1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Logic to connect off-chain channel management with on-chain transaction monitoring.
12 //! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to
13 //! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will
14 //! make those available as [`MonitorEvent`]s to be consumed.
16 //! [`ChainMonitor`] is parameterized by an optional chain source, which must implement the
17 //! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light
18 //! clients, such that transactions spending those outputs are included in block data.
20 //! [`ChainMonitor`] may be used directly to monitor channels locally or as a part of a distributed
21 //! setup to monitor channels remotely. In the latter case, a custom [`chain::Watch`] implementation
22 //! would be responsible for routing each update to a remote server and for retrieving monitor
23 //! events. The remote server would make use of [`ChainMonitor`] for block processing and for
24 //! servicing [`ChannelMonitor`] updates from the client.
26 use bitcoin::blockdata::block::Header;
27 use bitcoin::hash_types::{Txid, BlockHash};
30 use crate::chain::{ChannelMonitorUpdateStatus, Filter, WatchedOutput};
31 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator};
32 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, Balance, MonitorEvent, TransactionOutputs, WithChannelMonitor};
33 use crate::chain::transaction::{OutPoint, TransactionData};
34 use crate::ln::types::ChannelId;
35 use crate::sign::ecdsa::EcdsaChannelSigner;
37 use crate::events::{Event, EventHandler};
38 use crate::util::logger::{Logger, WithContext};
39 use crate::util::errors::APIError;
40 use crate::util::wakers::{Future, Notifier};
41 use crate::ln::channelmanager::ChannelDetails;
43 use crate::prelude::*;
44 use crate::sync::{RwLock, RwLockReadGuard, Mutex, MutexGuard};
46 use core::sync::atomic::{AtomicUsize, Ordering};
47 use bitcoin::secp256k1::PublicKey;
49 /// `Persist` defines behavior for persisting channel monitors: this could mean
50 /// writing once to disk, and/or uploading to one or more backup services.
52 /// Persistence can happen in one of two ways - synchronously completing before the trait method
53 /// calls return or asynchronously in the background.
55 /// # For those implementing synchronous persistence
57 /// * If persistence completes fully (including any relevant `fsync()` calls), the implementation
58 /// should return [`ChannelMonitorUpdateStatus::Completed`], indicating normal channel operation
61 /// * If persistence fails for some reason, implementations should consider returning
62 /// [`ChannelMonitorUpdateStatus::InProgress`] and retry all pending persistence operations in
63 /// the background with [`ChainMonitor::list_pending_monitor_updates`] and
64 /// [`ChainMonitor::get_monitor`].
66 /// Once a full [`ChannelMonitor`] has been persisted, all pending updates for that channel can
67 /// be marked as complete via [`ChainMonitor::channel_monitor_updated`].
69 /// If at some point no further progress can be made towards persisting the pending updates, the
70 /// node should simply shut down.
72 /// * If the persistence has failed and cannot be retried further (e.g. because of an outage),
73 /// [`ChannelMonitorUpdateStatus::UnrecoverableError`] can be used, though this will result in
74 /// an immediate panic and future operations in LDK generally failing.
76 /// # For those implementing asynchronous persistence
78 /// All calls should generally spawn a background task and immediately return
79 /// [`ChannelMonitorUpdateStatus::InProgress`]. Once the update completes,
80 /// [`ChainMonitor::channel_monitor_updated`] should be called with the corresponding
81 /// [`ChannelMonitor::get_latest_update_id`] or [`ChannelMonitorUpdate::update_id`].
83 /// Note that unlike the direct [`chain::Watch`] interface,
84 /// [`ChainMonitor::channel_monitor_updated`] must be called once for *each* update which occurs.
86 /// If at some point no further progress can be made towards persisting a pending update, the node
87 /// should simply shut down. Until then, the background task should either loop indefinitely, or
88 /// persistence should be regularly retried with [`ChainMonitor::list_pending_monitor_updates`]
89 /// and [`ChainMonitor::get_monitor`] (note that if a full monitor is persisted all pending
90 /// monitor updates may be marked completed).
92 /// # Using remote watchtowers
94 /// Watchtowers may be updated as a part of an implementation of this trait, utilizing the async
95 /// update process described above while the watchtower is being updated. The following methods are
96 /// provided for bulding transactions for a watchtower:
97 /// [`ChannelMonitor::initial_counterparty_commitment_tx`],
98 /// [`ChannelMonitor::counterparty_commitment_txs_from_update`],
99 /// [`ChannelMonitor::sign_to_local_justice_tx`], [`TrustedCommitmentTransaction::revokeable_output_index`],
100 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`].
102 /// [`TrustedCommitmentTransaction::revokeable_output_index`]: crate::ln::chan_utils::TrustedCommitmentTransaction::revokeable_output_index
103 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`]: crate::ln::chan_utils::TrustedCommitmentTransaction::build_to_local_justice_tx
104 pub trait Persist<ChannelSigner: EcdsaChannelSigner> {
105 /// Persist a new channel's data in response to a [`chain::Watch::watch_channel`] call. This is
106 /// called by [`ChannelManager`] for new channels, or may be called directly, e.g. on startup.
108 /// The data can be stored any way you want, but the identifier provided by LDK is the
109 /// channel's outpoint (and it is up to you to maintain a correct mapping between the outpoint
110 /// and the stored channel data). Note that you **must** persist every new monitor to disk.
