1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! Logic to connect off-chain channel management with on-chain transaction monitoring.
12 //! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to
13 //! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will
14 //! make those available as [`MonitorEvent`]s to be consumed.
16 //! [`ChainMonitor`] is parameterized by an optional chain source, which must implement the
17 //! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light
18 //! clients, such that transactions spending those outputs are included in block data.
20 //! [`ChainMonitor`] may be used directly to monitor channels locally or as a part of a distributed
21 //! setup to monitor channels remotely. In the latter case, a custom [`chain::Watch`] implementation
22 //! would be responsible for routing each update to a remote server and for retrieving monitor
23 //! events. The remote server would make use of [`ChainMonitor`] for block processing and for
24 //! servicing [`ChannelMonitor`] updates from the client.
26 use bitcoin::blockdata::block::BlockHeader;
27 use bitcoin::hash_types::{Txid, BlockHash};
30 use crate::chain::{ChannelMonitorUpdateStatus, Filter, WatchedOutput};
31 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator};
32 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, Balance, MonitorEvent, TransactionOutputs, LATENCY_GRACE_PERIOD_BLOCKS};
33 use crate::chain::transaction::{OutPoint, TransactionData};
34 use crate::sign::WriteableEcdsaChannelSigner;
36 use crate::events::{Event, EventHandler};
37 use crate::util::atomic_counter::AtomicCounter;
38 use crate::util::logger::Logger;
39 use crate::util::errors::APIError;
40 use crate::util::wakers::{Future, Notifier};
41 use crate::ln::channelmanager::ChannelDetails;
43 use crate::prelude::*;
44 use crate::sync::{RwLock, RwLockReadGuard, Mutex, MutexGuard};
45 use core::iter::FromIterator;
47 use core::sync::atomic::{AtomicUsize, Ordering};
48 use bitcoin::secp256k1::PublicKey;
50 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
51 /// A specific update's ID stored in a `MonitorUpdateId`, separated out to make the contents
54 /// An update that was generated by the `ChannelManager` (via our `chain::Watch`
55 /// implementation). This corresponds to an actual [`ChannelMonitorUpdate::update_id`] field
56 /// and [`ChannelMonitor::get_latest_update_id`].
58 /// An update that was generated during blockchain processing. The ID here is specific to the
59 /// generating [`ChainMonitor`] and does *not* correspond to any on-disk IDs.
63 /// An opaque identifier describing a specific [`Persist`] method call.
64 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
65 pub struct MonitorUpdateId {
66 contents: UpdateOrigin,
69 impl MonitorUpdateId {
70 pub(crate) fn from_monitor_update(update: &ChannelMonitorUpdate) -> Self {
71 Self { contents: UpdateOrigin::OffChain(update.update_id) }
73 pub(crate) fn from_new_monitor<ChannelSigner: WriteableEcdsaChannelSigner>(monitor: &ChannelMonitor<ChannelSigner>) -> Self {
74 Self { contents: UpdateOrigin::OffChain(monitor.get_latest_update_id()) }
78 /// `Persist` defines behavior for persisting channel monitors: this could mean
79 /// writing once to disk, and/or uploading to one or more backup services.
81 /// Persistence can happen in one of two ways - synchronously completing before the trait method
82 /// calls return or asynchronously in the background.
84 /// # For those implementing synchronous persistence
86 /// * If persistence completes fully (including any relevant `fsync()` calls), the implementation
87 /// should return [`ChannelMonitorUpdateStatus::Completed`], indicating normal channel operation
90 /// * If persistence fails for some reason, implementations should consider returning
91 /// [`ChannelMonitorUpdateStatus::InProgress`] and retry all pending persistence operations in
92 /// the background with [`ChainMonitor::list_pending_monitor_updates`] and
93 /// [`ChainMonitor::get_monitor`].
95 /// Once a full [`ChannelMonitor`] has been persisted, all pending updates for that channel can
96 /// be marked as complete via [`ChainMonitor::channel_monitor_updated`].
98 /// If at some point no further progress can be made towards persisting the pending updates, the
99 /// node should simply shut down.
101 /// * If the persistence has failed and cannot be retried further (e.g. because of some timeout),
102 /// [`ChannelMonitorUpdateStatus::UnrecoverableError`] can be used, though this will result in
103 /// an immediate panic and future operations in LDK generally failing.
105 /// # For those implementing asynchronous persistence
107 /// All calls should generally spawn a background task and immediately return
108 /// [`ChannelMonitorUpdateStatus::InProgress`]. Once the update completes,
109 /// [`ChainMonitor::channel_monitor_updated`] should be called with the corresponding
110 /// [`MonitorUpdateId`].
112 /// Note that unlike the direct [`chain::Watch`] interface,
113 /// [`ChainMonitor::channel_monitor_updated`] must be called once for *each* update which occurs.
115 /// If at some point no further progress can be made towards persisting a pending update, the node
116 /// should simply shut down.
118 /// # Using remote watchtowers
120 /// Watchtowers may be updated as a part of an implementation of this trait, utilizing the async
121 /// update process described above while the watchtower is being updated. The following methods are
122 /// provided for bulding transactions for a watchtower:
123 /// [`ChannelMonitor::initial_counterparty_commitment_tx`],
124 /// [`ChannelMonitor::counterparty_commitment_txs_from_update`],
125 /// [`ChannelMonitor::sign_to_local_justice_tx`], [`TrustedCommitmentTransaction::revokeable_output_index`],
126 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`].
