Remove ChainMonitor::sync_persistence_id
[rust-lightning] / lightning / src / chain / chainmonitor.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Logic to connect off-chain channel management with on-chain transaction monitoring.
11 //!
12 //! [`ChainMonitor`] is an implementation of [`chain::Watch`] used both to process blocks and to
13 //! update [`ChannelMonitor`]s accordingly. If any on-chain events need further processing, it will
14 //! make those available as [`MonitorEvent`]s to be consumed.
15 //!
16 //! [`ChainMonitor`] is parameterized by an optional chain source, which must implement the
17 //! [`chain::Filter`] trait. This provides a mechanism to signal new relevant outputs back to light
18 //! clients, such that transactions spending those outputs are included in block data.
19 //!
20 //! [`ChainMonitor`] may be used directly to monitor channels locally or as a part of a distributed
21 //! setup to monitor channels remotely. In the latter case, a custom [`chain::Watch`] implementation
22 //! would be responsible for routing each update to a remote server and for retrieving monitor
23 //! events. The remote server would make use of [`ChainMonitor`] for block processing and for
24 //! servicing [`ChannelMonitor`] updates from the client.
25
26 use bitcoin::blockdata::block::Header;
27 use bitcoin::hash_types::{Txid, BlockHash};
28
29 use crate::chain;
30 use crate::chain::{ChannelMonitorUpdateStatus, Filter, WatchedOutput};
31 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator};
32 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, Balance, MonitorEvent, TransactionOutputs, WithChannelMonitor};
33 use crate::chain::transaction::{OutPoint, TransactionData};
34 use crate::ln::ChannelId;
35 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
36 use crate::events;
37 use crate::events::{Event, EventHandler};
38 use crate::util::logger::{Logger, WithContext};
39 use crate::util::errors::APIError;
40 use crate::util::wakers::{Future, Notifier};
41 use crate::ln::channelmanager::ChannelDetails;
42
43 use crate::prelude::*;
44 use crate::sync::{RwLock, RwLockReadGuard, Mutex, MutexGuard};
45 use core::ops::Deref;
46 use core::sync::atomic::{AtomicUsize, Ordering};
47 use bitcoin::secp256k1::PublicKey;
48
49 /// `Persist` defines behavior for persisting channel monitors: this could mean
50 /// writing once to disk, and/or uploading to one or more backup services.
51 ///
52 /// Persistence can happen in one of two ways - synchronously completing before the trait method
53 /// calls return or asynchronously in the background.
54 ///
55 /// # For those implementing synchronous persistence
56 ///
57 ///  * If persistence completes fully (including any relevant `fsync()` calls), the implementation
58 ///    should return [`ChannelMonitorUpdateStatus::Completed`], indicating normal channel operation
59 ///    should continue.
60 ///
61 ///  * If persistence fails for some reason, implementations should consider returning
62 ///    [`ChannelMonitorUpdateStatus::InProgress`] and retry all pending persistence operations in
63 ///    the background with [`ChainMonitor::list_pending_monitor_updates`] and
64 ///    [`ChainMonitor::get_monitor`].
65 ///
66 ///    Once a full [`ChannelMonitor`] has been persisted, all pending updates for that channel can
67 ///    be marked as complete via [`ChainMonitor::channel_monitor_updated`].
68 ///
69 ///    If at some point no further progress can be made towards persisting the pending updates, the
70 ///    node should simply shut down.
71 ///
72 ///  * If the persistence has failed and cannot be retried further (e.g. because of an outage),
73 ///    [`ChannelMonitorUpdateStatus::UnrecoverableError`] can be used, though this will result in
74 ///    an immediate panic and future operations in LDK generally failing.
75 ///
76 /// # For those implementing asynchronous persistence
77 ///
78 ///  All calls should generally spawn a background task and immediately return
79 ///  [`ChannelMonitorUpdateStatus::InProgress`]. Once the update completes,
80 ///  [`ChainMonitor::channel_monitor_updated`] should be called with the corresponding
81 ///  [`ChannelMonitor::get_latest_update_id`] or [`ChannelMonitorUpdate::update_id`].
82 ///
83 ///  Note that unlike the direct [`chain::Watch`] interface,
84 ///  [`ChainMonitor::channel_monitor_updated`] must be called once for *each* update which occurs.
85 ///
86 ///  If at some point no further progress can be made towards persisting a pending update, the node
87 ///  should simply shut down. Until then, the background task should either loop indefinitely, or
88 ///  persistence should be regularly retried with [`ChainMonitor::list_pending_monitor_updates`]
89 ///  and [`ChainMonitor::get_monitor`] (note that if a full monitor is persisted all pending
90 ///  monitor updates may be marked completed).
91 ///
92 /// # Using remote watchtowers
93 ///
94 /// Watchtowers may be updated as a part of an implementation of this trait, utilizing the async
95 /// update process described above while the watchtower is being updated. The following methods are
96 /// provided for bulding transactions for a watchtower:
97 /// [`ChannelMonitor::initial_counterparty_commitment_tx`],
98 /// [`ChannelMonitor::counterparty_commitment_txs_from_update`],
99 /// [`ChannelMonitor::sign_to_local_justice_tx`], [`TrustedCommitmentTransaction::revokeable_output_index`],
100 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`].
101 ///
102 /// [`TrustedCommitmentTransaction::revokeable_output_index`]: crate::ln::chan_utils::TrustedCommitmentTransaction::revokeable_output_index
103 /// [`TrustedCommitmentTransaction::build_to_local_justice_tx`]: crate::ln::chan_utils::TrustedCommitmentTransaction::build_to_local_justice_tx
104 pub trait Persist<ChannelSigner: WriteableEcdsaChannelSigner> {
105         /// Persist a new channel's data in response to a [`chain::Watch::watch_channel`] call. This is
106         /// called by [`ChannelManager`] for new channels, or may be called directly, e.g. on startup.
107         ///
108         /// The data can be stored any way you want, but the identifier provided by LDK is the
109         /// channel's outpoint (and it is up to you to maintain a correct mapping between the outpoint
110         /// and the stored channel data). Note that you **must** persist every new monitor to disk.
111         ///
112         /// The [`ChannelMonitor::get_latest_update_id`] uniquely links this call to [`ChainMonitor::channel_monitor_updated`].
