1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Logic to connect off-chain channel management with on-chain transaction monitoring.
12 //! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to
13 //! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will
14 //! make those available as [`MonitorEvent`]s to be consumed.
16 //! [`ChainMonitor`] is parameterized by an optional chain source, which must implement the
17 //! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light
18 //! clients, such that transactions spending those outputs are included in block data.
20 //! [`ChainMonitor`] may be used directly to monitor channels locally or as a part of a distributed
21 //! setup to monitor channels remotely. In the latter case, a custom [`chain::Watch`] implementation
22 //! would be responsible for routing each update to a remote server and for retrieving monitor
23 //! events. The remote server would make use of [`ChainMonitor`] for block processing and for
24 //! servicing [`ChannelMonitor`] updates from the client.
26 use bitcoin::blockdata::block::BlockHeader;
27 use bitcoin::hash_types::Txid;
30 use chain::{ChannelMonitorUpdateErr, Filter, WatchedOutput};
31 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
32 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, Balance, MonitorEvent, TransactionOutputs, LATENCY_GRACE_PERIOD_BLOCKS};
33 use chain::transaction::{OutPoint, TransactionData};
34 use chain::keysinterface::Sign;
35 use util::atomic_counter::AtomicCounter;
36 use util::logger::Logger;
37 use util::errors::APIError;
39 use util::events::EventHandler;
40 use ln::channelmanager::ChannelDetails;
43 use sync::{RwLock, RwLockReadGuard, Mutex, MutexGuard};
45 use core::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
47 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
48 /// A specific update's ID stored in a `MonitorUpdateId`, separated out to make the contents
51 /// An update that was generated by the `ChannelManager` (via our `chain::Watch`
52 /// implementation). This corresponds to an actual [`ChannelMonitorUpdate::update_id`] field
53 /// and [`ChannelMonitor::get_latest_update_id`].
55 /// An update that was generated during blockchain processing. The ID here is specific to the
56 /// generating [`ChainMonitor`] and does *not* correspond to any on-disk IDs.
60 /// An opaque identifier describing a specific [`Persist`] method call.
61 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
62 pub struct MonitorUpdateId {
63 contents: UpdateOrigin,
66 impl MonitorUpdateId {
67 pub(crate) fn from_monitor_update(update: &ChannelMonitorUpdate) -> Self {
68 Self { contents: UpdateOrigin::OffChain(update.update_id) }
70 pub(crate) fn from_new_monitor<ChannelSigner: Sign>(monitor: &ChannelMonitor<ChannelSigner>) -> Self {
71 Self { contents: UpdateOrigin::OffChain(monitor.get_latest_update_id()) }
75 /// `Persist` defines behavior for persisting channel monitors: this could mean
76 /// writing once to disk, and/or uploading to one or more backup services.
78 /// Each method can return three possible values:
79 /// * If persistence (including any relevant `fsync()` calls) happens immediately, the
80 /// implementation should return `Ok(())`, indicating normal channel operation should continue.
81 /// * If persistence happens asynchronously, implementations should first ensure the
82 /// [`ChannelMonitor`] or [`ChannelMonitorUpdate`] are written durably to disk, and then return
83 /// `Err(ChannelMonitorUpdateErr::TemporaryFailure)` while the update continues in the
84 /// background. Once the update completes, [`ChainMonitor::channel_monitor_updated`] should be
85 /// called with the corresponding [`MonitorUpdateId`].
87 /// Note that unlike the direct [`chain::Watch`] interface,
88 /// [`ChainMonitor::channel_monitor_updated`] must be called once for *each* update which occurs.
90 /// * If persistence fails for some reason, implementations should return
91 /// `Err(ChannelMonitorUpdateErr::PermanentFailure)`, in which case the channel will likely be
92 /// closed without broadcasting the latest state. See
93 /// [`ChannelMonitorUpdateErr::PermanentFailure`] for more details.
94 pub trait Persist<ChannelSigner: Sign> {
95 /// Persist a new channel's data in response to a [`chain::Watch::watch_channel`] call. This is
96 /// called by [`ChannelManager`] for new channels, or may be called directly, e.g. on startup.
98 /// The data can be stored any way you want, but the identifier provided by LDK is the
99 /// channel's outpoint (and it is up to you to maintain a correct mapping between the outpoint
100 /// and the stored channel data). Note that you **must** persist every new monitor to disk.
102 /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
103 /// if you return [`ChannelMonitorUpdateErr::TemporaryFailure`].
105 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`
106 /// and [`ChannelMonitorUpdateErr`] for requirements when returning errors.
108 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
109 /// [`Writeable::write`]: crate::util::ser::Writeable::write
110 fn persist_new_channel(&self, channel_id: OutPoint, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> Result<(), ChannelMonitorUpdateErr>;
112 /// Update one channel's data. The provided [`ChannelMonitor`] has already applied the given
115 /// Note that on every update, you **must** persist either the [`ChannelMonitorUpdate`] or the
116 /// updated monitor itself to disk/backups. See the [`Persist`] trait documentation for more
119 /// During blockchain synchronization operations, this may be called with no
120 /// [`ChannelMonitorUpdate`], in which case the full [`ChannelMonitor`] needs to be persisted.
