Improving block conenction logging and filtered txids
[rust-lightning] / lightning / src / chain / chainmonitor.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Logic to connect off-chain channel management with on-chain transaction monitoring.
11 //!
12 //! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to
13 //! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will
14 //! make those available as [`MonitorEvent`]s to be consumed.
15 //!
16 //! [`ChainMonitor`] is parameterized by an optional chain source, which must implement the
17 //! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light
18 //! clients, such that transactions spending those outputs are included in block data.
19 //!
20 //! [`ChainMonitor`] may be used directly to monitor channels locally or as a part of a distributed
21 //! setup to monitor channels remotely. In the latter case, a custom [`chain::Watch`] implementation
22 //! would be responsible for routing each update to a remote server and for retrieving monitor
23 //! events. The remote server would make use of [`ChainMonitor`] for block processing and for
24 //! servicing [`ChannelMonitor`] updates from the client.
25
26 use bitcoin::blockdata::block::Header;
27 use bitcoin::hash_types::{Txid, BlockHash};
28
29 use crate::chain;
30 use crate::chain::{ChannelMonitorUpdateStatus, Filter, WatchedOutput};
31 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator};
32 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, Balance, MonitorEvent, TransactionOutputs, WithChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
33 use crate::chain::transaction::{OutPoint, TransactionData};
34 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
35 use crate::events;
36 use crate::events::{Event, EventHandler};
37 use crate::util::atomic_counter::AtomicCounter;
38 use crate::util::logger::Logger;
39 use crate::util::errors::APIError;
40 use crate::util::wakers::{Future, Notifier};
41 use crate::ln::channelmanager::ChannelDetails;
42
43 use crate::prelude::*;
44 use crate::sync::{RwLock, RwLockReadGuard, Mutex, MutexGuard};
45 use core::iter::FromIterator;
46 use core::ops::Deref;
47 use core::sync::atomic::{AtomicUsize, Ordering};
48 use bitcoin::secp256k1::PublicKey;
49
50 mod update_origin {
51         #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
52         /// A specific update's ID stored in a `MonitorUpdateId`, separated out to make the contents
53         /// entirely opaque.
54         pub(crate) enum UpdateOrigin {
55                 /// An update that was generated by the `ChannelManager` (via our [`crate::chain::Watch`]
56                 /// implementation). This corresponds to an actual [ChannelMonitorUpdate::update_id] field
57                 /// and [ChannelMonitor::get_latest_update_id].
58                 ///
59                 /// [ChannelMonitor::get_latest_update_id]: crate::chain::channelmonitor::ChannelMonitor::get_latest_update_id
60                 /// [ChannelMonitorUpdate::update_id]: crate::chain::channelmonitor::ChannelMonitorUpdate::update_id
61                 OffChain(u64),
62                 /// An update that was generated during blockchain processing. The ID here is specific to the
63                 /// generating [ChannelMonitor] and does *not* correspond to any on-disk IDs.
64                 ///
65                 /// [ChannelMonitor]: crate::chain::channelmonitor::ChannelMonitor
66                 ChainSync(u64),
67         }
68 }
69
70 #[cfg(any(feature = "_test_utils", test))]
71 pub(crate) use update_origin::UpdateOrigin;
72 #[cfg(not(any(feature = "_test_utils", test)))]
73 use update_origin::UpdateOrigin;
74
75 /// An opaque identifier describing a specific [`Persist`] method call.
76 #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
77 pub struct MonitorUpdateId {
78         pub(crate) contents: UpdateOrigin,
79 }
80
81 impl MonitorUpdateId {
82         pub(crate) fn from_monitor_update(update: &ChannelMonitorUpdate) -> Self {
83                 Self { contents: UpdateOrigin::OffChain(update.update_id) }
84         }
85         pub(crate) fn from_new_monitor<ChannelSigner: WriteableEcdsaChannelSigner>(monitor: &ChannelMonitor<ChannelSigner>) -> Self {
86                 Self { contents: UpdateOrigin::OffChain(monitor.get_latest_update_id()) }
87         }
88 }
89
90 /// `Persist` defines behavior for persisting channel monitors: this could mean
91 /// writing once to disk, and/or uploading to one or more backup services.
92 ///
93 /// Persistence can happen in one of two ways - synchronously completing before the trait method
94 /// calls return or asynchronously in the background.
95 ///
96 /// # For those implementing synchronous persistence
97 ///
98 ///  * If persistence completes fully (including any relevant `fsync()` calls), the implementation
99 ///    should return [`ChannelMonitorUpdateStatus::Completed`], indicating normal channel operation
100 ///    should continue.
101 ///
102 ///  * If persistence fails for some reason, implementations should consider returning
103 ///    [`ChannelMonitorUpdateStatus::InProgress`] and retry all pending persistence operations in
104 ///    the background with [`ChainMonitor::list_pending_monitor_updates`] and
105 ///    [`ChainMonitor::get_monitor`].
106 ///
107 ///    Once a full [`ChannelMonitor`] has been persisted, all pending updates for that channel can
108 ///    be marked as complete via [`ChainMonitor::channel_monitor_updated`].
109 ///
110 ///    If at some point no further progress can be made towards persisting the pending updates, the
111 ///    node should simply shut down.
112 ///
113 ///  * If the persistence has failed and cannot be retried further (e.g. because of an outage),
114 ///    [`ChannelMonitorUpdateStatus::UnrecoverableError`] can be used, though this will result in
115 ///    an immediate panic and future operations in LDK generally failing.
116 ///
117 /// # For those implementing asynchronous persistence
118 ///
119 ///  All calls should generally spawn a background task and immediately return
120 ///  [`ChannelMonitorUpdateStatus::InProgress`]. Once the update completes,
121 ///  [`ChainMonitor::channel_monitor_updated`] should be called with the corresponding
122 ///  [`MonitorUpdateId`].
123 ///
124 ///  Note that unlike the direct [`chain::Watch`] interface,
125 ///  [`ChainMonitor::channel_monitor_updated`] must be called once for *each* update which occurs.
126 ///
127 ///  If at some point no further progress can be made towards persisting a pending update, the node
128 ///  should simply shut down. Until then, the background task should either loop indefinitely, or
129 ///  persistence should be regularly retried with [`ChainMonitor::list_pending_monitor_updates`]
130 ///  and [`ChainMonitor::get_monitor`] (note that if a full monitor is persisted all pending
131 ///  monitor updates may be marked completed).
