1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::BlockHeader;
24 use bitcoin::blockdata::transaction::{OutPoint as BitcoinOutPoint, TxOut, Transaction};
25 use bitcoin::blockdata::script::{Script, Builder};
26 use bitcoin::blockdata::opcodes;
28 use bitcoin::hashes::Hash;
29 use bitcoin::hashes::sha256::Hash as Sha256;
30 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
33 use bitcoin::secp256k1::{SecretKey, PublicKey};
34 use bitcoin::{secp256k1, EcdsaSighashType};
36 use crate::ln::channel::INITIAL_COMMITMENT_NUMBER;
37 use crate::ln::{PaymentHash, PaymentPreimage};
38 use crate::ln::msgs::DecodeError;
39 use crate::ln::chan_utils;
40 use crate::ln::chan_utils::{CommitmentTransaction, CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCClaim, ChannelTransactionParameters, HolderCommitmentTransaction, TxCreationKeys};
41 use crate::ln::channelmanager::{HTLCSource, SentHTLCId};
43 use crate::chain::{BestBlock, WatchedOutput};
44 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator, LowerBoundedFeeEstimator};
45 use crate::chain::transaction::{OutPoint, TransactionData};
46 use crate::sign::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, WriteableEcdsaChannelSigner, SignerProvider, EntropySource};
47 use crate::chain::onchaintx::{ClaimEvent, OnchainTxHandler};
48 use crate::chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
49 use crate::chain::Filter;
50 use crate::util::logger::Logger;
51 use crate::util::ser::{Readable, ReadableArgs, RequiredWrapper, MaybeReadable, UpgradableRequired, Writer, Writeable, U48};
52 use crate::util::byte_utils;
53 use crate::events::{Event, EventHandler};
54 use crate::events::bump_transaction::{ChannelDerivationParameters, AnchorDescriptor, HTLCDescriptor, BumpTransactionEvent};
56 use crate::prelude::*;
58 use crate::io::{self, Error};
59 use core::convert::TryInto;
61 use crate::sync::{Mutex, LockTestExt};
63 /// An update generated by the underlying channel itself which contains some new information the
64 /// [`ChannelMonitor`] should be made aware of.
66 /// Because this represents only a small number of updates to the underlying state, it is generally
67 /// much smaller than a full [`ChannelMonitor`]. However, for large single commitment transaction
68 /// updates (e.g. ones during which there are hundreds of HTLCs pending on the commitment
69 /// transaction), a single update may reach upwards of 1 MiB in serialized size.
70 #[derive(Clone, Debug, PartialEq, Eq)]
72 pub struct ChannelMonitorUpdate {
73 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
74 /// The sequence number of this update. Updates *must* be replayed in-order according to this
75 /// sequence number (and updates may panic if they are not). The update_id values are strictly
76 /// increasing and increase by one for each new update, with two exceptions specified below.
78 /// This sequence number is also used to track up to which points updates which returned
79 /// [`ChannelMonitorUpdateStatus::InProgress`] have been applied to all copies of a given
80 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
82 /// The only instances we allow where update_id values are not strictly increasing have a
83 /// special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. This update ID is used for updates that
84 /// will force close the channel by broadcasting the latest commitment transaction or
85 /// special post-force-close updates, like providing preimages necessary to claim outputs on the
86 /// broadcast commitment transaction. See its docs for more details.
88 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
92 /// The update ID used for a [`ChannelMonitorUpdate`] that is either:
94 /// (1) attempting to force close the channel by broadcasting our latest commitment transaction or
95 /// (2) providing a preimage (after the channel has been force closed) from a forward link that
96 /// allows us to spend an HTLC output on this channel's (the backward link's) broadcasted
97 /// commitment transaction.
99 /// No other [`ChannelMonitorUpdate`]s are allowed after force-close.
100 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
102 impl Writeable for ChannelMonitorUpdate {
103 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
104 write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
105 self.update_id.write(w)?;
106 (self.updates.len() as u64).write(w)?;
107 for update_step in self.updates.iter() {
108 update_step.write(w)?;
110 write_tlv_fields!(w, {});
114 impl Readable for ChannelMonitorUpdate {
115 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
116 let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
117 let update_id: u64 = Readable::read(r)?;
118 let len: u64 = Readable::read(r)?;
119 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
121 if let Some(upd) = MaybeReadable::read(r)? {
125 read_tlv_fields!(r, {});
126 Ok(Self { update_id, updates })
130 /// An event to be processed by the ChannelManager.
131 #[derive(Clone, PartialEq, Eq)]
132 pub enum MonitorEvent {
133 /// A monitor event containing an HTLCUpdate.
134 HTLCEvent(HTLCUpdate),
136 /// A monitor event that the Channel's commitment transaction was confirmed.
137 HolderForceClosed(OutPoint),
139 /// Indicates a [`ChannelMonitor`] update has completed. See
140 /// [`ChannelMonitorUpdateStatus::InProgress`] for more information on how this is used.
142 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
144 /// The funding outpoint of the [`ChannelMonitor`] that was updated
145 funding_txo: OutPoint,
146 /// The Update ID from [`ChannelMonitorUpdate::update_id`] which was applied or
147 /// [`ChannelMonitor::get_latest_update_id`].
149 /// Note that this should only be set to a given update's ID if all previous updates for the
150 /// same [`ChannelMonitor`] have been applied and persisted.
151 monitor_update_id: u64,
154 impl_writeable_tlv_based_enum_upgradable!(MonitorEvent,
155 // Note that Completed is currently never serialized to disk as it is generated only in
158 (0, funding_txo, required),
159 (2, monitor_update_id, required),
163 (4, HolderForceClosed),
164 // 6 was `UpdateFailed` until LDK 0.0.117
167 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
168 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
169 /// preimage claim backward will lead to loss of funds.
170 #[derive(Clone, PartialEq, Eq)]
171 pub struct HTLCUpdate {
172 pub(crate) payment_hash: PaymentHash,
173 pub(crate) payment_preimage: Option<PaymentPreimage>,
174 pub(crate) source: HTLCSource,
175 pub(crate) htlc_value_satoshis: Option<u64>,
177 impl_writeable_tlv_based!(HTLCUpdate, {
178 (0, payment_hash, required),
179 (1, htlc_value_satoshis, option),
180 (2, source, required),
181 (4, payment_preimage, option),
184 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
185 /// instead claiming it in its own individual transaction.
186 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
187 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
188 /// HTLC-Success transaction.
189 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
190 /// transaction confirmed (and we use it in a few more, equivalent, places).
191 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
192 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
193 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
194 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
195 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
196 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
197 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
198 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
199 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
200 /// accurate block height.
201 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
202 /// with at worst this delay, so we are not only using this value as a mercy for them but also
203 /// us as a safeguard to delay with enough time.
204 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
205 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding
206 /// inbound HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us
209 /// Note that this is a library-wide security assumption. If a reorg deeper than this number of
210 /// blocks occurs, counterparties may be able to steal funds or claims made by and balances exposed
211 /// by a [`ChannelMonitor`] may be incorrect.
212 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
213 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
214 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
215 // keep bumping another claim tx to solve the outpoint.
216 pub const ANTI_REORG_DELAY: u32 = 6;
217 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
218 /// refuse to accept a new HTLC.
220 /// This is used for a few separate purposes:
221 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
222 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
224 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
225 /// condition with the above), we will fail this HTLC without telling the user we received it,
227 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
228 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
230 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
231 /// in a race condition between the user connecting a block (which would fail it) and the user
232 /// providing us the preimage (which would claim it).
233 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
235 // TODO(devrandom) replace this with HolderCommitmentTransaction
236 #[derive(Clone, PartialEq, Eq)]
237 struct HolderSignedTx {
238 /// txid of the transaction in tx, just used to make comparison faster
240 revocation_key: PublicKey,
241 a_htlc_key: PublicKey,
242 b_htlc_key: PublicKey,
243 delayed_payment_key: PublicKey,
244 per_commitment_point: PublicKey,
245 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
246 to_self_value_sat: u64,
249 impl_writeable_tlv_based!(HolderSignedTx, {
251 // Note that this is filled in with data from OnchainTxHandler if it's missing.
252 // For HolderSignedTx objects serialized with 0.0.100+, this should be filled in.
253 (1, to_self_value_sat, (default_value, u64::max_value())),
254 (2, revocation_key, required),
255 (4, a_htlc_key, required),
256 (6, b_htlc_key, required),
257 (8, delayed_payment_key, required),
258 (10, per_commitment_point, required),
259 (12, feerate_per_kw, required),
260 (14, htlc_outputs, required_vec)
263 impl HolderSignedTx {
264 fn non_dust_htlcs(&self) -> Vec<HTLCOutputInCommitment> {
265 self.htlc_outputs.iter().filter_map(|(htlc, _, _)| {
266 if let Some(_) = htlc.transaction_output_index {
276 /// We use this to track static counterparty commitment transaction data and to generate any
277 /// justice or 2nd-stage preimage/timeout transactions.
