id, Some(channel_id));
794 log_error!(logger, "Failed to update channel monitor: no such monitor registered");
796 // We should never ever trigger this from within ChannelManager. Technically a
797 // user could use this object with some proxying in between which makes this
798 // possible, but in tests and fuzzing, this should be a panic.
799 #[cfg(debug_assertions)]
800 panic!("ChannelManager generated a channel update for a channel that was not yet registered!");
801 #[cfg(not(debug_assertions))]
802 ChannelMonitorUpdateStatus::InProgress
804 Some(monitor_state) => {
805 let monitor = &monitor_state.monitor;
806 let logger = WithChannelMonitor::from(&self.logger, &monitor);
807 log_trace!(logger, "Updating ChannelMonitor for channel {}", log_funding_info!(monitor));
808 let update_res = monitor.update_monitor(update, &self.broadcaster, &self.fee_estimator, &self.logger);
810 let update_id = MonitorUpdateId::from_monitor_update(update);
811 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
812 let persist_res = if update_res.is_err() {
813 // Even if updating the monitor returns an error, the monitor's state will
814 // still be changed. Therefore, we should persist the updated monitor despite the error.
815 // We don't want to persist a `monitor_update` which results in a failure to apply later
816 // while reading `channel_monitor` with updates from storage. Instead, we should persist
817 // the entire `channel_monitor` here.
818 log_warn!(logger, "Failed to update ChannelMonitor for channel {}. Going ahead and persisting the entire ChannelMonitor", log_funding_info!(monitor));
819 self.persister.update_persisted_channel(funding_txo, None, monitor, update_id)
821 self.persister.update_persisted_channel(funding_txo, Some(update), monitor, update_id)
824 ChannelMonitorUpdateStatus::InProgress => {
825 pending_monitor_updates.push(update_id);
826 log_debug!(logger, "Persistence of ChannelMonitorUpdate for channel {} in progress", log_funding_info!(monitor));
828 ChannelMonitorUpdateStatus::Completed => {
829 log_debug!(logger, "Persistence of ChannelMonitorUpdate for channel {} completed", log_funding_info!(monitor));
831 ChannelMonitorUpdateStatus::UnrecoverableError => {
832 // Take the monitors lock for writing so that we poison it and any future
833 // operations going forward fail immediately.
834 core::mem::drop(pending_monitor_updates);
835 core::mem::drop(monitors);
836 let _poison = self.monitors.write().unwrap();
837 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
838 log_error!(logger, "{}", err_str);
839 panic!("{}", err_str);
842 if update_res.is_err() {
843 ChannelMonitorUpdateStatus::InProgress
851 fn release_pending_monitor_events(&self) -> Vec<(OutPoint, ChannelId, Vec<MonitorEvent>, Option<PublicKey>)> {
852 let mut pending_monitor_events = self.pending_monitor_events.lock().unwrap().split_off(0);
853 for monitor_state in self.monitors.read().unwrap().values() {
854 let logger = WithChannelMonitor::from(&self.logger, &monitor_state.monitor);
855 let is_pending_monitor_update = monitor_state.has_pending_chainsync_updates(&monitor_state.pending_monitor_updates.lock().unwrap());
856 if !is_pending_monitor_update || monitor_state.last_chain_persist_height.load(Ordering::Acquire) + LATENCY_GRACE_PERIOD_BLOCKS as usize <= self.highest_chain_height.load(Ordering::Acquire) {
857 if is_pending_monitor_update {
858 log_error!(logger, "A ChannelMonitor sync took longer than {} blocks to complete.", LATENCY_GRACE_PERIOD_BLOCKS);
859 log_error!(logger, " To avoid funds-loss, we are allowing monitor updates to be released.");
860 log_error!(logger, " This may cause duplicate payment events to be generated.");
862 let monitor_events = monitor_state.monitor.get_and_clear_pending_monitor_events();
863 if monitor_events.len() > 0 {
864 let monitor_outpoint = monitor_state.monitor.get_funding_txo().0;
865 let monitor_channel_id = monitor_state.monitor.channel_id();
866 let counterparty_node_id = monitor_state.monitor.get_counterparty_node_id();
867 pending_monitor_events.push((monitor_outpoint, monitor_channel_id, monitor_events, counterparty_node_id));
871 pending_monitor_events
875 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> events::EventsProvider for ChainMonitor<ChannelSigner, C, T, F, L, P>
876 where C::Target: chain::Filter,
877 T::Target: BroadcasterInterface,
878 F::Target: FeeEstimator,
880 P::Target: Persist<ChannelSigner>,
882 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
884 /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
885 /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
886 /// within each channel. As the confirmation of a commitment transaction may be critical to the
887 /// safety of funds, we recommend invoking this every 30 seconds, or lower if running in an
888 /// environment with spotty connections, like on mobile.
