1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Logic to connect off-chain channel management with on-chain transaction monitoring.
12 //! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to
13 //! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will
14 //! make those available as [`MonitorEvent`]s to be consumed.
16 //! [`ChainMonitor`] is parameterized by an optional chain source, which must implement the
17 //! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light
18 //! clients, such that transactions spending those outputs are included in block data.
20 //! [`ChainMonitor`] may be used directly to monitor channels locally or as a part of a distributed
21 //! setup to monitor channels remotely. In the latter case, a custom [`chain::Watch`] implementation
22 //! would be responsible for routing each update to a remote server and for retrieving monitor
23 //! events. The remote server would make use of [`ChainMonitor`] for block processing and for
24 //! servicing [`ChannelMonitor`] updates from the client.
26 use bitcoin::blockdata::block::BlockHeader;
27 use bitcoin::hash_types::{Txid, BlockHash};
30 use crate::chain::{ChannelMonitorUpdateStatus, Filter, WatchedOutput};
31 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator};
32 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, Balance, MonitorEvent, TransactionOutputs, LATENCY_GRACE_PERIOD_BLOCKS};
33 use crate::chain::transaction::{OutPoint, TransactionData};
34 use crate::sign::WriteableEcdsaChannelSigner;
36 use crate::events::{Event, EventHandler};
37 use crate::util::atomic_counter::AtomicCounter;
38 use crate::util::logger::Logger;
39 use crate::util::errors::APIError;
40 use crate::util::wakers::{Future, Notifier};
41 use crate::ln::channelmanager::ChannelDetails;
43 use crate::prelude::*;
44 use crate::sync::{RwLock, RwLockReadGuard, Mutex, MutexGuard};
46 use core::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
47 use bitcoin::secp256k1::PublicKey;
49 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
50 /// A specific update's ID stored in a `MonitorUpdateId`, separated out to make the contents
53 /// An update that was generated by the `ChannelManager` (via our `chain::Watch`
54 /// implementation). This corresponds to an actual [`ChannelMonitorUpdate::update_id`] field
55 /// and [`ChannelMonitor::get_latest_update_id`].
57 /// An update that was generated during blockchain processing. The ID here is specific to the
58 /// generating [`ChainMonitor`] and does *not* correspond to any on-disk IDs.
62 /// An opaque identifier describing a specific [`Persist`] method call.
63 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
64 pub struct MonitorUpdateId {
65 contents: UpdateOrigin,
68 impl MonitorUpdateId {
69 pub(crate) fn from_monitor_update(update: &ChannelMonitorUpdate) -> Self {
70 Self { contents: UpdateOrigin::OffChain(update.update_id) }
72 pub(crate) fn from_new_monitor<ChannelSigner: WriteableEcdsaChannelSigner>(monitor: &ChannelMonitor<ChannelSigner>) -> Self {
73 Self { contents: UpdateOrigin::OffChain(monitor.get_latest_update_id()) }
77 /// `Persist` defines behavior for persisting channel monitors: this could mean
78 /// writing once to disk, and/or uploading to one or more backup services.
80 /// Each method can return three possible values:
81 /// * If persistence (including any relevant `fsync()` calls) happens immediately, the
82 /// implementation should return [`ChannelMonitorUpdateStatus::Completed`], indicating normal
83 /// channel operation should continue.
84 /// * If persistence happens asynchronously, implementations should first ensure the
85 /// [`ChannelMonitor`] or [`ChannelMonitorUpdate`] are written durably to disk, and then return
86 /// [`ChannelMonitorUpdateStatus::InProgress`] while the update continues in the background.
87 /// Once the update completes, [`ChainMonitor::channel_monitor_updated`] should be called with
88 /// the corresponding [`MonitorUpdateId`].
90 /// Note that unlike the direct [`chain::Watch`] interface,
91 /// [`ChainMonitor::channel_monitor_updated`] must be called once for *each* update which occurs.
93 /// * If persistence fails for some reason, implementations should return
94 /// [`ChannelMonitorUpdateStatus::PermanentFailure`], in which case the channel will likely be
95 /// closed without broadcasting the latest state. See
96 /// [`ChannelMonitorUpdateStatus::PermanentFailure`] for more details.
97 pub trait Persist<ChannelSigner: WriteableEcdsaChannelSigner> {
98 /// Persist a new channel's data in response to a [`chain::Watch::watch_channel`] call. This is
99 /// called by [`ChannelManager`] for new channels, or may be called directly, e.g. on startup.
101 /// The data can be stored any way you want, but the identifier provided by LDK is the
102 /// channel's outpoint (and it is up to you to maintain a correct mapping between the outpoint
103 /// and the stored channel data). Note that you **must** persist every new monitor to disk.
105 /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
106 /// if you return [`ChannelMonitorUpdateStatus::InProgress`].
108 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`
109 /// and [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
111 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
112 /// [`Writeable::write`]: crate::util::ser::Writeable::write
113 fn persist_new_channel(&self, channel_id: OutPoint, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> ChannelMonitorUpdateStatus;
115 /// Update one channel's data. The provided [`ChannelMonitor`] has already applied the given
118 /// Note that on every update, you **must** persist either the [`ChannelMonitorUpdate`] or the
119 /// updated monitor itself to disk/backups. See the [`Persist`] trait documentation for more
122 /// During blockchain synchronization operations, this may be called with no
123 /// [`ChannelMonitorUpdate`], in which case the full [`ChannelMonitor`] needs to be persisted.