112 /// The [`ChannelMonitor::get_latest_update_id`] uniquely links this call to [`ChainMonitor::channel_monitor_updated`].
113 /// For [`Persist::persist_new_channel`], it is only necessary to call [`ChainMonitor::channel_monitor_updated`]
114 /// when you return [`ChannelMonitorUpdateStatus::InProgress`].
116 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`
117 /// and [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
119 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
120 /// [`Writeable::write`]: crate::util::ser::Writeable::write
121 fn persist_new_channel(&self, channel_funding_outpoint: OutPoint, monitor: &ChannelMonitor<ChannelSigner>) -> ChannelMonitorUpdateStatus;
123 /// Update one channel's data. The provided [`ChannelMonitor`] has already applied the given
126 /// Note that on every update, you **must** persist either the [`ChannelMonitorUpdate`] or the
127 /// updated monitor itself to disk/backups. See the [`Persist`] trait documentation for more
130 /// During blockchain synchronization operations, and in some rare cases, this may be called with
131 /// no [`ChannelMonitorUpdate`], in which case the full [`ChannelMonitor`] needs to be persisted.
132 /// Note that after the full [`ChannelMonitor`] is persisted any previous
133 /// [`ChannelMonitorUpdate`]s which were persisted should be discarded - they can no longer be
134 /// applied to the persisted [`ChannelMonitor`] as they were already applied.
136 /// If an implementer chooses to persist the updates only, they need to make
137 /// sure that all the updates are applied to the `ChannelMonitors` *before*
138 /// the set of channel monitors is given to the `ChannelManager`
139 /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
140 /// applying a monitor update to a monitor. If full `ChannelMonitors` are
141 /// persisted, then there is no need to persist individual updates.
143 /// Note that there could be a performance tradeoff between persisting complete
144 /// channel monitors on every update vs. persisting only updates and applying
145 /// them in batches. The size of each monitor grows `O(number of state updates)`
146 /// whereas updates are small and `O(1)`.
148 /// The [`ChannelMonitorUpdate::update_id`] or [`ChannelMonitor::get_latest_update_id`] uniquely
149 /// links this call to [`ChainMonitor::channel_monitor_updated`].
150 /// For [`Persist::update_persisted_channel`], it is only necessary to call [`ChainMonitor::channel_monitor_updated`]
151 /// when a [`ChannelMonitorUpdate`] is provided and when you return [`ChannelMonitorUpdateStatus::InProgress`].
153 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`,
154 /// [`Writeable::write`] on [`ChannelMonitorUpdate`] for writing out an update, and
155 /// [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
157 /// [`Writeable::write`]: crate::util::ser::Writeable::write
158 fn update_persisted_channel(&self, channel_funding_outpoint: OutPoint, monitor_update: Option<&ChannelMonitorUpdate>, monitor: &ChannelMonitor<ChannelSigner>) -> ChannelMonitorUpdateStatus;
159 /// Prevents the channel monitor from being loaded on startup.
161 /// Archiving the data in a backup location (rather than deleting it fully) is useful for
162 /// hedging against data loss in case of unexpected failure.
163 fn archive_persisted_channel(&self, channel_funding_outpoint: OutPoint);
166 struct MonitorHolder<ChannelSigner: EcdsaChannelSigner> {
167 monitor: ChannelMonitor<ChannelSigner>,
168 /// The full set of pending monitor updates for this Channel.
170 /// Note that this lock must be held during updates to prevent a race where we call
171 /// update_persisted_channel, the user returns a
172 /// [`ChannelMonitorUpdateStatus::InProgress`], and then calls channel_monitor_updated
173 /// immediately, racing our insertion of the pending update into the contained Vec.
174 pending_monitor_updates: Mutex<Vec<u64>>,
177 impl<ChannelSigner: EcdsaChannelSigner> MonitorHolder<ChannelSigner> {
178 fn has_pending_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<u64>>) -> bool {
179 !pending_monitor_updates_lock.is_empty()
183 /// A read-only reference to a current ChannelMonitor.
185 /// Note that this holds a mutex in [`ChainMonitor`] and may block other events until it is
187 pub struct LockedChannelMonitor<'a, ChannelSigner: EcdsaChannelSigner> {
188 lock: RwLockReadGuard<'a, HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
189 funding_txo: OutPoint,
192 impl<ChannelSigner: EcdsaChannelSigner> Deref for LockedChannelMonitor<'_, ChannelSigner> {
193 type Target = ChannelMonitor<ChannelSigner>;
194 fn deref(&self) -> &ChannelMonitor<ChannelSigner> {
195 &self.lock.get(&self.funding_txo).expect("Checked at construction").monitor
199 /// An implementation of [`chain::Watch`] for monitoring channels.
201 /// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
202 /// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
203 /// or used independently to monitor channels remotely. See the [module-level documentation] for
206 /// Note that `ChainMonitor` should regularly trigger rebroadcasts/fee bumps of pending claims from
207 /// a force-closed channel. This is crucial in preventing certain classes of pinning attacks,
208 /// detecting substantial mempool feerate changes between blocks, and ensuring reliability if
209 /// broadcasting fails. We recommend invoking this every 30 seconds, or lower if running in an
210 /// environment with spotty connections, like on mobile.