121 /// Note that after the full [`ChannelMonitor`] is persisted any previous
122 /// [`ChannelMonitorUpdate`]s which were persisted should be discarded - they can no longer be
123 /// applied to the persisted [`ChannelMonitor`] as they were already applied.
125 /// If an implementer chooses to persist the updates only, they need to make
126 /// sure that all the updates are applied to the `ChannelMonitors` *before*
127 /// the set of channel monitors is given to the `ChannelManager`
128 /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
129 /// applying a monitor update to a monitor. If full `ChannelMonitors` are
130 /// persisted, then there is no need to persist individual updates.
132 /// Note that there could be a performance tradeoff between persisting complete
133 /// channel monitors on every update vs. persisting only updates and applying
134 /// them in batches. The size of each monitor grows `O(number of state updates)`
135 /// whereas updates are small and `O(1)`.
137 /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
138 /// if you return [`ChannelMonitorUpdateErr::TemporaryFailure`].
140 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`,
141 /// [`Writeable::write`] on [`ChannelMonitorUpdate`] for writing out an update, and
142 /// [`ChannelMonitorUpdateErr`] for requirements when returning errors.
144 /// [`Writeable::write`]: crate::util::ser::Writeable::write
145 fn update_persisted_channel(&self, channel_id: OutPoint, update: &Option<ChannelMonitorUpdate>, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> Result<(), ChannelMonitorUpdateErr>;
148 struct MonitorHolder<ChannelSigner: Sign> {
149 monitor: ChannelMonitor<ChannelSigner>,
150 /// The full set of pending monitor updates for this Channel.
152 /// Note that this lock must be held during updates to prevent a race where we call
153 /// update_persisted_channel, the user returns a TemporaryFailure, and then calls
154 /// channel_monitor_updated immediately, racing our insertion of the pending update into the
157 /// Beyond the synchronization of updates themselves, we cannot handle user events until after
158 /// any chain updates have been stored on disk. Thus, we scan this list when returning updates
159 /// to the ChannelManager, refusing to return any updates for a ChannelMonitor which is still
160 /// being persisted fully to disk after a chain update.
162 /// This avoids the possibility of handling, e.g. an on-chain claim, generating a claim monitor
163 /// event, resulting in the relevant ChannelManager generating a PaymentSent event and dropping
164 /// the pending payment entry, and then reloading before the monitor is persisted, resulting in
165 /// the ChannelManager re-adding the same payment entry, before the same block is replayed,
166 /// resulting in a duplicate PaymentSent event.
167 pending_monitor_updates: Mutex<Vec<MonitorUpdateId>>,
168 /// When the user returns a PermanentFailure error from an update_persisted_channel call during
169 /// block processing, we inform the ChannelManager that the channel should be closed
170 /// asynchronously. In order to ensure no further changes happen before the ChannelManager has
171 /// processed the closure event, we set this to true and return PermanentFailure for any other
172 /// chain::Watch events.
173 channel_perm_failed: AtomicBool,
174 /// The last block height at which no [`UpdateOrigin::ChainSync`] monitor updates were present
175 /// in `pending_monitor_updates`.
176 /// If it's been more than [`LATENCY_GRACE_PERIOD_BLOCKS`] since we started waiting on a chain
177 /// sync event, we let monitor events return to `ChannelManager` because we cannot hold them up
178 /// forever or we'll end up with HTLC preimages waiting to feed back into an upstream channel
179 /// forever, risking funds loss.
180 last_chain_persist_height: AtomicUsize,
183 impl<ChannelSigner: Sign> MonitorHolder<ChannelSigner> {
184 fn has_pending_offchain_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
185 pending_monitor_updates_lock.iter().any(|update_id|
186 if let UpdateOrigin::OffChain(_) = update_id.contents { true } else { false })
188 fn has_pending_chainsync_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
189 pending_monitor_updates_lock.iter().any(|update_id|
190 if let UpdateOrigin::ChainSync(_) = update_id.contents { true } else { false })
194 /// A read-only reference to a current ChannelMonitor.
196 /// Note that this holds a mutex in [`ChainMonitor`] and may block other events until it is
198 pub struct LockedChannelMonitor<'a, ChannelSigner: Sign> {
199 lock: RwLockReadGuard<'a, HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
200 funding_txo: OutPoint,
203 impl<ChannelSigner: Sign> Deref for LockedChannelMonitor<'_, ChannelSigner> {
204 type Target = ChannelMonitor<ChannelSigner>;
205 fn deref(&self) -> &ChannelMonitor<ChannelSigner> {
206 &self.lock.get(&self.funding_txo).expect("Checked at construction").monitor
210 /// An implementation of [`chain::Watch`] for monitoring channels.
212 /// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
213 /// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
214 /// or used independently to monitor channels remotely. See the [module-level documentation] for
217 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
218 /// [module-level documentation]: crate::chain::chainmonitor
219 pub struct ChainMonitor<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
220 where C::Target: chain::Filter,
221 T::Target: BroadcasterInterface,
222 F::Target: FeeEstimator,
224 P::Target: Persist<ChannelSigner>,
226 monitors: RwLock<HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
227 /// When we generate a [`MonitorUpdateId`] for a chain-event monitor persistence, we need a
228 /// unique ID, which we calculate by simply getting the next value from this counter. Note that
229 /// the ID is never persisted so it's ok that they reset on restart.