128 /// [`TrustedCommitmentTransaction::revokeable_output_index`]: crate::ln::chan_utils::TrustedCommitmentTransaction::revokeable_output_index
129 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`]: crate::ln::chan_utils::TrustedCommitmentTransaction::build_to_local_justice_tx
130 pub trait Persist<ChannelSigner: WriteableEcdsaChannelSigner> {
131 /// Persist a new channel's data in response to a [`chain::Watch::watch_channel`] call. This is
132 /// called by [`ChannelManager`] for new channels, or may be called directly, e.g. on startup.
134 /// The data can be stored any way you want, but the identifier provided by LDK is the
135 /// channel's outpoint (and it is up to you to maintain a correct mapping between the outpoint
136 /// and the stored channel data). Note that you **must** persist every new monitor to disk.
138 /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
139 /// if you return [`ChannelMonitorUpdateStatus::InProgress`].
141 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`
142 /// and [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
144 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
145 /// [`Writeable::write`]: crate::util::ser::Writeable::write
146 fn persist_new_channel(&self, channel_id: OutPoint, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> ChannelMonitorUpdateStatus;
148 /// Update one channel's data. The provided [`ChannelMonitor`] has already applied the given
151 /// Note that on every update, you **must** persist either the [`ChannelMonitorUpdate`] or the
152 /// updated monitor itself to disk/backups. See the [`Persist`] trait documentation for more
155 /// During blockchain synchronization operations, this may be called with no
156 /// [`ChannelMonitorUpdate`], in which case the full [`ChannelMonitor`] needs to be persisted.
157 /// Note that after the full [`ChannelMonitor`] is persisted any previous
158 /// [`ChannelMonitorUpdate`]s which were persisted should be discarded - they can no longer be
159 /// applied to the persisted [`ChannelMonitor`] as they were already applied.
161 /// If an implementer chooses to persist the updates only, they need to make
162 /// sure that all the updates are applied to the `ChannelMonitors` *before*
163 /// the set of channel monitors is given to the `ChannelManager`
164 /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
165 /// applying a monitor update to a monitor. If full `ChannelMonitors` are
166 /// persisted, then there is no need to persist individual updates.
168 /// Note that there could be a performance tradeoff between persisting complete
169 /// channel monitors on every update vs. persisting only updates and applying
170 /// them in batches. The size of each monitor grows `O(number of state updates)`
171 /// whereas updates are small and `O(1)`.
173 /// The `update_id` is used to identify this call to [`ChainMonitor::channel_monitor_updated`],
174 /// if you return [`ChannelMonitorUpdateStatus::InProgress`].
176 /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`,
177 /// [`Writeable::write`] on [`ChannelMonitorUpdate`] for writing out an update, and
178 /// [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
180 /// [`Writeable::write`]: crate::util::ser::Writeable::write
181 fn update_persisted_channel(&self, channel_id: OutPoint, update: Option<&ChannelMonitorUpdate>, data: &ChannelMonitor<ChannelSigner>, update_id: MonitorUpdateId) -> ChannelMonitorUpdateStatus;
184 struct MonitorHolder<ChannelSigner: WriteableEcdsaChannelSigner> {
185 monitor: ChannelMonitor<ChannelSigner>,
186 /// The full set of pending monitor updates for this Channel.
188 /// Note that this lock must be held during updates to prevent a race where we call
189 /// update_persisted_channel, the user returns a
190 /// [`ChannelMonitorUpdateStatus::InProgress`], and then calls channel_monitor_updated
191 /// immediately, racing our insertion of the pending update into the contained Vec.
193 /// Beyond the synchronization of updates themselves, we cannot handle user events until after
194 /// any chain updates have been stored on disk. Thus, we scan this list when returning updates
195 /// to the ChannelManager, refusing to return any updates for a ChannelMonitor which is still
196 /// being persisted fully to disk after a chain update.
198 /// This avoids the possibility of handling, e.g. an on-chain claim, generating a claim monitor
199 /// event, resulting in the relevant ChannelManager generating a PaymentSent event and dropping
200 /// the pending payment entry, and then reloading before the monitor is persisted, resulting in
201 /// the ChannelManager re-adding the same payment entry, before the same block is replayed,
202 /// resulting in a duplicate PaymentSent event.
203 pending_monitor_updates: Mutex<Vec<MonitorUpdateId>>,
204 /// The last block height at which no [`UpdateOrigin::ChainSync`] monitor updates were present
205 /// in `pending_monitor_updates`.
206 /// If it's been more than [`LATENCY_GRACE_PERIOD_BLOCKS`] since we started waiting on a chain
207 /// sync event, we let monitor events return to `ChannelManager` because we cannot hold them up
208 /// forever or we'll end up with HTLC preimages waiting to feed back into an upstream channel
209 /// forever, risking funds loss.
210 last_chain_persist_height: AtomicUsize,
213 impl<ChannelSigner: WriteableEcdsaChannelSigner> MonitorHolder<ChannelSigner> {
214 fn has_pending_offchain_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
215 pending_monitor_updates_lock.iter().any(|update_id|
216 if let UpdateOrigin::OffChain(_) = update_id.contents { true } else { false })
218 fn has_pending_chainsync_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<MonitorUpdateId>>) -> bool {
219 pending_monitor_updates_lock.iter().any(|update_id|
220 if let UpdateOrigin::ChainSync(_) = update_id.contents { true } else { false })
224 /// A read-only reference to a current ChannelMonitor.