212 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
213 /// [module-level documentation]: crate::chain::chainmonitor
214 /// [`rebroadcast_pending_claims`]: Self::rebroadcast_pending_claims
215 pub struct ChainMonitor<ChannelSigner: EcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
216 where C::Target: chain::Filter,
217 T::Target: BroadcasterInterface,
218 F::Target: FeeEstimator,
220 P::Target: Persist<ChannelSigner>,
222 monitors: RwLock<HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
223 chain_source: Option<C>,
228 /// "User-provided" (ie persistence-completion/-failed) [`MonitorEvent`]s. These came directly
229 /// from the user and not from a [`ChannelMonitor`].
230 pending_monitor_events: Mutex<Vec<(OutPoint, ChannelId, Vec<MonitorEvent>, Option<PublicKey>)>>,
231 /// The best block height seen, used as a proxy for the passage of time.
232 highest_chain_height: AtomicUsize,
234 /// A [`Notifier`] used to wake up the background processor in case we have any [`Event`]s for
235 /// it to give to users (or [`MonitorEvent`]s for `ChannelManager` to process).
236 event_notifier: Notifier,
239 impl<ChannelSigner: EcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> ChainMonitor<ChannelSigner, C, T, F, L, P>
240 where C::Target: chain::Filter,
241 T::Target: BroadcasterInterface,
242 F::Target: FeeEstimator,
244 P::Target: Persist<ChannelSigner>,
246 /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view
247 /// of a channel and reacting accordingly based on transactions in the given chain data. See
248 /// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
249 /// be returned by [`chain::Watch::release_pending_monitor_events`].
251 /// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
252 /// calls must not exclude any transactions matching the new outputs nor any in-block
253 /// descendants of such transactions. It is not necessary to re-fetch the block to obtain
254 /// updated `txdata`.
256 /// Calls which represent a new blockchain tip height should set `best_height`.
257 fn process_chain_data<FN>(&self, header: &Header, best_height: Option<u32>, txdata: &TransactionData, process: FN)
259 FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs>
261 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
262 let funding_outpoints = hash_set_from_iter(self.monitors.read().unwrap().keys().cloned());
263 for funding_outpoint in funding_outpoints.iter() {
264 let monitor_lock = self.monitors.read().unwrap();
265 if let Some(monitor_state) = monitor_lock.get(funding_outpoint) {
266 if self.update_monitor_with_chain_data(header, txdata, &process, funding_outpoint, &monitor_state).is_err() {
267 // Take the monitors lock for writing so that we poison it and any future
268 // operations going forward fail immediately.
269 core::mem::drop(monitor_lock);
270 let _poison = self.monitors.write().unwrap();
271 log_error!(self.logger, "{}", err_str);
272 panic!("{}", err_str);
277 // do some followup cleanup if any funding outpoints were added in between iterations
278 let monitor_states = self.monitors.write().unwrap();
279 for (funding_outpoint, monitor_state) in monitor_states.iter() {
280 if !funding_outpoints.contains(funding_outpoint) {
281 if self.update_monitor_with_chain_data(header, txdata, &process, funding_outpoint, &monitor_state).is_err() {
282 log_error!(self.logger, "{}", err_str);
283 panic!("{}", err_str);
288 if let Some(height) = best_height {
289 // If the best block height is being updated, update highest_chain_height under the
290 // monitors write lock.
291 let old_height = self.highest_chain_height.load(Ordering::Acquire);
292 let new_height = height as usize;
293 if new_height > old_height {
294 self.highest_chain_height.store(new_height, Ordering::Release);
299 fn update_monitor_with_chain_data<FN>(
300 &self, header: &Header, txdata: &TransactionData, process: FN, funding_outpoint: &OutPoint,
301 monitor_state: &MonitorHolder<ChannelSigner>
302 ) -> Result<(), ()> where FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs> {
303 let monitor = &monitor_state.monitor;
304 let logger = WithChannelMonitor::from(&self.logger, &monitor, None);
307 txn_outputs = process(monitor, txdata);
308 log_trace!(logger, "Syncing Channel Monitor for channel {}", log_funding_info!(monitor));
309 match self.persister.update_persisted_channel(*funding_outpoint, None, monitor) {
310 ChannelMonitorUpdateStatus::Completed =>
311 log_trace!(logger, "Finished syncing Channel Monitor for channel {} for block-data",
312 log_funding_info!(monitor)
314 ChannelMonitorUpdateStatus::InProgress => {
315 log_trace!(logger, "Channel Monitor sync for channel {} in progress.", log_funding_info!(monitor));
317 ChannelMonitorUpdateStatus::UnrecoverableError => {
323 // Register any new outputs with the chain source for filtering, storing any dependent
324 // transactions from within the block that previously had not been included in txdata.
325 if let Some(ref chain_source) = self.chain_source {
326 let block_hash = header.block_hash();
327 for (txid, mut outputs) in txn_outputs.drain(..) {
328 for (idx, output) in outputs.drain(..) {
329 // Register any new outputs with the chain source for filtering
330 let output = WatchedOutput {
331 block_hash: Some(block_hash),
332 outpoint: OutPoint { txid, index: idx as u16 },
333 script_pubkey: output.script_pubkey,
335 log_trace!(logger, "Adding monitoring for spends of outpoint {} to the filter", output.outpoint);
336 chain_source.register_output(output);
343 /// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
345 /// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
346 /// will call back to it indicating transactions and outputs of interest. This allows clients to
347 /// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
348 /// always need to fetch full blocks absent another means for determining which blocks contain
349 /// transactions relevant to the watched channels.