230 sync_persistence_id: AtomicCounter,
231 chain_source: Option<C>,
236 /// "User-provided" (ie persistence-completion/-failed) [`MonitorEvent`]s. These came directly
237 /// from the user and not from a [`ChannelMonitor`].
238 pending_monitor_events: Mutex<Vec<(OutPoint, Vec<MonitorEvent>)>>,
239 /// The best block height seen, used as a proxy for the passage of time.
240 highest_chain_height: AtomicUsize,
243 impl<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> ChainMonitor<ChannelSigner, C, T, F, L, P>
244 where C::Target: chain::Filter,
245 T::Target: BroadcasterInterface,
246 F::Target: FeeEstimator,
248 P::Target: Persist<ChannelSigner>,
250 /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view
251 /// of a channel and reacting accordingly based on transactions in the given chain data. See
252 /// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
253 /// be returned by [`chain::Watch::release_pending_monitor_events`].
255 /// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
256 /// calls must not exclude any transactions matching the new outputs nor any in-block
257 /// descendants of such transactions. It is not necessary to re-fetch the block to obtain
258 /// updated `txdata`.
260 /// Calls which represent a new blockchain tip height should set `best_height`.
261 fn process_chain_data<FN>(&self, header: &BlockHeader, best_height: Option<u32>, txdata: &TransactionData, process: FN)
263 FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs>
265 let mut dependent_txdata = Vec::new();
267 let monitor_states = self.monitors.write().unwrap();
268 if let Some(height) = best_height {
269 // If the best block height is being updated, update highest_chain_height under the
270 // monitors write lock.
271 let old_height = self.highest_chain_height.load(Ordering::Acquire);
272 let new_height = height as usize;
273 if new_height > old_height {
274 self.highest_chain_height.store(new_height, Ordering::Release);
278 for (funding_outpoint, monitor_state) in monitor_states.iter() {
279 let monitor = &monitor_state.monitor;
282 txn_outputs = process(monitor, txdata);
283 let update_id = MonitorUpdateId {
284 contents: UpdateOrigin::ChainSync(self.sync_persistence_id.get_increment()),
286 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
287 if let Some(height) = best_height {
288 if !monitor_state.has_pending_chainsync_updates(&pending_monitor_updates) {
289 // If there are not ChainSync persists awaiting completion, go ahead and
290 // set last_chain_persist_height here - we wouldn't want the first
291 // TemporaryFailure to always immediately be considered "overly delayed".
292 monitor_state.last_chain_persist_height.store(height as usize, Ordering::Release);
296 log_trace!(self.logger, "Syncing Channel Monitor for channel {}", log_funding_info!(monitor));
297 match self.persister.update_persisted_channel(*funding_outpoint, &None, monitor, update_id) {
299 log_trace!(self.logger, "Finished syncing Channel Monitor for channel {}", log_funding_info!(monitor)),
300 Err(ChannelMonitorUpdateErr::PermanentFailure) => {
301 monitor_state.channel_perm_failed.store(true, Ordering::Release);
302 self.pending_monitor_events.lock().unwrap().push((*funding_outpoint, vec![MonitorEvent::UpdateFailed(*funding_outpoint)]));
304 Err(ChannelMonitorUpdateErr::TemporaryFailure) => {
305 log_debug!(self.logger, "Channel Monitor sync for channel {} in progress, holding events until completion!", log_funding_info!(monitor));
306 pending_monitor_updates.push(update_id);
311 // Register any new outputs with the chain source for filtering, storing any dependent
312 // transactions from within the block that previously had not been included in txdata.
313 if let Some(ref chain_source) = self.chain_source {
314 let block_hash = header.block_hash();
315 for (txid, mut outputs) in txn_outputs.drain(..) {
316 for (idx, output) in outputs.drain(..) {
317 // Register any new outputs with the chain source for filtering and recurse
318 // if it indicates that there are dependent transactions within the block
319 // that had not been previously included in txdata.
320 let output = WatchedOutput {
321 block_hash: Some(block_hash),
322 outpoint: OutPoint { txid, index: idx as u16 },
323 script_pubkey: output.script_pubkey,
325 if let Some(tx) = chain_source.register_output(output) {
326 dependent_txdata.push(tx);
334 // Recursively call for any dependent transactions that were identified by the chain source.
335 if !dependent_txdata.is_empty() {
336 dependent_txdata.sort_unstable_by_key(|(index, _tx)| *index);
337 dependent_txdata.dedup_by_key(|(index, _tx)| *index);
338 let txdata: Vec<_> = dependent_txdata.iter().map(|(index, tx)| (*index, tx)).collect();
339 self.process_chain_data(header, None, &txdata, process); // We skip the best height the second go-around
343 /// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
345 /// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
346 /// will call back to it indicating transactions and outputs of interest. This allows clients to
347 /// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
348 /// always need to fetch full blocks absent another means for determining which blocks contain
349 /// transactions relevant to the watched channels.
350 pub fn new(chain_source: Option<C>, broadcaster: T, logger: L, feeest: F, persister: P) -> Self {
352 monitors: RwLock::new(HashMap::new()),
353 sync_persistence_id: AtomicCounter::new(),
357 fee_estimator: feeest,
359 pending_monitor_events: Mutex::new(Vec::new()),
360 highest_chain_height: AtomicUsize::new(0),
364 /// Gets the balances in the contained [`ChannelMonitor`]s which are claimable on-chain or
365 /// claims which are awaiting confirmation.