113         /// For [`Persist::persist_new_channel`], it is only necessary to call [`ChainMonitor::channel_monitor_updated`]
114         /// when you return [`ChannelMonitorUpdateStatus::InProgress`].
115         ///
116         /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`
117         /// and [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
118         ///
119         /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
120         /// [`Writeable::write`]: crate::util::ser::Writeable::write
121         fn persist_new_channel(&self, channel_funding_outpoint: OutPoint, monitor: &ChannelMonitor<ChannelSigner>) -> ChannelMonitorUpdateStatus;
122
123         /// Update one channel's data. The provided [`ChannelMonitor`] has already applied the given
124         /// update.
125         ///
126         /// Note that on every update, you **must** persist either the [`ChannelMonitorUpdate`] or the
127         /// updated monitor itself to disk/backups. See the [`Persist`] trait documentation for more
128         /// details.
129         ///
130         /// During blockchain synchronization operations, and in some rare cases, this may be called with
131         /// no [`ChannelMonitorUpdate`], in which case the full [`ChannelMonitor`] needs to be persisted.
132         /// Note that after the full [`ChannelMonitor`] is persisted any previous
133         /// [`ChannelMonitorUpdate`]s which were persisted should be discarded - they can no longer be
134         /// applied to the persisted [`ChannelMonitor`] as they were already applied.
135         ///
136         /// If an implementer chooses to persist the updates only, they need to make
137         /// sure that all the updates are applied to the `ChannelMonitors` *before*
138         /// the set of channel monitors is given to the `ChannelManager`
139         /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
140         /// applying a monitor update to a monitor. If full `ChannelMonitors` are
141         /// persisted, then there is no need to persist individual updates.
142         ///
143         /// Note that there could be a performance tradeoff between persisting complete
144         /// channel monitors on every update vs. persisting only updates and applying
145         /// them in batches. The size of each monitor grows `O(number of state updates)`
146         /// whereas updates are small and `O(1)`.
147         ///
148         /// The [`ChannelMonitorUpdate::update_id`] or [`ChannelMonitor::get_latest_update_id`] uniquely
149         /// links this call to [`ChainMonitor::channel_monitor_updated`].
150         /// For [`Persist::update_persisted_channel`], it is only necessary to call [`ChainMonitor::channel_monitor_updated`]
151         /// when an [`ChannelMonitorUpdate`] is provided and when you return [`ChannelMonitorUpdateStatus::InProgress`].
152         ///
153         /// See [`Writeable::write`] on [`ChannelMonitor`] for writing out a `ChannelMonitor`,
154         /// [`Writeable::write`] on [`ChannelMonitorUpdate`] for writing out an update, and
155         /// [`ChannelMonitorUpdateStatus`] for requirements when returning errors.
156         ///
157         /// [`Writeable::write`]: crate::util::ser::Writeable::write
158         fn update_persisted_channel(&self, channel_funding_outpoint: OutPoint, monitor_update: Option<&ChannelMonitorUpdate>, monitor: &ChannelMonitor<ChannelSigner>) -> ChannelMonitorUpdateStatus;
159         /// Prevents the channel monitor from being loaded on startup.
160         ///
161         /// Archiving the data in a backup location (rather than deleting it fully) is useful for
162         /// hedging against data loss in case of unexpected failure.
163         fn archive_persisted_channel(&self, channel_funding_outpoint: OutPoint);
164 }
165
166 struct MonitorHolder<ChannelSigner: WriteableEcdsaChannelSigner> {
167         monitor: ChannelMonitor<ChannelSigner>,
168         /// The full set of pending monitor updates for this Channel.
169         ///
170         /// Note that this lock must be held during updates to prevent a race where we call
171         /// update_persisted_channel, the user returns a
172         /// [`ChannelMonitorUpdateStatus::InProgress`], and then calls channel_monitor_updated
173         /// immediately, racing our insertion of the pending update into the contained Vec.
174         pending_monitor_updates: Mutex<Vec<u64>>,
175 }
176
177 impl<ChannelSigner: WriteableEcdsaChannelSigner> MonitorHolder<ChannelSigner> {
178         fn has_pending_updates(&self, pending_monitor_updates_lock: &MutexGuard<Vec<u64>>) -> bool {
179                 !pending_monitor_updates_lock.is_empty()
180         }
181 }
182
183 /// A read-only reference to a current ChannelMonitor.
184 ///
185 /// Note that this holds a mutex in [`ChainMonitor`] and may block other events until it is
186 /// released.
187 pub struct LockedChannelMonitor<'a, ChannelSigner: WriteableEcdsaChannelSigner> {
188         lock: RwLockReadGuard<'a, HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
189         funding_txo: OutPoint,
190 }
191
192 impl<ChannelSigner: WriteableEcdsaChannelSigner> Deref for LockedChannelMonitor<'_, ChannelSigner> {
193         type Target = ChannelMonitor<ChannelSigner>;
194         fn deref(&self) -> &ChannelMonitor<ChannelSigner> {
195                 &self.lock.get(&self.funding_txo).expect("Checked at construction").monitor
196         }
197 }
198
199 /// An implementation of [`chain::Watch`] for monitoring channels.
200 ///
201 /// Connected and disconnected blocks must be provided to `ChainMonitor` as documented by
202 /// [`chain::Watch`]. May be used in conjunction with [`ChannelManager`] to monitor channels locally
203 /// or used independently to monitor channels remotely. See the [module-level documentation] for
204 /// details.
205 ///
206 /// Note that `ChainMonitor` should regularly trigger rebroadcasts/fee bumps of pending claims from
207 /// a force-closed channel. This is crucial in preventing certain classes of pinning attacks,
208 /// detecting substantial mempool feerate changes between blocks, and ensuring reliability if
209 /// broadcasting fails. We recommend invoking this every 30 seconds, or lower if running in an
210 /// environment with spotty connections, like on mobile.