278 #[derive(Clone, PartialEq, Eq)]
279 struct CounterpartyCommitmentParameters {
280 counterparty_delayed_payment_base_key: PublicKey,
281 counterparty_htlc_base_key: PublicKey,
282 on_counterparty_tx_csv: u16,
285 impl Writeable for CounterpartyCommitmentParameters {
286 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
287 w.write_all(&(0 as u64).to_be_bytes())?;
288 write_tlv_fields!(w, {
289 (0, self.counterparty_delayed_payment_base_key, required),
290 (2, self.counterparty_htlc_base_key, required),
291 (4, self.on_counterparty_tx_csv, required),
296 impl Readable for CounterpartyCommitmentParameters {
297 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
298 let counterparty_commitment_transaction = {
299 // Versions prior to 0.0.100 had some per-HTLC state stored here, which is no longer
300 // used. Read it for compatibility.
301 let per_htlc_len: u64 = Readable::read(r)?;
302 for _ in 0..per_htlc_len {
303 let _txid: Txid = Readable::read(r)?;
304 let htlcs_count: u64 = Readable::read(r)?;
305 for _ in 0..htlcs_count {
306 let _htlc: HTLCOutputInCommitment = Readable::read(r)?;
310 let mut counterparty_delayed_payment_base_key = RequiredWrapper(None);
311 let mut counterparty_htlc_base_key = RequiredWrapper(None);
312 let mut on_counterparty_tx_csv: u16 = 0;
313 read_tlv_fields!(r, {
314 (0, counterparty_delayed_payment_base_key, required),
315 (2, counterparty_htlc_base_key, required),
316 (4, on_counterparty_tx_csv, required),
318 CounterpartyCommitmentParameters {
319 counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
320 counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
321 on_counterparty_tx_csv,
324 Ok(counterparty_commitment_transaction)
328 /// An entry for an [`OnchainEvent`], stating the block height and hash when the event was
329 /// observed, as well as the transaction causing it.
331 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
332 #[derive(Clone, PartialEq, Eq)]
333 struct OnchainEventEntry {
336 block_hash: Option<BlockHash>, // Added as optional, will be filled in for any entry generated on 0.0.113 or after
338 transaction: Option<Transaction>, // Added as optional, but always filled in, in LDK 0.0.110
341 impl OnchainEventEntry {
342 fn confirmation_threshold(&self) -> u32 {
343 let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
345 OnchainEvent::MaturingOutput {
346 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
348 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
349 // it's broadcastable when we see the previous block.
350 conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
352 OnchainEvent::FundingSpendConfirmation { on_local_output_csv: Some(csv), .. } |
353 OnchainEvent::HTLCSpendConfirmation { on_to_local_output_csv: Some(csv), .. } => {
354 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
355 // it's broadcastable when we see the previous block.
356 conf_threshold = cmp::max(conf_threshold, self.height + csv as u32 - 1);
363 fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
364 best_block.height() >= self.confirmation_threshold()
368 /// The (output index, sats value) for the counterparty's output in a commitment transaction.
370 /// This was added as an `Option` in 0.0.110.
371 type CommitmentTxCounterpartyOutputInfo = Option<(u32, u64)>;
373 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
374 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
375 #[derive(Clone, PartialEq, Eq)]
377 /// An outbound HTLC failing after a transaction is confirmed. Used
378 /// * when an outbound HTLC output is spent by us after the HTLC timed out
379 /// * an outbound HTLC which was not present in the commitment transaction which appeared
380 /// on-chain (either because it was not fully committed to or it was dust).
381 /// Note that this is *not* used for preimage claims, as those are passed upstream immediately,
382 /// appearing only as an `HTLCSpendConfirmation`, below.
385 payment_hash: PaymentHash,
386 htlc_value_satoshis: Option<u64>,
387 /// None in the second case, above, ie when there is no relevant output in the commitment
388 /// transaction which appeared on chain.
389 commitment_tx_output_idx: Option<u32>,
391 /// An output waiting on [`ANTI_REORG_DELAY`] confirmations before we hand the user the
392 /// [`SpendableOutputDescriptor`].
394 descriptor: SpendableOutputDescriptor,
396 /// A spend of the funding output, either a commitment transaction or a cooperative closing
398 FundingSpendConfirmation {
399 /// The CSV delay for the output of the funding spend transaction (implying it is a local
400 /// commitment transaction, and this is the delay on the to_self output).
401 on_local_output_csv: Option<u16>,
402 /// If the funding spend transaction was a known remote commitment transaction, we track
403 /// the output index and amount of the counterparty's `to_self` output here.
405 /// This allows us to generate a [`Balance::CounterpartyRevokedOutputClaimable`] for the
406 /// counterparty output.
407 commitment_tx_to_counterparty_output: CommitmentTxCounterpartyOutputInfo,
409 /// A spend of a commitment transaction HTLC output, set in the cases where *no* `HTLCUpdate`
410 /// is constructed. This is used when
411 /// * an outbound HTLC is claimed by our counterparty with a preimage, causing us to
412 /// immediately claim the HTLC on the inbound edge and track the resolution here,
413 /// * an inbound HTLC is claimed by our counterparty (with a timeout),
414 /// * an inbound HTLC is claimed by us (with a preimage).
415 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by the revocation
417 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by an
418 /// HTLC-Success/HTLC-Failure transaction (and is still claimable with a revocation
420 HTLCSpendConfirmation {
421 commitment_tx_output_idx: u32,
422 /// If the claim was made by either party with a preimage, this is filled in
423 preimage: Option<PaymentPreimage>,
424 /// If the claim was made by us on an inbound HTLC against a local commitment transaction,
425 /// we set this to the output CSV value which we will have to wait until to spend the
426 /// output (and generate a SpendableOutput event).
427 on_to_local_output_csv: Option<u16>,
431 impl Writeable for OnchainEventEntry {
432 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
433 write_tlv_fields!(writer, {
434 (0, self.txid, required),
435 (1, self.transaction, option),
436 (2, self.height, required),
437 (3, self.block_hash, option),
438 (4, self.event, required),
444 impl MaybeReadable for OnchainEventEntry {
445 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
446 let mut txid = Txid::all_zeros();
447 let mut transaction = None;
448 let mut block_hash = None;
450 let mut event = UpgradableRequired(None);
451 read_tlv_fields!(reader, {
453 (1, transaction, option),
454 (2, height, required),
455 (3, block_hash, option),
456 (4, event, upgradable_required),
458 Ok(Some(Self { txid, transaction, height, block_hash, event: _init_tlv_based_struct_field!(event, upgradable_required) }))
462 impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
464 (0, source, required),
465 (1, htlc_value_satoshis, option),
466 (2, payment_hash, required),
467 (3, commitment_tx_output_idx, option),
469 (1, MaturingOutput) => {
470 (0, descriptor, required),
472 (3, FundingSpendConfirmation) => {
473 (0, on_local_output_csv, option),
474 (1, commitment_tx_to_counterparty_output, option),
476 (5, HTLCSpendConfirmation) => {
477 (0, commitment_tx_output_idx, required),
478 (2, preimage, option),
479 (4, on_to_local_output_csv, option),
484 #[derive(Clone, Debug, PartialEq, Eq)]
485 pub(crate) enum ChannelMonitorUpdateStep {
486 LatestHolderCommitmentTXInfo {
487 commitment_tx: HolderCommitmentTransaction,
488 /// Note that LDK after 0.0.115 supports this only containing dust HTLCs (implying the
489 /// `Signature` field is never filled in). At that point, non-dust HTLCs are implied by the
490 /// HTLC fields in `commitment_tx` and the sources passed via `nondust_htlc_sources`.
491 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
492 claimed_htlcs: Vec<(SentHTLCId, PaymentPreimage)>,
493 nondust_htlc_sources: Vec<HTLCSource>,
495 LatestCounterpartyCommitmentTXInfo {
496 commitment_txid: Txid,
497 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
498 commitment_number: u64,
499 their_per_commitment_point: PublicKey,
500 feerate_per_kw: Option<u32>,
501 to_broadcaster_value_sat: Option<u64>,
502 to_countersignatory_value_sat: Option<u64>,
505 payment_preimage: PaymentPreimage,
511 /// Used to indicate that the no future updates will occur, and likely that the latest holder
512 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
514 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
515 /// think we've fallen behind!
516 should_broadcast: bool,
519 scriptpubkey: Script,
523 impl ChannelMonitorUpdateStep {
524 fn variant_name(&self) -> &'static str {
526 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { .. } => "LatestHolderCommitmentTXInfo",
527 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } => "LatestCounterpartyCommitmentTXInfo",
528 ChannelMonitorUpdateStep::PaymentPreimage { .. } => "PaymentPreimage",
529 ChannelMonitorUpdateStep::CommitmentSecret { .. } => "CommitmentSecret",
530 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => "ChannelForceClosed",
531 ChannelMonitorUpdateStep::ShutdownScript { .. } => "ShutdownScript",
536 impl_writeable_tlv_based_enum_upgradable!(ChannelMonitorUpdateStep,
537 (0, LatestHolderCommitmentTXInfo) => {
538 (0, commitment_tx, required),
539 (1, claimed_htlcs, optional_vec),
540 (2, htlc_outputs, required_vec),
541 (4, nondust_htlc_sources, optional_vec),
543 (1, LatestCounterpartyCommitmentTXInfo) => {
544 (0, commitment_txid, required),
545 (1, feerate_per_kw, option),
546 (2, commitment_number, required),
547 (3, to_broadcaster_value_sat, option),
548 (4, their_per_commitment_point, required),
549 (5, to_countersignatory_value_sat, option),
550 (6, htlc_outputs, required_vec),
552 (2, PaymentPreimage) => {
553 (0, payment_preimage, required),
555 (3, CommitmentSecret) => {
557 (2, secret, required),
559 (4, ChannelForceClosed) => {
560 (0, should_broadcast, required),
562 (5, ShutdownScript) => {
563 (0, scriptpubkey, required),
567 /// Details about the balance(s) available for spending once the channel appears on chain.