890 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
891 /// order to handle these events.
893 /// [`SpendableOutputs`]: events::Event::SpendableOutputs
894 /// [`BumpTransaction`]: events::Event::BumpTransaction
895 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
896 for monitor_state in self.monitors.read().unwrap().values() {
897 monitor_state.monitor.process_pending_events(&handler);
904 use crate::check_added_monitors;
905 use crate::{expect_payment_claimed, expect_payment_path_successful, get_event_msg};
906 use crate::{get_htlc_update_msgs, get_local_commitment_txn, get_revoke_commit_msgs, get_route_and_payment_hash, unwrap_send_err};
907 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Watch};
908 use crate::chain::channelmonitor::LATENCY_GRACE_PERIOD_BLOCKS;
909 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
910 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId, RecipientOnionFields};
911 use crate::ln::functional_test_utils::*;
912 use crate::ln::msgs::ChannelMessageHandler;
913 use crate::util::errors::APIError;
916 fn test_async_ooo_offchain_updates() {
917 // Test that if we have multiple offchain updates being persisted and they complete
918 // out-of-order, the ChainMonitor waits until all have completed before informing the
920 let chanmon_cfgs = create_chanmon_cfgs(2);
921 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
922 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
923 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
924 create_announced_chan_between_nodes(&nodes, 0, 1);
926 // Route two payments to be claimed at the same time.
927 let (payment_preimage_1, payment_hash_1, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
928 let (payment_preimage_2, payment_hash_2, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
930 chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clear();
931 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
932 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
934 nodes[1].node.claim_funds(payment_preimage_1);
935 check_added_monitors!(nodes[1], 1);
936 nodes[1].node.claim_funds(payment_preimage_2);
937 check_added_monitors!(nodes[1], 1);
939 let persistences = chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clone();
940 assert_eq!(persistences.len(), 1);
941 let (funding_txo, updates) = persistences.iter().next().unwrap();
942 assert_eq!(updates.len(), 2);
944 // Note that updates is a HashMap so the ordering here is actually random. This shouldn't
945 // fail either way but if it fails intermittently it's depending on the ordering of updates.
946 let mut update_iter = updates.iter();
947 let next_update = update_iter.next().unwrap().clone();
948 // Should contain next_update when pending updates listed.
949 #[cfg(not(c_bindings))]
950 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
951 .unwrap().contains(&next_update));
953 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
954 .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
955 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, next_update.clone()).unwrap();
956 // Should not contain the previously pending next_update when pending updates listed.
957 #[cfg(not(c_bindings))]
958 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
959 .unwrap().contains(&next_update));
961 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
962 .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
963 assert!(nodes[1].chain_monitor.release_pending_monitor_events().is_empty());
964 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
965 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
966 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, update_iter.next().unwrap().clone()).unwrap();
968 let claim_events = nodes[1].node.get_and_clear_pending_events();
969 assert_eq!(claim_events.len(), 2);
970 match claim_events[0] {
971 Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
972 assert_eq!(payment_hash_1, *payment_hash);
974 _ => panic!("Unexpected event"),
976 match claim_events[1] {
977 Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
978 assert_eq!(payment_hash_2, *payment_hash);
980 _ => panic!("Unexpected event"),
983 // Now manually walk the commitment signed dance - because we claimed two payments
984 // back-to-back it doesn't fit into the neat walk commitment_signed_dance does.