211 ///
212 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
213 /// [module-level documentation]: crate::chain::chainmonitor
214 /// [`rebroadcast_pending_claims`]: Self::rebroadcast_pending_claims
215 pub struct ChainMonitor<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
216         where C::Target: chain::Filter,
217         T::Target: BroadcasterInterface,
218         F::Target: FeeEstimator,
219         L::Target: Logger,
220         P::Target: Persist<ChannelSigner>,
221 {
222         monitors: RwLock<HashMap<OutPoint, MonitorHolder<ChannelSigner>>>,
223         chain_source: Option<C>,
224         broadcaster: T,
225         logger: L,
226         fee_estimator: F,
227         persister: P,
228         /// "User-provided" (ie persistence-completion/-failed) [`MonitorEvent`]s. These came directly
229         /// from the user and not from a [`ChannelMonitor`].
230         pending_monitor_events: Mutex<Vec<(OutPoint, ChannelId, Vec<MonitorEvent>, Option<PublicKey>)>>,
231         /// The best block height seen, used as a proxy for the passage of time.
232         highest_chain_height: AtomicUsize,
233
234         event_notifier: Notifier,
235 }
236
237 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> ChainMonitor<ChannelSigner, C, T, F, L, P>
238 where C::Target: chain::Filter,
239             T::Target: BroadcasterInterface,
240             F::Target: FeeEstimator,
241             L::Target: Logger,
242             P::Target: Persist<ChannelSigner>,
243 {
244         /// Dispatches to per-channel monitors, which are responsible for updating their on-chain view
245         /// of a channel and reacting accordingly based on transactions in the given chain data. See
246         /// [`ChannelMonitor::block_connected`] for details. Any HTLCs that were resolved on chain will
247         /// be returned by [`chain::Watch::release_pending_monitor_events`].
248         ///
249         /// Calls back to [`chain::Filter`] if any monitor indicated new outputs to watch. Subsequent
250         /// calls must not exclude any transactions matching the new outputs nor any in-block
251         /// descendants of such transactions. It is not necessary to re-fetch the block to obtain
252         /// updated `txdata`.
253         ///
254         /// Calls which represent a new blockchain tip height should set `best_height`.
255         fn process_chain_data<FN>(&self, header: &Header, best_height: Option<u32>, txdata: &TransactionData, process: FN)
256         where
257                 FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs>
258         {
259                 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
260                 let funding_outpoints = hash_set_from_iter(self.monitors.read().unwrap().keys().cloned());
261                 for funding_outpoint in funding_outpoints.iter() {
262                         let monitor_lock = self.monitors.read().unwrap();
263                         if let Some(monitor_state) = monitor_lock.get(funding_outpoint) {
264                                 if self.update_monitor_with_chain_data(header, txdata, &process, funding_outpoint, &monitor_state).is_err() {
265                                         // Take the monitors lock for writing so that we poison it and any future
266                                         // operations going forward fail immediately.
267                                         core::mem::drop(monitor_lock);
268                                         let _poison = self.monitors.write().unwrap();
269                                         log_error!(self.logger, "{}", err_str);
270                                         panic!("{}", err_str);
271                                 }
272                         }
273                 }
274
275                 // do some followup cleanup if any funding outpoints were added in between iterations
276                 let monitor_states = self.monitors.write().unwrap();
277                 for (funding_outpoint, monitor_state) in monitor_states.iter() {
278                         if !funding_outpoints.contains(funding_outpoint) {
279                                 if self.update_monitor_with_chain_data(header, txdata, &process, funding_outpoint, &monitor_state).is_err() {
280                                         log_error!(self.logger, "{}", err_str);
281                                         panic!("{}", err_str);
282                                 }
283                         }
284                 }
285
286                 if let Some(height) = best_height {
287                         // If the best block height is being updated, update highest_chain_height under the
288                         // monitors write lock.
289                         let old_height = self.highest_chain_height.load(Ordering::Acquire);
290                         let new_height = height as usize;
291                         if new_height > old_height {
292                                 self.highest_chain_height.store(new_height, Ordering::Release);
293                         }
294                 }
295         }
296
297         fn update_monitor_with_chain_data<FN>(
298                 &self, header: &Header, txdata: &TransactionData, process: FN, funding_outpoint: &OutPoint,
299                 monitor_state: &MonitorHolder<ChannelSigner>
300         ) -> Result<(), ()> where FN: Fn(&ChannelMonitor<ChannelSigner>, &TransactionData) -> Vec<TransactionOutputs> {
301                 let monitor = &monitor_state.monitor;
302                 let logger = WithChannelMonitor::from(&self.logger, &monitor);
303                 let mut txn_outputs;
304                 {
305                         txn_outputs = process(monitor, txdata);
306                         log_trace!(logger, "Syncing Channel Monitor for channel {}", log_funding_info!(monitor));
307                         match self.persister.update_persisted_channel(*funding_outpoint, None, monitor) {
308                                 ChannelMonitorUpdateStatus::Completed =>
309                                         log_trace!(logger, "Finished syncing Channel Monitor for channel {} for block-data",
310                                                 log_funding_info!(monitor)
311                                         ),
312                                 ChannelMonitorUpdateStatus::InProgress => {
313                                         log_debug!(logger, "Channel Monitor sync for channel {} in progress.", log_funding_info!(monitor));
314                                 },
315                                 ChannelMonitorUpdateStatus::UnrecoverableError => {
316                                         return Err(());
317                                 },
318                         }
319                 }
320
321                 // Register any new outputs with the chain source for filtering, storing any dependent
322                 // transactions from within the block that previously had not been included in txdata.
323                 if let Some(ref chain_source) = self.chain_source {
324                         let block_hash = header.block_hash();
325                         for (txid, mut outputs) in txn_outputs.drain(..) {
326                                 for (idx, output) in outputs.drain(..) {
327                                         // Register any new outputs with the chain source for filtering
328                                         let output = WatchedOutput {
329                                                 block_hash: Some(block_hash),
330                                                 outpoint: OutPoint { txid, index: idx as u16 },
331                                                 script_pubkey: output.script_pubkey,
332                                         };
333                                         log_trace!(logger, "Adding monitoring for spends of outpoint {} to the filter", output.outpoint);
334                                         chain_source.register_output(output);
335                                 }
336                         }
337                 }
338                 Ok(())
339         }
340
341         /// Creates a new `ChainMonitor` used to watch on-chain activity pertaining to channels.