124 /// Note that after the full [`ChannelMonitor`] is persisted any previous
125 /// [`ChannelMonitorUpdate`]s which were persisted should be discarded - they can no longer be
126 /// applied to the persisted [`ChannelMonitor`] as they were already applied.
128 /// If an implementer chooses to persist the updates only, they need to make
129 /// sure that all the updates are applied to the `ChannelMonitors` *before*
130 /// the set of channel monitors is given to the `ChannelManager`
131 /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
132 /// applying a monitor update to a monitor. If full `ChannelMonitors` are
133 /// persisted, then there is no need to persist individual updates.
135 /// Note that there could be a performance tradeoff between persisting complete
136 /// channel monitors on every update vs. persisting only updates and applying
137 /// them in batches. The size of each monitor grows `O(number of state updates)`
138 /// whereas updates are small and `O(1)`.
140 /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
141 /// if you return [`ChannelMonitorUpdateStatus::InProgress`].
143 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`,
144 /// [`Writeable::write`] on [`ChannelMonitorUpdate`] for writing out an update, and
145 /// [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
147 /// [`Writeable::write`]: crate::util::ser::Writeable::write
148 fn update_persisted_channel(&self, channel_id: OutPoint, update: Option<&ChannelMonitorUpdate>, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> ChannelMonitorUpdateStatus;
151 struct MonitorHolder<ChannelSigner: WriteableEcdsaChannelSigner> {
152 monitor: ChannelMonitor<ChannelSigner>,
153 /// The full set of pending monitor updates for this Channel.
155 /// Note that this lock must be held during updates to prevent a race where we call
156 /// update_persisted_channel, the user returns a
157 /// [`ChannelMonitorUpdateStatus::InProgress`], and then calls channel_monitor_updated
158 /// immediately, racing our insertion of the pending update into the contained Vec.
160 /// Beyond the synchronization of updates themselves, we cannot handle user events until after
161 /// any chain updates have been stored on disk. Thus, we scan this list when returning updates
162 /// to the ChannelManager, refusing to return any updates for a ChannelMonitor which is still
163 /// being persisted fully to disk after a chain update.
165 /// This avoids the possibility of handling, e.g. an on-chain claim, generating a claim monitor
166 /// event, resulting in the relevant ChannelManager generating a PaymentSent event and dropping
167 /// the pending payment entry, and then reloading before the monitor is persisted, resulting in
168 /// the ChannelManager re-adding the same payment entry, before the same block is replayed,
169 /// resulting in a duplicate PaymentSent event.
170 pending_monitor_updates: Mutex<Vec<MonitorUpdateId>>,
171 /// When the user returns a PermanentFailure error from an update_persisted_channel call during
172 /// block processing, we inform the ChannelManager that the channel should be closed
173 /// asynchronously. In order to ensure no further changes happen before the ChannelManager has
174 /// processed the closure event, we set this to true and return PermanentFailure for any other
175 /// chain::Watch events.
176 channel_perm_failed: AtomicBool,
177 /// The last block height at which no [`UpdateOrigin::ChainSync`] monitor updates were present
178 /// in `pending_monitor_updates`.
179 /// If it's been more than [`LATENCY_GRACE_PERIOD_BLOCKS`] since we started waiting on a chain
180 /// sync event, we let monitor events return to `ChannelManager` because we cannot hold them up
181 /// forever or we'll end up with HTLC preimages waiting to feed back into an upstream channel
182 /// forever, risking funds loss.
183 last_chain_persist_height: AtomicUsize,
186 impl<ChannelSigner: WriteableEcdsaChannelSigner> MonitorHolder<ChannelSigner> {
187 fn has_pending_offchain_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
188 pending_monitor_updates_lock.iter().any(|update_id|
189 if let UpdateOrigin::OffChain(_) = update_id.contents { true } else { false })
191 fn has_pending_chainsync_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
192 pending_monitor_updates_lock.iter().any(|update_id|
193 if let UpdateOrigin::ChainSync(_) = update_id.contents { true } else { false })
197 /// A read-only reference to a current ChannelMonitor.
199 /// Note that this holds a mutex in [`ChainMonitor`] and may block other events until it is
201 pub struct LockedChannelMonitor<'a, ChannelSigner: WriteableEcdsaChannelSigner> {
202 lock: RwLockReadGuard<'a, HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
203 funding_txo: OutPoint,
206 impl<ChannelSigner: WriteableEcdsaChannelSigner> Deref for LockedChannelMonitor<'_, ChannelSigner> {
207 type Target = ChannelMonitor<ChannelSigner>;
208 fn deref(&self) -> &ChannelMonitor<ChannelSigner> {
209 &self.lock.get(&self.funding_txo).expect("Checked at construction").monitor
213 /// An implementation of [`chain::Watch`] for monitoring channels.
215 /// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
216 /// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
217 /// or used independently to monitor channels remotely. See the [module-level documentation] for
220 /// Note that `ChainMonitor` should regularly trigger rebroadcasts/fee bumps of pending claims from
221 /// a force-closed channel. This is crucial in preventing certain classes of pinning attacks,
222 /// detecting substantial mempool feerate changes between blocks, and ensuring reliability if
223 /// broadcasting fails. We recommend invoking this every 30 seconds, or lower if running in an
224 /// environment with spotty connections, like on mobile.