367 /// Includes the balances from each [`ChannelMonitor`] *except* those included in
368 /// `ignored_channels`, allowing you to filter out balances from channels which are still open
369 /// (and whose balance should likely be pulled from the [`ChannelDetails`]).
371 /// See [`ChannelMonitor::get_claimable_balances`] for more details on the exact criteria for
372 /// inclusion in the return value.
373 pub fn get_claimable_balances(&self, ignored_channels: &[&ChannelDetails]) -> Vec<Balance> {
374 let mut ret = Vec::new();
375 let monitor_states = self.monitors.read().unwrap();
376 for (_, monitor_state) in monitor_states.iter().filter(|(funding_outpoint, _)| {
377 for chan in ignored_channels {
378 if chan.funding_txo.as_ref() == Some(funding_outpoint) {
384 ret.append(&mut monitor_state.monitor.get_claimable_balances());
389 /// Gets the [`LockedChannelMonitor`] for a given funding outpoint, returning an `Err` if no
390 /// such [`ChannelMonitor`] is currently being monitored for.
392 /// Note that the result holds a mutex over our monitor set, and should not be held
394 pub fn get_monitor(&self, funding_txo: OutPoint) -> Result<LockedChannelMonitor<'_, ChannelSigner>, ()> {
395 let lock = self.monitors.read().unwrap();
396 if lock.get(&funding_txo).is_some() {
397 Ok(LockedChannelMonitor { lock, funding_txo })
403 /// Lists the funding outpoint of each [`ChannelMonitor`] being monitored.
405 /// Note that [`ChannelMonitor`]s are not removed when a channel is closed as they are always
406 /// monitoring for on-chain state resolutions.
407 pub fn list_monitors(&self) -> Vec<OutPoint> {
408 self.monitors.read().unwrap().keys().map(|outpoint| *outpoint).collect()
412 pub fn remove_monitor(&self, funding_txo: &OutPoint) -> ChannelMonitor<ChannelSigner> {
413 self.monitors.write().unwrap().remove(funding_txo).unwrap().monitor
416 /// Indicates the persistence of a [`ChannelMonitor`] has completed after
417 /// [`ChannelMonitorUpdateErr::TemporaryFailure`] was returned from an update operation.
419 /// Thus, the anticipated use is, at a high level:
420 /// 1) This [`ChainMonitor`] calls [`Persist::update_persisted_channel`] which stores the
421 /// update to disk and begins updating any remote (e.g. watchtower/backup) copies,
422 /// returning [`ChannelMonitorUpdateErr::TemporaryFailure`],
423 /// 2) once all remote copies are updated, you call this function with the
424 /// `completed_update_id` that completed, and once all pending updates have completed the
425 /// channel will be re-enabled.
426 // Note that we re-enable only after `UpdateOrigin::OffChain` updates complete, we don't
427 // care about `UpdateOrigin::ChainSync` updates for the channel state being updated. We
428 // only care about `UpdateOrigin::ChainSync` for returning `MonitorEvent`s.
430 /// Returns an [`APIError::APIMisuseError`] if `funding_txo` does not match any currently
431 /// registered [`ChannelMonitor`]s.
432 pub fn channel_monitor_updated(&self, funding_txo: OutPoint, completed_update_id: MonitorUpdateId) -> Result<(), APIError> {
433 let monitors = self.monitors.read().unwrap();
434 let monitor_data = if let Some(mon) = monitors.get(&funding_txo) { mon } else {
435 return Err(APIError::APIMisuseError { err: format!("No ChannelMonitor matching funding outpoint {:?} found", funding_txo) });
437 let mut pending_monitor_updates = monitor_data.pending_monitor_updates.lock().unwrap();
438 pending_monitor_updates.retain(|update_id| *update_id != completed_update_id);
440 match completed_update_id {
441 MonitorUpdateId { contents: UpdateOrigin::OffChain(_) } => {
442 // Note that we only check for `UpdateOrigin::OffChain` failures here - if
443 // we're being told that a `UpdateOrigin::OffChain` monitor update completed,
444 // we only care about ensuring we don't tell the `ChannelManager` to restore
445 // the channel to normal operation until all `UpdateOrigin::OffChain` updates
447 // If there's some `UpdateOrigin::ChainSync` update still pending that's okay
448 // - we can still update our channel state, just as long as we don't return
449 // `MonitorEvent`s from the monitor back to the `ChannelManager` until they
451 let monitor_is_pending_updates = monitor_data.has_pending_offchain_updates(&pending_monitor_updates);
452 if monitor_is_pending_updates || monitor_data.channel_perm_failed.load(Ordering::Acquire) {
453 // If there are still monitor updates pending (or an old monitor update
454 // finished after a later one perm-failed), we cannot yet construct an
455 // UpdateCompleted event.
458 self.pending_monitor_events.lock().unwrap().push((funding_txo, vec![MonitorEvent::UpdateCompleted {
460 monitor_update_id: monitor_data.monitor.get_latest_update_id(),
463 MonitorUpdateId { contents: UpdateOrigin::ChainSync(_) } => {
464 if !monitor_data.has_pending_chainsync_updates(&pending_monitor_updates) {
465 monitor_data.last_chain_persist_height.store(self.highest_chain_height.load(Ordering::Acquire), Ordering::Release);
466 // The next time release_pending_monitor_events is called, any events for this
467 // ChannelMonitor will be returned.