342         ///
343         /// When an optional chain source implementing [`chain::Filter`] is provided, the chain monitor
344         /// will call back to it indicating transactions and outputs of interest. This allows clients to
345         /// pre-filter blocks or only fetch blocks matching a compact filter. Otherwise, clients may
346         /// always need to fetch full blocks absent another means for determining which blocks contain
347         /// transactions relevant to the watched channels.
348         pub fn new(chain_source: Option<C>, broadcaster: T, logger: L, feeest: F, persister: P) -> Self {
349                 Self {
350                         monitors: RwLock::new(new_hash_map()),
351                         chain_source,
352                         broadcaster,
353                         logger,
354                         fee_estimator: feeest,
355                         persister,
356                         pending_monitor_events: Mutex::new(Vec::new()),
357                         highest_chain_height: AtomicUsize::new(0),
358                         event_notifier: Notifier::new(),
359                 }
360         }
361
362         /// Gets the balances in the contained [`ChannelMonitor`]s which are claimable on-chain or
363         /// claims which are awaiting confirmation.
364         ///
365         /// Includes the balances from each [`ChannelMonitor`] *except* those included in
366         /// `ignored_channels`, allowing you to filter out balances from channels which are still open
367         /// (and whose balance should likely be pulled from the [`ChannelDetails`]).
368         ///
369         /// See [`ChannelMonitor::get_claimable_balances`] for more details on the exact criteria for
370         /// inclusion in the return value.
371         pub fn get_claimable_balances(&self, ignored_channels: &[&ChannelDetails]) -> Vec<Balance> {
372                 let mut ret = Vec::new();
373                 let monitor_states = self.monitors.read().unwrap();
374                 for (_, monitor_state) in monitor_states.iter().filter(|(funding_outpoint, _)| {
375                         for chan in ignored_channels {
376                                 if chan.funding_txo.as_ref() == Some(funding_outpoint) {
377                                         return false;
378                                 }
379                         }
380                         true
381                 }) {
382                         ret.append(&mut monitor_state.monitor.get_claimable_balances());
383                 }
384                 ret
385         }
386
387         /// Gets the [`LockedChannelMonitor`] for a given funding outpoint, returning an `Err` if no
388         /// such [`ChannelMonitor`] is currently being monitored for.
389         ///
390         /// Note that the result holds a mutex over our monitor set, and should not be held
391         /// indefinitely.
392         pub fn get_monitor(&self, funding_txo: OutPoint) -> Result<LockedChannelMonitor<'_, ChannelSigner>, ()> {
393                 let lock = self.monitors.read().unwrap();
394                 if lock.get(&funding_txo).is_some() {
395                         Ok(LockedChannelMonitor { lock, funding_txo })
396                 } else {
397                         Err(())
398                 }
399         }
400
401         /// Lists the funding outpoint and channel ID of each [`ChannelMonitor`] being monitored.
402         ///
403         /// Note that [`ChannelMonitor`]s are not removed when a channel is closed as they are always
404         /// monitoring for on-chain state resolutions.
405         pub fn list_monitors(&self) -> Vec<(OutPoint, ChannelId)> {
406                 self.monitors.read().unwrap().iter().map(|(outpoint, monitor_holder)| {
407                         let channel_id = monitor_holder.monitor.channel_id();
408                         (*outpoint, channel_id)
409                 }).collect()
410         }
411
412         #[cfg(not(c_bindings))]
413         /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
414         /// Each `Vec<u64>` contains `update_id`s from [`ChannelMonitor::get_latest_update_id`] for updates
415         /// that have not yet been fully persisted. Note that if a full monitor is persisted all the pending
416         /// monitor updates must be individually marked completed by calling [`ChainMonitor::channel_monitor_updated`].
417         pub fn list_pending_monitor_updates(&self) -> HashMap<OutPoint, Vec<u64>> {
418                 hash_map_from_iter(self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
419                         (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
420                 }))
421         }
422
423         #[cfg(c_bindings)]
424         /// Lists the pending updates for each [`ChannelMonitor`] (by `OutPoint` being monitored).
425         /// Each `Vec<u64>` contains `update_id`s from [`ChannelMonitor::get_latest_update_id`] for updates
426         /// that have not yet been fully persisted. Note that if a full monitor is persisted all the pending
427         /// monitor updates must be individually marked completed by calling [`ChainMonitor::channel_monitor_updated`].
428         pub fn list_pending_monitor_updates(&self) -> Vec<(OutPoint, Vec<u64>)> {
429                 self.monitors.read().unwrap().iter().map(|(outpoint, holder)| {
430                         (*outpoint, holder.pending_monitor_updates.lock().unwrap().clone())
431                 }).collect()
432         }
433
434
435         #[cfg(test)]
436         pub fn remove_monitor(&self, funding_txo: &OutPoint) -> ChannelMonitor<ChannelSigner> {
437                 self.monitors.write().unwrap().remove(funding_txo).unwrap().monitor
438         }
439
440         /// Indicates the persistence of a [`ChannelMonitor`] has completed after
441         /// [`ChannelMonitorUpdateStatus::InProgress`] was returned from an update operation.
442         ///
443         /// Thus, the anticipated use is, at a high level:
444         ///  1) This [`ChainMonitor`] calls [`Persist::update_persisted_channel`] which stores the
445         ///     update to disk and begins updating any remote (e.g. watchtower/backup) copies,
446         ///     returning [`ChannelMonitorUpdateStatus::InProgress`],
447         ///  2) once all remote copies are updated, you call this function with [`ChannelMonitor::get_latest_update_id`]
448         ///     or [`ChannelMonitorUpdate::update_id`] as the `completed_update_id`, and once all pending
449         ///     updates have completed the channel will be re-enabled.
450         ///
451         /// It is only necessary to call [`ChainMonitor::channel_monitor_updated`] when you return [`ChannelMonitorUpdateStatus::InProgress`]
452         /// from [`Persist`] and either:
453         ///   1. A new [`ChannelMonitor`] was added in [`Persist::persist_new_channel`], or
454         ///   2. A [`ChannelMonitorUpdate`] was provided as part of [`Persist::update_persisted_channel`].
455         /// Note that we don't care about calls to [`Persist::update_persisted_channel`] where no
456         /// [`ChannelMonitorUpdate`] was provided.
457         ///
458         /// Returns an [`APIError::APIMisuseError`] if `funding_txo` does not match any currently
459         /// registered [`ChannelMonitor`]s.