226 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
227 /// [module-level documentation]: crate::chain::chainmonitor
228 /// [`rebroadcast_pending_claims`]: Self::rebroadcast_pending_claims
229 pub struct ChainMonitor<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
230 where C::Target: chain::Filter,
231 T::Target: BroadcasterInterface,
232 F::Target: FeeEstimator,
234 P::Target: Persist<ChannelSigner>,
236 monitors: RwLock<HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
237 /// When we generate a [`MonitorUpdateId`] for a chain-event monitor persistence, we need a
238 /// unique ID, which we calculate by simply getting the next value from this counter. Note that
239 /// the ID is never persisted so it's ok that they reset on restart.
240 sync_persistence_id: AtomicCounter,
241 chain_source: Option<C>,
246 /// "User-provided" (ie persistence-completion/-failed) [`MonitorEvent`]s. These came directly
247 /// from the user and not from a [`ChannelMonitor`].
248 pending_monitor_events: Mutex<Vec<(OutPoint, Vec<MonitorEvent>, Option<PublicKey>)>>,
249 /// The best block height seen, used as a proxy for the passage of time.
250 highest_chain_height: AtomicUsize,
252 event_notifier: Notifier,
255 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> ChainMonitor<ChannelSigner, C, T, F, L, P>
256 where C::Target: chain::Filter,
257 T::Target: BroadcasterInterface,
258 F::Target: FeeEstimator,
260 P::Target: Persist<ChannelSigner>,
262 /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view
263 /// of a channel and reacting accordingly based on transactions in the given chain data. See
264 /// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
265 /// be returned by [`chain::Watch::release_pending_monitor_events`].
267 /// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
268 /// calls must not exclude any transactions matching the new outputs nor any in-block
269 /// descendants of such transactions. It is not necessary to re-fetch the block to obtain
270 /// updated `txdata`.
272 /// Calls which represent a new blockchain tip height should set `best_height`.
273 fn process_chain_data<FN>(&self, header: &BlockHeader, best_height: Option<u32>, txdata: &TransactionData, process: FN)
275 FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs>
277 let monitor_states = self.monitors.write().unwrap();
278 if let Some(height) = best_height {
279 // If the best block height is being updated, update highest_chain_height under the
280 // monitors write lock.
281 let old_height = self.highest_chain_height.load(Ordering::Acquire);
282 let new_height = height as usize;
283 if new_height > old_height {
284 self.highest_chain_height.store(new_height, Ordering::Release);
288 for (funding_outpoint, monitor_state) in monitor_states.iter() {
289 let monitor = &monitor_state.monitor;
292 txn_outputs = process(monitor, txdata);
293 let update_id = MonitorUpdateId {
294 contents: UpdateOrigin::ChainSync(self.sync_persistence_id.get_increment()),
296 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
297 if let Some(height) = best_height {
298 if !monitor_state.has_pending_chainsync_updates(&pending_monitor_updates) {
299 // If there are not ChainSync persists awaiting completion, go ahead and
300 // set last_chain_persist_height here - we wouldn't want the first
301 // InProgress to always immediately be considered "overly delayed".
302 monitor_state.last_chain_persist_height.store(height as usize, Ordering::Release);
306 log_trace!(self.logger, "Syncing Channel Monitor for channel {}", log_funding_info!(monitor));
307 match self.persister.update_persisted_channel(*funding_outpoint, None, monitor, update_id) {
308 ChannelMonitorUpdateStatus::Completed =>
309 log_trace!(self.logger, "Finished syncing Channel Monitor for channel {}", log_funding_info!(monitor)),
310 ChannelMonitorUpdateStatus::PermanentFailure => {
311 monitor_state.channel_perm_failed.store(true, Ordering::Release);
312 self.pending_monitor_events.lock().unwrap().push((*funding_outpoint, vec![MonitorEvent::UpdateFailed(*funding_outpoint)], monitor.get_counterparty_node_id()));
313 self.event_notifier.notify();
315 ChannelMonitorUpdateStatus::InProgress => {
316 log_debug!(self.logger, "Channel Monitor sync for channel {} in progress, holding events until completion!", log_funding_info!(monitor));
317 pending_monitor_updates.push(update_id);
322 // Register any new outputs with the chain source for filtering, storing any dependent
323 // transactions from within the block that previously had not been included in txdata.
324 if let Some(ref chain_source) = self.chain_source {
325 let block_hash = header.block_hash();
326 for (txid, mut outputs) in txn_outputs.drain(..) {
327 for (idx, output) in outputs.drain(..) {
328 // Register any new outputs with the chain source for filtering
329 let output = WatchedOutput {
330 block_hash: Some(block_hash),
331 outpoint: OutPoint { txid, index: idx as u16 },
332 script_pubkey: output.script_pubkey,
334 chain_source.register_output(output)
341 /// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
343 /// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
344 /// will call back to it indicating transactions and outputs of interest. This allows clients to
345 /// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
346 /// always need to fetch full blocks absent another means for determining which blocks contain
347 /// transactions relevant to the watched channels.
348 pub fn new(chain_source: Option<C>, broadcaster: T, logger: L, feeest: F, persister: P) -> Self {
350 monitors: RwLock::new(HashMap::new()),
351 sync_persistence_id: AtomicCounter::new(),
355 fee_estimator: feeest,
357 pending_monitor_events: Mutex::new(Vec::new()),
358 highest_chain_height: AtomicUsize::new(0),
359 event_notifier: Notifier::new(),
363 /// Gets the balances in the contained [`ChannelMonitor`]s which are claimable on-chain or
364 /// claims which are awaiting confirmation.