569 /// See [`ChannelMonitor::get_claimable_balances`] for more details on when these will or will not
571 #[derive(Clone, Debug, PartialEq, Eq)]
572 #[cfg_attr(test, derive(PartialOrd, Ord))]
574 /// The channel is not yet closed (or the commitment or closing transaction has not yet
575 /// appeared in a block). The given balance is claimable (less on-chain fees) if the channel is
576 /// force-closed now.
577 ClaimableOnChannelClose {
578 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
579 /// required to do so.
580 amount_satoshis: u64,
582 /// The channel has been closed, and the given balance is ours but awaiting confirmations until
583 /// we consider it spendable.
584 ClaimableAwaitingConfirmations {
585 /// The amount available to claim, in satoshis, possibly excluding the on-chain fees which
586 /// were spent in broadcasting the transaction.
587 amount_satoshis: u64,
588 /// The height at which an [`Event::SpendableOutputs`] event will be generated for this
590 confirmation_height: u32,
592 /// The channel has been closed, and the given balance should be ours but awaiting spending
593 /// transaction confirmation. If the spending transaction does not confirm in time, it is
594 /// possible our counterparty can take the funds by broadcasting an HTLC timeout on-chain.
596 /// Once the spending transaction confirms, before it has reached enough confirmations to be
597 /// considered safe from chain reorganizations, the balance will instead be provided via
598 /// [`Balance::ClaimableAwaitingConfirmations`].
599 ContentiousClaimable {
600 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
601 /// required to do so.
602 amount_satoshis: u64,
603 /// The height at which the counterparty may be able to claim the balance if we have not
606 /// The payment hash that locks this HTLC.
607 payment_hash: PaymentHash,
608 /// The preimage that can be used to claim this HTLC.
609 payment_preimage: PaymentPreimage,
611 /// HTLCs which we sent to our counterparty which are claimable after a timeout (less on-chain
612 /// fees) if the counterparty does not know the preimage for the HTLCs. These are somewhat
613 /// likely to be claimed by our counterparty before we do.
614 MaybeTimeoutClaimableHTLC {
615 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
616 /// which will be required to do so.
617 amount_satoshis: u64,
618 /// The height at which we will be able to claim the balance if our counterparty has not
620 claimable_height: u32,
621 /// The payment hash whose preimage our counterparty needs to claim this HTLC.
622 payment_hash: PaymentHash,
624 /// HTLCs which we received from our counterparty which are claimable with a preimage which we
625 /// do not currently have. This will only be claimable if we receive the preimage from the node
626 /// to which we forwarded this HTLC before the timeout.
627 MaybePreimageClaimableHTLC {
628 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
629 /// which will be required to do so.
630 amount_satoshis: u64,
631 /// The height at which our counterparty will be able to claim the balance if we have not
632 /// yet received the preimage and claimed it ourselves.
634 /// The payment hash whose preimage we need to claim this HTLC.
635 payment_hash: PaymentHash,
637 /// The channel has been closed, and our counterparty broadcasted a revoked commitment
640 /// Thus, we're able to claim all outputs in the commitment transaction, one of which has the
641 /// following amount.
642 CounterpartyRevokedOutputClaimable {
643 /// The amount, in satoshis, of the output which we can claim.
645 /// Note that for outputs from HTLC balances this may be excluding some on-chain fees that
646 /// were already spent.
647 amount_satoshis: u64,
652 /// The amount claimable, in satoshis. This excludes balances that we are unsure if we are able
653 /// to claim, this is because we are waiting for a preimage or for a timeout to expire. For more
654 /// information on these balances see [`Balance::MaybeTimeoutClaimableHTLC`] and
655 /// [`Balance::MaybePreimageClaimableHTLC`].
657 /// On-chain fees required to claim the balance are not included in this amount.
658 pub fn claimable_amount_satoshis(&self) -> u64 {
660 Balance::ClaimableOnChannelClose { amount_satoshis, .. }|
661 Balance::ClaimableAwaitingConfirmations { amount_satoshis, .. }|
662 Balance::ContentiousClaimable { amount_satoshis, .. }|
663 Balance::CounterpartyRevokedOutputClaimable { amount_satoshis, .. }
665 Balance::MaybeTimeoutClaimableHTLC { .. }|
666 Balance::MaybePreimageClaimableHTLC { .. }
672 /// An HTLC which has been irrevocably resolved on-chain, and has reached ANTI_REORG_DELAY.
673 #[derive(Clone, PartialEq, Eq)]
674 struct IrrevocablyResolvedHTLC {
675 commitment_tx_output_idx: Option<u32>,
676 /// The txid of the transaction which resolved the HTLC, this may be a commitment (if the HTLC
677 /// was not present in the confirmed commitment transaction), HTLC-Success, or HTLC-Timeout
679 resolving_txid: Option<Txid>, // Added as optional, but always filled in, in 0.0.110
680 resolving_tx: Option<Transaction>,
681 /// Only set if the HTLC claim was ours using a payment preimage
682 payment_preimage: Option<PaymentPreimage>,
685 // In LDK versions prior to 0.0.111 commitment_tx_output_idx was not Option-al and
686 // IrrevocablyResolvedHTLC objects only existed for non-dust HTLCs. This was a bug, but to maintain
687 // backwards compatibility we must ensure we always write out a commitment_tx_output_idx field,
688 // using `u32::max_value()` as a sentinal to indicate the HTLC was dust.
689 impl Writeable for IrrevocablyResolvedHTLC {
690 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
691 let mapped_commitment_tx_output_idx = self.commitment_tx_output_idx.unwrap_or(u32::max_value());
692 write_tlv_fields!(writer, {
693 (0, mapped_commitment_tx_output_idx, required),
694 (1, self.resolving_txid, option),
695 (2, self.payment_preimage, option),
696 (3, self.resolving_tx, option),
702 impl Readable for IrrevocablyResolvedHTLC {
703 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
704 let mut mapped_commitment_tx_output_idx = 0;
705 let mut resolving_txid = None;
706 let mut payment_preimage = None;
707 let mut resolving_tx = None;
708 read_tlv_fields!(reader, {
709 (0, mapped_commitment_tx_output_idx, required),
710 (1, resolving_txid, option),
711 (2, payment_preimage, option),
712 (3, resolving_tx, option),
715 commitment_tx_output_idx: if mapped_commitment_tx_output_idx == u32::max_value() { None } else { Some(mapped_commitment_tx_output_idx) },
723 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
724 /// on-chain transactions to ensure no loss of funds occurs.
726 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
727 /// information and are actively monitoring the chain.
729 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
730 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
731 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
732 /// returned block hash and the the current chain and then reconnecting blocks to get to the
733 /// best chain) upon deserializing the object!
734 pub struct ChannelMonitor<Signer: WriteableEcdsaChannelSigner> {
736 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
738 pub(super) inner: Mutex<ChannelMonitorImpl<Signer>>,
741 impl<Signer: WriteableEcdsaChannelSigner> Clone for ChannelMonitor<Signer> where Signer: Clone {
742 fn clone(&self) -> Self {
743 let inner = self.inner.lock().unwrap().clone();
744 ChannelMonitor::from_impl(inner)
748 #[derive(Clone, PartialEq)]
749 pub(crate) struct ChannelMonitorImpl<Signer: WriteableEcdsaChannelSigner> {
750 latest_update_id: u64,
751 commitment_transaction_number_obscure_factor: u64,
753 destination_script: Script,
754 broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
755 counterparty_payment_script: Script,
756 shutdown_script: Option<Script>,
758 channel_keys_id: [u8; 32],
759 holder_revocation_basepoint: PublicKey,
760 funding_info: (OutPoint, Script),
761 current_counterparty_commitment_txid: Option<Txid>,
762 prev_counterparty_commitment_txid: Option<Txid>,
764 counterparty_commitment_params: CounterpartyCommitmentParameters,
765 funding_redeemscript: Script,
766 channel_value_satoshis: u64,
767 // first is the idx of the first of the two per-commitment points
768 their_cur_per_commitment_points: Option<(u64, PublicKey, Option<PublicKey>)>,
770 on_holder_tx_csv: u16,
772 commitment_secrets: CounterpartyCommitmentSecrets,
773 /// The set of outpoints in each counterparty commitment transaction. We always need at least
774 /// the payment hash from `HTLCOutputInCommitment` to claim even a revoked commitment
775 /// transaction broadcast as we need to be able to construct the witness script in all cases.
776 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
777 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
778 /// Nor can we figure out their commitment numbers without the commitment transaction they are
779 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
780 /// commitment transactions which we find on-chain, mapping them to the commitment number which
781 /// can be used to derive the revocation key and claim the transactions.
782 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
783 /// Cache used to make pruning of payment_preimages faster.
784 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
785 /// counterparty transactions (ie should remain pretty small).
786 /// Serialized to disk but should generally not be sent to Watchtowers.
787 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
789 counterparty_fulfilled_htlcs: HashMap<SentHTLCId, PaymentPreimage>,
791 // We store two holder commitment transactions to avoid any race conditions where we may update
792 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
793 // various monitors for one channel being out of sync, and us broadcasting a holder
794 // transaction for which we have deleted claim information on some watchtowers.