460         pub fn channel_monitor_updated(&self, funding_txo: OutPoint, completed_update_id: u64) -> Result<(), APIError> {
461                 let monitors = self.monitors.read().unwrap();
462                 let monitor_data = if let Some(mon) = monitors.get(&funding_txo) { mon } else {
463                         return Err(APIError::APIMisuseError { err: format!("No ChannelMonitor matching funding outpoint {:?} found", funding_txo) });
464                 };
465                 let mut pending_monitor_updates = monitor_data.pending_monitor_updates.lock().unwrap();
466                 pending_monitor_updates.retain(|update_id| *update_id != completed_update_id);
467
468                 // Note that we only check for pending non-chainsync monitor updates and we don't track monitor
469                 // updates resulting from chainsync in `pending_monitor_updates`.
470                 let monitor_is_pending_updates = monitor_data.has_pending_updates(&pending_monitor_updates);
471                 log_debug!(self.logger, "Completed off-chain monitor update {} for channel with funding outpoint {:?}, {}",
472                         completed_update_id,
473                         funding_txo,
474                         if monitor_is_pending_updates {
475                                 "still have pending off-chain updates"
476                         } else {
477                                 "all off-chain updates complete, returning a MonitorEvent"
478                         });
479                 if monitor_is_pending_updates {
480                         // If there are still monitor updates pending, we cannot yet construct a
481                         // Completed event.
482                         return Ok(());
483                 }
484                 let channel_id = monitor_data.monitor.channel_id();
485                 self.pending_monitor_events.lock().unwrap().push((funding_txo, channel_id, vec![MonitorEvent::Completed {
486                         funding_txo, channel_id,
487                         monitor_update_id: monitor_data.monitor.get_latest_update_id(),
488                 }], monitor_data.monitor.get_counterparty_node_id()));
489
490                 self.event_notifier.notify();
491                 Ok(())
492         }
493
494         /// This wrapper avoids having to update some of our tests for now as they assume the direct
495         /// chain::Watch API wherein we mark a monitor fully-updated by just calling
496         /// channel_monitor_updated once with the highest ID.
497         #[cfg(any(test, fuzzing))]
498         pub fn force_channel_monitor_updated(&self, funding_txo: OutPoint, monitor_update_id: u64) {
499                 let monitors = self.monitors.read().unwrap();
500                 let (counterparty_node_id, channel_id) = if let Some(m) = monitors.get(&funding_txo) {
501                         (m.monitor.get_counterparty_node_id(), m.monitor.channel_id())
502                 } else {
503                         (None, ChannelId::v1_from_funding_outpoint(funding_txo))
504                 };
505                 self.pending_monitor_events.lock().unwrap().push((funding_txo, channel_id, vec![MonitorEvent::Completed {
506                         funding_txo,
507                         channel_id,
508                         monitor_update_id,
509                 }], counterparty_node_id));
510                 self.event_notifier.notify();
511         }
512
513         #[cfg(any(test, feature = "_test_utils"))]
514         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
515                 use crate::events::EventsProvider;
516                 let events = core::cell::RefCell::new(Vec::new());
517                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
518                 self.process_pending_events(&event_handler);
519                 events.into_inner()
520         }
521
522         /// Processes any events asynchronously in the order they were generated since the last call
523         /// using the given event handler.
524         ///
525         /// See the trait-level documentation of [`EventsProvider`] for requirements.
526         ///
527         /// [`EventsProvider`]: crate::events::EventsProvider
528         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
529                 &self, handler: H
530         ) {
531                 // Sadly we can't hold the monitors read lock through an async call. Thus we have to do a
532                 // crazy dance to process a monitor's events then only remove them once we've done so.
533                 let mons_to_process = self.monitors.read().unwrap().keys().cloned().collect::<Vec<_>>();
534                 for funding_txo in mons_to_process {
535                         let mut ev;
536                         super::channelmonitor::process_events_body!(
537                                 self.monitors.read().unwrap().get(&funding_txo).map(|m| &m.monitor), ev, handler(ev).await);
538                 }
539         }
540
541         /// Gets a [`Future`] that completes when an event is available either via
542         /// [`chain::Watch::release_pending_monitor_events`] or
543         /// [`EventsProvider::process_pending_events`].
544         ///
545         /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
546         /// [`ChainMonitor`] and should instead register actions to be taken later.
547         ///
548         /// [`EventsProvider::process_pending_events`]: crate::events::EventsProvider::process_pending_events
549         pub fn get_update_future(&self) -> Future {
550                 self.event_notifier.get_future()
551         }
552
553         /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
554         /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
555         /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
556         /// invoking this every 30 seconds, or lower if running in an environment with spotty
557         /// connections, like on mobile.
558         pub fn rebroadcast_pending_claims(&self) {
559                 let monitors = self.monitors.read().unwrap();
560                 for (_, monitor_holder) in &*monitors {
561                         monitor_holder.monitor.rebroadcast_pending_claims(
562                                 &*self.broadcaster, &*self.fee_estimator, &self.logger
563                         )
564                 }
565         }
566
567         /// Triggers rebroadcasts of pending claims from force-closed channels after a transaction
568         /// signature generation failure.
569         ///
570         /// `monitor_opt` can be used as a filter to only trigger them for a specific channel monitor.
571         pub fn signer_unblocked(&self, monitor_opt: Option<OutPoint>) {
572                 let monitors = self.monitors.read().unwrap();
573                 if let Some(funding_txo) = monitor_opt {
574                         if let Some(monitor_holder) = monitors.get(&funding_txo) {
575                                 monitor_holder.monitor.signer_unblocked(
576                                         &*self.broadcaster, &*self.fee_estimator, &self.logger
577                                 )
578                         }
579                 } else {
580                         for (_, monitor_holder) in &*monitors {
581                                 monitor_holder.monitor.signer_unblocked(
582                                         &*self.broadcaster, &*self.fee_estimator, &self.logger
583                                 )
584                         }
585                 }
586         }
587
588         /// Archives fully resolved channel monitors by calling [`Persist::archive_persisted_channel`].
589         ///
590         /// This is useful for pruning fully resolved monitors from the monitor set and primary
591         /// storage so they are not kept in memory and reloaded on restart.