132 ///
133 /// # Using remote watchtowers
134 ///
135 /// Watchtowers may be updated as a part of an implementation of this trait, utilizing the async
136 /// update process described above while the watchtower is being updated. The following methods are
137 /// provided for bulding transactions for a watchtower:
138 /// [`ChannelMonitor::initial_counterparty_commitment_tx`],
139 /// [`ChannelMonitor::counterparty_commitment_txs_from_update`],
140 /// [`ChannelMonitor::sign_to_local_justice_tx`], [`TrustedCommitmentTransaction::revokeable_output_index`],
141 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`].
142 ///
143 /// [`TrustedCommitmentTransaction::revokeable_output_index`]: crate::ln::chan_utils::TrustedCommitmentTransaction::revokeable_output_index
144 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`]: crate::ln::chan_utils::TrustedCommitmentTransaction::build_to_local_justice_tx
145 pub trait Persist<ChannelSigner: WriteableEcdsaChannelSigner> {
146         /// Persist a new channel's data in response to a [`chain::Watch::watch_channel`] call. This is
147         /// called by [`ChannelManager`] for new channels, or may be called directly, e.g. on startup.
148         ///
149         /// The data can be stored any way you want, but the identifier provided by LDK is the
150         /// channel's outpoint (and it is up to you to maintain a correct mapping between the outpoint
151         /// and the stored channel data). Note that you **must** persist every new monitor to disk.
152         ///
153         /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
154         /// if you return [`ChannelMonitorUpdateStatus::InProgress`].
155         ///
156         /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`
157         /// and [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
158         ///
159         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
160         /// [`Writeable::write`]: crate::util::ser::Writeable::write
161         fn persist_new_channel(&self, channel_id: OutPoint, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> ChannelMonitorUpdateStatus;
162
163         /// Update one channel's data. The provided [`ChannelMonitor`] has already applied the given
164         /// update.
165         ///
166         /// Note that on every update, you **must** persist either the [`ChannelMonitorUpdate`] or the
167         /// updated monitor itself to disk/backups. See the [`Persist`] trait documentation for more
168         /// details.
169         ///
170         /// During blockchain synchronization operations, and in some rare cases, this may be called with
171         /// no [`ChannelMonitorUpdate`], in which case the full [`ChannelMonitor`] needs to be persisted.
172         /// Note that after the full [`ChannelMonitor`] is persisted any previous
173         /// [`ChannelMonitorUpdate`]s which were persisted should be discarded - they can no longer be
174         /// applied to the persisted [`ChannelMonitor`] as they were already applied.
175         ///
176         /// If an implementer chooses to persist the updates only, they need to make
177         /// sure that all the updates are applied to the `ChannelMonitors` *before*
178         /// the set of channel monitors is given to the `ChannelManager`
179         /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
180         /// applying a monitor update to a monitor. If full `ChannelMonitors` are
181         /// persisted, then there is no need to persist individual updates.
182         ///
183         /// Note that there could be a performance tradeoff between persisting complete
184         /// channel monitors on every update vs. persisting only updates and applying
185         /// them in batches. The size of each monitor grows `O(number of state updates)`
186         /// whereas updates are small and `O(1)`.
187         ///
188         /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
189         /// if you return [`ChannelMonitorUpdateStatus::InProgress`].
190         ///
191         /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`,
192         /// [`Writeable::write`] on [`ChannelMonitorUpdate`] for writing out an update, and
193         /// [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
194         ///
195         /// [`Writeable::write`]: crate::util::ser::Writeable::write
196         fn update_persisted_channel(&self, channel_id: OutPoint, update: Option<&ChannelMonitorUpdate>, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> ChannelMonitorUpdateStatus;
197 }
198
199 struct MonitorHolder<ChannelSigner: WriteableEcdsaChannelSigner> {
200         monitor: ChannelMonitor<ChannelSigner>,
201         /// The full set of pending monitor updates for this Channel.
202         ///
203         /// Note that this lock must be held during updates to prevent a race where we call
204         /// update_persisted_channel, the user returns a
205         /// [`ChannelMonitorUpdateStatus::InProgress`], and then calls channel_monitor_updated
206         /// immediately, racing our insertion of the pending update into the contained Vec.
207         ///
208         /// Beyond the synchronization of updates themselves, we cannot handle user events until after
209         /// any chain updates have been stored on disk. Thus, we scan this list when returning updates
210         /// to the ChannelManager, refusing to return any updates for a ChannelMonitor which is still
211         /// being persisted fully to disk after a chain update.
212         ///
213         /// This avoids the possibility of handling, e.g. an on-chain claim, generating a claim monitor
214         /// event, resulting in the relevant ChannelManager generating a PaymentSent event and dropping
215         /// the pending payment entry, and then reloading before the monitor is persisted, resulting in
216         /// the ChannelManager re-adding the same payment entry, before the same block is replayed,
217         /// resulting in a duplicate PaymentSent event.
218         pending_monitor_updates: Mutex<Vec<MonitorUpdateId>>,
219         /// The last block height at which no [`UpdateOrigin::ChainSync`] monitor updates were present
220         /// in `pending_monitor_updates`.
221         /// If it's been more than [`LATENCY_GRACE_PERIOD_BLOCKS`] since we started waiting on a chain
222         /// sync event, we let monitor events return to `ChannelManager` because we cannot hold them up
223         /// forever or we'll end up with HTLC preimages waiting to feed back into an upstream channel
224         /// forever, risking funds loss.
225         last_chain_persist_height: AtomicUsize,
226 }
227
228 impl<ChannelSigner: WriteableEcdsaChannelSigner> MonitorHolder<ChannelSigner> {
229         fn has_pending_offchain_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
230                 pending_monitor_updates_lock.iter().any(|update_id|
231                         if let UpdateOrigin::OffChain(_) = update_id.contents { true } else { false })
232         }
233         fn has_pending_chainsync_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
234                 pending_monitor_updates_lock.iter().any(|update_id|
235                         if let UpdateOrigin::ChainSync(_) = update_id.contents { true } else { false })
236         }
237 }
238
239 /// A read-only reference to a current ChannelMonitor.
240 ///
241 /// Note that this holds a mutex in [`ChainMonitor`] and may block other events until it is
242 /// released.