795 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
796 current_holder_commitment_tx: HolderSignedTx,
798 // Used just for ChannelManager to make sure it has the latest channel data during
800 current_counterparty_commitment_number: u64,
801 // Used just for ChannelManager to make sure it has the latest channel data during
803 current_holder_commitment_number: u64,
805 /// The set of payment hashes from inbound payments for which we know the preimage. Payment
806 /// preimages that are not included in any unrevoked local commitment transaction or unrevoked
807 /// remote commitment transactions are automatically removed when commitment transactions are
809 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
811 // Note that `MonitorEvent`s MUST NOT be generated during update processing, only generated
812 // during chain data processing. This prevents a race in `ChainMonitor::update_channel` (and
813 // presumably user implementations thereof as well) where we update the in-memory channel
814 // object, then before the persistence finishes (as it's all under a read-lock), we return
815 // pending events to the user or to the relevant `ChannelManager`. Then, on reload, we'll have
816 // the pre-event state here, but have processed the event in the `ChannelManager`.
817 // Note that because the `event_lock` in `ChainMonitor` is only taken in
818 // block/transaction-connected events and *not* during block/transaction-disconnected events,
819 // we further MUST NOT generate events during block/transaction-disconnection.
820 pending_monitor_events: Vec<MonitorEvent>,
822 pub(super) pending_events: Vec<Event>,
823 pub(super) is_processing_pending_events: bool,
825 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
826 // which to take actions once they reach enough confirmations. Each entry includes the
827 // transaction's id and the height when the transaction was confirmed on chain.
828 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
830 // If we get serialized out and re-read, we need to make sure that the chain monitoring
831 // interface knows about the TXOs that we want to be notified of spends of. We could probably
832 // be smart and derive them from the above storage fields, but its much simpler and more
833 // Obviously Correct (tm) if we just keep track of them explicitly.
834 outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
837 pub onchain_tx_handler: OnchainTxHandler<Signer>,
839 onchain_tx_handler: OnchainTxHandler<Signer>,
841 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
842 // channel has been force-closed. After this is set, no further holder commitment transaction
843 // updates may occur, and we panic!() if one is provided.
844 lockdown_from_offchain: bool,
846 // Set once we've signed a holder commitment transaction and handed it over to our
847 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
848 // may occur, and we fail any such monitor updates.
850 // In case of update rejection due to a locally already signed commitment transaction, we
851 // nevertheless store update content to track in case of concurrent broadcast by another
852 // remote monitor out-of-order with regards to the block view.
853 holder_tx_signed: bool,
855 // If a spend of the funding output is seen, we set this to true and reject any further
856 // updates. This prevents any further changes in the offchain state no matter the order
857 // of block connection between ChannelMonitors and the ChannelManager.
858 funding_spend_seen: bool,
860 /// Set to `Some` of the confirmed transaction spending the funding input of the channel after
861 /// reaching `ANTI_REORG_DELAY` confirmations.
862 funding_spend_confirmed: Option<Txid>,
864 confirmed_commitment_tx_counterparty_output: CommitmentTxCounterpartyOutputInfo,
865 /// The set of HTLCs which have been either claimed or failed on chain and have reached
866 /// the requisite confirmations on the claim/fail transaction (either ANTI_REORG_DELAY or the
867 /// spending CSV for revocable outputs).
868 htlcs_resolved_on_chain: Vec<IrrevocablyResolvedHTLC>,
870 /// The set of `SpendableOutput` events which we have already passed upstream to be claimed.
871 /// These are tracked explicitly to ensure that we don't generate the same events redundantly
872 /// if users duplicatively confirm old transactions. Specifically for transactions claiming a
873 /// revoked remote outpoint we otherwise have no tracking at all once they've reached
874 /// [`ANTI_REORG_DELAY`], so we have to track them here.
875 spendable_txids_confirmed: Vec<Txid>,
877 // We simply modify best_block in Channel's block_connected so that serialization is
878 // consistent but hopefully the users' copy handles block_connected in a consistent way.
879 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
880 // their best_block from its state and not based on updated copies that didn't run through
881 // the full block_connected).
882 best_block: BestBlock,
884 /// The node_id of our counterparty
885 counterparty_node_id: Option<PublicKey>,
887 /// Initial counterparty commmitment data needed to recreate the commitment tx
888 /// in the persistence pipeline for third-party watchtowers. This will only be present on
889 /// monitors created after 0.0.117.
891 /// Ordering of tuple data: (their_per_commitment_point, feerate_per_kw, to_broadcaster_sats,
892 /// to_countersignatory_sats)
893 initial_counterparty_commitment_info: Option<(PublicKey, u32, u64, u64)>,
896 /// Transaction outputs to watch for on-chain spends.
897 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
899 impl<Signer: WriteableEcdsaChannelSigner> PartialEq for ChannelMonitor<Signer> where Signer: PartialEq {
900 fn eq(&self, other: &Self) -> bool {
901 // We need some kind of total lockorder. Absent a better idea, we sort by position in
902 // memory and take locks in that order (assuming that we can't move within memory while a
904 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
905 let a = if ord { self.inner.unsafe_well_ordered_double_lock_self() } else { other.inner.unsafe_well_ordered_double_lock_self() };
906 let b = if ord { other.inner.unsafe_well_ordered_double_lock_self() } else { self.inner.unsafe_well_ordered_double_lock_self() };
911 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitor<Signer> {
912 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
913 self.inner.lock().unwrap().write(writer)
917 // These are also used for ChannelMonitorUpdate, above.
918 const SERIALIZATION_VERSION: u8 = 1;
919 const MIN_SERIALIZATION_VERSION: u8 = 1;
921 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitorImpl<Signer> {
922 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
923 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
925 self.latest_update_id.write(writer)?;
927 // Set in initial Channel-object creation, so should always be set by now:
928 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
930 self.destination_script.write(writer)?;
931 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
932 writer.write_all(&[0; 1])?;
933 broadcasted_holder_revokable_script.0.write(writer)?;
934 broadcasted_holder_revokable_script.1.write(writer)?;
935 broadcasted_holder_revokable_script.2.write(writer)?;
937 writer.write_all(&[1; 1])?;
940 self.counterparty_payment_script.write(writer)?;
941 match &self.shutdown_script {
942 Some(script) => script.write(writer)?,
943 None => Script::new().write(writer)?,
946 self.channel_keys_id.write(writer)?;
947 self.holder_revocation_basepoint.write(writer)?;
948 writer.write_all(&self.funding_info.0.txid[..])?;
949 writer.write_all(&self.funding_info.0.index.to_be_bytes())?;
950 self.funding_info.1.write(writer)?;
951 self.current_counterparty_commitment_txid.write(writer)?;
952 self.prev_counterparty_commitment_txid.write(writer)?;
954 self.counterparty_commitment_params.write(writer)?;
955 self.funding_redeemscript.write(writer)?;
956 self.channel_value_satoshis.write(writer)?;
958 match self.their_cur_per_commitment_points {
959 Some((idx, pubkey, second_option)) => {
960 writer.write_all(&byte_utils::be48_to_array(idx))?;
961 writer.write_all(&pubkey.serialize())?;
962 match second_option {
963 Some(second_pubkey) => {
964 writer.write_all(&second_pubkey.serialize())?;
967 writer.write_all(&[0; 33])?;
972 writer.write_all(&byte_utils::be48_to_array(0))?;
976 writer.write_all(&self.on_holder_tx_csv.to_be_bytes())?;
978 self.commitment_secrets.write(writer)?;
980 macro_rules! serialize_htlc_in_commitment {
981 ($htlc_output: expr) => {
982 writer.write_all(&[$htlc_output.offered as u8; 1])?;
983 writer.write_all(&$htlc_output.amount_msat.to_be_bytes())?;
984 writer.write_all(&$htlc_output.cltv_expiry.to_be_bytes())?;
985 writer.write_all(&$htlc_output.payment_hash.0[..])?;
986 $htlc_output.transaction_output_index.write(writer)?;
990 writer.write_all(&(self.counterparty_claimable_outpoints.len() as u64).to_be_bytes())?;
991 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
992 writer.write_all(&txid[..])?;
993 writer.write_all(&(htlc_infos.len() as u64).to_be_bytes())?;
994 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
995 debug_assert!(htlc_source.is_none() || Some(**txid) == self.current_counterparty_commitment_txid
996 || Some(**txid) == self.prev_counterparty_commitment_txid,
997 "HTLC Sources for all revoked commitment transactions should be none!");
998 serialize_htlc_in_commitment!(htlc_output);
999 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
1003 writer.write_all(&(self.counterparty_commitment_txn_on_chain.len() as u64).to_be_bytes())?;
1004 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
1005 writer.write_all(&txid[..])?;
1006 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
1009 writer.write_all(&(self.counterparty_hash_commitment_number.len() as u64).to_be_bytes())?;
1010 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
1011 writer.write_all(&payment_hash.0[..])?;
1012 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
1015 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
1016 writer.write_all(&[1; 1])?;