350 pub fn new(chain_source: Option<C>, broadcaster: T, logger: L, feeest: F, persister: P) -> Self {
352 monitors: RwLock::new(new_hash_map()),
356 fee_estimator: feeest,
358 pending_monitor_events: Mutex::new(Vec::new()),
359 highest_chain_height: AtomicUsize::new(0),
360 event_notifier: Notifier::new(),
364 /// Gets the balances in the contained [`ChannelMonitor`]s which are claimable on-chain or
365 /// claims which are awaiting confirmation.
367 /// Includes the balances from each [`ChannelMonitor`] *except* those included in
368 /// `ignored_channels`, allowing you to filter out balances from channels which are still open
369 /// (and whose balance should likely be pulled from the [`ChannelDetails`]).
371 /// See [`ChannelMonitor::get_claimable_balances`] for more details on the exact criteria for
372 /// inclusion in the return value.
373 pub fn get_claimable_balances(&self, ignored_channels: &[&ChannelDetails]) -> Vec<Balance> {
374 let mut ret = Vec::new();
375 let monitor_states = self.monitors.read().unwrap();
376 for (_, monitor_state) in monitor_states.iter().filter(|(funding_outpoint, _)| {
377 for chan in ignored_channels {
378 if chan.funding_txo.as_ref() == Some(funding_outpoint) {
384 ret.append(&mut monitor_state.monitor.get_claimable_balances());
389 /// Gets the [`LockedChannelMonitor`] for a given funding outpoint, returning an `Err` if no
390 /// such [`ChannelMonitor`] is currently being monitored for.
392 /// Note that the result holds a mutex over our monitor set, and should not be held
394 pub fn get_monitor(&self, funding_txo: OutPoint) -> Result<LockedChannelMonitor<'_, ChannelSigner>, ()> {
395 let lock = self.monitors.read().unwrap();
396 if lock.get(&funding_txo).is_some() {
397 Ok(LockedChannelMonitor { lock, funding_txo })
403 /// Lists the funding outpoint and channel ID of each [`ChannelMonitor`] being monitored.
405 /// Note that [`ChannelMonitor`]s are not removed when a channel is closed as they are always
406 /// monitoring for on-chain state resolutions.
407 pub fn list_monitors(&self) -> Vec<(OutPoint, ChannelId)> {
408 self.monitors.read().unwrap().iter().map(|(outpoint, monitor_holder)| {
409 let channel_id = monitor_holder.monitor.channel_id();
410 (*outpoint, channel_id)
414 #[cfg(not(c_bindings))]
415 /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
416 /// Each `Vec<u64>` contains `update_id`s from [`ChannelMonitor::get_latest_update_id`] for updates
417 /// that have not yet been fully persisted. Note that if a full monitor is persisted all the pending
418 /// monitor updates must be individually marked completed by calling [`ChainMonitor::channel_monitor_updated`].
419 pub fn list_pending_monitor_updates(&self) -> HashMap<OutPoint, Vec<u64>> {
420 hash_map_from_iter(self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
421 (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
426 /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
427 /// Each `Vec<u64>` contains `update_id`s from [`ChannelMonitor::get_latest_update_id`] for updates
428 /// that have not yet been fully persisted. Note that if a full monitor is persisted all the pending
429 /// monitor updates must be individually marked completed by calling [`ChainMonitor::channel_monitor_updated`].
430 pub fn list_pending_monitor_updates(&self) -> Vec<(OutPoint, Vec<u64>)> {
431 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
432 (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
438 pub fn remove_monitor(&self, funding_txo: &OutPoint) -> ChannelMonitor<ChannelSigner> {
439 self.monitors.write().unwrap().remove(funding_txo).unwrap().monitor
442 /// Indicates the persistence of a [`ChannelMonitor`] has completed after
443 /// [`ChannelMonitorUpdateStatus::InProgress`] was returned from an update operation.
445 /// Thus, the anticipated use is, at a high level:
446 /// 1) This [`ChainMonitor`] calls [`Persist::update_persisted_channel`] which stores the
447 /// update to disk and begins updating any remote (e.g. watchtower/backup) copies,
448 /// returning [`ChannelMonitorUpdateStatus::InProgress`],
449 /// 2) once all remote copies are updated, you call this function with [`ChannelMonitor::get_latest_update_id`]
450 /// or [`ChannelMonitorUpdate::update_id`] as the `completed_update_id`, and once all pending
451 /// updates have completed the channel will be re-enabled.
453 /// It is only necessary to call [`ChainMonitor::channel_monitor_updated`] when you return [`ChannelMonitorUpdateStatus::InProgress`]
454 /// from [`Persist`] and either:
455 /// 1. A new [`ChannelMonitor`] was added in [`Persist::persist_new_channel`], or
456 /// 2. A [`ChannelMonitorUpdate`] was provided as part of [`Persist::update_persisted_channel`].
457 /// Note that we don't care about calls to [`Persist::update_persisted_channel`] where no
458 /// [`ChannelMonitorUpdate`] was provided.
460 /// Returns an [`APIError::APIMisuseError`] if `funding_txo` does not match any currently
461 /// registered [`ChannelMonitor`]s.