366 /// Includes the balances from each [`ChannelMonitor`] *except* those included in
367 /// `ignored_channels`, allowing you to filter out balances from channels which are still open
368 /// (and whose balance should likely be pulled from the [`ChannelDetails`]).
370 /// See [`ChannelMonitor::get_claimable_balances`] for more details on the exact criteria for
371 /// inclusion in the return value.
372 pub fn get_claimable_balances(&self, ignored_channels: &[&ChannelDetails]) -> Vec<Balance> {
373 let mut ret = Vec::new();
374 let monitor_states = self.monitors.read().unwrap();
375 for (_, monitor_state) in monitor_states.iter().filter(|(funding_outpoint, _)| {
376 for chan in ignored_channels {
377 if chan.funding_txo.as_ref() == Some(funding_outpoint) {
383 ret.append(&mut monitor_state.monitor.get_claimable_balances());
388 /// Gets the [`LockedChannelMonitor`] for a given funding outpoint, returning an `Err` if no
389 /// such [`ChannelMonitor`] is currently being monitored for.
391 /// Note that the result holds a mutex over our monitor set, and should not be held
393 pub fn get_monitor(&self, funding_txo: OutPoint) -> Result<LockedChannelMonitor<'_, ChannelSigner>, ()> {
394 let lock = self.monitors.read().unwrap();
395 if lock.get(&funding_txo).is_some() {
396 Ok(LockedChannelMonitor { lock, funding_txo })
402 /// Lists the funding outpoint of each [`ChannelMonitor`] being monitored.
404 /// Note that [`ChannelMonitor`]s are not removed when a channel is closed as they are always
405 /// monitoring for on-chain state resolutions.
406 pub fn list_monitors(&self) -> Vec<OutPoint> {
407 self.monitors.read().unwrap().keys().map(|outpoint| *outpoint).collect()
410 #[cfg(not(c_bindings))]
411 /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
412 pub fn list_pending_monitor_updates(&self) -> HashMap<OutPoint, Vec<MonitorUpdateId>> {
413 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
414 (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
419 /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
420 pub fn list_pending_monitor_updates(&self) -> Vec<(OutPoint, Vec<MonitorUpdateId>)> {
421 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
422 (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
428 pub fn remove_monitor(&self, funding_txo: &OutPoint) -> ChannelMonitor<ChannelSigner> {
429 self.monitors.write().unwrap().remove(funding_txo).unwrap().monitor
432 /// Indicates the persistence of a [`ChannelMonitor`] has completed after
433 /// [`ChannelMonitorUpdateStatus::InProgress`] was returned from an update operation.
435 /// Thus, the anticipated use is, at a high level:
436 /// 1) This [`ChainMonitor`] calls [`Persist::update_persisted_channel`] which stores the
437 /// update to disk and begins updating any remote (e.g. watchtower/backup) copies,
438 /// returning [`ChannelMonitorUpdateStatus::InProgress`],
439 /// 2) once all remote copies are updated, you call this function with the
440 /// `completed_update_id` that completed, and once all pending updates have completed the
441 /// channel will be re-enabled.
442 // Note that we re-enable only after `UpdateOrigin::OffChain` updates complete, we don't
443 // care about `UpdateOrigin::ChainSync` updates for the channel state being updated. We
444 // only care about `UpdateOrigin::ChainSync` for returning `MonitorEvent`s.
446 /// Returns an [`APIError::APIMisuseError`] if `funding_txo` does not match any currently
447 /// registered [`ChannelMonitor`]s.
448 pub fn channel_monitor_updated(&self, funding_txo: OutPoint, completed_update_id: MonitorUpdateId) -> Result<(), APIError> {
449 let monitors = self.monitors.read().unwrap();
450 let monitor_data = if let Some(mon) = monitors.get(&funding_txo) { mon } else {
451 return Err(APIError::APIMisuseError { err: format!("No ChannelMonitor matching funding outpoint {:?} found", funding_txo) });
453 let mut pending_monitor_updates = monitor_data.pending_monitor_updates.lock().unwrap();
454 pending_monitor_updates.retain(|update_id| *update_id != completed_update_id);
456 match completed_update_id {
457 MonitorUpdateId { contents: UpdateOrigin::OffChain(_) } => {
458 // Note that we only check for `UpdateOrigin::OffChain` failures here - if
459 // we're being told that a `UpdateOrigin::OffChain` monitor update completed,
460 // we only care about ensuring we don't tell the `ChannelManager` to restore
461 // the channel to normal operation until all `UpdateOrigin::OffChain` updates
463 // If there's some `UpdateOrigin::ChainSync` update still pending that's okay
464 // - we can still update our channel state, just as long as we don't return
465 // `MonitorEvent`s from the monitor back to the `ChannelManager` until they
467 let monitor_is_pending_updates = monitor_data.has_pending_offchain_updates(&pending_monitor_updates);
468 if monitor_is_pending_updates || monitor_data.channel_perm_failed.load(Ordering::Acquire) {
469 // If there are still monitor updates pending (or an old monitor update
470 // finished after a later one perm-failed), we cannot yet construct an
474 self.pending_monitor_events.lock().unwrap().push((funding_txo, vec![MonitorEvent::Completed {
476 monitor_update_id: monitor_data.monitor.get_latest_update_id(),
477 }], monitor_data.monitor.get_counterparty_node_id()));
479 MonitorUpdateId { contents: UpdateOrigin::ChainSync(_) } => {
480 if !monitor_data.has_pending_chainsync_updates(&pending_monitor_updates) {
481 monitor_data.last_chain_persist_height.store(self.highest_chain_height.load(Ordering::Acquire), Ordering::Release);
482 // The next time release_pending_monitor_events is called, any events for this
483 // ChannelMonitor will be returned.