243 pub struct LockedChannelMonitor<'a, ChannelSigner: WriteableEcdsaChannelSigner> {
244         lock: RwLockReadGuard<'a, HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
245         funding_txo: OutPoint,
246 }
247
248 impl<ChannelSigner: WriteableEcdsaChannelSigner> Deref for LockedChannelMonitor<'_, ChannelSigner> {
249         type Target = ChannelMonitor<ChannelSigner>;
250         fn deref(&self) -> &ChannelMonitor<ChannelSigner> {
251                 &self.lock.get(&self.funding_txo).expect("Checked at construction").monitor
252         }
253 }
254
255 /// An implementation of [`chain::Watch`] for monitoring channels.
256 ///
257 /// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
258 /// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
259 /// or used independently to monitor channels remotely. See the [module-level documentation] for
260 /// details.
261 ///
262 /// Note that `ChainMonitor` should regularly trigger rebroadcasts/fee bumps of pending claims from
263 /// a force-closed channel. This is crucial in preventing certain classes of pinning attacks,
264 /// detecting substantial mempool feerate changes between blocks, and ensuring reliability if
265 /// broadcasting fails. We recommend invoking this every 30 seconds, or lower if running in an
266 /// environment with spotty connections, like on mobile.
267 ///
268 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
269 /// [module-level documentation]: crate::chain::chainmonitor
270 /// [`rebroadcast_pending_claims`]: Self::rebroadcast_pending_claims
271 pub struct ChainMonitor<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
272         where C::Target: chain::Filter,
273         T::Target: BroadcasterInterface,
274         F::Target: FeeEstimator,
275         L::Target: Logger,
276         P::Target: Persist<ChannelSigner>,
277 {
278         monitors: RwLock<HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
279         /// When we generate a [`MonitorUpdateId`] for a chain-event monitor persistence, we need a
280         /// unique ID, which we calculate by simply getting the next value from this counter. Note that
281         /// the ID is never persisted so it's ok that they reset on restart.
282         sync_persistence_id: AtomicCounter,
283         chain_source: Option<C>,
284         broadcaster: T,
285         logger: L,
286         fee_estimator: F,
287         persister: P,
288         /// "User-provided" (ie persistence-completion/-failed) [`MonitorEvent`]s. These came directly
289         /// from the user and not from a [`ChannelMonitor`].
290         pending_monitor_events: Mutex<Vec<(OutPoint, Vec<MonitorEvent>, Option<PublicKey>)>>,
291         /// The best block height seen, used as a proxy for the passage of time.
292         highest_chain_height: AtomicUsize,
293
294         event_notifier: Notifier,
295 }
296
297 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> ChainMonitor<ChannelSigner, C, T, F, L, P>
298 where C::Target: chain::Filter,
299             T::Target: BroadcasterInterface,
300             F::Target: FeeEstimator,
301             L::Target: Logger,
302             P::Target: Persist<ChannelSigner>,
303 {
304         /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view
305         /// of a channel and reacting accordingly based on transactions in the given chain data. See
306         /// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
307         /// be returned by [`chain::Watch::release_pending_monitor_events`].
308         ///
309         /// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
310         /// calls must not exclude any transactions matching the new outputs nor any in-block
311         /// descendants of such transactions. It is not necessary to re-fetch the block to obtain
312         /// updated `txdata`.
313         ///
314         /// Calls which represent a new blockchain tip height should set `best_height`.
315         fn process_chain_data<FN>(&self, header: &Header, best_height: Option<u32>, txdata: &TransactionData, process: FN)
316         where
317                 FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs>
318         {
319                 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
320                 let funding_outpoints: HashSet<OutPoint> = HashSet::from_iter(self.monitors.read().unwrap().keys().cloned());
321                 for funding_outpoint in funding_outpoints.iter() {
322                         let monitor_lock = self.monitors.read().unwrap();
323                         if let Some(monitor_state) = monitor_lock.get(funding_outpoint) {
324                                 if self.update_monitor_with_chain_data(header, best_height, txdata, &process, funding_outpoint, &monitor_state).is_err() {
325                                         // Take the monitors lock for writing so that we poison it and any future
326                                         // operations going forward fail immediately.
327                                         core::mem::drop(monitor_lock);
328                                         let _poison = self.monitors.write().unwrap();
329                                         log_error!(self.logger, "{}", err_str);
330                                         panic!("{}", err_str);
331                                 }
332                         }
333                 }
334
335                 // do some followup cleanup if any funding outpoints were added in between iterations
336                 let monitor_states = self.monitors.write().unwrap();
337                 for (funding_outpoint, monitor_state) in monitor_states.iter() {
338                         if !funding_outpoints.contains(funding_outpoint) {
339                                 if self.update_monitor_with_chain_data(header, best_height, txdata, &process, funding_outpoint, &monitor_state).is_err() {
340                                         log_error!(self.logger, "{}", err_str);
341                                         panic!("{}", err_str);
342                                 }
343                         }
344                 }
345
346                 if let Some(height) = best_height {
347                         // If the best block height is being updated, update highest_chain_height under the
348                         // monitors write lock.
349                         let old_height = self.highest_chain_height.load(Ordering::Acquire);
350                         let new_height = height as usize;
351                         if new_height > old_height {
352                                 self.highest_chain_height.store(new_height, Ordering::Release);
353                         }
354                 }
355         }
356
357         fn update_monitor_with_chain_data<FN>(
358                 &self, header: &Header, best_height: Option<u32>, txdata: &TransactionData,
359                 process: FN, funding_outpoint: &OutPoint, monitor_state: &MonitorHolder<ChannelSigner>
360         ) -> Result<(), ()> where FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs> {
361                 let monitor = &monitor_state.monitor;
362                 let logger = WithChannelMonitor::from(&self.logger, &monitor);
363                 let mut txn_outputs;
364                 {
365                         txn_outputs = process(monitor, txdata);
366                         let update_id = MonitorUpdateId {
367                                 contents: UpdateOrigin::ChainSync(self.sync_persistence_id.get_increment()),
368                         };
369                         let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
370                         if let Some(height) = best_height {
371                                 if !monitor_state.has_pending_chainsync_updates(&pending_monitor_updates) {
372                                         // If there are not ChainSync persists awaiting completion, go ahead and
373                                         // set last_chain_persist_height here - we wouldn't want the first
374                                         // InProgress to always immediately be considered "overly delayed".