462 pub fn channel_monitor_updated(&self, funding_txo: OutPoint, completed_update_id: u64) -> Result<(), APIError> {
463 let monitors = self.monitors.read().unwrap();
464 let monitor_data = if let Some(mon) = monitors.get(&funding_txo) { mon } else {
465 return Err(APIError::APIMisuseError { err: format!("No ChannelMonitor matching funding outpoint {:?} found", funding_txo) });
467 let mut pending_monitor_updates = monitor_data.pending_monitor_updates.lock().unwrap();
468 pending_monitor_updates.retain(|update_id| *update_id != completed_update_id);
470 // Note that we only check for pending non-chainsync monitor updates and we don't track monitor
471 // updates resulting from chainsync in `pending_monitor_updates`.
472 let monitor_is_pending_updates = monitor_data.has_pending_updates(&pending_monitor_updates);
473 log_debug!(self.logger, "Completed off-chain monitor update {} for channel with funding outpoint {:?}, {}",
476 if monitor_is_pending_updates {
477 "still have pending off-chain updates"
479 "all off-chain updates complete, returning a MonitorEvent"
481 if monitor_is_pending_updates {
482 // If there are still monitor updates pending, we cannot yet construct a
486 let channel_id = monitor_data.monitor.channel_id();
487 self.pending_monitor_events.lock().unwrap().push((funding_txo, channel_id, vec![MonitorEvent::Completed {
488 funding_txo, channel_id,
489 monitor_update_id: monitor_data.monitor.get_latest_update_id(),
490 }], monitor_data.monitor.get_counterparty_node_id()));
492 self.event_notifier.notify();
496 /// This wrapper avoids having to update some of our tests for now as they assume the direct
497 /// chain::Watch API wherein we mark a monitor fully-updated by just calling
498 /// channel_monitor_updated once with the highest ID.
499 #[cfg(any(test, fuzzing))]
500 pub fn force_channel_monitor_updated(&self, funding_txo: OutPoint, monitor_update_id: u64) {
501 let monitors = self.monitors.read().unwrap();
502 let (counterparty_node_id, channel_id) = if let Some(m) = monitors.get(&funding_txo) {
503 (m.monitor.get_counterparty_node_id(), m.monitor.channel_id())
505 (None, ChannelId::v1_from_funding_outpoint(funding_txo))
507 self.pending_monitor_events.lock().unwrap().push((funding_txo, channel_id, vec![MonitorEvent::Completed {
511 }], counterparty_node_id));
512 self.event_notifier.notify();
515 #[cfg(any(test, feature = "_test_utils"))]
516 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
517 use crate::events::EventsProvider;
518 let events = core::cell::RefCell::new(Vec::new());
519 let event_handler = |event: events::Event| events.borrow_mut().push(event);
520 self.process_pending_events(&event_handler);
524 /// Processes any events asynchronously in the order they were generated since the last call
525 /// using the given event handler.
527 /// See the trait-level documentation of [`EventsProvider`] for requirements.
529 /// [`EventsProvider`]: crate::events::EventsProvider
530 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
533 // Sadly we can't hold the monitors read lock through an async call. Thus we have to do a
534 // crazy dance to process a monitor's events then only remove them once we've done so.
535 let mons_to_process = self.monitors.read().unwrap().keys().cloned().collect::<Vec<_>>();
536 for funding_txo in mons_to_process {
538 super::channelmonitor::process_events_body!(
539 self.monitors.read().unwrap().get(&funding_txo).map(|m| &m.monitor), ev, handler(ev).await);
543 /// Gets a [`Future`] that completes when an event is available either via
544 /// [`chain::Watch::release_pending_monitor_events`] or
545 /// [`EventsProvider::process_pending_events`].
547 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
548 /// [`ChainMonitor`] and should instead register actions to be taken later.
550 /// [`EventsProvider::process_pending_events`]: crate::events::EventsProvider::process_pending_events
551 pub fn get_update_future(&self) -> Future {
552 self.event_notifier.get_future()
555 /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
556 /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
557 /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
558 /// invoking this every 30 seconds, or lower if running in an environment with spotty
559 /// connections, like on mobile.
560 pub fn rebroadcast_pending_claims(&self) {
561 let monitors = self.monitors.read().unwrap();
562 for (_, monitor_holder) in &*monitors {
563 monitor_holder.monitor.rebroadcast_pending_claims(
564 &*self.broadcaster, &*self.fee_estimator, &self.logger
569 /// Triggers rebroadcasts of pending claims from force-closed channels after a transaction
570 /// signature generation failure.
572 /// `monitor_opt` can be used as a filter to only trigger them for a specific channel monitor.
573 pub fn signer_unblocked(&self, monitor_opt: Option<OutPoint>) {
574 let monitors = self.monitors.read().unwrap();
575 if let Some(funding_txo) = monitor_opt {
576 if let Some(monitor_holder) = monitors.get(&funding_txo) {
577 monitor_holder.monitor.signer_unblocked(
578 &*self.broadcaster, &*self.fee_estimator, &self.logger
582 for (_, monitor_holder) in &*monitors {
583 monitor_holder.monitor.signer_unblocked(
584 &*self.broadcaster, &*self.fee_estimator, &self.logger
590 /// Archives fully resolved channel monitors by calling [`Persist::archive_persisted_channel`].