487 self.event_notifier.notify();
491 /// This wrapper avoids having to update some of our tests for now as they assume the direct
492 /// chain::Watch API wherein we mark a monitor fully-updated by just calling
493 /// channel_monitor_updated once with the highest ID.
494 #[cfg(any(test, fuzzing))]
495 pub fn force_channel_monitor_updated(&self, funding_txo: OutPoint, monitor_update_id: u64) {
496 let monitors = self.monitors.read().unwrap();
497 let counterparty_node_id = monitors.get(&funding_txo).and_then(|m| m.monitor.get_counterparty_node_id());
498 self.pending_monitor_events.lock().unwrap().push((funding_txo, vec![MonitorEvent::Completed {
501 }], counterparty_node_id));
502 self.event_notifier.notify();
505 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
506 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
507 use crate::events::EventsProvider;
508 let events = core::cell::RefCell::new(Vec::new());
509 let event_handler = |event: events::Event| events.borrow_mut().push(event);
510 self.process_pending_events(&event_handler);
514 /// Processes any events asynchronously in the order they were generated since the last call
515 /// using the given event handler.
517 /// See the trait-level documentation of [`EventsProvider`] for requirements.
519 /// [`EventsProvider`]: crate::events::EventsProvider
520 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
523 let mut pending_events = Vec::new();
524 for monitor_state in self.monitors.read().unwrap().values() {
525 pending_events.append(&mut monitor_state.monitor.get_and_clear_pending_events());
527 for event in pending_events {
528 handler(event).await;
532 /// Gets a [`Future`] that completes when an event is available either via
533 /// [`chain::Watch::release_pending_monitor_events`] or
534 /// [`EventsProvider::process_pending_events`].
536 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
537 /// [`ChainMonitor`] and should instead register actions to be taken later.
539 /// [`EventsProvider::process_pending_events`]: crate::events::EventsProvider::process_pending_events
540 pub fn get_update_future(&self) -> Future {
541 self.event_notifier.get_future()
544 /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
545 /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
546 /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
547 /// invoking this every 30 seconds, or lower if running in an environment with spotty
548 /// connections, like on mobile.
549 pub fn rebroadcast_pending_claims(&self) {
550 let monitors = self.monitors.read().unwrap();
551 for (_, monitor_holder) in &*monitors {
552 monitor_holder.monitor.rebroadcast_pending_claims(
553 &*self.broadcaster, &*self.fee_estimator, &*self.logger
559 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
560 chain::Listen for ChainMonitor<ChannelSigner, C, T, F, L, P>
562 C::Target: chain::Filter,
563 T::Target: BroadcasterInterface,
564 F::Target: FeeEstimator,
566 P::Target: Persist<ChannelSigner>,
568 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
569 log_debug!(self.logger, "New best block {} at height {} provided via block_connected", header.block_hash(), height);
570 self.process_chain_data(header, Some(height), &txdata, |monitor, txdata| {
571 monitor.block_connected(
572 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
576 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
577 let monitor_states = self.monitors.read().unwrap();
578 log_debug!(self.logger, "Latest block {} at height {} removed via block_disconnected", header.block_hash(), height);
579 for monitor_state in monitor_states.values() {
580 monitor_state.monitor.block_disconnected(
581 header, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
586 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
587 chain::Confirm for ChainMonitor<ChannelSigner, C, T, F, L, P>
589 C::Target: chain::Filter,
590 T::Target: BroadcasterInterface,
591 F::Target: FeeEstimator,
593 P::Target: Persist<ChannelSigner>,
595 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
596 log_debug!(self.logger, "{} provided transactions confirmed at height {} in block {}", txdata.len(), height, header.block_hash());
597 self.process_chain_data(header, None, txdata, |monitor, txdata| {
598 monitor.transactions_confirmed(
599 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
603 fn transaction_unconfirmed(&self, txid: &Txid) {
604 log_debug!(self.logger, "Transaction {} reorganized out of chain", txid);
605 let monitor_states = self.monitors.read().unwrap();
606 for monitor_state in monitor_states.values() {
607 monitor_state.monitor.transaction_unconfirmed(txid, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
611 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
612 log_debug!(self.logger, "New best block {} at height {} provided via best_block_updated", header.block_hash(), height);
613 self.process_chain_data(header, Some(height), &[], |monitor, txdata| {
614 // While in practice there shouldn't be any recursive calls when given empty txdata,
615 // it's still possible if a chain::Filter implementation returns a transaction.
616 debug_assert!(txdata.is_empty());
617 monitor.best_block_updated(
618 header, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
622 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
623 let mut txids = Vec::new();
624 let monitor_states = self.monitors.read().unwrap();
625 for monitor_state in monitor_states.values() {
626 txids.append(&mut monitor_state.monitor.get_relevant_txids());
629 txids.sort_unstable();
635 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref , T: Deref , F: Deref , L: Deref , P: Deref >
636 chain::Watch<ChannelSigner> for ChainMonitor<ChannelSigner, C, T, F, L, P>
637 where C::Target: chain::Filter,
638 T::Target: BroadcasterInterface,
639 F::Target: FeeEstimator,
641 P::Target: Persist<ChannelSigner>,
643 /// Adds the monitor that watches the channel referred to by the given outpoint.