375                                         monitor_state.last_chain_persist_height.store(height as usize, Ordering::Release);
376                                 }
377                         }
378
379                         log_trace!(logger, "Syncing Channel Monitor for channel {}", log_funding_info!(monitor));
380                         match self.persister.update_persisted_channel(*funding_outpoint, None, monitor, update_id) {
381                                 ChannelMonitorUpdateStatus::Completed =>
382                                         log_trace!(logger, "Finished syncing Channel Monitor for channel {}", log_funding_info!(monitor)),
383                                 ChannelMonitorUpdateStatus::InProgress => {
384                                         log_debug!(logger, "Channel Monitor sync for channel {} in progress, holding events until completion!", log_funding_info!(monitor));
385                                         pending_monitor_updates.push(update_id);
386                                 },
387                                 ChannelMonitorUpdateStatus::UnrecoverableError => {
388                                         return Err(());
389                                 },
390                         }
391                 }
392
393                 // Register any new outputs with the chain source for filtering, storing any dependent
394                 // transactions from within the block that previously had not been included in txdata.
395                 if let Some(ref chain_source) = self.chain_source {
396                         let block_hash = header.block_hash();
397                         for (txid, mut outputs) in txn_outputs.drain(..) {
398                                 for (idx, output) in outputs.drain(..) {
399                                         // Register any new outputs with the chain source for filtering
400                                         let output = WatchedOutput {
401                                                 block_hash: Some(block_hash),
402                                                 outpoint: OutPoint { txid, index: idx as u16 },
403                                                 script_pubkey: output.script_pubkey,
404                                         };
405                                         log_trace!(logger, "Adding monitoring for spends of outpoint {} to the filter", output.outpoint);
406                                         chain_source.register_output(output);
407                                 }
408                         }
409                 }
410                 Ok(())
411         }
412
413         /// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
414         ///
415         /// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
416         /// will call back to it indicating transactions and outputs of interest. This allows clients to
417         /// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
418         /// always need to fetch full blocks absent another means for determining which blocks contain
419         /// transactions relevant to the watched channels.
420         pub fn new(chain_source: Option<C>, broadcaster: T, logger: L, feeest: F, persister: P) -> Self {
421                 Self {
422                         monitors: RwLock::new(HashMap::new()),
423                         sync_persistence_id: AtomicCounter::new(),
424                         chain_source,
425                         broadcaster,
426                         logger,
427                         fee_estimator: feeest,
428                         persister,
429                         pending_monitor_events: Mutex::new(Vec::new()),
430                         highest_chain_height: AtomicUsize::new(0),
431                         event_notifier: Notifier::new(),
432                 }
433         }
434
435         /// Gets the balances in the contained [`ChannelMonitor`]s which are claimable on-chain or
436         /// claims which are awaiting confirmation.
437         ///
438         /// Includes the balances from each [`ChannelMonitor`] *except* those included in
439         /// `ignored_channels`, allowing you to filter out balances from channels which are still open
440         /// (and whose balance should likely be pulled from the [`ChannelDetails`]).
441         ///
442         /// See [`ChannelMonitor::get_claimable_balances`] for more details on the exact criteria for
443         /// inclusion in the return value.
444         pub fn get_claimable_balances(&self, ignored_channels: &[&ChannelDetails]) -> Vec<Balance> {
445                 let mut ret = Vec::new();
446                 let monitor_states = self.monitors.read().unwrap();
447                 for (_, monitor_state) in monitor_states.iter().filter(|(funding_outpoint, _)| {
448                         for chan in ignored_channels {
449                                 if chan.funding_txo.as_ref() == Some(funding_outpoint) {
450                                         return false;
451                                 }
452                         }
453                         true
454                 }) {
455                         ret.append(&mut monitor_state.monitor.get_claimable_balances());
456                 }
457                 ret
458         }
459
460         /// Gets the [`LockedChannelMonitor`] for a given funding outpoint, returning an `Err` if no
461         /// such [`ChannelMonitor`] is currently being monitored for.
462         ///
463         /// Note that the result holds a mutex over our monitor set, and should not be held
464         /// indefinitely.
465         pub fn get_monitor(&self, funding_txo: OutPoint) -> Result<LockedChannelMonitor<'_, ChannelSigner>, ()> {
466                 let lock = self.monitors.read().unwrap();
467                 if lock.get(&funding_txo).is_some() {
468                         Ok(LockedChannelMonitor { lock, funding_txo })
469                 } else {
470                         Err(())
471                 }
472         }
473
474         /// Lists the funding outpoint of each [`ChannelMonitor`] being monitored.
475         ///
476         /// Note that [`ChannelMonitor`]s are not removed when a channel is closed as they are always
477         /// monitoring for on-chain state resolutions.
478         pub fn list_monitors(&self) -> Vec<OutPoint> {
479                 self.monitors.read().unwrap().keys().map(|outpoint| *outpoint).collect()
480         }
481
482         #[cfg(not(c_bindings))]
483         /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
484         pub fn list_pending_monitor_updates(&self) -> HashMap<OutPoint, Vec<MonitorUpdateId>> {
485                 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
486                         (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
487                 }).collect()
488         }
489
490         #[cfg(c_bindings)]
491         /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
492         pub fn list_pending_monitor_updates(&self) -> Vec<(OutPoint, Vec<MonitorUpdateId>)> {
493                 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
494                         (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
495                 }).collect()
496         }
497
498
499         #[cfg(test)]
500         pub fn remove_monitor(&self, funding_txo: &OutPoint) -> ChannelMonitor<ChannelSigner> {
501                 self.monitors.write().unwrap().remove(funding_txo).unwrap().monitor
502         }
503
504         /// Indicates the persistence of a [`ChannelMonitor`] has completed after
505         /// [`ChannelMonitorUpdateStatus::InProgress`] was returned from an update operation.
506         ///
507         /// Thus, the anticipated use is, at a high level:
508         ///  1) This [`ChainMonitor`] calls [`Persist::update_persisted_channel`] which stores the
509         ///     update to disk and begins updating any remote (e.g. watchtower/backup) copies,
510         ///     returning [`ChannelMonitorUpdateStatus::InProgress`],
511         ///  2) once all remote copies are updated, you call this function with the
512         ///     `completed_update_id` that completed, and once all pending updates have completed the
513         ///     channel will be re-enabled.
514         //      Note that we re-enable only after `UpdateOrigin::OffChain` updates complete, we don't
515         //      care about `UpdateOrigin::ChainSync` updates for the channel state being updated. We
516         //      only care about `UpdateOrigin::ChainSync` for returning `MonitorEvent`s.
517         ///
518         /// Returns an [`APIError::APIMisuseError`] if `funding_txo` does not match any currently
519         /// registered [`ChannelMonitor`]s.