592         ///
593         /// Should be called occasionally (once every handful of blocks or on startup).
594         ///
595         /// Depending on the implementation of [`Persist::archive_persisted_channel`] the monitor
596         /// data could be moved to an archive location or removed entirely.
597         pub fn archive_fully_resolved_channel_monitors(&self) {
598                 let mut have_monitors_to_prune = false;
599                 for (_, monitor_holder) in self.monitors.read().unwrap().iter() {
600                         let logger = WithChannelMonitor::from(&self.logger, &monitor_holder.monitor);
601                         if monitor_holder.monitor.is_fully_resolved(&logger) {
602                                 have_monitors_to_prune = true;
603                         }
604                 }
605                 if have_monitors_to_prune {
606                         let mut monitors = self.monitors.write().unwrap();
607                         monitors.retain(|funding_txo, monitor_holder| {
608                                 let logger = WithChannelMonitor::from(&self.logger, &monitor_holder.monitor);
609                                 if monitor_holder.monitor.is_fully_resolved(&logger) {
610                                         log_info!(logger,
611                                                 "Archiving fully resolved ChannelMonitor for funding txo {}",
612                                                 funding_txo
613                                         );
614                                         self.persister.archive_persisted_channel(*funding_txo);
615                                         false
616                                 } else {
617                                         true
618                                 }
619                         });
620                 }
621         }
622 }
623
624 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
625 chain::Listen for ChainMonitor<ChannelSigner, C, T, F, L, P>
626 where
627         C::Target: chain::Filter,
628         T::Target: BroadcasterInterface,
629         F::Target: FeeEstimator,
630         L::Target: Logger,
631         P::Target: Persist<ChannelSigner>,
632 {
633         fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
634                 log_debug!(self.logger, "New best block {} at height {} provided via block_connected", header.block_hash(), height);
635                 self.process_chain_data(header, Some(height), &txdata, |monitor, txdata| {
636                         monitor.block_connected(
637                                 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &self.logger)
638                 });
639         }
640
641         fn block_disconnected(&self, header: &Header, height: u32) {
642                 let monitor_states = self.monitors.read().unwrap();
643                 log_debug!(self.logger, "Latest block {} at height {} removed via block_disconnected", header.block_hash(), height);
644                 for monitor_state in monitor_states.values() {
645                         monitor_state.monitor.block_disconnected(
646                                 header, height, &*self.broadcaster, &*self.fee_estimator, &self.logger);
647                 }
648         }
649 }
650
651 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref>
652 chain::Confirm for ChainMonitor<ChannelSigner, C, T, F, L, P>
653 where
654         C::Target: chain::Filter,
655         T::Target: BroadcasterInterface,
656         F::Target: FeeEstimator,
657         L::Target: Logger,
658         P::Target: Persist<ChannelSigner>,
659 {
660         fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
661                 log_debug!(self.logger, "{} provided transactions confirmed at height {} in block {}", txdata.len(), height, header.block_hash());
662                 self.process_chain_data(header, None, txdata, |monitor, txdata| {
663                         monitor.transactions_confirmed(
664                                 header, txdata, height, &*self.broadcaster, &*self.fee_estimator, &self.logger)
665                 });
666         }
667
668         fn transaction_unconfirmed(&self, txid: &Txid) {
669                 log_debug!(self.logger, "Transaction {} reorganized out of chain", txid);
670                 let monitor_states = self.monitors.read().unwrap();
671                 for monitor_state in monitor_states.values() {
672                         monitor_state.monitor.transaction_unconfirmed(txid, &*self.broadcaster, &*self.fee_estimator, &self.logger);
673                 }
674         }
675
676         fn best_block_updated(&self, header: &Header, height: u32) {
677                 log_debug!(self.logger, "New best block {} at height {} provided via best_block_updated", header.block_hash(), height);
678                 self.process_chain_data(header, Some(height), &[], |monitor, txdata| {
679                         // While in practice there shouldn't be any recursive calls when given empty txdata,
680                         // it's still possible if a chain::Filter implementation returns a transaction.
681                         debug_assert!(txdata.is_empty());
682                         monitor.best_block_updated(
683                                 header, height, &*self.broadcaster, &*self.fee_estimator, &self.logger
684                         )
685                 });
686         }
687
688         fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
689                 let mut txids = Vec::new();
690                 let monitor_states = self.monitors.read().unwrap();
691                 for monitor_state in monitor_states.values() {
692                         txids.append(&mut monitor_state.monitor.get_relevant_txids());
693                 }
694
695                 txids.sort_unstable_by(|a, b| a.0.cmp(&b.0).then(b.1.cmp(&a.1)));
696                 txids.dedup_by_key(|(txid, _, _)| *txid);
697                 txids
698         }
699 }
700
701 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref , T: Deref , F: Deref , L: Deref , P: Deref >
702 chain::Watch<ChannelSigner> for ChainMonitor<ChannelSigner, C, T, F, L, P>
703 where C::Target: chain::Filter,
704             T::Target: BroadcasterInterface,
705             F::Target: FeeEstimator,
706             L::Target: Logger,
707             P::Target: Persist<ChannelSigner>,
708 {
709         fn watch_channel(&self, funding_outpoint: OutPoint, monitor: ChannelMonitor<ChannelSigner>) -> Result<ChannelMonitorUpdateStatus, ()> {
710                 let logger = WithChannelMonitor::from(&self.logger, &monitor);
711                 let mut monitors = self.monitors.write().unwrap();
712                 let entry = match monitors.entry(funding_outpoint) {
713                         hash_map::Entry::Occupied(_) => {
714                                 log_error!(logger, "Failed to add new channel data: channel monitor for given outpoint is already present");
715                                 return Err(());
716                         },
717                         hash_map::Entry::Vacant(e) => e,
718                 };
719                 log_trace!(logger, "Got new ChannelMonitor for channel {}", log_funding_info!(monitor));
720                 let update_id = monitor.get_latest_update_id();
721                 let mut pending_monitor_updates = Vec::new();
722                 let persist_res = self.persister.persist_new_channel(funding_outpoint, &monitor);
723                 match persist_res {
724                         ChannelMonitorUpdateStatus::InProgress => {
725                                 log_info!(logger, "Persistence of new ChannelMonitor for channel {} in progress", log_funding_info!(monitor));
726                                 pending_monitor_updates.push(update_id);
727                         },
728                         ChannelMonitorUpdateStatus::Completed => {
729                                 log_info!(logger, "Persistence of new ChannelMonitor for channel {} completed", log_funding_info!(monitor));
730                         },
731                         ChannelMonitorUpdateStatus::UnrecoverableError => {
732                                 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
733                                 log_error!(logger, "{}", err_str);
734                                 panic!("{}", err_str);
735                         },
736                 }
737                 if let Some(ref chain_source) = self.chain_source {
738                         monitor.load_outputs_to_watch(chain_source , &self.logger);
739                 }
740                 entry.insert(MonitorHolder {
741                         monitor,
742                         pending_monitor_updates: Mutex::new(pending_monitor_updates),
743                 });
744                 Ok(persist_res)
745         }
746
747         fn update_channel(&self, funding_txo: OutPoint, update: &ChannelMonitorUpdate) -> ChannelMonitorUpdateStatus {
748                 // `ChannelMonitorUpdate`'s `channel_id` is `None` prior to 0.0.121 and all channels in those
749                 // versions are V1-established. For 0.0.121+ the `channel_id` fields is always `Some`.