986 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
987 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
988 expect_payment_sent(&nodes[0], payment_preimage_1, None, false, false);
989 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
990 check_added_monitors!(nodes[0], 1);
991 let (as_first_raa, as_first_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
993 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
994 check_added_monitors!(nodes[1], 1);
995 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
996 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_update);
997 check_added_monitors!(nodes[1], 1);
998 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1000 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
1001 expect_payment_sent(&nodes[0], payment_preimage_2, None, false, false);
1002 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
1003 check_added_monitors!(nodes[0], 1);
1004 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
1005 expect_payment_path_successful!(nodes[0]);
1006 check_added_monitors!(nodes[0], 1);
1007 let (as_second_raa, as_second_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1009 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
1010 check_added_monitors!(nodes[1], 1);
1011 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update);
1012 check_added_monitors!(nodes[1], 1);
1013 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
1015 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
1016 expect_payment_path_successful!(nodes[0]);
1017 check_added_monitors!(nodes[0], 1);
1020 fn do_chainsync_pauses_events(block_timeout: bool) {
1021 // When a chainsync monitor update occurs, any MonitorUpdates should be held before being
1022 // passed upstream to a `ChannelManager` via `Watch::release_pending_monitor_events`. This
1023 // tests that behavior, as well as some ways it might go wrong.
1024 let chanmon_cfgs = create_chanmon_cfgs(2);
1025 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1026 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1027 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1028 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
1030 // Get a route for later and rebalance the channel somewhat
1031 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
1032 let (route, second_payment_hash, _, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
1034 // First route a payment that we will claim on chain and give the recipient the preimage.
1035 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
1036 nodes[1].node.claim_funds(payment_preimage);
1037 expect_payment_claimed!(nodes[1], payment_hash, 1_000_000);
1038 nodes[1].node.get_and_clear_pending_msg_events();
1039 check_added_monitors!(nodes[1], 1);
1040 let remote_txn = get_local_commitment_txn!(nodes[1], channel.2);
1041 assert_eq!(remote_txn.len(), 2);
1043 // Temp-fail the block connection which will hold the channel-closed event
1044 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
1045 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
1047 // Connect B's commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
1048 // channel is now closed, but the ChannelManager doesn't know that yet.
1049 let new_header = create_dummy_header(nodes[0].best_block_info().0, 0);
1050 nodes[0].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
1051 &[(0, &remote_txn[0]), (1, &remote_txn[1])], nodes[0].best_block_info().1 + 1);
1052 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
1053 nodes[0].chain_monitor.chain_monitor.best_block_updated(&new_header, nodes[0].best_block_info().1 + 1);
1054 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
1056 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
1057 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
1058 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1059 unwrap_send_err!(nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1060 RecipientOnionFields::secret_only(second_payment_secret), PaymentId(second_payment_hash.0)
1061 ), false, APIError::MonitorUpdateInProgress, {});
1062 check_added_monitors!(nodes[0], 1);
1064 // However, as the ChainMonitor is still waiting for the original persistence to complete,
1065 // it won't yet release the MonitorEvents.
1066 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
1069 // After three blocks, pending MontiorEvents should be released either way.
1070 let latest_header = create_dummy_header(nodes[0].best_block_info().0, 0);
1071 nodes[0].chain_monitor.chain_monitor.best_block_updated(&latest_header, nodes[0].best_block_info().1 + LATENCY_GRACE_PERIOD_BLOCKS);
1073 let persistences = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clone();
1074 for (funding_outpoint, update_ids) in persistences {
1075 for update_id in update_ids {
1076 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_outpoint, update_id).unwrap();
1081 expect_payment_sent(&nodes[0], payment_preimage, None, true, false);
1085 fn chainsync_pauses_events() {
1086 do_chainsync_pauses_events(false);
1087 do_chainsync_pauses_events(true);
1091 #[cfg(feature = "std")]
1092 fn update_during_chainsync_poisons_channel() {
1093 let chanmon_cfgs = create_chanmon_cfgs(2);
1094 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1095 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1096 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1097 create_announced_chan_between_nodes(&nodes, 0, 1);
1099 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
1100 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::UnrecoverableError);
1102 assert!(std::panic::catch_unwind(|| {
1103 // Returning an UnrecoverableError should always panic immediately
1104 connect_blocks(&nodes[0], 1);
1106 assert!(std::panic::catch_unwind(|| {
1107 // ...and also poison our locks causing later use to panic as well
1108 core::mem::drop(nodes);