520         pub fn channel_monitor_updated(&self, funding_txo: OutPoint, completed_update_id: MonitorUpdateId) -> Result<(), APIError> {
521                 let monitors = self.monitors.read().unwrap();
522                 let monitor_data = if let Some(mon) = monitors.get(&funding_txo) { mon } else {
523                         return Err(APIError::APIMisuseError { err: format!("No ChannelMonitor matching funding outpoint {:?} found", funding_txo) });
524                 };
525                 let mut pending_monitor_updates = monitor_data.pending_monitor_updates.lock().unwrap();
526                 pending_monitor_updates.retain(|update_id| *update_id != completed_update_id);
527
528                 match completed_update_id {
529                         MonitorUpdateId { contents: UpdateOrigin::OffChain(_) } => {
530                                 // Note that we only check for `UpdateOrigin::OffChain` failures here - if
531                                 // we're being told that a `UpdateOrigin::OffChain` monitor update completed,
532                                 // we only care about ensuring we don't tell the `ChannelManager` to restore
533                                 // the channel to normal operation until all `UpdateOrigin::OffChain` updates
534                                 // complete.
535                                 // If there's some `UpdateOrigin::ChainSync` update still pending that's okay
536                                 // - we can still update our channel state, just as long as we don't return
537                                 // `MonitorEvent`s from the monitor back to the `ChannelManager` until they
538                                 // complete.
539                                 let monitor_is_pending_updates = monitor_data.has_pending_offchain_updates(&pending_monitor_updates);
540                                 if monitor_is_pending_updates {
541                                         // If there are still monitor updates pending, we cannot yet construct a
542                                         // Completed event.
543                                         return Ok(());
544                                 }
545                                 self.pending_monitor_events.lock().unwrap().push((funding_txo, vec![MonitorEvent::Completed {
546                                         funding_txo,
547                                         monitor_update_id: monitor_data.monitor.get_latest_update_id(),
548                                 }], monitor_data.monitor.get_counterparty_node_id()));
549                         },
550                         MonitorUpdateId { contents: UpdateOrigin::ChainSync(_) } => {
551                                 if !monitor_data.has_pending_chainsync_updates(&pending_monitor_updates) {
552                                         monitor_data.last_chain_persist_height.store(self.highest_chain_height.load(Ordering::Acquire), Ordering::Release);
553                                         // The next time release_pending_monitor_events is called, any events for this
554                                         // ChannelMonitor will be returned.
555                                 }
556                         },
557                 }
558                 self.event_notifier.notify();
559                 Ok(())
560         }
561
562         /// This wrapper avoids having to update some of our tests for now as they assume the direct
563         /// chain::Watch API wherein we mark a monitor fully-updated by just calling
564         /// channel_monitor_updated once with the highest ID.
565         #[cfg(any(test, fuzzing))]
566         pub fn force_channel_monitor_updated(&self, funding_txo: OutPoint, monitor_update_id: u64) {
567                 let monitors = self.monitors.read().unwrap();
568                 let counterparty_node_id = monitors.get(&funding_txo).and_then(|m| m.monitor.get_counterparty_node_id());
569                 self.pending_monitor_events.lock().unwrap().push((funding_txo, vec![MonitorEvent::Completed {
570                         funding_txo,
571                         monitor_update_id,
572                 }], counterparty_node_id));
573                 self.event_notifier.notify();
574         }
575
576         #[cfg(any(test, feature = "_test_utils"))]
577         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
578                 use crate::events::EventsProvider;
579                 let events = core::cell::RefCell::new(Vec::new());
580                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
581                 self.process_pending_events(&event_handler);
582                 events.into_inner()
583         }
584
585         /// Processes any events asynchronously in the order they were generated since the last call
586         /// using the given event handler.
587         ///
588         /// See the trait-level documentation of [`EventsProvider`] for requirements.
589         ///
590         /// [`EventsProvider`]: crate::events::EventsProvider
591         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
592                 &self, handler: H
593         ) {
594                 // Sadly we can't hold the monitors read lock through an async call. Thus we have to do a
595                 // crazy dance to process a monitor's events then only remove them once we've done so.
596                 let mons_to_process = self.monitors.read().unwrap().keys().cloned().collect::<Vec<_>>();
597                 for funding_txo in mons_to_process {
598                         let mut ev;
599                         super::channelmonitor::process_events_body!(
600                                 self.monitors.read().unwrap().get(&funding_txo).map(|m| &m.monitor), ev, handler(ev).await);
601                 }
602         }
603
604         /// Gets a [`Future`] that completes when an event is available either via
605         /// [`chain::Watch::release_pending_monitor_events`] or
606         /// [`EventsProvider::process_pending_events`].
607         ///
608         /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
609         /// [`ChainMonitor`] and should instead register actions to be taken later.
610         ///
611         /// [`EventsProvider::process_pending_events`]: crate::events::EventsProvider::process_pending_events
612         pub fn get_update_future(&self) -> Future {
613                 self.event_notifier.get_future()
614         }
615
616         /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
617         /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
618         /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
619         /// invoking this every 30 seconds, or lower if running in an environment with spotty
620         /// connections, like on mobile.