226 /// Note that this holds a mutex in [`ChainMonitor`] and may block other events until it is
228 pub struct LockedChannelMonitor<'a, ChannelSigner: WriteableEcdsaChannelSigner> {
229 lock: RwLockReadGuard<'a, HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
230 funding_txo: OutPoint,
233 impl<ChannelSigner: WriteableEcdsaChannelSigner> Deref for LockedChannelMonitor<'_, ChannelSigner> {
234 type Target = ChannelMonitor<ChannelSigner>;
235 fn deref(&self) -> &ChannelMonitor<ChannelSigner> {
236 &self.lock.get(&self.funding_txo).expect("Checked at construction").monitor
240 /// An implementation of [`chain::Watch`] for monitoring channels.
242 /// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
243 /// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
244 /// or used independently to monitor channels remotely. See the [module-level documentation] for
247 /// Note that `ChainMonitor` should regularly trigger rebroadcasts/fee bumps of pending claims from
248 /// a force-closed channel. This is crucial in preventing certain classes of pinning attacks,
249 /// detecting substantial mempool feerate changes between blocks, and ensuring reliability if
250 /// broadcasting fails. We recommend invoking this every 30 seconds, or lower if running in an
251 /// environment with spotty connections, like on mobile.
253 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
254 /// [module-level documentation]: crate::chain::chainmonitor
255 /// [`rebroadcast_pending_claims`]: Self::rebroadcast_pending_claims
256 pub struct ChainMonitor<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
257 where C::Target: chain::Filter,
258 T::Target: BroadcasterInterface,
259 F::Target: FeeEstimator,
261 P::Target: Persist<ChannelSigner>,
263 monitors: RwLock<HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
264 /// When we generate a [`MonitorUpdateId`] for a chain-event monitor persistence, we need a
265 /// unique ID, which we calculate by simply getting the next value from this counter. Note that
266 /// the ID is never persisted so it's ok that they reset on restart.
267 sync_persistence_id: AtomicCounter,
268 chain_source: Option<C>,
273 /// "User-provided" (ie persistence-completion/-failed) [`MonitorEvent`]s. These came directly
274 /// from the user and not from a [`ChannelMonitor`].
275 pending_monitor_events: Mutex<Vec<(OutPoint, Vec<MonitorEvent>, Option<PublicKey>)>>,
276 /// The best block height seen, used as a proxy for the passage of time.
277 highest_chain_height: AtomicUsize,
279 event_notifier: Notifier,
282 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> ChainMonitor<ChannelSigner, C, T, F, L, P>
283 where C::Target: chain::Filter,
284 T::Target: BroadcasterInterface,
285 F::Target: FeeEstimator,
287 P::Target: Persist<ChannelSigner>,
289 /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view
290 /// of a channel and reacting accordingly based on transactions in the given chain data. See
291 /// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
292 /// be returned by [`chain::Watch::release_pending_monitor_events`].
294 /// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
295 /// calls must not exclude any transactions matching the new outputs nor any in-block
296 /// descendants of such transactions. It is not necessary to re-fetch the block to obtain
297 /// updated `txdata`.
299 /// Calls which represent a new blockchain tip height should set `best_height`.
300 fn process_chain_data<FN>(&self, header: &BlockHeader, best_height: Option<u32>, txdata: &TransactionData, process: FN)
302 FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs>
304 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
305 let funding_outpoints: HashSet<OutPoint> = HashSet::from_iter(self.monitors.read().unwrap().keys().cloned());
306 for funding_outpoint in funding_outpoints.iter() {
307 let monitor_lock = self.monitors.read().unwrap();
308 if let Some(monitor_state) = monitor_lock.get(funding_outpoint) {
309 if self.update_monitor_with_chain_data(header, best_height, txdata, &process, funding_outpoint, &monitor_state).is_err() {
310 // Take the monitors lock for writing so that we poison it and any future
311 // operations going forward fail immediately.
312 core::mem::drop(monitor_state);
313 core::mem::drop(monitor_lock);
314 let _poison = self.monitors.write().unwrap();
315 log_error!(self.logger, "{}", err_str);
316 panic!("{}", err_str);
321 // do some followup cleanup if any funding outpoints were added in between iterations
322 let monitor_states = self.monitors.write().unwrap();
323 for (funding_outpoint, monitor_state) in monitor_states.iter() {
324 if !funding_outpoints.contains(funding_outpoint) {
325 if self.update_monitor_with_chain_data(header, best_height, txdata, &process, funding_outpoint, &monitor_state).is_err() {
326 log_error!(self.logger, "{}", err_str);
327 panic!("{}", err_str);
332 if let Some(height) = best_height {
333 // If the best block height is being updated, update highest_chain_height under the
334 // monitors write lock.
335 let old_height = self.highest_chain_height.load(Ordering::Acquire);
336 let new_height = height as usize;
337 if new_height > old_height {
338 self.highest_chain_height.store(new_height, Ordering::Release);
343 fn update_monitor_with_chain_data<FN>(
344 &self, header: &BlockHeader, best_height: Option<u32>, txdata: &TransactionData,
345 process: FN, funding_outpoint: &OutPoint, monitor_state: &MonitorHolder<ChannelSigner>
346 ) -> Result<(), ()> where FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs> {
347 let monitor = &monitor_state.monitor;
350 txn_outputs = process(monitor, txdata);
351 let update_id = MonitorUpdateId {
352 contents: UpdateOrigin::ChainSync(self.sync_persistence_id.get_increment()),
354 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
355 if let Some(height) = best_height {
356 if !monitor_state.has_pending_chainsync_updates(&pending_monitor_updates) {
357 // If there are not ChainSync persists awaiting completion, go ahead and
358 // set last_chain_persist_height here - we wouldn't want the first
359 // InProgress to always immediately be considered "overly delayed".