750                 let channel_id = update.channel_id.unwrap_or(ChannelId::v1_from_funding_outpoint(funding_txo));
751                 // Update the monitor that watches the channel referred to by the given outpoint.
752                 let monitors = self.monitors.read().unwrap();
753                 match monitors.get(&funding_txo) {
754                         None => {
755                                 let logger = WithContext::from(&self.logger, update.counterparty_node_id, Some(channel_id));
756                                 log_error!(logger, "Failed to update channel monitor: no such monitor registered");
757
758                                 // We should never ever trigger this from within ChannelManager. Technically a
759                                 // user could use this object with some proxying in between which makes this
760                                 // possible, but in tests and fuzzing, this should be a panic.
761                                 #[cfg(debug_assertions)]
762                                 panic!("ChannelManager generated a channel update for a channel that was not yet registered!");
763                                 #[cfg(not(debug_assertions))]
764                                 ChannelMonitorUpdateStatus::InProgress
765                         },
766                         Some(monitor_state) => {
767                                 let monitor = &monitor_state.monitor;
768                                 let logger = WithChannelMonitor::from(&self.logger, &monitor);
769                                 log_trace!(logger, "Updating ChannelMonitor to id {} for channel {}", update.update_id, log_funding_info!(monitor));
770                                 let update_res = monitor.update_monitor(update, &self.broadcaster, &self.fee_estimator, &self.logger);
771
772                                 let update_id = update.update_id;
773                                 let mut pending_monitor_updates = monitor_state.pending_monitor_updates.lock().unwrap();
774                                 let persist_res = if update_res.is_err() {
775                                         // Even if updating the monitor returns an error, the monitor's state will
776                                         // still be changed. Therefore, we should persist the updated monitor despite the error.
777                                         // We don't want to persist a `monitor_update` which results in a failure to apply later
778                                         // while reading `channel_monitor` with updates from storage. Instead, we should persist
779                                         // the entire `channel_monitor` here.
780                                         log_warn!(logger, "Failed to update ChannelMonitor for channel {}. Going ahead and persisting the entire ChannelMonitor", log_funding_info!(monitor));
781                                         self.persister.update_persisted_channel(funding_txo, None, monitor)
782                                 } else {
783                                         self.persister.update_persisted_channel(funding_txo, Some(update), monitor)
784                                 };
785                                 match persist_res {
786                                         ChannelMonitorUpdateStatus::InProgress => {
787                                                 pending_monitor_updates.push(update_id);
788                                                 log_debug!(logger,
789                                                         "Persistence of ChannelMonitorUpdate id {:?} for channel {} in progress",
790                                                         update_id,
791                                                         log_funding_info!(monitor)
792                                                 );
793                                         },
794                                         ChannelMonitorUpdateStatus::Completed => {
795                                                 log_debug!(logger,
796                                                         "Persistence of ChannelMonitorUpdate id {:?} for channel {} completed",
797                                                         update_id,
798                                                         log_funding_info!(monitor)
799                                                 );
800                                         },
801                                         ChannelMonitorUpdateStatus::UnrecoverableError => {
802                                                 // Take the monitors lock for writing so that we poison it and any future
803                                                 // operations going forward fail immediately.
804                                                 core::mem::drop(pending_monitor_updates);
805                                                 core::mem::drop(monitors);
806                                                 let _poison = self.monitors.write().unwrap();
807                                                 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
808                                                 log_error!(logger, "{}", err_str);
809                                                 panic!("{}", err_str);
810                                         },
811                                 }
812                                 if update_res.is_err() {
813                                         ChannelMonitorUpdateStatus::InProgress
814                                 } else {
815                                         persist_res
816                                 }
817                         }
818                 }
819         }
820
821         fn release_pending_monitor_events(&self) -> Vec<(OutPoint, ChannelId, Vec<MonitorEvent>, Option<PublicKey>)> {
822                 let mut pending_monitor_events = self.pending_monitor_events.lock().unwrap().split_off(0);
823                 for monitor_state in self.monitors.read().unwrap().values() {
824                         let monitor_events = monitor_state.monitor.get_and_clear_pending_monitor_events();
825                         if monitor_events.len() > 0 {
826                                 let monitor_outpoint = monitor_state.monitor.get_funding_txo().0;
827                                 let monitor_channel_id = monitor_state.monitor.channel_id();
828                                 let counterparty_node_id = monitor_state.monitor.get_counterparty_node_id();
829                                 pending_monitor_events.push((monitor_outpoint, monitor_channel_id, monitor_events, counterparty_node_id));
830                         }
831                 }
832                 pending_monitor_events
833         }
834 }
835
836 impl<ChannelSigner: WriteableEcdsaChannelSigner, C: Deref, T: Deref, F: Deref, L: Deref, P: Deref> events::EventsProvider for ChainMonitor<ChannelSigner, C, T, F, L, P>
837         where C::Target: chain::Filter,
838               T::Target: BroadcasterInterface,
839               F::Target: FeeEstimator,
840               L::Target: Logger,
841               P::Target: Persist<ChannelSigner>,
842 {
843         /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
844         ///
845         /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
846         /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
847         /// within each channel. As the confirmation of a commitment transaction may be critical to the
848         /// safety of funds, we recommend invoking this every 30 seconds, or lower if running in an
849         /// environment with spotty connections, like on mobile.