645 /// Calls back to [`chain::Filter`] with the funding transaction and outputs to watch.
647 /// Note that we persist the given `ChannelMonitor` while holding the `ChainMonitor`
649 fn watch_channel(&self, funding_outpoint: OutPoint, monitor: ChannelMonitor<ChannelSigner>) -> ChannelMonitorUpdateStatus {
650 let mut monitors = self.monitors.write().unwrap();
651 let entry = match monitors.entry(funding_outpoint) {
652 hash_map::Entry::Occupied(_) => {
653 log_error!(self.logger, "Failed to add new channel data: channel monitor for given outpoint is already present");
654 return ChannelMonitorUpdateStatus::PermanentFailure
656 hash_map::Entry::Vacant(e) => e,
658 log_trace!(self.logger, "Got new ChannelMonitor for channel {}", log_funding_info!(monitor));
659 let update_id = MonitorUpdateId::from_new_monitor(&monitor);
660 let mut pending_monitor_updates = Vec::new();
661 let persist_res = self.persister.persist_new_channel(funding_outpoint, &monitor, update_id);
663 ChannelMonitorUpdateStatus::InProgress => {
664 log_info!(self.logger, "Persistence of new ChannelMonitor for channel {} in progress", log_funding_info!(monitor));
665 pending_monitor_updates.push(update_id);
667 ChannelMonitorUpdateStatus::PermanentFailure => {
668 log_error!(self.logger, "Persistence of new ChannelMonitor for channel {} failed", log_funding_info!(monitor));
671 ChannelMonitorUpdateStatus::Completed => {
672 log_info!(self.logger, "Persistence of new ChannelMonitor for channel {} completed", log_funding_info!(monitor));
675 if let Some(ref chain_source) = self.chain_source {
676 monitor.load_outputs_to_watch(chain_source);
678 entry.insert(MonitorHolder {
680 pending_monitor_updates: Mutex::new(pending_monitor_updates),
681 channel_perm_failed: AtomicBool::new(false),
682 last_chain_persist_height: AtomicUsize::new(self.highest_chain_height.load(Ordering::Acquire)),
687 /// Note that we persist the given `ChannelMonitor` update while holding the
688 /// `ChainMonitor` monitors lock.
689 fn update_channel(&self, funding_txo: OutPoint, update: &ChannelMonitorUpdate) -> ChannelMonitorUpdateStatus {
690 // Update the monitor that watches the channel referred to by the given outpoint.
691 let monitors = self.monitors.read().unwrap();
692 match monitors.get(&funding_txo) {
694 log_error!(self.logger, "Failed to update channel monitor: no such monitor registered");
696 // We should never ever trigger this from within ChannelManager. Technically a
697 // user could use this object with some proxying in between which makes this
698 // possible, but in tests and fuzzing, this should be a panic.
699 #[cfg(any(test, fuzzing))]
700 panic!("ChannelManager generated a channel update for a channel that was not yet registered!");
701 #[cfg(not(any(test, fuzzing)))]
702 ChannelMonitorUpdateStatus::PermanentFailure
704 Some(monitor_state) => {
705 let monitor = &monitor_state.monitor;
706 log_trace!(self.logger, "Updating ChannelMonitor for channel {}", log_funding_info!(monitor));
707 let update_res = monitor.update_monitor(update, &self.broadcaster, &*self.fee_estimator, &self.logger);
708 if update_res.is_err() {
709 log_error!(self.logger, "Failed to update ChannelMonitor for channel {}.", log_funding_info!(monitor));
711 // Even if updating the monitor returns an error, the monitor's state will
712 // still be changed. So, persist the updated monitor despite the error.
713 let update_id = MonitorUpdateId::from_monitor_update(update);
714 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
715 let persist_res = self.persister.update_persisted_channel(funding_txo, Some(update), monitor, update_id);
717 ChannelMonitorUpdateStatus::InProgress => {
718 pending_monitor_updates.push(update_id);
719 log_debug!(self.logger, "Persistence of ChannelMonitorUpdate for channel {} in progress", log_funding_info!(monitor));
721 ChannelMonitorUpdateStatus::PermanentFailure => {
722 monitor_state.channel_perm_failed.store(true, Ordering::Release);
723 log_error!(self.logger, "Persistence of ChannelMonitorUpdate for channel {} failed", log_funding_info!(monitor));
725 ChannelMonitorUpdateStatus::Completed => {
726 log_debug!(self.logger, "Persistence of ChannelMonitorUpdate for channel {} completed", log_funding_info!(monitor));
729 if update_res.is_err() {
730 ChannelMonitorUpdateStatus::PermanentFailure
731 } else if monitor_state.channel_perm_failed.load(Ordering::Acquire) {
732 ChannelMonitorUpdateStatus::PermanentFailure
740 fn release_pending_monitor_events(&self) -> Vec<(OutPoint, Vec<MonitorEvent>, Option<PublicKey>)> {
741 let mut pending_monitor_events = self.pending_monitor_events.lock().unwrap().split_off(0);
742 for monitor_state in self.monitors.read().unwrap().values() {
743 let is_pending_monitor_update = monitor_state.has_pending_chainsync_updates(&monitor_state.pending_monitor_updates.lock().unwrap());
744 if is_pending_monitor_update &&
745 monitor_state.last_chain_persist_height.load(Ordering::Acquire) + LATENCY_GRACE_PERIOD_BLOCKS as usize
746 > self.highest_chain_height.load(Ordering::Acquire)
748 log_info!(self.logger, "A Channel Monitor sync is still in progress, refusing to provide monitor events!");
750 if monitor_state.channel_perm_failed.load(Ordering::Acquire) {
751 // If a `UpdateOrigin::ChainSync` persistence failed with `PermanantFailure`,
752 // we don't really know if the latest `ChannelMonitor` state is on disk or not.