360 monitor_state.last_chain_persist_height.store(height as usize, Ordering::Release);
364 log_trace!(self.logger, "Syncing Channel Monitor for channel {}", log_funding_info!(monitor));
365 match self.persister.update_persisted_channel(*funding_outpoint, None, monitor, update_id) {
366 ChannelMonitorUpdateStatus::Completed =>
367 log_trace!(self.logger, "Finished syncing Channel Monitor for channel {}", log_funding_info!(monitor)),
368 ChannelMonitorUpdateStatus::InProgress => {
369 log_debug!(self.logger, "Channel Monitor sync for channel {} in progress, holding events until completion!", log_funding_info!(monitor));
370 pending_monitor_updates.push(update_id);
372 ChannelMonitorUpdateStatus::UnrecoverableError => {
378 // Register any new outputs with the chain source for filtering, storing any dependent
379 // transactions from within the block that previously had not been included in txdata.
380 if let Some(ref chain_source) = self.chain_source {
381 let block_hash = header.block_hash();
382 for (txid, mut outputs) in txn_outputs.drain(..) {
383 for (idx, output) in outputs.drain(..) {
384 // Register any new outputs with the chain source for filtering
385 let output = WatchedOutput {
386 block_hash: Some(block_hash),
387 outpoint: OutPoint { txid, index: idx as u16 },
388 script_pubkey: output.script_pubkey,
390 chain_source.register_output(output)
397 /// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
399 /// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
400 /// will call back to it indicating transactions and outputs of interest. This allows clients to
401 /// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
402 /// always need to fetch full blocks absent another means for determining which blocks contain
403 /// transactions relevant to the watched channels.
404 pub fn new(chain_source: Option<C>, broadcaster: T, logger: L, feeest: F, persister: P) -> Self {
406 monitors: RwLock::new(HashMap::new()),
407 sync_persistence_id: AtomicCounter::new(),
411 fee_estimator: feeest,
413 pending_monitor_events: Mutex::new(Vec::new()),
414 highest_chain_height: AtomicUsize::new(0),
415 event_notifier: Notifier::new(),
419 /// Gets the balances in the contained [`ChannelMonitor`]s which are claimable on-chain or
420 /// claims which are awaiting confirmation.
422 /// Includes the balances from each [`ChannelMonitor`] *except* those included in
423 /// `ignored_channels`.
425 /// See [`ChannelMonitor::get_claimable_balances`] for more details on the exact criteria for
426 /// inclusion in the return value.
427 pub fn get_claimable_balances(&self, ignored_channels: &[&ChannelDetails]) -> Vec<Balance> {
428 let mut ret = Vec::new();
429 let monitor_states = self.monitors.read().unwrap();
430 for (_, monitor_state) in monitor_states.iter().filter(|(funding_outpoint, _)| {
431 for chan in ignored_channels {
432 if chan.funding_txo.as_ref() == Some(funding_outpoint) {
438 ret.append(&mut monitor_state.monitor.get_claimable_balances());
443 /// Gets the [`LockedChannelMonitor`] for a given funding outpoint, returning an `Err` if no
444 /// such [`ChannelMonitor`] is currently being monitored for.
446 /// Note that the result holds a mutex over our monitor set, and should not be held
448 pub fn get_monitor(&self, funding_txo: OutPoint) -> Result<LockedChannelMonitor<'_, ChannelSigner>, ()> {
449 let lock = self.monitors.read().unwrap();
450 if lock.get(&funding_txo).is_some() {
451 Ok(LockedChannelMonitor { lock, funding_txo })
457 /// Lists the funding outpoint of each [`ChannelMonitor`] being monitored.
459 /// Note that [`ChannelMonitor`]s are not removed when a channel is closed as they are always
460 /// monitoring for on-chain state resolutions.
461 pub fn list_monitors(&self) -> Vec<OutPoint> {
462 self.monitors.read().unwrap().keys().map(|outpoint| *outpoint).collect()
465 #[cfg(not(c_bindings))]
466 /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
467 pub fn list_pending_monitor_updates(&self) -> HashMap<OutPoint, Vec<MonitorUpdateId>> {
468 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
469 (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
474 /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
475 pub fn list_pending_monitor_updates(&self) -> Vec<(OutPoint, Vec<MonitorUpdateId>)> {
476 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
477 (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
483 pub fn remove_monitor(&self, funding_txo: &OutPoint) -> ChannelMonitor<ChannelSigner> {
484 self.monitors.write().unwrap().remove(funding_txo).unwrap().monitor
487 /// Indicates the persistence of a [`ChannelMonitor`] has completed after
488 /// [`ChannelMonitorUpdateStatus::InProgress`] was returned from an update operation.
490 /// Thus, the anticipated use is, at a high level:
491 /// 1) This [`ChainMonitor`] calls [`Persist::update_persisted_channel`] which stores the
492 /// update to disk and begins updating any remote (e.g. watchtower/backup) copies,
493 /// returning [`ChannelMonitorUpdateStatus::InProgress`],
494 /// 2) once all remote copies are updated, you call this function with the
495 /// `completed_update_id` that completed, and once all pending updates have completed the
496 /// channel will be re-enabled.
497 // Note that we re-enable only after `UpdateOrigin::OffChain` updates complete, we don't
498 // care about `UpdateOrigin::ChainSync` updates for the channel state being updated. We
499 // only care about `UpdateOrigin::ChainSync` for returning `MonitorEvent`s.