621         pub fn rebroadcast_pending_claims(&self) {
622                 let monitors = self.monitors.read().unwrap();
623                 for (_, monitor_holder) in &*monitors {
624                         monitor_holder.monitor.rebroadcast_pending_claims(
625                                 &*self.broadcaster, &*self.fee_estimator, &self.logger
626                         )
627                 }
628         }
629 }
630
631 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
632 chain::Listen for ChainMonitor<ChannelSigner, C, T, F, L, P>
633 where
634         C::Target: chain::Filter,
635         T::Target: BroadcasterInterface,
636         F::Target: FeeEstimator,
637         L::Target: Logger,
638         P::Target: Persist<ChannelSigner>,
639 {
640         fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
641                 log_debug!(self.logger, "New best block {} at height {} provided via block_connected", header.block_hash(), height);
642                 self.process_chain_data(header, Some(height), &txdata, |monitor, txdata| {
643                         monitor.block_connected(
644                                 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &self.logger)
645                 });
646         }
647
648         fn block_disconnected(&self, header: &Header, height: u32) {
649                 let monitor_states = self.monitors.read().unwrap();
650                 log_debug!(self.logger, "Latest block {} at height {} removed via block_disconnected", header.block_hash(), height);
651                 for monitor_state in monitor_states.values() {
652                         monitor_state.monitor.block_disconnected(
653                                 header, height, &*self.broadcaster, &*self.fee_estimator, &self.logger);
654                 }
655         }
656 }
657
658 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
659 chain::Confirm for ChainMonitor<ChannelSigner, C, T, F, L, P>
660 where
661         C::Target: chain::Filter,
662         T::Target: BroadcasterInterface,
663         F::Target: FeeEstimator,
664         L::Target: Logger,
665         P::Target: Persist<ChannelSigner>,
666 {
667         fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
668                 log_debug!(self.logger, "{} provided transactions confirmed at height {} in block {}", txdata.len(), height, header.block_hash());
669                 self.process_chain_data(header, None, txdata, |monitor, txdata| {
670                         monitor.transactions_confirmed(
671                                 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &self.logger)
672                 });
673         }
674
675         fn transaction_unconfirmed(&self, txid: &Txid) {
676                 log_debug!(self.logger, "Transaction {} reorganized out of chain", txid);
677                 let monitor_states = self.monitors.read().unwrap();
678                 for monitor_state in monitor_states.values() {
679                         monitor_state.monitor.transaction_unconfirmed(txid, &*self.broadcaster, &*self.fee_estimator, &self.logger);
680                 }
681         }
682
683         fn best_block_updated(&self, header: &Header, height: u32) {
684                 log_debug!(self.logger, "New best block {} at height {} provided via best_block_updated", header.block_hash(), height);
685                 self.process_chain_data(header, Some(height), &[], |monitor, txdata| {
686                         // While in practice there shouldn't be any recursive calls when given empty txdata,
687                         // it's still possible if a chain::Filter implementation returns a transaction.
688                         debug_assert!(txdata.is_empty());
689                         monitor.best_block_updated(
690                                 header, height, &*self.broadcaster, &*self.fee_estimator, &self.logger
691                         )
692                 });
693         }
694
695         fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
696                 let mut txids = Vec::new();
697                 let monitor_states = self.monitors.read().unwrap();
698                 for monitor_state in monitor_states.values() {
699                         txids.append(&mut monitor_state.monitor.get_relevant_txids());
700                 }
701
702                 txids.sort_unstable_by(|a, b| a.0.cmp(&b.0).then(b.1.cmp(&a.1)));
703                 txids.dedup_by_key(|(txid, _, _)| *txid);
704                 txids
705         }
706 }
707
708 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref , T: Deref , F: Deref , L: Deref , P: Deref >
709 chain::Watch<ChannelSigner> for ChainMonitor<ChannelSigner, C, T, F, L, P>
710 where C::Target: chain::Filter,
711             T::Target: BroadcasterInterface,
712             F::Target: FeeEstimator,
713             L::Target: Logger,
714             P::Target: Persist<ChannelSigner>,
715 {
716         fn watch_channel(&self, funding_outpoint: OutPoint, monitor: ChannelMonitor<ChannelSigner>) -> Result<ChannelMonitorUpdateStatus, ()> {
717                 let logger = WithChannelMonitor::from(&self.logger, &monitor);
718                 let mut monitors = self.monitors.write().unwrap();
719                 let entry = match monitors.entry(funding_outpoint) {
720                         hash_map::Entry::Occupied(_) => {
721                                 log_error!(logger, "Failed to add new channel data: channel monitor for given outpoint is already present");
722                                 return Err(());
723                         },
724                         hash_map::Entry::Vacant(e) => e,
725                 };
726                 log_trace!(logger, "Got new ChannelMonitor for channel {}", log_funding_info!(monitor));
727                 let update_id = MonitorUpdateId::from_new_monitor(&monitor);
728                 let mut pending_monitor_updates = Vec::new();
729                 let persist_res = self.persister.persist_new_channel(funding_outpoint, &monitor, update_id);
730                 match persist_res {
731                         ChannelMonitorUpdateStatus::InProgress => {
732                                 log_info!(logger, "Persistence of new ChannelMonitor for channel {} in progress", log_funding_info!(monitor));
733                                 pending_monitor_updates.push(update_id);
734                         },
735                         ChannelMonitorUpdateStatus::Completed => {
736                                 log_info!(logger, "Persistence of new ChannelMonitor for channel {} completed", log_funding_info!(monitor));
737                         },
738                         ChannelMonitorUpdateStatus::UnrecoverableError => {
739                                 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
740                                 log_error!(logger, "{}", err_str);
741                                 panic!("{}", err_str);
742                         },
743                 }
744                 if let Some(ref chain_source) = self.chain_source {
745                         monitor.load_outputs_to_watch(chain_source , &self.logger);
746                 }
747                 entry.insert(MonitorHolder {
748                         monitor,
749                         pending_monitor_updates: Mutex::new(pending_monitor_updates),
750                         last_chain_persist_height: AtomicUsize::new(self.highest_chain_height.load(Ordering::Acquire)),
751                 });
752                 Ok(persist_res)
753         }
754
755         fn update_channel(&self, funding_txo: OutPoint, update: &ChannelMonitorUpdate) -> ChannelMonitorUpdateStatus {
756                 // Update the monitor that watches the channel referred to by the given outpoint.
757                 let monitors = self.monitors.read().unwrap();
758                 match monitors.get(&funding_txo) {
759                         None => {
760                                 log_error!(self.logger, "Failed to update channel monitor: no such monitor registered");
761
762                                 // We should never ever trigger this from within ChannelManager. Technically a
763                                 // user could use this object with some proxying in between which makes this
764                                 // possible, but in tests and fuzzing, this should be a panic.
765                                 #[cfg(debug_assertions)]
766                                 panic!("ChannelManager generated a channel update for a channel that was not yet registered!");
767                                 #[cfg(not(debug_assertions))]
768                                 ChannelMonitorUpdateStatus::InProgress
769                         },
770                         Some(monitor_state) => {
771                                 let monitor = &monitor_state.monitor;
772                                 let logger = WithChannelMonitor::from(&self.logger, &monitor);
773                                 log_trace!(logger, "Updating ChannelMonitor for channel {}", log_funding_info!(monitor));
774                                 let update_res = monitor.update_monitor(update, &self.broadcaster, &self.fee_estimator, &self.logger);
775
776                                 let update_id = MonitorUpdateId::from_monitor_update(update);
777                                 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
778                                 let persist_res = if update_res.is_err() {
779                                         // Even if updating the monitor returns an error, the monitor's state will
780                                         // still be changed. Therefore, we should persist the updated monitor despite the error.