753 // We're supposed to hold monitor updates until the latest state is on disk to
754 // avoid duplicate events, but the user told us persistence is screw-y and may
755 // not complete. We can't hold events forever because we may learn some payment
756 // preimage, so instead we just log and hope the user complied with the
757 // `PermanentFailure` requirements of having at least the local-disk copy
759 log_info!(self.logger, "A Channel Monitor sync returned PermanentFailure. Returning monitor events but duplicate events may appear after reload!");
761 if is_pending_monitor_update {
762 log_error!(self.logger, "A ChannelMonitor sync took longer than {} blocks to complete.", LATENCY_GRACE_PERIOD_BLOCKS);
763 log_error!(self.logger, " To avoid funds-loss, we are allowing monitor updates to be released.");
764 log_error!(self.logger, " This may cause duplicate payment events to be generated.");
766 let monitor_events = monitor_state.monitor.get_and_clear_pending_monitor_events();
767 if monitor_events.len() > 0 {
768 let monitor_outpoint = monitor_state.monitor.get_funding_txo().0;
769 let counterparty_node_id = monitor_state.monitor.get_counterparty_node_id();
770 pending_monitor_events.push((monitor_outpoint, monitor_events, counterparty_node_id));
774 pending_monitor_events
778 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> events::EventsProvider for ChainMonitor<ChannelSigner, C, T, F, L, P>
779 where C::Target: chain::Filter,
780 T::Target: BroadcasterInterface,
781 F::Target: FeeEstimator,
783 P::Target: Persist<ChannelSigner>,
786 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
788 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
789 /// order to handle these events.
791 /// [`SpendableOutputs`]: events::Event::SpendableOutputs
792 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
793 let mut pending_events = Vec::new();
794 for monitor_state in self.monitors.read().unwrap().values() {
795 pending_events.append(&mut monitor_state.monitor.get_and_clear_pending_events());
797 for event in pending_events {
798 handler.handle_event(event);
802 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
804 /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
805 /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
806 /// within each channel. As the confirmation of a commitment transaction may be critical to the
807 /// safety of funds, this method must be invoked frequently, ideally once for every chain tip
808 /// update (block connected or disconnected).
810 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
811 /// order to handle these events.
813 /// [`SpendableOutputs`]: events::Event::SpendableOutputs
814 /// [`BumpTransaction`]: events::Event::BumpTransaction
815 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
816 let mut pending_events = Vec::new();
817 for monitor_state in self.monitors.read().unwrap().values() {
818 pending_events.append(&mut monitor_state.monitor.get_and_clear_pending_events());
820 for event in pending_events {
821 handler.handle_event(event);
828 use crate::{check_added_monitors, check_closed_broadcast, check_closed_event};
829 use crate::{expect_payment_sent, expect_payment_claimed, expect_payment_sent_without_paths, expect_payment_path_successful, get_event_msg};
830 use crate::{get_htlc_update_msgs, get_local_commitment_txn, get_revoke_commit_msgs, get_route_and_payment_hash, unwrap_send_err};
831 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Watch};
832 use crate::chain::channelmonitor::LATENCY_GRACE_PERIOD_BLOCKS;
833 use crate::events::{Event, ClosureReason, MessageSendEvent, MessageSendEventsProvider};
834 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId, RecipientOnionFields};
835 use crate::ln::functional_test_utils::*;
836 use crate::ln::msgs::ChannelMessageHandler;
837 use crate::util::errors::APIError;
840 fn test_async_ooo_offchain_updates() {
841 // Test that if we have multiple offchain updates being persisted and they complete
842 // out-of-order, the ChainMonitor waits until all have completed before informing the
844 let chanmon_cfgs = create_chanmon_cfgs(2);
845 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
846 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
847 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
848 create_announced_chan_between_nodes(&nodes, 0, 1);
850 // Route two payments to be claimed at the same time.
851 let (payment_preimage_1, payment_hash_1, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
852 let (payment_preimage_2, payment_hash_2, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
854 chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clear();
855 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
856 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
858 nodes[1].node.claim_funds(payment_preimage_1);
859 check_added_monitors!(nodes[1], 1);
860 nodes[1].node.claim_funds(payment_preimage_2);
861 check_added_monitors!(nodes[1], 1);
863 let persistences = chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clone();
864 assert_eq!(persistences.len(), 1);
865 let (funding_txo, updates) = persistences.iter().next().unwrap();
866 assert_eq!(updates.len(), 2);
868 // Note that updates is a HashMap so the ordering here is actually random. This shouldn't
869 // fail either way but if it fails intermittently it's depending on the ordering of updates.
870 let mut update_iter = updates.iter();
871 let next_update = update_iter.next().unwrap().clone();
872 // Should contain next_update when pending updates listed.
873 #[cfg(not(c_bindings))]
874 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
875 .unwrap().contains(&next_update));
877 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
878 .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
879 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, next_update.clone()).unwrap();
880 // Should not contain the previously pending next_update when pending updates listed.