501 /// Returns an [`APIError::APIMisuseError`] if `funding_txo` does not match any currently
502 /// registered [`ChannelMonitor`]s.
503 pub fn channel_monitor_updated(&self, funding_txo: OutPoint, completed_update_id: MonitorUpdateId) -> Result<(), APIError> {
504 let monitors = self.monitors.read().unwrap();
505 let monitor_data = if let Some(mon) = monitors.get(&funding_txo) { mon } else {
506 return Err(APIError::APIMisuseError { err: format!("No ChannelMonitor matching funding outpoint {:?} found", funding_txo) });
508 let mut pending_monitor_updates = monitor_data.pending_monitor_updates.lock().unwrap();
509 pending_monitor_updates.retain(|update_id| *update_id != completed_update_id);
511 match completed_update_id {
512 MonitorUpdateId { contents: UpdateOrigin::OffChain(_) } => {
513 // Note that we only check for `UpdateOrigin::OffChain` failures here - if
514 // we're being told that a `UpdateOrigin::OffChain` monitor update completed,
515 // we only care about ensuring we don't tell the `ChannelManager` to restore
516 // the channel to normal operation until all `UpdateOrigin::OffChain` updates
518 // If there's some `UpdateOrigin::ChainSync` update still pending that's okay
519 // - we can still update our channel state, just as long as we don't return
520 // `MonitorEvent`s from the monitor back to the `ChannelManager` until they
522 let monitor_is_pending_updates = monitor_data.has_pending_offchain_updates(&pending_monitor_updates);
523 if monitor_is_pending_updates {
524 // If there are still monitor updates pending, we cannot yet construct a
528 self.pending_monitor_events.lock().unwrap().push((funding_txo, vec![MonitorEvent::Completed {
530 monitor_update_id: monitor_data.monitor.get_latest_update_id(),
531 }], monitor_data.monitor.get_counterparty_node_id()));
533 MonitorUpdateId { contents: UpdateOrigin::ChainSync(_) } => {
534 if !monitor_data.has_pending_chainsync_updates(&pending_monitor_updates) {
535 monitor_data.last_chain_persist_height.store(self.highest_chain_height.load(Ordering::Acquire), Ordering::Release);
536 // The next time release_pending_monitor_events is called, any events for this
537 // ChannelMonitor will be returned.
541 self.event_notifier.notify();
545 /// This wrapper avoids having to update some of our tests for now as they assume the direct
546 /// chain::Watch API wherein we mark a monitor fully-updated by just calling
547 /// channel_monitor_updated once with the highest ID.
548 #[cfg(any(test, fuzzing))]
549 pub fn force_channel_monitor_updated(&self, funding_txo: OutPoint, monitor_update_id: u64) {
550 let monitors = self.monitors.read().unwrap();
551 let counterparty_node_id = monitors.get(&funding_txo).and_then(|m| m.monitor.get_counterparty_node_id());
552 self.pending_monitor_events.lock().unwrap().push((funding_txo, vec![MonitorEvent::Completed {
555 }], counterparty_node_id));
556 self.event_notifier.notify();
559 #[cfg(any(test, feature = "_test_utils"))]
560 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
561 use crate::events::EventsProvider;
562 let events = core::cell::RefCell::new(Vec::new());
563 let event_handler = |event: events::Event| events.borrow_mut().push(event);
564 self.process_pending_events(&event_handler);
568 /// Processes any events asynchronously in the order they were generated since the last call
569 /// using the given event handler.
571 /// See the trait-level documentation of [`EventsProvider`] for requirements.
573 /// [`EventsProvider`]: crate::events::EventsProvider
574 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
577 // Sadly we can't hold the monitors read lock through an async call. Thus we have to do a
578 // crazy dance to process a monitor's events then only remove them once we've done so.
579 let mons_to_process = self.monitors.read().unwrap().keys().cloned().collect::<Vec<_>>();
580 for funding_txo in mons_to_process {
582 super::channelmonitor::process_events_body!(
583 self.monitors.read().unwrap().get(&funding_txo).map(|m| &m.monitor), ev, handler(ev).await);
587 /// Gets a [`Future`] that completes when an event is available either via
588 /// [`chain::Watch::release_pending_monitor_events`] or
589 /// [`EventsProvider::process_pending_events`].
591 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
592 /// [`ChainMonitor`] and should instead register actions to be taken later.
594 /// [`EventsProvider::process_pending_events`]: crate::events::EventsProvider::process_pending_events
595 pub fn get_update_future(&self) -> Future {
596 self.event_notifier.get_future()
599 /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
600 /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
601 /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
602 /// invoking this every 30 seconds, or lower if running in an environment with spotty
603 /// connections, like on mobile.