474 /// This wrapper avoids having to update some of our tests for now as they assume the direct
475 /// chain::Watch API wherein we mark a monitor fully-updated by just calling
476 /// channel_monitor_updated once with the highest ID.
477 #[cfg(any(test, fuzzing))]
478 pub fn force_channel_monitor_updated(&self, funding_txo: OutPoint, monitor_update_id: u64) {
479 self.pending_monitor_events.lock().unwrap().push((funding_txo, vec![MonitorEvent::UpdateCompleted {
485 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
486 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
487 use util::events::EventsProvider;
488 let events = core::cell::RefCell::new(Vec::new());
489 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
490 self.process_pending_events(&event_handler);
495 impl<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
496 chain::Listen for ChainMonitor<ChannelSigner, C, T, F, L, P>
498 C::Target: chain::Filter,
499 T::Target: BroadcasterInterface,
500 F::Target: FeeEstimator,
502 P::Target: Persist<ChannelSigner>,
504 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
505 log_debug!(self.logger, "New best block {} at height {} provided via block_connected", header.block_hash(), height);
506 self.process_chain_data(header, Some(height), &txdata, |monitor, txdata| {
507 monitor.block_connected(
508 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
512 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
513 let monitor_states = self.monitors.read().unwrap();
514 log_debug!(self.logger, "Latest block {} at height {} removed via block_disconnected", header.block_hash(), height);
515 for monitor_state in monitor_states.values() {
516 monitor_state.monitor.block_disconnected(
517 header, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
522 impl<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
523 chain::Confirm for ChainMonitor<ChannelSigner, C, T, F, L, P>
525 C::Target: chain::Filter,
526 T::Target: BroadcasterInterface,
527 F::Target: FeeEstimator,
529 P::Target: Persist<ChannelSigner>,
531 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
532 log_debug!(self.logger, "{} provided transactions confirmed at height {} in block {}", txdata.len(), height, header.block_hash());
533 self.process_chain_data(header, None, txdata, |monitor, txdata| {
534 monitor.transactions_confirmed(
535 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
539 fn transaction_unconfirmed(&self, txid: &Txid) {
540 log_debug!(self.logger, "Transaction {} reorganized out of chain", txid);
541 let monitor_states = self.monitors.read().unwrap();
542 for monitor_state in monitor_states.values() {
543 monitor_state.monitor.transaction_unconfirmed(txid, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
547 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
548 log_debug!(self.logger, "New best block {} at height {} provided via best_block_updated", header.block_hash(), height);
549 self.process_chain_data(header, Some(height), &[], |monitor, txdata| {
550 // While in practice there shouldn't be any recursive calls when given empty txdata,
551 // it's still possible if a chain::Filter implementation returns a transaction.
552 debug_assert!(txdata.is_empty());
553 monitor.best_block_updated(
554 header, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
558 fn get_relevant_txids(&self) -> Vec<Txid> {
559 let mut txids = Vec::new();
560 let monitor_states = self.monitors.read().unwrap();
561 for monitor_state in monitor_states.values() {
562 txids.append(&mut monitor_state.monitor.get_relevant_txids());
565 txids.sort_unstable();
571 impl<ChannelSigner: Sign, C: Deref , T: Deref , F: Deref , L: Deref , P: Deref >
572 chain::Watch<ChannelSigner> for ChainMonitor<ChannelSigner, C, T, F, L, P>
573 where C::Target: chain::Filter,
574 T::Target: BroadcasterInterface,
575 F::Target: FeeEstimator,
577 P::Target: Persist<ChannelSigner>,
579 /// Adds the monitor that watches the channel referred to by the given outpoint.
581 /// Calls back to [`chain::Filter`] with the funding transaction and outputs to watch.
583 /// Note that we persist the given `ChannelMonitor` while holding the `ChainMonitor`
585 fn watch_channel(&self, funding_outpoint: OutPoint, monitor: ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr> {
586 let mut monitors = self.monitors.write().unwrap();
587 let entry = match monitors.entry(funding_outpoint) {
588 hash_map::Entry::Occupied(_) => {
589 log_error!(self.logger, "Failed to add new channel data: channel monitor for given outpoint is already present");
590 return Err(ChannelMonitorUpdateErr::PermanentFailure)},
591 hash_map::Entry::Vacant(e) => e,
593 log_trace!(self.logger, "Got new ChannelMonitor for channel {}", log_funding_info!(monitor));
594 let update_id = MonitorUpdateId::from_new_monitor(&monitor);
595 let mut pending_monitor_updates = Vec::new();
596 let persist_res = self.persister.persist_new_channel(funding_outpoint, &monitor, update_id);
597 if persist_res.is_err() {
598 log_error!(self.logger, "Failed to persist new ChannelMonitor for channel {}: {:?}", log_funding_info!(monitor), persist_res);
600 log_trace!(self.logger, "Finished persisting new ChannelMonitor for channel {}", log_funding_info!(monitor));
602 if persist_res == Err(ChannelMonitorUpdateErr::PermanentFailure) {
604 } else if persist_res.is_err() {
605 pending_monitor_updates.push(update_id);
607 if let Some(ref chain_source) = self.chain_source {
608 monitor.load_outputs_to_watch(chain_source);
610 entry.insert(MonitorHolder {
612 pending_monitor_updates: Mutex::new(pending_monitor_updates),
613 channel_perm_failed: AtomicBool::new(false),
614 last_chain_persist_height: AtomicUsize::new(self.highest_chain_height.load(Ordering::Acquire)),
619 /// Note that we persist the given `ChannelMonitor` update while holding the
620 /// `ChainMonitor` monitors lock.