592 /// This is useful for pruning fully resolved monitors from the monitor set and primary
593 /// storage so they are not kept in memory and reloaded on restart.
595 /// Should be called occasionally (once every handful of blocks or on startup).
597 /// Depending on the implementation of [`Persist::archive_persisted_channel`] the monitor
598 /// data could be moved to an archive location or removed entirely.
599 pub fn archive_fully_resolved_channel_monitors(&self) {
600 let mut have_monitors_to_prune = false;
601 for (_, monitor_holder) in self.monitors.read().unwrap().iter() {
602 let logger = WithChannelMonitor::from(&self.logger, &monitor_holder.monitor, None);
603 if monitor_holder.monitor.is_fully_resolved(&logger) {
604 have_monitors_to_prune = true;
607 if have_monitors_to_prune {
608 let mut monitors = self.monitors.write().unwrap();
609 monitors.retain(|funding_txo, monitor_holder| {
610 let logger = WithChannelMonitor::from(&self.logger, &monitor_holder.monitor, None);
611 if monitor_holder.monitor.is_fully_resolved(&logger) {
613 "Archiving fully resolved ChannelMonitor for funding txo {}",
616 self.persister.archive_persisted_channel(*funding_txo);
626 impl<ChannelSigner: EcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
627 chain::Listen for ChainMonitor<ChannelSigner, C, T, F, L, P>
629 C::Target: chain::Filter,
630 T::Target: BroadcasterInterface,
631 F::Target: FeeEstimator,
633 P::Target: Persist<ChannelSigner>,
635 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
636 log_debug!(self.logger, "New best block {} at height {} provided via block_connected", header.block_hash(), height);
637 self.process_chain_data(header, Some(height), &txdata, |monitor, txdata| {
638 monitor.block_connected(
639 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &self.logger)
641 // Assume we may have some new events and wake the event processor
642 self.event_notifier.notify();
645 fn block_disconnected(&self, header: &Header, height: u32) {
646 let monitor_states = self.monitors.read().unwrap();
647 log_debug!(self.logger, "Latest block {} at height {} removed via block_disconnected", header.block_hash(), height);
648 for monitor_state in monitor_states.values() {
649 monitor_state.monitor.block_disconnected(
650 header, height, &*self.broadcaster, &*self.fee_estimator, &self.logger);
655 impl<ChannelSigner: EcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
656 chain::Confirm for ChainMonitor<ChannelSigner, C, T, F, L, P>
658 C::Target: chain::Filter,
659 T::Target: BroadcasterInterface,
660 F::Target: FeeEstimator,
662 P::Target: Persist<ChannelSigner>,
664 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
665 log_debug!(self.logger, "{} provided transactions confirmed at height {} in block {}", txdata.len(), height, header.block_hash());
666 self.process_chain_data(header, None, txdata, |monitor, txdata| {
667 monitor.transactions_confirmed(
668 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &self.logger)
670 // Assume we may have some new events and wake the event processor
671 self.event_notifier.notify();
674 fn transaction_unconfirmed(&self, txid: &Txid) {
675 log_debug!(self.logger, "Transaction {} reorganized out of chain", txid);
676 let monitor_states = self.monitors.read().unwrap();
677 for monitor_state in monitor_states.values() {
678 monitor_state.monitor.transaction_unconfirmed(txid, &*self.broadcaster, &*self.fee_estimator, &self.logger);
682 fn best_block_updated(&self, header: &Header, height: u32) {
683 log_debug!(self.logger, "New best block {} at height {} provided via best_block_updated", header.block_hash(), height);
684 self.process_chain_data(header, Some(height), &[], |monitor, txdata| {
685 // While in practice there shouldn't be any recursive calls when given empty txdata,
686 // it's still possible if a chain::Filter implementation returns a transaction.