604 pub fn rebroadcast_pending_claims(&self) {
605 let monitors = self.monitors.read().unwrap();
606 for (_, monitor_holder) in &*monitors {
607 monitor_holder.monitor.rebroadcast_pending_claims(
608 &*self.broadcaster, &*self.fee_estimator, &*self.logger
614 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
615 chain::Listen for ChainMonitor<ChannelSigner, C, T, F, L, P>
617 C::Target: chain::Filter,
618 T::Target: BroadcasterInterface,
619 F::Target: FeeEstimator,
621 P::Target: Persist<ChannelSigner>,
623 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
624 log_debug!(self.logger, "New best block {} at height {} provided via block_connected", header.block_hash(), height);
625 self.process_chain_data(header, Some(height), &txdata, |monitor, txdata| {
626 monitor.block_connected(
627 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
631 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
632 let monitor_states = self.monitors.read().unwrap();
633 log_debug!(self.logger, "Latest block {} at height {} removed via block_disconnected", header.block_hash(), height);
634 for monitor_state in monitor_states.values() {
635 monitor_state.monitor.block_disconnected(
636 header, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
641 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
642 chain::Confirm for ChainMonitor<ChannelSigner, C, T, F, L, P>
644 C::Target: chain::Filter,
645 T::Target: BroadcasterInterface,
646 F::Target: FeeEstimator,
648 P::Target: Persist<ChannelSigner>,
650 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
651 log_debug!(self.logger, "{} provided transactions confirmed at height {} in block {}", txdata.len(), height, header.block_hash());
652 self.process_chain_data(header, None, txdata, |monitor, txdata| {
653 monitor.transactions_confirmed(
654 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
658 fn transaction_unconfirmed(&self, txid: &Txid) {
659 log_debug!(self.logger, "Transaction {} reorganized out of chain", txid);
660 let monitor_states = self.monitors.read().unwrap();
661 for monitor_state in monitor_states.values() {
662 monitor_state.monitor.transaction_unconfirmed(txid, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
666 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
667 log_debug!(self.logger, "New best block {} at height {} provided via best_block_updated", header.block_hash(), height);
668 self.process_chain_data(header, Some(height), &[], |monitor, txdata| {
669 // While in practice there shouldn't be any recursive calls when given empty txdata,
670 // it's still possible if a chain::Filter implementation returns a transaction.
671 debug_assert!(txdata.is_empty());
672 monitor.best_block_updated(
673 header, height, &*self.broadcaster, &*self.fee_estimator, &*self.logger)
677 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
678 let mut txids = Vec::new();
679 let monitor_states = self.monitors.read().unwrap();
680 for monitor_state in monitor_states.values() {
681 txids.append(&mut monitor_state.monitor.get_relevant_txids());
684 txids.sort_unstable();
690 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref , T: Deref , F: Deref , L: Deref , P: Deref >
691 chain::Watch<ChannelSigner> for ChainMonitor<ChannelSigner, C, T, F, L, P>
692 where C::Target: chain::Filter,
693 T::Target: BroadcasterInterface,
694 F::Target: FeeEstimator,
696 P::Target: Persist<ChannelSigner>,
698 fn watch_channel(&self, funding_outpoint: OutPoint, monitor: ChannelMonitor<ChannelSigner>) -> Result<ChannelMonitorUpdateStatus, ()> {
699 let mut monitors = self.monitors.write().unwrap();
700 let entry = match monitors.entry(funding_outpoint) {
701 hash_map::Entry::Occupied(_) => {
702 log_error!(self.logger, "Failed to add new channel data: channel monitor for given outpoint is already present");
705 hash_map::Entry::Vacant(e) => e,
707 log_trace!(self.logger, "Got new ChannelMonitor for channel {}", log_funding_info!(monitor));
708 let update_id = MonitorUpdateId::from_new_monitor(&monitor);
709 let mut pending_monitor_updates = Vec::new();
710 let persist_res = self.persister.persist_new_channel(funding_outpoint, &monitor, update_id);
712 ChannelMonitorUpdateStatus::InProgress => {
713 log_info!(self.logger, "Persistence of new ChannelMonitor for channel {} in progress", log_funding_info!(monitor));
714 pending_monitor_updates.push(update_id);
716 ChannelMonitorUpdateStatus::Completed => {
717 log_info!(self.logger, "Persistence of new ChannelMonitor for channel {} completed", log_funding_info!(monitor));
719 ChannelMonitorUpdateStatus::UnrecoverableError => {
720 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
721 log_error!(self.logger, "{}", err_str);
722 panic!("{}", err_str);
725 if let Some(ref chain_source) = self.chain_source {
726 monitor.load_outputs_to_watch(chain_source);
728 entry.insert(MonitorHolder {
730 pending_monitor_updates: Mutex::new(pending_monitor_updates),
731 last_chain_persist_height: AtomicUsize::new(self.highest_chain_height.load(Ordering::Acquire)),
736 fn update_channel(&self, funding_txo: OutPoint, update: &ChannelMonitorUpdate) -> ChannelMonitorUpdateStatus {
737 // Update the monitor that watches the channel referred to by the given outpoint.
738 let monitors = self.monitors.read().unwrap();
739 let ret = match monitors.get(&funding_txo) {
741 log_error!(self.logger, "Failed to update channel monitor: no such monitor registered");
743 // We should never ever trigger this from within ChannelManager. Technically a
744 // user could use this object with some proxying in between which makes this
745 // possible, but in tests and fuzzing, this should be a panic.
746 #[cfg(debug_assertions)]
747 panic!("ChannelManager generated a channel update for a channel that was not yet registered!");
748 #[cfg(not(debug_assertions))]
749 ChannelMonitorUpdateStatus::InProgress
751 Some(monitor_state) => {
752 let monitor = &monitor_state.monitor;
753 log_trace!(self.logger, "Updating ChannelMonitor for channel {}", log_funding_info!(monitor));
754 let update_res = monitor.update_monitor(update, &self.broadcaster, &*self.fee_estimator, &self.logger);
755 if update_res.is_err() {
756 log_error!(self.logger, "Failed to update ChannelMonitor for channel {}.", log_funding_info!(monitor));
758 // Even if updating the monitor returns an error, the monitor's state will
759 // still be changed. So, persist the updated monitor despite the error.