781                                         // We don't want to persist a `monitor_update` which results in a failure to apply later
782                                         // while reading `channel_monitor` with updates from storage. Instead, we should persist
783                                         // the entire `channel_monitor` here.
784                                         log_warn!(logger, "Failed to update ChannelMonitor for channel {}. Going ahead and persisting the entire ChannelMonitor", log_funding_info!(monitor));
785                                         self.persister.update_persisted_channel(funding_txo, None, monitor, update_id)
786                                 } else {
787                                         self.persister.update_persisted_channel(funding_txo, Some(update), monitor, update_id)
788                                 };
789                                 match persist_res {
790                                         ChannelMonitorUpdateStatus::InProgress => {
791                                                 pending_monitor_updates.push(update_id);
792                                                 log_debug!(logger, "Persistence of ChannelMonitorUpdate for channel {} in progress", log_funding_info!(monitor));
793                                         },
794                                         ChannelMonitorUpdateStatus::Completed => {
795                                                 log_debug!(logger, "Persistence of ChannelMonitorUpdate for channel {} completed", log_funding_info!(monitor));
796                                         },
797                                         ChannelMonitorUpdateStatus::UnrecoverableError => {
798                                                 // Take the monitors lock for writing so that we poison it and any future
799                                                 // operations going forward fail immediately.
800                                                 core::mem::drop(pending_monitor_updates);
801                                                 core::mem::drop(monitors);
802                                                 let _poison = self.monitors.write().unwrap();
803                                                 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
804                                                 log_error!(logger, "{}", err_str);
805                                                 panic!("{}", err_str);
806                                         },
807                                 }
808                                 if update_res.is_err() {
809                                         ChannelMonitorUpdateStatus::InProgress
810                                 } else {
811                                         persist_res
812                                 }
813                         }
814                 }
815         }
816
817         fn release_pending_monitor_events(&self) -> Vec<(OutPoint, Vec<MonitorEvent>, Option<PublicKey>)> {
818                 let mut pending_monitor_events = self.pending_monitor_events.lock().unwrap().split_off(0);
819                 for monitor_state in self.monitors.read().unwrap().values() {
820                         let logger = WithChannelMonitor::from(&self.logger, &monitor_state.monitor);
821                         let is_pending_monitor_update = monitor_state.has_pending_chainsync_updates(&monitor_state.pending_monitor_updates.lock().unwrap());
822                         if !is_pending_monitor_update || monitor_state.last_chain_persist_height.load(Ordering::Acquire) + LATENCY_GRACE_PERIOD_BLOCKS as usize <= self.highest_chain_height.load(Ordering::Acquire) {
823                                 if is_pending_monitor_update {
824                                         log_error!(logger, "A ChannelMonitor sync took longer than {} blocks to complete.", LATENCY_GRACE_PERIOD_BLOCKS);
825                                         log_error!(logger, "   To avoid funds-loss, we are allowing monitor updates to be released.");
826                                         log_error!(logger, "   This may cause duplicate payment events to be generated.");
827                                 }
828                                 let monitor_events = monitor_state.monitor.get_and_clear_pending_monitor_events();
829                                 if monitor_events.len() > 0 {
830                                         let monitor_outpoint = monitor_state.monitor.get_funding_txo().0;
831                                         let counterparty_node_id = monitor_state.monitor.get_counterparty_node_id();
832                                         pending_monitor_events.push((monitor_outpoint, monitor_events, counterparty_node_id));
833                                 }
834                         }
835                 }
836                 pending_monitor_events
837         }
838 }
839
840 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> events::EventsProvider for ChainMonitor<ChannelSigner, C, T, F, L, P>
841         where C::Target: chain::Filter,
842               T::Target: BroadcasterInterface,
843               F::Target: FeeEstimator,
844               L::Target: Logger,
845               P::Target: Persist<ChannelSigner>,
846 {
847         /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
848         ///
849         /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
850         /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
851         /// within each channel. As the confirmation of a commitment transaction may be critical to the
852         /// safety of funds, we recommend invoking this every 30 seconds, or lower if running in an
853         /// environment with spotty connections, like on mobile.
854         ///
855         /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
856         /// order to handle these events.
857         ///
858         /// [`SpendableOutputs`]: events::Event::SpendableOutputs
859         /// [`BumpTransaction`]: events::Event::BumpTransaction
860         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
861                 for monitor_state in self.monitors.read().unwrap().values() {
862                         monitor_state.monitor.process_pending_events(&handler);
863                 }
864         }
865 }
866
867 #[cfg(test)]
868 mod tests {
869         use crate::check_added_monitors;
870         use crate::{expect_payment_claimed, expect_payment_path_successful, get_event_msg};
871         use crate::{get_htlc_update_msgs, get_local_commitment_txn, get_revoke_commit_msgs, get_route_and_payment_hash, unwrap_send_err};
872         use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Watch};
873         use crate::chain::channelmonitor::LATENCY_GRACE_PERIOD_BLOCKS;
874         use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
875         use crate::ln::channelmanager::{PaymentSendFailure, PaymentId, RecipientOnionFields};
876         use crate::ln::functional_test_utils::*;
877         use crate::ln::msgs::ChannelMessageHandler;
878         use crate::util::errors::APIError;
879
880         #[test]
881         fn test_async_ooo_offchain_updates() {
882                 // Test that if we have multiple offchain updates being persisted and they complete
883                 // out-of-order, the ChainMonitor waits until all have completed before informing the
884                 // ChannelManager.
885                 let chanmon_cfgs = create_chanmon_cfgs(2);
886                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
887                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
888                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
889                 create_announced_chan_between_nodes(&nodes, 0, 1);
890
891                 // Route two payments to be claimed at the same time.
892                 let (payment_preimage_1, payment_hash_1, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
893                 let (payment_preimage_2, payment_hash_2, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
894
895                 chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clear();
896                 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
897                 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
898
899                 nodes[1].node.claim_funds(payment_preimage_1);
900                 check_added_monitors!(nodes[1], 1);
901                 nodes[1].node.claim_funds(payment_preimage_2);
902                 check_added_monitors!(nodes[1], 1);
903
904                 let persistences = chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clone();
905                 assert_eq!(persistences.len(), 1);
906                 let (funding_txo, updates) = persistences.iter().next().unwrap();
907                 assert_eq!(updates.len(), 2);
908
909                 // Note that updates is a HashMap so the ordering here is actually random. This shouldn't
910                 // fail either way but if it fails intermittently it's depending on the ordering of updates.