621 fn update_channel(&self, funding_txo: OutPoint, update: ChannelMonitorUpdate) -> Result<(), ChannelMonitorUpdateErr> {
622 // Update the monitor that watches the channel referred to by the given outpoint.
623 let monitors = self.monitors.read().unwrap();
624 match monitors.get(&funding_txo) {
626 log_error!(self.logger, "Failed to update channel monitor: no such monitor registered");
628 // We should never ever trigger this from within ChannelManager. Technically a
629 // user could use this object with some proxying in between which makes this
630 // possible, but in tests and fuzzing, this should be a panic.
631 #[cfg(any(test, fuzzing))]
632 panic!("ChannelManager generated a channel update for a channel that was not yet registered!");
633 #[cfg(not(any(test, fuzzing)))]
634 Err(ChannelMonitorUpdateErr::PermanentFailure)
636 Some(monitor_state) => {
637 let monitor = &monitor_state.monitor;
638 log_trace!(self.logger, "Updating ChannelMonitor for channel {}", log_funding_info!(monitor));
639 let update_res = monitor.update_monitor(&update, &self.broadcaster, &*self.fee_estimator, &self.logger);
640 if update_res.is_err() {
641 log_error!(self.logger, "Failed to update ChannelMonitor for channel {}.", log_funding_info!(monitor));
643 // Even if updating the monitor returns an error, the monitor's state will
644 // still be changed. So, persist the updated monitor despite the error.
645 let update_id = MonitorUpdateId::from_monitor_update(&update);
646 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
647 let persist_res = self.persister.update_persisted_channel(funding_txo, &Some(update), monitor, update_id);
648 if let Err(e) = persist_res {
649 if e == ChannelMonitorUpdateErr::TemporaryFailure {
650 pending_monitor_updates.push(update_id);
652 monitor_state.channel_perm_failed.store(true, Ordering::Release);
654 log_error!(self.logger, "Failed to persist ChannelMonitor update for channel {}: {:?}", log_funding_info!(monitor), e);
656 log_trace!(self.logger, "Finished persisting ChannelMonitor update for channel {}", log_funding_info!(monitor));
658 if update_res.is_err() {
659 Err(ChannelMonitorUpdateErr::PermanentFailure)
660 } else if monitor_state.channel_perm_failed.load(Ordering::Acquire) {
661 Err(ChannelMonitorUpdateErr::PermanentFailure)
669 fn release_pending_monitor_events(&self) -> Vec<(OutPoint, Vec<MonitorEvent>)> {
670 let mut pending_monitor_events = self.pending_monitor_events.lock().unwrap().split_off(0);
671 for monitor_state in self.monitors.read().unwrap().values() {
672 let is_pending_monitor_update = monitor_state.has_pending_chainsync_updates(&monitor_state.pending_monitor_updates.lock().unwrap());
673 if is_pending_monitor_update &&
674 monitor_state.last_chain_persist_height.load(Ordering::Acquire) + LATENCY_GRACE_PERIOD_BLOCKS as usize
675 > self.highest_chain_height.load(Ordering::Acquire)
677 log_info!(self.logger, "A Channel Monitor sync is still in progress, refusing to provide monitor events!");
679 if monitor_state.channel_perm_failed.load(Ordering::Acquire) {
680 // If a `UpdateOrigin::ChainSync` persistence failed with `PermanantFailure`,
681 // we don't really know if the latest `ChannelMonitor` state is on disk or not.
682 // We're supposed to hold monitor updates until the latest state is on disk to
683 // avoid duplicate events, but the user told us persistence is screw-y and may
684 // not complete. We can't hold events forever because we may learn some payment
685 // preimage, so instead we just log and hope the user complied with the
686 // `PermanentFailure` requirements of having at least the local-disk copy
688 log_info!(self.logger, "A Channel Monitor sync returned PermanentFailure. Returning monitor events but duplicate events may appear after reload!");
690 if is_pending_monitor_update {
691 log_error!(self.logger, "A ChannelMonitor sync took longer than {} blocks to complete.", LATENCY_GRACE_PERIOD_BLOCKS);
692 log_error!(self.logger, " To avoid funds-loss, we are allowing monitor updates to be released.");
693 log_error!(self.logger, " This may cause duplicate payment events to be generated.");
695 let monitor_events = monitor_state.monitor.get_and_clear_pending_monitor_events();
696 if monitor_events.len() > 0 {
697 let monitor_outpoint = monitor_state.monitor.get_funding_txo().0;
698 pending_monitor_events.push((monitor_outpoint, monitor_events));
702 pending_monitor_events
706 impl<ChannelSigner: Sign, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> events::EventsProvider for ChainMonitor<ChannelSigner, C, T, F, L, P>
707 where C::Target: chain::Filter,
708 T::Target: BroadcasterInterface,
709 F::Target: FeeEstimator,
711 P::Target: Persist<ChannelSigner>,
713 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
715 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
716 /// order to handle these events.