760 let update_id = MonitorUpdateId::from_monitor_update(update);
761 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
762 let persist_res = self.persister.update_persisted_channel(funding_txo, Some(update), monitor, update_id);
764 ChannelMonitorUpdateStatus::InProgress => {
765 pending_monitor_updates.push(update_id);
766 log_debug!(self.logger, "Persistence of ChannelMonitorUpdate for channel {} in progress", log_funding_info!(monitor));
768 ChannelMonitorUpdateStatus::Completed => {
769 log_debug!(self.logger, "Persistence of ChannelMonitorUpdate for channel {} completed", log_funding_info!(monitor));
771 ChannelMonitorUpdateStatus::UnrecoverableError => { /* we'll panic in a moment */ },
773 if update_res.is_err() {
774 ChannelMonitorUpdateStatus::InProgress
780 if let ChannelMonitorUpdateStatus::UnrecoverableError = ret {
781 // Take the monitors lock for writing so that we poison it and any future
782 // operations going forward fail immediately.
783 core::mem::drop(monitors);
784 let _poison = self.monitors.write().unwrap();
785 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
786 log_error!(self.logger, "{}", err_str);
787 panic!("{}", err_str);
792 fn release_pending_monitor_events(&self) -> Vec<(OutPoint, Vec<MonitorEvent>, Option<PublicKey>)> {
793 let mut pending_monitor_events = self.pending_monitor_events.lock().unwrap().split_off(0);
794 for monitor_state in self.monitors.read().unwrap().values() {
795 let is_pending_monitor_update = monitor_state.has_pending_chainsync_updates(&monitor_state.pending_monitor_updates.lock().unwrap());
796 if is_pending_monitor_update &&
797 monitor_state.last_chain_persist_height.load(Ordering::Acquire) + LATENCY_GRACE_PERIOD_BLOCKS as usize
798 > self.highest_chain_height.load(Ordering::Acquire)
800 log_debug!(self.logger, "A Channel Monitor sync is still in progress, refusing to provide monitor events!");
802 if is_pending_monitor_update {
803 log_error!(self.logger, "A ChannelMonitor sync took longer than {} blocks to complete.", LATENCY_GRACE_PERIOD_BLOCKS);
804 log_error!(self.logger, " To avoid funds-loss, we are allowing monitor updates to be released.");
805 log_error!(self.logger, " This may cause duplicate payment events to be generated.");
807 let monitor_events = monitor_state.monitor.get_and_clear_pending_monitor_events();
808 if monitor_events.len() > 0 {
809 let monitor_outpoint = monitor_state.monitor.get_funding_txo().0;
810 let counterparty_node_id = monitor_state.monitor.get_counterparty_node_id();
811 pending_monitor_events.push((monitor_outpoint, monitor_events, counterparty_node_id));
815 pending_monitor_events
819 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> events::EventsProvider for ChainMonitor<ChannelSigner, C, T, F, L, P>
820 where C::Target: chain::Filter,
821 T::Target: BroadcasterInterface,
822 F::Target: FeeEstimator,
824 P::Target: Persist<ChannelSigner>,
826 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
828 /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
829 /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
830 /// within each channel. As the confirmation of a commitment transaction may be critical to the
831 /// safety of funds, we recommend invoking this every 30 seconds, or lower if running in an
832 /// environment with spotty connections, like on mobile.
834 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
835 /// order to handle these events.
837 /// [`SpendableOutputs`]: events::Event::SpendableOutputs
838 /// [`BumpTransaction`]: events::Event::BumpTransaction
839 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
840 for monitor_state in self.monitors.read().unwrap().values() {
841 monitor_state.monitor.process_pending_events(&handler);
848 use crate::check_added_monitors;
849 use crate::{expect_payment_claimed, expect_payment_path_successful, get_event_msg};
850 use crate::{get_htlc_update_msgs, get_local_commitment_txn, get_revoke_commit_msgs, get_route_and_payment_hash, unwrap_send_err};
851 use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Watch};
852 use crate::chain::channelmonitor::LATENCY_GRACE_PERIOD_BLOCKS;
853 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
854 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId, RecipientOnionFields};
855 use crate::ln::functional_test_utils::*;
856 use crate::ln::msgs::ChannelMessageHandler;
857 use crate::util::errors::APIError;
860 fn test_async_ooo_offchain_updates() {
861 // Test that if we have multiple offchain updates being persisted and they complete
862 // out-of-order, the ChainMonitor waits until all have completed before informing the
864 let chanmon_cfgs = create_chanmon_cfgs(2);
865 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
866 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
867 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
868 create_announced_chan_between_nodes(&nodes, 0, 1);
870 // Route two payments to be claimed at the same time.
871 let (payment_preimage_1, payment_hash_1, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
872 let (payment_preimage_2, payment_hash_2, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
874 chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clear();
875 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
876 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
878 nodes[1].node.claim_funds(payment_preimage_1);
879 check_added_monitors!(nodes[1], 1);
880 nodes[1].node.claim_funds(payment_preimage_2);
881 check_added_monitors!(nodes[1], 1);
883 let persistences = chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clone();
884 assert_eq!(persistences.len(), 1);
885 let (funding_txo, updates) = persistences.iter().next().unwrap();
886 assert_eq!(updates.len(), 2);
888 // Note that updates is a HashMap so the ordering here is actually random. This shouldn't
889 // fail either way but if it fails intermittently it's depending on the ordering of updates.
890 let mut update_iter = updates.iter();
891 let next_update = update_iter.next().unwrap().clone();
892 // Should contain next_update when pending updates listed.