1017 prev_holder_tx.write(writer)?;
1019 writer.write_all(&[0; 1])?;
1022 self.current_holder_commitment_tx.write(writer)?;
1024 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
1025 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
1027 writer.write_all(&(self.payment_preimages.len() as u64).to_be_bytes())?;
1028 for payment_preimage in self.payment_preimages.values() {
1029 writer.write_all(&payment_preimage.0[..])?;
1032 writer.write_all(&(self.pending_monitor_events.iter().filter(|ev| match ev {
1033 MonitorEvent::HTLCEvent(_) => true,
1034 MonitorEvent::HolderForceClosed(_) => true,
1036 }).count() as u64).to_be_bytes())?;
1037 for event in self.pending_monitor_events.iter() {
1039 MonitorEvent::HTLCEvent(upd) => {
1043 MonitorEvent::HolderForceClosed(_) => 1u8.write(writer)?,
1044 _ => {}, // Covered in the TLV writes below
1048 writer.write_all(&(self.pending_events.len() as u64).to_be_bytes())?;
1049 for event in self.pending_events.iter() {
1050 event.write(writer)?;
1053 self.best_block.block_hash().write(writer)?;
1054 writer.write_all(&self.best_block.height().to_be_bytes())?;
1056 writer.write_all(&(self.onchain_events_awaiting_threshold_conf.len() as u64).to_be_bytes())?;
1057 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
1058 entry.write(writer)?;
1061 (self.outputs_to_watch.len() as u64).write(writer)?;
1062 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
1063 txid.write(writer)?;
1064 (idx_scripts.len() as u64).write(writer)?;
1065 for (idx, script) in idx_scripts.iter() {
1067 script.write(writer)?;
1070 self.onchain_tx_handler.write(writer)?;
1072 self.lockdown_from_offchain.write(writer)?;
1073 self.holder_tx_signed.write(writer)?;
1075 write_tlv_fields!(writer, {
1076 (1, self.funding_spend_confirmed, option),
1077 (3, self.htlcs_resolved_on_chain, required_vec),
1078 (5, self.pending_monitor_events, required_vec),
1079 (7, self.funding_spend_seen, required),
1080 (9, self.counterparty_node_id, option),
1081 (11, self.confirmed_commitment_tx_counterparty_output, option),
1082 (13, self.spendable_txids_confirmed, required_vec),
1083 (15, self.counterparty_fulfilled_htlcs, required),
1084 (17, self.initial_counterparty_commitment_info, option),
1091 macro_rules! _process_events_body {
1092 ($self_opt: expr, $event_to_handle: expr, $handle_event: expr) => {
1094 let (pending_events, repeated_events);
1095 if let Some(us) = $self_opt {
1096 let mut inner = us.inner.lock().unwrap();
1097 if inner.is_processing_pending_events {
1100 inner.is_processing_pending_events = true;
1102 pending_events = inner.pending_events.clone();
1103 repeated_events = inner.get_repeated_events();
1105 let num_events = pending_events.len();
1107 for event in pending_events.into_iter().chain(repeated_events.into_iter()) {
1108 $event_to_handle = event;
1112 if let Some(us) = $self_opt {
1113 let mut inner = us.inner.lock().unwrap();
1114 inner.pending_events.drain(..num_events);
1115 inner.is_processing_pending_events = false;
1116 if !inner.pending_events.is_empty() {
1117 // If there's more events to process, go ahead and do so.
1125 pub(super) use _process_events_body as process_events_body;
1127 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1128 /// For lockorder enforcement purposes, we need to have a single site which constructs the
1129 /// `inner` mutex, otherwise cases where we lock two monitors at the same time (eg in our
1130 /// PartialEq implementation) we may decide a lockorder violation has occurred.
1131 fn from_impl(imp: ChannelMonitorImpl<Signer>) -> Self {
1132 ChannelMonitor { inner: Mutex::new(imp) }
1135 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_script: Option<Script>,
1136 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
1137 channel_parameters: &ChannelTransactionParameters,
1138 funding_redeemscript: Script, channel_value_satoshis: u64,
1139 commitment_transaction_number_obscure_factor: u64,
1140 initial_holder_commitment_tx: HolderCommitmentTransaction,
1141 best_block: BestBlock, counterparty_node_id: PublicKey) -> ChannelMonitor<Signer> {
1143 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1144 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
1145 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
1147 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
1148 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
1149 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
1150 let counterparty_commitment_params = CounterpartyCommitmentParameters { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv };
1152 let channel_keys_id = keys.channel_keys_id();
1153 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1155 // block for Rust 1.34 compat
1156 let (holder_commitment_tx, current_holder_commitment_number) = {
1157 let trusted_tx = initial_holder_commitment_tx.trust();
1158 let txid = trusted_tx.txid();
1160 let tx_keys = trusted_tx.keys();
1161 let holder_commitment_tx = HolderSignedTx {
1163 revocation_key: tx_keys.revocation_key,
1164 a_htlc_key: tx_keys.broadcaster_htlc_key,
1165 b_htlc_key: tx_keys.countersignatory_htlc_key,
1166 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1167 per_commitment_point: tx_keys.per_commitment_point,
1168 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1169 to_self_value_sat: initial_holder_commitment_tx.to_broadcaster_value_sat(),
1170 feerate_per_kw: trusted_tx.feerate_per_kw(),
1172 (holder_commitment_tx, trusted_tx.commitment_number())
1175 let onchain_tx_handler =
1176 OnchainTxHandler::new(destination_script.clone(), keys,
1177 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx);
1179 let mut outputs_to_watch = HashMap::new();
1180 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1182 Self::from_impl(ChannelMonitorImpl {
1183 latest_update_id: 0,
1184 commitment_transaction_number_obscure_factor,
1186 destination_script: destination_script.clone(),
1187 broadcasted_holder_revokable_script: None,
1188 counterparty_payment_script,
1192 holder_revocation_basepoint,
1194 current_counterparty_commitment_txid: None,
1195 prev_counterparty_commitment_txid: None,
1197 counterparty_commitment_params,
1198 funding_redeemscript,
1199 channel_value_satoshis,
1200 their_cur_per_commitment_points: None,
1202 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1204 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1205 counterparty_claimable_outpoints: HashMap::new(),
1206 counterparty_commitment_txn_on_chain: HashMap::new(),
1207 counterparty_hash_commitment_number: HashMap::new(),
1208 counterparty_fulfilled_htlcs: HashMap::new(),
1210 prev_holder_signed_commitment_tx: None,
1211 current_holder_commitment_tx: holder_commitment_tx,
1212 current_counterparty_commitment_number: 1 << 48,
1213 current_holder_commitment_number,
1215 payment_preimages: HashMap::new(),
1216 pending_monitor_events: Vec::new(),
1217 pending_events: Vec::new(),
1218 is_processing_pending_events: false,
1220 onchain_events_awaiting_threshold_conf: Vec::new(),
1225 lockdown_from_offchain: false,
1226 holder_tx_signed: false,
1227 funding_spend_seen: false,
1228 funding_spend_confirmed: None,
1229 confirmed_commitment_tx_counterparty_output: None,
1230 htlcs_resolved_on_chain: Vec::new(),
1231 spendable_txids_confirmed: Vec::new(),
1234 counterparty_node_id: Some(counterparty_node_id),
1235 initial_counterparty_commitment_info: None,
1240 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1241 self.inner.lock().unwrap().provide_secret(idx, secret)
1244 /// A variant of `Self::provide_latest_counterparty_commitment_tx` used to provide
1245 /// additional information to the monitor to store in order to recreate the initial
1246 /// counterparty commitment transaction during persistence (mainly for use in third-party
1249 /// This is used to provide the counterparty commitment information directly to the monitor
1250 /// before the initial persistence of a new channel.
1251 pub(crate) fn provide_initial_counterparty_commitment_tx<L: Deref>(
1252 &self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1253 commitment_number: u64, their_cur_per_commitment_point: PublicKey, feerate_per_kw: u32,
1254 to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, logger: &L,
1256 where L::Target: Logger
1258 self.inner.lock().unwrap().provide_initial_counterparty_commitment_tx(txid,
1259 htlc_outputs, commitment_number, their_cur_per_commitment_point, feerate_per_kw,
1260 to_broadcaster_value_sat, to_countersignatory_value_sat, logger);
1263 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1264 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1265 /// possibly future revocation/preimage information) to claim outputs where possible.
1266 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1268 fn provide_latest_counterparty_commitment_tx<L: Deref>(
1271 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1272 commitment_number: u64,
1273 their_per_commitment_point: PublicKey,
1275 ) where L::Target: Logger {
1276 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1277 txid, htlc_outputs, commitment_number, their_per_commitment_point, logger)
1281 fn provide_latest_holder_commitment_tx(
1282 &self, holder_commitment_tx: HolderCommitmentTransaction,
1283 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1284 ) -> Result<(), ()> {
1285 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(holder_commitment_tx, htlc_outputs, &Vec::new(), Vec::new()).map_err(|_| ())
1288 /// This is used to provide payment preimage(s) out-of-band during startup without updating the
1289 /// off-chain state with a new commitment transaction.
1290 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1292 payment_hash: &PaymentHash,
1293 payment_preimage: &PaymentPreimage,
1295 fee_estimator: &LowerBoundedFeeEstimator<F>,
1298 B::Target: BroadcasterInterface,
1299 F::Target: FeeEstimator,
1302 self.inner.lock().unwrap().provide_payment_preimage(
1303 payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1306 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1309 /// panics if the given update is not the next update by update_id.