881 #[cfg(not(c_bindings))]
882 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
883 .unwrap().contains(&next_update));
885 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
886 .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
887 assert!(nodes[1].chain_monitor.release_pending_monitor_events().is_empty());
888 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
889 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
890 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, update_iter.next().unwrap().clone()).unwrap();
892 let claim_events = nodes[1].node.get_and_clear_pending_events();
893 assert_eq!(claim_events.len(), 2);
894 match claim_events[0] {
895 Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
896 assert_eq!(payment_hash_1, *payment_hash);
898 _ => panic!("Unexpected event"),
900 match claim_events[1] {
901 Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
902 assert_eq!(payment_hash_2, *payment_hash);
904 _ => panic!("Unexpected event"),
907 // Now manually walk the commitment signed dance - because we claimed two payments
908 // back-to-back it doesn't fit into the neat walk commitment_signed_dance does.
910 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
911 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
912 expect_payment_sent_without_paths!(nodes[0], payment_preimage_1);
913 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
914 check_added_monitors!(nodes[0], 1);
915 let (as_first_raa, as_first_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
917 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
918 check_added_monitors!(nodes[1], 1);
919 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
920 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_update);
921 check_added_monitors!(nodes[1], 1);
922 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
924 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
925 expect_payment_sent_without_paths!(nodes[0], payment_preimage_2);
926 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
927 check_added_monitors!(nodes[0], 1);
928 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
929 expect_payment_path_successful!(nodes[0]);
930 check_added_monitors!(nodes[0], 1);
931 let (as_second_raa, as_second_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
933 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
934 check_added_monitors!(nodes[1], 1);
935 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update);
936 check_added_monitors!(nodes[1], 1);
937 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
939 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
940 expect_payment_path_successful!(nodes[0]);
941 check_added_monitors!(nodes[0], 1);
944 fn do_chainsync_pauses_events(block_timeout: bool) {
945 // When a chainsync monitor update occurs, any MonitorUpdates should be held before being
946 // passed upstream to a `ChannelManager` via `Watch::release_pending_monitor_events`. This
947 // tests that behavior, as well as some ways it might go wrong.
948 let chanmon_cfgs = create_chanmon_cfgs(2);
949 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
950 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
951 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
952 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
954 // Get a route for later and rebalance the channel somewhat
955 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
956 let (route, second_payment_hash, _, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
958 // First route a payment that we will claim on chain and give the recipient the preimage.
959 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
960 nodes[1].node.claim_funds(payment_preimage);
961 expect_payment_claimed!(nodes[1], payment_hash, 1_000_000);
962 nodes[1].node.get_and_clear_pending_msg_events();
963 check_added_monitors!(nodes[1], 1);
964 let remote_txn = get_local_commitment_txn!(nodes[1], channel.2);
965 assert_eq!(remote_txn.len(), 2);
967 // Temp-fail the block connection which will hold the channel-closed event
968 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
969 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
971 // Connect B's commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
972 // channel is now closed, but the ChannelManager doesn't know that yet.
973 let new_header = create_dummy_header(nodes[0].best_block_info().0, 0);
974 nodes[0].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
975 &[(0, &remote_txn[0]), (1, &remote_txn[1])], nodes[0].best_block_info().1 + 1);
976 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
977 nodes[0].chain_monitor.chain_monitor.best_block_updated(&new_header, nodes[0].best_block_info().1 + 1);
978 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
980 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
981 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
982 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
983 unwrap_send_err!(nodes[0].node.send_payment_with_route(&route, second_payment_hash,
984 RecipientOnionFields::secret_only(second_payment_secret), PaymentId(second_payment_hash.0)
985 ), true, APIError::ChannelUnavailable { ref err },
986 assert!(err.contains("ChannelMonitor storage failure")));
987 check_added_monitors!(nodes[0], 2); // After the failure we generate a close-channel monitor update
988 check_closed_broadcast!(nodes[0], true);
989 check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: "ChannelMonitor storage failure".to_string() });
991 // However, as the ChainMonitor is still waiting for the original persistence to complete,
992 // it won't yet release the MonitorEvents.
993 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
996 // After three blocks, pending MontiorEvents should be released either way.
997 let latest_header = create_dummy_header(nodes[0].best_block_info().0, 0);
998 nodes[0].chain_monitor.chain_monitor.best_block_updated(&latest_header, nodes[0].best_block_info().1 + LATENCY_GRACE_PERIOD_BLOCKS);
1000 let persistences = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clone();
1001 for (funding_outpoint, update_ids) in persistences {
1002 for update_id in update_ids {
1003 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_outpoint, update_id).unwrap();
1008 expect_payment_sent!(nodes[0], payment_preimage);
1012 fn chainsync_pauses_events() {
1013 do_chainsync_pauses_events(false);
1014 do_chainsync_pauses_events(true);
1018 fn update_during_chainsync_fails_channel() {
1019 let chanmon_cfgs = create_chanmon_cfgs(2);
1020 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1021 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1022 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1023 create_announced_chan_between_nodes(&nodes, 0, 1);
1025 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
1026 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::PermanentFailure);
1028 connect_blocks(&nodes[0], 1);
1029 // Before processing events, the ChannelManager will still think the Channel is open and
1030 // there won't be any ChannelMonitorUpdates
1031 assert_eq!(nodes[0].node.list_channels().len(), 1);
1032 check_added_monitors!(nodes[0], 0);
1033 // ... however once we get events once, the channel will close, creating a channel-closed
1034 // ChannelMonitorUpdate.
1035 check_closed_broadcast!(nodes[0], true);
1036 check_closed_event!(nodes[0], 1, ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() });
1037 check_added_monitors!(nodes[0], 1);