893 #[cfg(not(c_bindings))]
894 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
895 .unwrap().contains(&next_update));
897 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
898 .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
899 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, next_update.clone()).unwrap();
900 // Should not contain the previously pending next_update when pending updates listed.
901 #[cfg(not(c_bindings))]
902 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
903 .unwrap().contains(&next_update));
905 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
906 .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
907 assert!(nodes[1].chain_monitor.release_pending_monitor_events().is_empty());
908 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
909 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
910 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, update_iter.next().unwrap().clone()).unwrap();
912 let claim_events = nodes[1].node.get_and_clear_pending_events();
913 assert_eq!(claim_events.len(), 2);
914 match claim_events[0] {
915 Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
916 assert_eq!(payment_hash_1, *payment_hash);
918 _ => panic!("Unexpected event"),
920 match claim_events[1] {
921 Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
922 assert_eq!(payment_hash_2, *payment_hash);
924 _ => panic!("Unexpected event"),
927 // Now manually walk the commitment signed dance - because we claimed two payments
928 // back-to-back it doesn't fit into the neat walk commitment_signed_dance does.
930 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
931 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
932 expect_payment_sent(&nodes[0], payment_preimage_1, None, false, false);
933 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
934 check_added_monitors!(nodes[0], 1);
935 let (as_first_raa, as_first_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
937 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
938 check_added_monitors!(nodes[1], 1);
939 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
940 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_update);
941 check_added_monitors!(nodes[1], 1);
942 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
944 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
945 expect_payment_sent(&nodes[0], payment_preimage_2, None, false, false);
946 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
947 check_added_monitors!(nodes[0], 1);
948 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
949 expect_payment_path_successful!(nodes[0]);
950 check_added_monitors!(nodes[0], 1);
951 let (as_second_raa, as_second_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
953 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
954 check_added_monitors!(nodes[1], 1);
955 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update);
956 check_added_monitors!(nodes[1], 1);
957 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
959 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
960 expect_payment_path_successful!(nodes[0]);
961 check_added_monitors!(nodes[0], 1);
964 fn do_chainsync_pauses_events(block_timeout: bool) {
965 // When a chainsync monitor update occurs, any MonitorUpdates should be held before being
966 // passed upstream to a `ChannelManager` via `Watch::release_pending_monitor_events`. This
967 // tests that behavior, as well as some ways it might go wrong.
968 let chanmon_cfgs = create_chanmon_cfgs(2);
969 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
970 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
971 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
972 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
974 // Get a route for later and rebalance the channel somewhat
975 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
976 let (route, second_payment_hash, _, second_payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
978 // First route a payment that we will claim on chain and give the recipient the preimage.
979 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
980 nodes[1].node.claim_funds(payment_preimage);
981 expect_payment_claimed!(nodes[1], payment_hash, 1_000_000);
982 nodes[1].node.get_and_clear_pending_msg_events();
983 check_added_monitors!(nodes[1], 1);
984 let remote_txn = get_local_commitment_txn!(nodes[1], channel.2);
985 assert_eq!(remote_txn.len(), 2);
987 // Temp-fail the block connection which will hold the channel-closed event
988 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
989 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
991 // Connect B's commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
992 // channel is now closed, but the ChannelManager doesn't know that yet.
993 let new_header = create_dummy_header(nodes[0].best_block_info().0, 0);
994 nodes[0].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
995 &[(0, &remote_txn[0]), (1, &remote_txn[1])], nodes[0].best_block_info().1 + 1);
996 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
997 nodes[0].chain_monitor.chain_monitor.best_block_updated(&new_header, nodes[0].best_block_info().1 + 1);
998 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
1000 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
1001 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
1002 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
1003 unwrap_send_err!(nodes[0].node.send_payment_with_route(&route, second_payment_hash,
1004 RecipientOnionFields::secret_only(second_payment_secret), PaymentId(second_payment_hash.0)
1005 ), false, APIError::MonitorUpdateInProgress, {});
1006 check_added_monitors!(nodes[0], 1);
1008 // However, as the ChainMonitor is still waiting for the original persistence to complete,
1009 // it won't yet release the MonitorEvents.
1010 assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
1013 // After three blocks, pending MontiorEvents should be released either way.
1014 let latest_header = create_dummy_header(nodes[0].best_block_info().0, 0);
1015 nodes[0].chain_monitor.chain_monitor.best_block_updated(&latest_header, nodes[0].best_block_info().1 + LATENCY_GRACE_PERIOD_BLOCKS);
1017 let persistences = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clone();
1018 for (funding_outpoint, update_ids) in persistences {
1019 for update_id in update_ids {
1020 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_outpoint, update_id).unwrap();
1025 expect_payment_sent(&nodes[0], payment_preimage, None, true, false);
1029 fn chainsync_pauses_events() {
1030 do_chainsync_pauses_events(false);
1031 do_chainsync_pauses_events(true);
1035 #[cfg(feature = "std")]
1036 fn update_during_chainsync_poisons_channel() {
1037 let chanmon_cfgs = create_chanmon_cfgs(2);
1038 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1039 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1040 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1041 create_announced_chan_between_nodes(&nodes, 0, 1);
1043 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
1044 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::UnrecoverableError);
1046 assert!(std::panic::catch_unwind(|| {
1047 // Returning an UnrecoverableError should always panic immediately
1048 connect_blocks(&nodes[0], 1);
1050 assert!(std::panic::catch_unwind(|| {
1051 // ...and also poison our locks causing later use to panic as well
1052 core::mem::drop(nodes);