1310 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1312 updates: &ChannelMonitorUpdate,
1318 B::Target: BroadcasterInterface,
1319 F::Target: FeeEstimator,
1322 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1325 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1327 pub fn get_latest_update_id(&self) -> u64 {
1328 self.inner.lock().unwrap().get_latest_update_id()
1331 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1332 pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1333 self.inner.lock().unwrap().get_funding_txo().clone()
1336 /// Gets a list of txids, with their output scripts (in the order they appear in the
1337 /// transaction), which we must learn about spends of via block_connected().
1338 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1339 self.inner.lock().unwrap().get_outputs_to_watch()
1340 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1343 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1344 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1345 /// have been registered.
1346 pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1347 let lock = self.inner.lock().unwrap();
1348 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1349 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1350 for (index, script_pubkey) in outputs.iter() {
1351 assert!(*index <= u16::max_value() as u32);
1352 filter.register_output(WatchedOutput {
1354 outpoint: OutPoint { txid: *txid, index: *index as u16 },
1355 script_pubkey: script_pubkey.clone(),
1361 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1362 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1363 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1364 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1367 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
1369 /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
1370 /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
1371 /// within each channel. As the confirmation of a commitment transaction may be critical to the
1372 /// safety of funds, we recommend invoking this every 30 seconds, or lower if running in an
1373 /// environment with spotty connections, like on mobile.
1375 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
1376 /// order to handle these events.
1378 /// [`SpendableOutputs`]: crate::events::Event::SpendableOutputs
1379 /// [`BumpTransaction`]: crate::events::Event::BumpTransaction
1380 pub fn process_pending_events<H: Deref>(&self, handler: &H) where H::Target: EventHandler {
1382 process_events_body!(Some(self), ev, handler.handle_event(ev));
1385 /// Processes any events asynchronously.
1387 /// See [`Self::process_pending_events`] for more information.
1388 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
1392 process_events_body!(Some(self), ev, { handler(ev).await });
1396 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1397 let mut ret = Vec::new();
1398 let mut lck = self.inner.lock().unwrap();
1399 mem::swap(&mut ret, &mut lck.pending_events);
1400 ret.append(&mut lck.get_repeated_events());
1404 /// Gets the counterparty's initial commitment transaction. The returned commitment
1405 /// transaction is unsigned. This is intended to be called during the initial persistence of
1406 /// the monitor (inside an implementation of [`Persist::persist_new_channel`]), to allow for
1407 /// watchtowers in the persistence pipeline to have enough data to form justice transactions.
1409 /// This is similar to [`Self::counterparty_commitment_txs_from_update`], except
1410 /// that for the initial commitment transaction, we don't have a corresponding update.
1412 /// This will only return `Some` for channel monitors that have been created after upgrading
1413 /// to LDK 0.0.117+.
1415 /// [`Persist::persist_new_channel`]: crate::chain::chainmonitor::Persist::persist_new_channel
1416 pub fn initial_counterparty_commitment_tx(&self) -> Option<CommitmentTransaction> {
1417 self.inner.lock().unwrap().initial_counterparty_commitment_tx()
1420 /// Gets all of the counterparty commitment transactions provided by the given update. This
1421 /// may be empty if the update doesn't include any new counterparty commitments. Returned
1422 /// commitment transactions are unsigned.
1424 /// This is provided so that watchtower clients in the persistence pipeline are able to build
1425 /// justice transactions for each counterparty commitment upon each update. It's intended to be
1426 /// used within an implementation of [`Persist::update_persisted_channel`], which is provided
1427 /// with a monitor and an update. Once revoked, signing a justice transaction can be done using
1428 /// [`Self::sign_to_local_justice_tx`].
1430 /// It is expected that a watchtower client may use this method to retrieve the latest counterparty
1431 /// commitment transaction(s), and then hold the necessary data until a later update in which
1432 /// the monitor has been updated with the corresponding revocation data, at which point the
1433 /// monitor can sign the justice transaction.
1435 /// This will only return a non-empty list for monitor updates that have been created after
1436 /// upgrading to LDK 0.0.117+. Note that no restriction lies on the monitors themselves, which
1437 /// may have been created prior to upgrading.
1439 /// [`Persist::update_persisted_channel`]: crate::chain::chainmonitor::Persist::update_persisted_channel
1440 pub fn counterparty_commitment_txs_from_update(&self, update: &ChannelMonitorUpdate) -> Vec<CommitmentTransaction> {
1441 self.inner.lock().unwrap().counterparty_commitment_txs_from_update(update)
1444 /// Wrapper around [`EcdsaChannelSigner::sign_justice_revoked_output`] to make
1445 /// signing the justice transaction easier for implementors of
1446 /// [`chain::chainmonitor::Persist`]. On success this method returns the provided transaction
1447 /// signing the input at `input_idx`. This method will only produce a valid signature for
1448 /// a transaction spending the `to_local` output of a commitment transaction, i.e. this cannot
1449 /// be used for revoked HTLC outputs.
1451 /// `Value` is the value of the output being spent by the input at `input_idx`, committed
1452 /// in the BIP 143 signature.
1454 /// This method will only succeed if this monitor has received the revocation secret for the
1455 /// provided `commitment_number`. If a commitment number is provided that does not correspond
1456 /// to the commitment transaction being revoked, this will return a signed transaction, but
1457 /// the signature will not be valid.
1459 /// [`EcdsaChannelSigner::sign_justice_revoked_output`]: crate::sign::EcdsaChannelSigner::sign_justice_revoked_output
1460 /// [`Persist`]: crate::chain::chainmonitor::Persist
1461 pub fn sign_to_local_justice_tx(&self, justice_tx: Transaction, input_idx: usize, value: u64, commitment_number: u64) -> Result<Transaction, ()> {
1462 self.inner.lock().unwrap().sign_to_local_justice_tx(justice_tx, input_idx, value, commitment_number)
1465 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1466 self.inner.lock().unwrap().get_min_seen_secret()
1469 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1470 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1473 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1474 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1477 /// Gets the `node_id` of the counterparty for this channel.
1479 /// Will be `None` for channels constructed on LDK versions prior to 0.0.110 and always `Some`
1481 pub fn get_counterparty_node_id(&self) -> Option<PublicKey> {
1482 self.inner.lock().unwrap().counterparty_node_id
1485 /// Used by [`ChannelManager`] deserialization to broadcast the latest holder state if its copy
1486 /// of the channel state was out-of-date.
1488 /// You may also use this to broadcast the latest local commitment transaction, either because
1489 /// a monitor update failed or because we've fallen behind (i.e. we've received proof that our
1490 /// counterparty side knows a revocation secret we gave them that they shouldn't know).
1492 /// Broadcasting these transactions in the second case is UNSAFE, as they allow counterparty
1493 /// side to punish you. Nevertheless you may want to broadcast them if counterparty doesn't
1494 /// close channel with their commitment transaction after a substantial amount of time. Best
1495 /// may be to contact the other node operator out-of-band to coordinate other options available
1498 /// [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
1499 pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1500 where L::Target: Logger {
1501 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1504 /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1505 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1506 /// revoked commitment transaction.
1507 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1508 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1509 where L::Target: Logger {
1510 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1513 /// Processes transactions in a newly connected block, which may result in any of the following:
1514 /// - update the monitor's state against resolved HTLCs
1515 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1516 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1517 /// - detect settled outputs for later spending
1518 /// - schedule and bump any in-flight claims
1520 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1521 /// [`get_outputs_to_watch`].
1523 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1524 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1526 header: &BlockHeader,
1527 txdata: &TransactionData,
1532 ) -> Vec<TransactionOutputs>
1534 B::Target: BroadcasterInterface,
1535 F::Target: FeeEstimator,
1538 self.inner.lock().unwrap().block_connected(
1539 header, txdata, height, broadcaster, fee_estimator, logger)
1542 /// Determines if the disconnected block contained any transactions of interest and updates
1544 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1546 header: &BlockHeader,
1552 B::Target: BroadcasterInterface,
1553 F::Target: FeeEstimator,
1556 self.inner.lock().unwrap().block_disconnected(
1557 header, height, broadcaster, fee_estimator, logger)
1560 /// Processes transactions confirmed in a block with the given header and height, returning new
1561 /// outputs to watch. See [`block_connected`] for details.
1563 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1564 /// blocks. See [`chain::Confirm`] for calling expectations.
1566 /// [`block_connected`]: Self::block_connected
1567 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1569 header: &BlockHeader,
1570 txdata: &TransactionData,
1575 ) -> Vec<TransactionOutputs>
1577 B::Target: BroadcasterInterface,
1578 F::Target: FeeEstimator,
1581 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1582 self.inner.lock().unwrap().transactions_confirmed(
1583 header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
1586 /// Processes a transaction that was reorganized out of the chain.
1588 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1589 /// than blocks. See [`chain::Confirm`] for calling expectations.
1591 /// [`block_disconnected`]: Self::block_disconnected
1592 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1599 B::Target: BroadcasterInterface,
1600 F::Target: FeeEstimator,
1603 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1604 self.inner.lock().unwrap().transaction_unconfirmed(
1605 txid, broadcaster, &bounded_fee_estimator, logger);
1608 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1609 /// [`block_connected`] for details.
1611 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1612 /// blocks. See [`chain::Confirm`] for calling expectations.