687 debug_assert!(txdata.is_empty());
688 monitor.best_block_updated(
689 header, height, &*self.broadcaster, &*self.fee_estimator, &self.logger
692 // Assume we may have some new events and wake the event processor
693 self.event_notifier.notify();
696 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
697 let mut txids = Vec::new();
698 let monitor_states = self.monitors.read().unwrap();
699 for monitor_state in monitor_states.values() {
700 txids.append(&mut monitor_state.monitor.get_relevant_txids());
703 txids.sort_unstable_by(|a, b| a.0.cmp(&b.0).then(b.1.cmp(&a.1)));
704 txids.dedup_by_key(|(txid, _, _)| *txid);
709 impl<ChannelSigner: EcdsaChannelSigner, C: Deref , T: Deref , F: Deref , L: Deref , P: Deref >
710 chain::Watch<ChannelSigner> for ChainMonitor<ChannelSigner, C, T, F, L, P>
711 where C::Target: chain::Filter,
712 T::Target: BroadcasterInterface,
713 F::Target: FeeEstimator,
715 P::Target: Persist<ChannelSigner>,
717 fn watch_channel(&self, funding_outpoint: OutPoint, monitor: ChannelMonitor<ChannelSigner>) -> Result<ChannelMonitorUpdateStatus, ()> {
718 let logger = WithChannelMonitor::from(&self.logger, &monitor, None);
719 let mut monitors = self.monitors.write().unwrap();
720 let entry = match monitors.entry(funding_outpoint) {
721 hash_map::Entry::Occupied(_) => {
722 log_error!(logger, "Failed to add new channel data: channel monitor for given outpoint is already present");
725 hash_map::Entry::Vacant(e) => e,
727 log_trace!(logger, "Got new ChannelMonitor for channel {}", log_funding_info!(monitor));
728 let update_id = monitor.get_latest_update_id();
729 let mut pending_monitor_updates = Vec::new();
730 let persist_res = self.persister.persist_new_channel(funding_outpoint, &monitor);
732 ChannelMonitorUpdateStatus::InProgress => {
733 log_info!(logger, "Persistence of new ChannelMonitor for channel {} in progress", log_funding_info!(monitor));
734 pending_monitor_updates.push(update_id);
736 ChannelMonitorUpdateStatus::Completed => {
737 log_info!(logger, "Persistence of new ChannelMonitor for channel {} completed", log_funding_info!(monitor));
739 ChannelMonitorUpdateStatus::UnrecoverableError => {
740 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
741 log_error!(logger, "{}", err_str);
742 panic!("{}", err_str);
745 if let Some(ref chain_source) = self.chain_source {
746 monitor.load_outputs_to_watch(chain_source , &self.logger);
748 entry.insert(MonitorHolder {
750 pending_monitor_updates: Mutex::new(pending_monitor_updates),
755 fn update_channel(&self, funding_txo: OutPoint, update: &ChannelMonitorUpdate) -> ChannelMonitorUpdateStatus {
756 // `ChannelMonitorUpdate`'s `channel_id` is `None` prior to 0.0.121 and all channels in those
757 // versions are V1-established. For 0.0.121+ the `channel_id` fields is always `Some`.
758 let channel_id = update.channel_id.unwrap_or(ChannelId::v1_from_funding_outpoint(funding_txo));
759 // Update the monitor that watches the channel referred to by the given outpoint.
760 let monitors = self.monitors.read().unwrap();
761 match monitors.get(&funding_txo) {
763 let logger = WithContext::from(&self.logger, update.counterparty_node_id, Some(channel_id), None);
764 log_error!(logger, "Failed to update channel monitor: no such monitor registered");
766 // We should never ever trigger this from within ChannelManager. Technically a
767 // user could use this object with some proxying in between which makes this
768 // possible, but in tests and fuzzing, this should be a panic.
769 #[cfg(debug_assertions)]
770 panic!("ChannelManager generated a channel update for a channel that was not yet registered!");
771 #[cfg(not(debug_assertions))]
772 ChannelMonitorUpdateStatus::InProgress
774 Some(monitor_state) => {
775 let monitor = &monitor_state.monitor;
776 let logger = WithChannelMonitor::from(&self.logger, &monitor, None);
777 log_trace!(logger, "Updating ChannelMonitor to id {} for channel {}", update.update_id, log_funding_info!(monitor));
778 let update_res = monitor.update_monitor(update, &self.broadcaster, &self.fee_estimator, &self.logger);
780 let update_id = update.update_id;
781 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
782 let persist_res = if update_res.is_err() {
783 // Even if updating the monitor returns an error, the monitor's state will
784 // still be changed. Therefore, we should persist the updated monitor despite the error.
785 // We don't want to persist a `monitor_update` which results in a failure to apply later
786 // while reading `channel_monitor` with updates from storage. Instead, we should persist
787 // the entire `channel_monitor` here.
788 log_warn!(logger, "Failed to update ChannelMonitor for channel {}. Going ahead and persisting the entire ChannelMonitor", log_funding_info!(monitor));
789 self.persister.update_persisted_channel(funding_txo, None, monitor)
791 self.persister.update_persisted_channel(funding_txo, Some(update), monitor)
794 ChannelMonitorUpdateStatus::InProgress => {
795 pending_monitor_updates.push(update_id);
797 "Persistence of ChannelMonitorUpdate id {:?} for channel {} in progress",
799 log_funding_info!(monitor)
802 ChannelMonitorUpdateStatus::Completed => {
804 "Persistence of ChannelMonitorUpdate id {:?} for channel {} completed",
806 log_funding_info!(monitor)
809 ChannelMonitorUpdateStatus::UnrecoverableError => {
810 // Take the monitors lock for writing so that we poison it and any future
811 // operations going forward fail immediately.
812 core::mem::drop(pending_monitor_updates);
813 core::mem::drop(monitors);
814 let _poison = self.monitors.write().unwrap();
815 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
816 log_error!(logger, "{}", err_str);
817 panic!("{}", err_str);
820 if update_res.is_err() {
821 ChannelMonitorUpdateStatus::InProgress
829 fn release_pending_monitor_events(&self) -> Vec<(OutPoint, ChannelId, Vec<MonitorEvent>, Option<PublicKey>)> {
830 let mut pending_monitor_events = self.pending_monitor_events.lock().unwrap().split_off(0);
831 for monitor_state in self.monitors.read().unwrap().values() {
832 let monitor_events = monitor_state.monitor.get_and_clear_pending_monitor_events();
833 if monitor_events.len() > 0 {
834 let monitor_outpoint = monitor_state.monitor.get_funding_txo().0;
835 let monitor_channel_id = monitor_state.monitor.channel_id();
836 let counterparty_node_id = monitor_state.monitor.get_counterparty_node_id();
837 pending_monitor_events.push((monitor_outpoint, monitor_channel_id, monitor_events, counterparty_node_id));
840 pending_monitor_events
844 impl<ChannelSigner: EcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> events::EventsProvider for ChainMonitor<ChannelSigner, C, T, F, L, P>
845 where C::Target: chain::Filter,
846 T::Target: BroadcasterInterface,
847 F::Target: FeeEstimator,
849 P::Target: Persist<ChannelSigner>,
851 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
853 /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
854 /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
855 /// within each channel. As the confirmation of a commitment transaction may be critical to the
856 /// safety of funds, we recommend invoking this every 30 seconds, or lower if running in an
857 /// environment with spotty connections, like on mobile.