911                 let mut update_iter = updates.iter();
912                 let next_update = update_iter.next().unwrap().clone();
913                 // Should contain next_update when pending updates listed.
914                 #[cfg(not(c_bindings))]
915                 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
916                         .unwrap().contains(&next_update));
917                 #[cfg(c_bindings)]
918                 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
919                         .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
920                 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, next_update.clone()).unwrap();
921                 // Should not contain the previously pending next_update when pending updates listed.
922                 #[cfg(not(c_bindings))]
923                 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
924                         .unwrap().contains(&next_update));
925                 #[cfg(c_bindings)]
926                 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
927                         .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
928                 assert!(nodes[1].chain_monitor.release_pending_monitor_events().is_empty());
929                 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
930                 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
931                 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, update_iter.next().unwrap().clone()).unwrap();
932
933                 let claim_events = nodes[1].node.get_and_clear_pending_events();
934                 assert_eq!(claim_events.len(), 2);
935                 match claim_events[0] {
936                         Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
937                                 assert_eq!(payment_hash_1, *payment_hash);
938                         },
939                         _ => panic!("Unexpected event"),
940                 }
941                 match claim_events[1] {
942                         Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
943                                 assert_eq!(payment_hash_2, *payment_hash);
944                         },
945                         _ => panic!("Unexpected event"),
946                 }
947
948                 // Now manually walk the commitment signed dance - because we claimed two payments
949                 // back-to-back it doesn't fit into the neat walk commitment_signed_dance does.
950
951                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
952                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
953                 expect_payment_sent(&nodes[0], payment_preimage_1, None, false, false);
954                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
955                 check_added_monitors!(nodes[0], 1);
956                 let (as_first_raa, as_first_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
957
958                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
959                 check_added_monitors!(nodes[1], 1);
960                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
961                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_update);
962                 check_added_monitors!(nodes[1], 1);
963                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
964
965                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
966                 expect_payment_sent(&nodes[0], payment_preimage_2, None, false, false);
967                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
968                 check_added_monitors!(nodes[0], 1);
969                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
970                 expect_payment_path_successful!(nodes[0]);
971                 check_added_monitors!(nodes[0], 1);
972                 let (as_second_raa, as_second_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
973
974                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
975                 check_added_monitors!(nodes[1], 1);
976                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update);
977                 check_added_monitors!(nodes[1], 1);
978                 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
979
980                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
981                 expect_payment_path_successful!(nodes[0]);
982                 check_added_monitors!(nodes[0], 1);
983         }
984
985         fn do_chainsync_pauses_events(block_timeout: bool) {
986                 // When a chainsync monitor update occurs, any MonitorUpdates should be held before being
987                 // passed upstream to a `ChannelManager` via `Watch::release_pending_monitor_events`. This
988                 // tests that behavior, as well as some ways it might go wrong.
989                 let chanmon_cfgs = create_chanmon_cfgs(2);
990                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
991                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
992                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
993                 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
994
995                 // Get a route for later and rebalance the channel somewhat
996                 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
997                 let (route, second_payment_hash, _, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
998
999                 // First route a payment that we will claim on chain and give the recipient the preimage.
1000                 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
1001                 nodes[1].node.claim_funds(payment_preimage);
1002                 expect_payment_claimed!(nodes[1], payment_hash, 1_000_000);
1003                 nodes[1].node.get_and_clear_pending_msg_events();
1004                 check_added_monitors!(nodes[1], 1);
1005                 let remote_txn = get_local_commitment_txn!(nodes[1], channel.2);
1006                 assert_eq!(remote_txn.len(), 2);
1007
1008                 // Temp-fail the block connection which will hold the channel-closed event
1009                 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
1010                 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
1011
1012                 // Connect B's commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
1013                 // channel is now closed, but the ChannelManager doesn't know that yet.
1014                 let new_header = create_dummy_header(nodes[0].best_block_info().0, 0);
1015                 nodes[0].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
1016                         &[(0, &remote_txn[0]), (1, &remote_txn[1])], nodes[0].best_block_info().1 + 1);
1017                 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
1018                 nodes[0].chain_monitor.chain_monitor.best_block_updated(&new_header, nodes[0].best_block_info().1 + 1);
1019                 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
1020
1021                 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
1022                 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
1023                 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1024                 unwrap_send_err!(nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1025                                 RecipientOnionFields::secret_only(second_payment_secret), PaymentId(second_payment_hash.0)
1026                         ), false, APIError::MonitorUpdateInProgress, {});
1027                 check_added_monitors!(nodes[0], 1);
1028
1029                 // However, as the ChainMonitor is still waiting for the original persistence to complete,
1030                 // it won't yet release the MonitorEvents.
1031                 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
1032
1033                 if block_timeout {
1034                         // After three blocks, pending MontiorEvents should be released either way.
1035                         let latest_header = create_dummy_header(nodes[0].best_block_info().0, 0);
1036                         nodes[0].chain_monitor.chain_monitor.best_block_updated(&latest_header, nodes[0].best_block_info().1 + LATENCY_GRACE_PERIOD_BLOCKS);
1037                 } else {
1038                         let persistences = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clone();
1039                         for (funding_outpoint, update_ids) in persistences {
1040                                 for update_id in update_ids {
1041                                         nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_outpoint, update_id).unwrap();
1042                                 }
1043                         }
1044                 }
1045
1046                 expect_payment_sent(&nodes[0], payment_preimage, None, true, false);
1047         }
1048
1049         #[test]
1050         fn chainsync_pauses_events() {
1051                 do_chainsync_pauses_events(false);
1052                 do_chainsync_pauses_events(true);
1053         }
1054
1055         #[test]
1056         #[cfg(feature = "std")]
1057         fn update_during_chainsync_poisons_channel() {
1058                 let chanmon_cfgs = create_chanmon_cfgs(2);
1059                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1060                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1061                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1062                 create_announced_chan_between_nodes(&nodes, 0, 1);
1063
1064                 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
1065                 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::UnrecoverableError);
1066
1067                 assert!(std::panic::catch_unwind(|| {
1068                         // Returning an UnrecoverableError should always panic immediately
1069                         connect_blocks(&nodes[0], 1);
1070                 }).is_err());
1071                 assert!(std::panic::catch_unwind(|| {
1072                         // ...and also poison our locks causing later use to panic as well
1073                         core::mem::drop(nodes);
1074                 }).is_err());
1075         }
1076 }