1614 /// [`block_connected`]: Self::block_connected
1615 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1617 header: &BlockHeader,
1622 ) -> Vec<TransactionOutputs>
1624 B::Target: BroadcasterInterface,
1625 F::Target: FeeEstimator,
1628 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1629 self.inner.lock().unwrap().best_block_updated(
1630 header, height, broadcaster, &bounded_fee_estimator, logger)
1633 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1634 pub fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
1635 let inner = self.inner.lock().unwrap();
1636 let mut txids: Vec<(Txid, Option<BlockHash>)> = inner.onchain_events_awaiting_threshold_conf
1638 .map(|entry| (entry.txid, entry.block_hash))
1639 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1641 txids.sort_unstable();
1646 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
1647 /// [`chain::Confirm`] interfaces.
1648 pub fn current_best_block(&self) -> BestBlock {
1649 self.inner.lock().unwrap().best_block.clone()
1652 /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
1653 /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
1654 /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
1655 /// invoking this every 30 seconds, or lower if running in an environment with spotty
1656 /// connections, like on mobile.
1657 pub fn rebroadcast_pending_claims<B: Deref, F: Deref, L: Deref>(
1658 &self, broadcaster: B, fee_estimator: F, logger: L,
1661 B::Target: BroadcasterInterface,
1662 F::Target: FeeEstimator,
1665 let fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1666 let mut inner = self.inner.lock().unwrap();
1667 let current_height = inner.best_block.height;
1668 inner.onchain_tx_handler.rebroadcast_pending_claims(
1669 current_height, &broadcaster, &fee_estimator, &logger,
1674 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
1675 /// Helper for get_claimable_balances which does the work for an individual HTLC, generating up
1676 /// to one `Balance` for the HTLC.
1677 fn get_htlc_balance(&self, htlc: &HTLCOutputInCommitment, holder_commitment: bool,
1678 counterparty_revoked_commitment: bool, confirmed_txid: Option<Txid>)
1679 -> Option<Balance> {
1680 let htlc_commitment_tx_output_idx =
1681 if let Some(v) = htlc.transaction_output_index { v } else { return None; };
1683 let mut htlc_spend_txid_opt = None;
1684 let mut htlc_spend_tx_opt = None;
1685 let mut holder_timeout_spend_pending = None;
1686 let mut htlc_spend_pending = None;
1687 let mut holder_delayed_output_pending = None;
1688 for event in self.onchain_events_awaiting_threshold_conf.iter() {
1690 OnchainEvent::HTLCUpdate { commitment_tx_output_idx, htlc_value_satoshis, .. }
1691 if commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) => {
1692 debug_assert!(htlc_spend_txid_opt.is_none());
1693 htlc_spend_txid_opt = Some(&event.txid);
1694 debug_assert!(htlc_spend_tx_opt.is_none());
1695 htlc_spend_tx_opt = event.transaction.as_ref();
1696 debug_assert!(holder_timeout_spend_pending.is_none());
1697 debug_assert_eq!(htlc_value_satoshis.unwrap(), htlc.amount_msat / 1000);
1698 holder_timeout_spend_pending = Some(event.confirmation_threshold());
1700 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. }
1701 if commitment_tx_output_idx == htlc_commitment_tx_output_idx => {
1702 debug_assert!(htlc_spend_txid_opt.is_none());
1703 htlc_spend_txid_opt = Some(&event.txid);
1704 debug_assert!(htlc_spend_tx_opt.is_none());
1705 htlc_spend_tx_opt = event.transaction.as_ref();
1706 debug_assert!(htlc_spend_pending.is_none());
1707 htlc_spend_pending = Some((event.confirmation_threshold(), preimage.is_some()));
1709 OnchainEvent::MaturingOutput {
1710 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) }
1711 if descriptor.outpoint.index as u32 == htlc_commitment_tx_output_idx => {
1712 debug_assert!(holder_delayed_output_pending.is_none());
1713 holder_delayed_output_pending = Some(event.confirmation_threshold());
1718 let htlc_resolved = self.htlcs_resolved_on_chain.iter()
1719 .find(|v| if v.commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) {
1720 debug_assert!(htlc_spend_txid_opt.is_none());
1721 htlc_spend_txid_opt = v.resolving_txid.as_ref();
1722 debug_assert!(htlc_spend_tx_opt.is_none());
1723 htlc_spend_tx_opt = v.resolving_tx.as_ref();
1726 debug_assert!(holder_timeout_spend_pending.is_some() as u8 + htlc_spend_pending.is_some() as u8 + htlc_resolved.is_some() as u8 <= 1);
1728 let htlc_commitment_outpoint = BitcoinOutPoint::new(confirmed_txid.unwrap(), htlc_commitment_tx_output_idx);
1729 let htlc_output_to_spend =
1730 if let Some(txid) = htlc_spend_txid_opt {
1731 // Because HTLC transactions either only have 1 input and 1 output (pre-anchors) or
1732 // are signed with SIGHASH_SINGLE|ANYONECANPAY under BIP-0143 (post-anchors), we can
1733 // locate the correct output by ensuring its adjacent input spends the HTLC output
1734 // in the commitment.
1735 if let Some(ref tx) = htlc_spend_tx_opt {
1736 let htlc_input_idx_opt = tx.input.iter().enumerate()
1737 .find(|(_, input)| input.previous_output == htlc_commitment_outpoint)
1738 .map(|(idx, _)| idx as u32);
1739 debug_assert!(htlc_input_idx_opt.is_some());
1740 BitcoinOutPoint::new(*txid, htlc_input_idx_opt.unwrap_or(0))
1742 debug_assert!(!self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx());
1743 BitcoinOutPoint::new(*txid, 0)
1746 htlc_commitment_outpoint
1748 let htlc_output_spend_pending = self.onchain_tx_handler.is_output_spend_pending(&htlc_output_to_spend);
1750 if let Some(conf_thresh) = holder_delayed_output_pending {
1751 debug_assert!(holder_commitment);
1752 return Some(Balance::ClaimableAwaitingConfirmations {
1753 amount_satoshis: htlc.amount_msat / 1000,
1754 confirmation_height: conf_thresh,
1756 } else if htlc_resolved.is_some() && !htlc_output_spend_pending {
1757 // Funding transaction spends should be fully confirmed by the time any
1758 // HTLC transactions are resolved, unless we're talking about a holder
1759 // commitment tx, whose resolution is delayed until the CSV timeout is
1760 // reached, even though HTLCs may be resolved after only
1761 // ANTI_REORG_DELAY confirmations.
1762 debug_assert!(holder_commitment || self.funding_spend_confirmed.is_some());
1763 } else if counterparty_revoked_commitment {
1764 let htlc_output_claim_pending = self.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1765 if let OnchainEvent::MaturingOutput {
1766 descriptor: SpendableOutputDescriptor::StaticOutput { .. }
1768 if event.transaction.as_ref().map(|tx| tx.input.iter().any(|inp| {
1769 if let Some(htlc_spend_txid) = htlc_spend_txid_opt {
1770 tx.txid() == *htlc_spend_txid || inp.previous_output.txid == *htlc_spend_txid
1772 Some(inp.previous_output.txid) == confirmed_txid &&
1773 inp.previous_output.vout == htlc_commitment_tx_output_idx
1775 })).unwrap_or(false) {
1780 if htlc_output_claim_pending.is_some() {
1781 // We already push `Balance`s onto the `res` list for every
1782 // `StaticOutput` in a `MaturingOutput` in the revoked
1783 // counterparty commitment transaction case generally, so don't
1784 // need to do so again here.
1786 debug_assert!(holder_timeout_spend_pending.is_none(),
1787 "HTLCUpdate OnchainEvents should never appear for preimage claims");
1788 debug_assert!(!htlc.offered || htlc_spend_pending.is_none() || !htlc_spend_pending.unwrap().1,
1789 "We don't (currently) generate preimage claims against revoked outputs, where did you get one?!");
1790 return Some(Balance::CounterpartyRevokedOutputClaimable {
1791 amount_satoshis: htlc.amount_msat / 1000,
1794 } else if htlc.offered == holder_commitment {
1795 // If the payment was outbound, check if there's an HTLCUpdate
1796 // indicating we have spent this HTLC with a timeout, claiming it back
1797 // and awaiting confirmations on it.
1798 if let Some(conf_thresh) = holder_timeout_spend_pending {
1799 return Some(Balance::ClaimableAwaitingConfirmations {
1800 amount_satoshis: htlc.amount_msat / 1000,
1801 confirmation_height: conf_thresh,
1804 return Some(Balance::MaybeTimeoutClaimableHTLC {
1805 amount_satoshis: htlc.amount_msat / 1000,
1806 claimable_height: htlc.cltv_expiry,
1807 payment_hash: htlc.payment_hash,
1810 } else if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1811 // Otherwise (the payment was inbound), only expose it as claimable if
1812 // we know the preimage.
1813 // Note that if there is a pending claim, but it did not use the
1814 // preimage, we lost funds to our counterparty! We will then continue
1815 // to show it as ContentiousClaimable until ANTI_REORG_DELAY.