718 /// [`SpendableOutputs`]: events::Event::SpendableOutputs
719 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
720 let mut pending_events = Vec::new();
721 for monitor_state in self.monitors.read().unwrap().values() {
722 pending_events.append(&mut monitor_state.monitor.get_and_clear_pending_events());
724 for event in pending_events.drain(..) {
725 handler.handle_event(&event);
732 use bitcoin::BlockHeader;
733 use ::{check_added_monitors, check_closed_broadcast, check_closed_event};
734 use ::{expect_payment_sent, expect_payment_claimed, expect_payment_sent_without_paths, expect_payment_path_successful, get_event_msg};
735 use ::{get_htlc_update_msgs, get_local_commitment_txn, get_revoke_commit_msgs, get_route_and_payment_hash, unwrap_send_err};
736 use chain::{ChannelMonitorUpdateErr, Confirm, Watch};
737 use chain::channelmonitor::LATENCY_GRACE_PERIOD_BLOCKS;
738 use ln::channelmanager::PaymentSendFailure;
739 use ln::features::InitFeatures;
740 use ln::functional_test_utils::*;
741 use ln::msgs::ChannelMessageHandler;
742 use util::errors::APIError;
743 use util::events::{ClosureReason, MessageSendEvent, MessageSendEventsProvider};
744 use util::test_utils::{OnRegisterOutput, TxOutReference};
746 /// Tests that in-block dependent transactions are processed by `block_connected` when not
747 /// included in `txdata` but returned by [`chain::Filter::register_output`]. For instance,
748 /// a (non-anchor) commitment transaction's HTLC output may be spent in the same block as the
749 /// commitment transaction itself. An Electrum client may filter the commitment transaction but
750 /// needs to return the HTLC transaction so it can be processed.
752 fn connect_block_checks_dependent_transactions() {
753 let chanmon_cfgs = create_chanmon_cfgs(2);
754 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
755 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
756 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
757 let channel = create_announced_chan_between_nodes(
758 &nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
760 // Send a payment, saving nodes[0]'s revoked commitment and HTLC-Timeout transactions.
761 let (commitment_tx, htlc_tx) = {
762 let payment_preimage = route_payment(&nodes[0], &vec!(&nodes[1])[..], 5_000_000).0;
763 let mut txn = get_local_commitment_txn!(nodes[0], channel.2);
764 claim_payment(&nodes[0], &vec!(&nodes[1])[..], payment_preimage);
766 assert_eq!(txn.len(), 2);
767 (txn.remove(0), txn.remove(0))
770 // Set expectations on nodes[1]'s chain source to return dependent transactions.
771 let htlc_output = TxOutReference(commitment_tx.clone(), 0);
772 let to_local_output = TxOutReference(commitment_tx.clone(), 1);
773 let htlc_timeout_output = TxOutReference(htlc_tx.clone(), 0);
774 nodes[1].chain_source
775 .expect(OnRegisterOutput { with: htlc_output, returns: Some((1, htlc_tx)) })
776 .expect(OnRegisterOutput { with: to_local_output, returns: None })
777 .expect(OnRegisterOutput { with: htlc_timeout_output, returns: None });
779 // Notify nodes[1] that nodes[0]'s revoked commitment transaction was mined. The chain
780 // source should return the dependent HTLC transaction when the HTLC output is registered.
781 mine_transaction(&nodes[1], &commitment_tx);
783 // Clean up so uninteresting assertions don't fail.
784 check_added_monitors!(nodes[1], 1);
785 nodes[1].node.get_and_clear_pending_msg_events();
786 nodes[1].node.get_and_clear_pending_events();
790 fn test_async_ooo_offchain_updates() {
791 // Test that if we have multiple offchain updates being persisted and they complete
792 // out-of-order, the ChainMonitor waits until all have completed before informing the
794 let chanmon_cfgs = create_chanmon_cfgs(2);
795 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
796 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
797 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
798 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
800 // Route two payments to be claimed at the same time.
801 let (payment_preimage_1, payment_hash_1, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
802 let (payment_preimage_2, payment_hash_2, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
804 chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clear();
805 chanmon_cfgs[1].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
807 nodes[1].node.claim_funds(payment_preimage_1);
808 check_added_monitors!(nodes[1], 1);
809 expect_payment_claimed!(nodes[1], payment_hash_1, 1_000_000);
810 nodes[1].node.claim_funds(payment_preimage_2);
811 check_added_monitors!(nodes[1], 1);
812 expect_payment_claimed!(nodes[1], payment_hash_2, 1_000_000);
814 chanmon_cfgs[1].persister.set_update_ret(Ok(()));
816 let persistences = chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clone();
817 assert_eq!(persistences.len(), 1);
818 let (funding_txo, updates) = persistences.iter().next().unwrap();
819 assert_eq!(updates.len(), 2);
821 // Note that updates is a HashMap so the ordering here is actually random. This shouldn't
822 // fail either way but if it fails intermittently it's depending on the ordering of updates.