850         ///
851         /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
852         /// order to handle these events.
853         ///
854         /// [`SpendableOutputs`]: events::Event::SpendableOutputs
855         /// [`BumpTransaction`]: events::Event::BumpTransaction
856         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
857                 for monitor_state in self.monitors.read().unwrap().values() {
858                         monitor_state.monitor.process_pending_events(&handler);
859                 }
860         }
861 }
862
863 #[cfg(test)]
864 mod tests {
865         use crate::check_added_monitors;
866         use crate::{expect_payment_path_successful, get_event_msg};
867         use crate::{get_htlc_update_msgs, get_revoke_commit_msgs};
868         use crate::chain::{ChannelMonitorUpdateStatus, Watch};
869         use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
870         use crate::ln::functional_test_utils::*;
871         use crate::ln::msgs::ChannelMessageHandler;
872
873         #[test]
874         fn test_async_ooo_offchain_updates() {
875                 // Test that if we have multiple offchain updates being persisted and they complete
876                 // out-of-order, the ChainMonitor waits until all have completed before informing the
877                 // ChannelManager.
878                 let chanmon_cfgs = create_chanmon_cfgs(2);
879                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
880                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
881                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
882                 create_announced_chan_between_nodes(&nodes, 0, 1);
883
884                 // Route two payments to be claimed at the same time.
885                 let (payment_preimage_1, payment_hash_1, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
886                 let (payment_preimage_2, payment_hash_2, ..) = route_payment(&nodes[0], &[&nodes[1]], 1_000_000);
887
888                 chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clear();
889                 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
890                 chanmon_cfgs[1].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
891
892                 nodes[1].node.claim_funds(payment_preimage_1);
893                 check_added_monitors!(nodes[1], 1);
894                 nodes[1].node.claim_funds(payment_preimage_2);
895                 check_added_monitors!(nodes[1], 1);
896
897                 let persistences = chanmon_cfgs[1].persister.offchain_monitor_updates.lock().unwrap().clone();
898                 assert_eq!(persistences.len(), 1);
899                 let (funding_txo, updates) = persistences.iter().next().unwrap();
900                 assert_eq!(updates.len(), 2);
901
902                 // Note that updates is a HashMap so the ordering here is actually random. This shouldn't
903                 // fail either way but if it fails intermittently it's depending on the ordering of updates.
904                 let mut update_iter = updates.iter();
905                 let next_update = update_iter.next().unwrap().clone();
906                 // Should contain next_update when pending updates listed.
907                 #[cfg(not(c_bindings))]
908                 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
909                         .unwrap().contains(&next_update));
910                 #[cfg(c_bindings)]
911                 assert!(nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
912                         .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
913                 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, next_update.clone()).unwrap();
914                 // Should not contain the previously pending next_update when pending updates listed.
915                 #[cfg(not(c_bindings))]
916                 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().get(funding_txo)
917                         .unwrap().contains(&next_update));
918                 #[cfg(c_bindings)]
919                 assert!(!nodes[1].chain_monitor.chain_monitor.list_pending_monitor_updates().iter()
920                         .find(|(txo, _)| txo == funding_txo).unwrap().1.contains(&next_update));
921                 assert!(nodes[1].chain_monitor.release_pending_monitor_events().is_empty());
922                 assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
923                 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
924                 nodes[1].chain_monitor.chain_monitor.channel_monitor_updated(*funding_txo, update_iter.next().unwrap().clone()).unwrap();
925
926                 let claim_events = nodes[1].node.get_and_clear_pending_events();
927                 assert_eq!(claim_events.len(), 2);
928                 match claim_events[0] {
929                         Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
930                                 assert_eq!(payment_hash_1, *payment_hash);
931                         },
932                         _ => panic!("Unexpected event"),
933                 }
934                 match claim_events[1] {
935                         Event::PaymentClaimed { ref payment_hash, amount_msat: 1_000_000, .. } => {
936                                 assert_eq!(payment_hash_2, *payment_hash);
937                         },
938                         _ => panic!("Unexpected event"),
939                 }
940
941                 // Now manually walk the commitment signed dance - because we claimed two payments
942                 // back-to-back it doesn't fit into the neat walk commitment_signed_dance does.
943
944                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
945                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
946                 expect_payment_sent(&nodes[0], payment_preimage_1, None, false, false);
947                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &updates.commitment_signed);
948                 check_added_monitors!(nodes[0], 1);
949                 let (as_first_raa, as_first_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
950
951                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
952                 check_added_monitors!(nodes[1], 1);
953                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
954                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_update);
955                 check_added_monitors!(nodes[1], 1);
956                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
957
958                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
959                 expect_payment_sent(&nodes[0], payment_preimage_2, None, false, false);
960                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
961                 check_added_monitors!(nodes[0], 1);
962                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
963                 expect_payment_path_successful!(nodes[0]);
964                 check_added_monitors!(nodes[0], 1);
965                 let (as_second_raa, as_second_update) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
966
967                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
968                 check_added_monitors!(nodes[1], 1);
969                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_update);
970                 check_added_monitors!(nodes[1], 1);
971                 let bs_second_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
972
973                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_second_raa);
974                 expect_payment_path_successful!(nodes[0]);
975                 check_added_monitors!(nodes[0], 1);
976         }
977
978         #[test]
979         #[cfg(feature = "std")]
980         fn update_during_chainsync_poisons_channel() {
981                 let chanmon_cfgs = create_chanmon_cfgs(2);
982                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
983                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
984                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
985                 create_announced_chan_between_nodes(&nodes, 0, 1);
986
987                 chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
988                 chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::UnrecoverableError);
989
990                 assert!(std::panic::catch_unwind(|| {
991                         // Returning an UnrecoverableError should always panic immediately
992                         connect_blocks(&nodes[0], 1);
993                 }).is_err());
994                 assert!(std::panic::catch_unwind(|| {
995                         // ...and also poison our locks causing later use to panic as well
996                         core::mem::drop(nodes);
997                 }).is_err());
998         }
999 }
1000