859 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
860 /// order to handle these events.
862 /// [`SpendableOutputs`]: events::Event::SpendableOutputs
863 /// [`BumpTransaction`]: events::Event::BumpTransaction
864 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
865 for monitor_state in self.monitors.read().unwrap().values() {
866 monitor_state.monitor.process_pending_events(&handler);
873 use crate::check_added_monitors;
874 use crate::{expect_payment_path_successful, get_event_msg};
875 use crate::{get_htlc_update_msgs, get_revoke_commit_msgs};
876 use crate::chain::{ChannelMonitorUpdateStatus, Watch};
877 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
878 use crate::ln::functional_test_utils::*;
879 use crate::ln::msgs::ChannelMessageHandler;
882 fn test_async_ooo_offchain_updates() {
883 // Test that if we have multiple offchain updates being persisted and they complete
884 // out-of-order, the ChainMonitor waits until all have completed before informing the
886 let chanmon_cfgs = create_chanmon_cfgs(2);
887 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
888 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
889 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
890 create_announced_chan_between_nodes(&nodes, 0, 1);
892 // Route two payments to be claimed at the same time.
893 let (payment_preimage_1, payment_hash_1, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
894 let (payment_preimage_2, payment_hash_2, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
896 chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clear();
897 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
898 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
900 nodes[1].node.claim_funds(payment_preimage_1);
901 check_added_monitors!(nodes[1], 1);
902 nodes[1].node.claim_funds(payment_preimage_2);
903 check_added_monitors!(nodes[1], 1);
905 let persistences = chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clone();
906 assert_eq!(persistences.len(), 1);
907 let (funding_txo, updates) = persistences.iter().next().unwrap();
908 assert_eq!(updates.len(), 2);
910 // Note that updates is a HashMap so the ordering here is actually random. This shouldn't
911 // fail either way but if it fails intermittently it's depending on the ordering of updates.
912 let mut update_iter = updates.iter();
913 let next_update = update_iter.next().unwrap().clone();
914 // Should contain next_update when pending updates listed.
915 #[cfg(not(c_bindings))]
916 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
917 .unwrap().contains(&next_update));
919 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
920 .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
921 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, next_update.clone()).unwrap();
922 // Should not contain the previously pending next_update when pending updates listed.
923 #[cfg(not(c_bindings))]
924 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
925 .unwrap().contains(&next_update));
927 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
928 .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
929 assert!(nodes[1].chain_monitor.release_pending_monitor_events().is_empty());
930 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
931 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
932 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, update_iter.next().unwrap().clone()).unwrap();
934 let claim_events = nodes[1].node.get_and_clear_pending_events();
935 assert_eq!(claim_events.len(), 2);
936 match claim_events[0] {
937 Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
938 assert_eq!(payment_hash_1, *payment_hash);
940 _ => panic!("Unexpected event"),
942 match claim_events[1] {
943 Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
944 assert_eq!(payment_hash_2, *payment_hash);
946 _ => panic!("Unexpected event"),
949 // Now manually walk the commitment signed dance - because we claimed two payments
950 // back-to-back it doesn't fit into the neat walk commitment_signed_dance does.
952 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
953 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
954 expect_payment_sent(&nodes[0], payment_preimage_1, None, false, false);
955 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
956 check_added_monitors!(nodes[0], 1);
957 let (as_first_raa, as_first_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
959 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
960 check_added_monitors!(nodes[1], 1);
961 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
962 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_update);
963 check_added_monitors!(nodes[1], 1);
964 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
966 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
967 expect_payment_sent(&nodes[0], payment_preimage_2, None, false, false);
968 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
969 check_added_monitors!(nodes[0], 1);
970 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
971 expect_payment_path_successful!(nodes[0]);
972 check_added_monitors!(nodes[0], 1);
973 let (as_second_raa, as_second_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
975 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
976 check_added_monitors!(nodes[1], 1);
977 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update);
978 check_added_monitors!(nodes[1], 1);
979 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
981 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
982 expect_payment_path_successful!(nodes[0]);
983 check_added_monitors!(nodes[0], 1);
987 #[cfg(feature = "std")]
988 fn update_during_chainsync_poisons_channel() {
989 let chanmon_cfgs = create_chanmon_cfgs(2);
990 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
991 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
992 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
993 create_announced_chan_between_nodes(&nodes, 0, 1);
995 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::UnrecoverableError);
997 assert!(std::panic::catch_unwind(|| {
998 // Returning an UnrecoverableError should always panic immediately
999 connect_blocks(&nodes[0], 1);
1001 assert!(std::panic::catch_unwind(|| {
1002 // ...and also poison our locks causing later use to panic as well
1003 core::mem::drop(nodes);