823 let mut update_iter = updates.iter();
824 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, update_iter.next().unwrap().clone()).unwrap();
825 assert!(nodes[1].chain_monitor.release_pending_monitor_events().is_empty());
826 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
827 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, update_iter.next().unwrap().clone()).unwrap();
829 // Now manually walk the commitment signed dance - because we claimed two payments
830 // back-to-back it doesn't fit into the neat walk commitment_signed_dance does.
832 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
833 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
834 expect_payment_sent_without_paths!(nodes[0], payment_preimage_1);
835 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
836 check_added_monitors!(nodes[0], 1);
837 let (as_first_raa, as_first_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
839 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
840 check_added_monitors!(nodes[1], 1);
841 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
842 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_update);
843 check_added_monitors!(nodes[1], 1);
844 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
846 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
847 expect_payment_sent_without_paths!(nodes[0], payment_preimage_2);
848 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
849 check_added_monitors!(nodes[0], 1);
850 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
851 expect_payment_path_successful!(nodes[0]);
852 check_added_monitors!(nodes[0], 1);
853 let (as_second_raa, as_second_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
855 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
856 check_added_monitors!(nodes[1], 1);
857 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update);
858 check_added_monitors!(nodes[1], 1);
859 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
861 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
862 expect_payment_path_successful!(nodes[0]);
863 check_added_monitors!(nodes[0], 1);
866 fn do_chainsync_pauses_events(block_timeout: bool) {
867 // When a chainsync monitor update occurs, any MonitorUpdates should be held before being
868 // passed upstream to a `ChannelManager` via `Watch::release_pending_monitor_events`. This
869 // tests that behavior, as well as some ways it might go wrong.
870 let chanmon_cfgs = create_chanmon_cfgs(2);
871 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
872 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
873 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
874 let channel = create_announced_chan_between_nodes(
875 &nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
877 // Get a route for later and rebalance the channel somewhat
878 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
879 let (route, second_payment_hash, _, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
881 // First route a payment that we will claim on chain and give the recipient the preimage.
882 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
883 nodes[1].node.claim_funds(payment_preimage);
884 expect_payment_claimed!(nodes[1], payment_hash, 1_000_000);
885 nodes[1].node.get_and_clear_pending_msg_events();
886 check_added_monitors!(nodes[1], 1);
887 let remote_txn = get_local_commitment_txn!(nodes[1], channel.2);
888 assert_eq!(remote_txn.len(), 2);
890 // Temp-fail the block connection which will hold the channel-closed event
891 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
892 chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
894 // Connect B's commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
895 // channel is now closed, but the ChannelManager doesn't know that yet.
896 let new_header = BlockHeader {
897 version: 2, time: 0, bits: 0, nonce: 0,
898 prev_blockhash: nodes[0].best_block_info().0,
899 merkle_root: Default::default() };
900 nodes[0].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
901 &[(0, &remote_txn[0]), (1, &remote_txn[1])], nodes[0].best_block_info().1 + 1);
902 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
903 nodes[0].chain_monitor.chain_monitor.best_block_updated(&new_header, nodes[0].best_block_info().1 + 1);
904 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
906 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
907 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
908 chanmon_cfgs[0].persister.set_update_ret(Ok(()));
909 unwrap_send_err!(nodes[0].node.send_payment(&route, second_payment_hash, &Some(second_payment_secret)),
910 true, APIError::ChannelUnavailable { ref err },
911 assert!(err.contains("ChannelMonitor storage failure")));
912 check_added_monitors!(nodes[0], 2); // After the failure we generate a close-channel monitor update
913 check_closed_broadcast!(nodes[0], true);
914 check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: "ChannelMonitor storage failure".to_string() });
916 // However, as the ChainMonitor is still waiting for the original persistence to complete,
917 // it won't yet release the MonitorEvents.
918 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
921 // After three blocks, pending MontiorEvents should be released either way.
922 let latest_header = BlockHeader {
923 version: 2, time: 0, bits: 0, nonce: 0,
924 prev_blockhash: nodes[0].best_block_info().0,
925 merkle_root: Default::default() };
926 nodes[0].chain_monitor.chain_monitor.best_block_updated(&latest_header, nodes[0].best_block_info().1 + LATENCY_GRACE_PERIOD_BLOCKS);
928 let persistences = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clone();
929 for (funding_outpoint, update_ids) in persistences {
930 for update_id in update_ids {
931 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_outpoint, update_id).unwrap();
936 expect_payment_sent!(nodes[0], payment_preimage);
940 fn chainsync_pauses_events() {
941 do_chainsync_pauses_events(false);
942 do_chainsync_pauses_events(true);
946 fn update_during_chainsync_fails_channel() {
947 let chanmon_cfgs = create_chanmon_cfgs(2);
948 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
949 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
950 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
951 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
953 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
954 chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::PermanentFailure));
956 connect_blocks(&nodes[0], 1);
957 // Before processing events, the ChannelManager will still think the Channel is open and
958 // there won't be any ChannelMonitorUpdates
959 assert_eq!(nodes[0].node.list_channels().len(), 1);
960 check_added_monitors!(nodes[0], 0);
961 // ... however once we get events once, the channel will close, creating a channel-closed
962 // ChannelMonitorUpdate.
963 check_closed_broadcast!(nodes[0], true);
964 check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() });
965 check_added_monitors!(nodes[0], 1);