1816 debug_assert!(holder_timeout_spend_pending.is_none());
1817 if let Some((conf_thresh, true)) = htlc_spend_pending {
1818 return Some(Balance::ClaimableAwaitingConfirmations {
1819 amount_satoshis: htlc.amount_msat / 1000,
1820 confirmation_height: conf_thresh,
1823 return Some(Balance::ContentiousClaimable {
1824 amount_satoshis: htlc.amount_msat / 1000,
1825 timeout_height: htlc.cltv_expiry,
1826 payment_hash: htlc.payment_hash,
1827 payment_preimage: *payment_preimage,
1830 } else if htlc_resolved.is_none() {
1831 return Some(Balance::MaybePreimageClaimableHTLC {
1832 amount_satoshis: htlc.amount_msat / 1000,
1833 expiry_height: htlc.cltv_expiry,
1834 payment_hash: htlc.payment_hash,
1841 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1842 /// Gets the balances in this channel which are either claimable by us if we were to
1843 /// force-close the channel now or which are claimable on-chain (possibly awaiting
1846 /// Any balances in the channel which are available on-chain (excluding on-chain fees) are
1847 /// included here until an [`Event::SpendableOutputs`] event has been generated for the
1848 /// balance, or until our counterparty has claimed the balance and accrued several
1849 /// confirmations on the claim transaction.
1851 /// Note that for `ChannelMonitors` which track a channel which went on-chain with versions of
1852 /// LDK prior to 0.0.111, balances may not be fully captured if our counterparty broadcasted
1853 /// a revoked state.
1855 /// See [`Balance`] for additional details on the types of claimable balances which
1856 /// may be returned here and their meanings.
1857 pub fn get_claimable_balances(&self) -> Vec<Balance> {
1858 let mut res = Vec::new();
1859 let us = self.inner.lock().unwrap();
1861 let mut confirmed_txid = us.funding_spend_confirmed;
1862 let mut confirmed_counterparty_output = us.confirmed_commitment_tx_counterparty_output;
1863 let mut pending_commitment_tx_conf_thresh = None;
1864 let funding_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1865 if let OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } =
1868 confirmed_counterparty_output = commitment_tx_to_counterparty_output;
1869 Some((event.txid, event.confirmation_threshold()))
1872 if let Some((txid, conf_thresh)) = funding_spend_pending {
1873 debug_assert!(us.funding_spend_confirmed.is_none(),
1874 "We have a pending funding spend awaiting anti-reorg confirmation, we can't have confirmed it already!");
1875 confirmed_txid = Some(txid);
1876 pending_commitment_tx_conf_thresh = Some(conf_thresh);
1879 macro_rules! walk_htlcs {
1880 ($holder_commitment: expr, $counterparty_revoked_commitment: expr, $htlc_iter: expr) => {
1881 for htlc in $htlc_iter {
1882 if htlc.transaction_output_index.is_some() {
1884 if let Some(bal) = us.get_htlc_balance(htlc, $holder_commitment, $counterparty_revoked_commitment, confirmed_txid) {
1892 if let Some(txid) = confirmed_txid {
1893 let mut found_commitment_tx = false;
1894 if let Some(counterparty_tx_htlcs) = us.counterparty_claimable_outpoints.get(&txid) {
1895 // First look for the to_remote output back to us.
1896 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1897 if let Some(value) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1898 if let OnchainEvent::MaturingOutput {
1899 descriptor: SpendableOutputDescriptor::StaticPaymentOutput(descriptor)
1901 Some(descriptor.output.value)
1904 res.push(Balance::ClaimableAwaitingConfirmations {
1905 amount_satoshis: value,
1906 confirmation_height: conf_thresh,
1909 // If a counterparty commitment transaction is awaiting confirmation, we
1910 // should either have a StaticPaymentOutput MaturingOutput event awaiting
1911 // confirmation with the same height or have never met our dust amount.
1914 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1915 walk_htlcs!(false, false, counterparty_tx_htlcs.iter().map(|(a, _)| a));
1917 walk_htlcs!(false, true, counterparty_tx_htlcs.iter().map(|(a, _)| a));
1918 // The counterparty broadcasted a revoked state!
1919 // Look for any StaticOutputs first, generating claimable balances for those.
1920 // If any match the confirmed counterparty revoked to_self output, skip
1921 // generating a CounterpartyRevokedOutputClaimable.
1922 let mut spent_counterparty_output = false;
1923 for event in us.onchain_events_awaiting_threshold_conf.iter() {
1924 if let OnchainEvent::MaturingOutput {
1925 descriptor: SpendableOutputDescriptor::StaticOutput { output, .. }
1927 res.push(Balance::ClaimableAwaitingConfirmations {
1928 amount_satoshis: output.value,
1929 confirmation_height: event.confirmation_threshold(),
1931 if let Some(confirmed_to_self_idx) = confirmed_counterparty_output.map(|(idx, _)| idx) {
1932 if event.transaction.as_ref().map(|tx|
1933 tx.input.iter().any(|inp| inp.previous_output.vout == confirmed_to_self_idx)
1934 ).unwrap_or(false) {
1935 spent_counterparty_output = true;
1941 if spent_counterparty_output {
1942 } else if let Some((confirmed_to_self_idx, amt)) = confirmed_counterparty_output {
1943 let output_spendable = us.onchain_tx_handler
1944 .is_output_spend_pending(&BitcoinOutPoint::new(txid, confirmed_to_self_idx));
1945 if output_spendable {
1946 res.push(Balance::CounterpartyRevokedOutputClaimable {
1947 amount_satoshis: amt,
1951 // Counterparty output is missing, either it was broadcasted on a
1952 // previous version of LDK or the counterparty hadn't met dust.
1955 found_commitment_tx = true;
1956 } else if txid == us.current_holder_commitment_tx.txid {
1957 walk_htlcs!(true, false, us.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, _)| a));
1958 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1959 res.push(Balance::ClaimableAwaitingConfirmations {
1960 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1961 confirmation_height: conf_thresh,
1964 found_commitment_tx = true;
1965 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1966 if txid == prev_commitment.txid {
1967 walk_htlcs!(true, false, prev_commitment.htlc_outputs.iter().map(|(a, _, _)| a));
1968 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1969 res.push(Balance::ClaimableAwaitingConfirmations {
1970 amount_satoshis: prev_commitment.to_self_value_sat,
1971 confirmation_height: conf_thresh,
1974 found_commitment_tx = true;
1977 if !found_commitment_tx {
1978 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1979 // We blindly assume this is a cooperative close transaction here, and that
1980 // neither us nor our counterparty misbehaved. At worst we've under-estimated
1981 // the amount we can claim as we'll punish a misbehaving counterparty.
1982 res.push(Balance::ClaimableAwaitingConfirmations {
1983 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1984 confirmation_height: conf_thresh,
1989 let mut claimable_inbound_htlc_value_sat = 0;
1990 for (htlc, _, _) in us.current_holder_commitment_tx.htlc_outputs.iter() {
1991 if htlc.transaction_output_index.is_none() { continue; }
1993 res.push(Balance::MaybeTimeoutClaimableHTLC {
1994 amount_satoshis: htlc.amount_msat / 1000,
1995 claimable_height: htlc.cltv_expiry,
1996 payment_hash: htlc.payment_hash,
1998 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
1999 claimable_inbound_htlc_value_sat += htlc.amount_msat / 1000;
2001 // As long as the HTLC is still in our latest commitment state, treat
2002 // it as potentially claimable, even if it has long-since expired.
2003 res.push(Balance::MaybePreimageClaimableHTLC {
2004 amount_satoshis: htlc.amount_msat / 1000,
2005 expiry_height: htlc.cltv_expiry,
2006 payment_hash: htlc.payment_hash,
2010 res.push(Balance::ClaimableOnChannelClose {
2011 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat + claimable_inbound_htlc_value_sat,
2018 /// Gets the set of outbound HTLCs which can be (or have been) resolved by this
2019 /// `ChannelMonitor`. This is used to determine if an HTLC was removed from the channel prior
2020 /// to the `ChannelManager` having been persisted.
2022 /// This is similar to [`Self::get_pending_or_resolved_outbound_htlcs`] except it includes
2023 /// HTLCs which were resolved on-chain (i.e. where the final HTLC resolution was done by an
2024 /// event from this `ChannelMonitor`).
2025 pub(crate) fn get_all_current_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
2026 let mut res = HashMap::new();
2027 // Just examine the available counterparty commitment transactions. See docs on
2028 // `fail_unbroadcast_htlcs`, below, for justification.
2029 let us = self.inner.lock().unwrap();
2030 macro_rules! walk_counterparty_commitment {
2032 if let Some(ref latest_outpoints) = us.counterparty_claimable_outpoints.get($txid) {
2033 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
2034 if let &Some(ref source) = source_option {
2035 res.insert((**source).clone(), (htlc.clone(),
2036 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned()));
2042 if let Some(ref txid) = us.current_counterparty_commitment_txid {
2043 walk_counterparty_commitment!(txid);
2045 if let Some(ref txid) = us.prev_counterparty_commitment_txid {
2046 walk_counterparty_commitment!(txid);
2051 /// Gets the set of outbound HTLCs which are pending resolution in this channel or which were
2052 /// resolved with a preimage from our counterparty.
2054 /// This is used to reconstruct pending outbound payments on restart in the ChannelManager.
2056 /// Currently, the preimage is unused, however if it is present in the relevant internal state
2057 /// an HTLC is always included even if it has been resolved.
2058 pub(crate) fn get_pending_or_resolved_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
2059 let us = self.inner.lock().unwrap();
2060 // We're only concerned with the confirmation count of HTLC transactions, and don't
2061 // actually care how many confirmations a commitment transaction may or may not have. Thus,
2062 // we look for either a FundingSpendConfirmation event or a funding_spend_confirmed.
2063 let confirmed_txid = us.funding_spend_confirmed.or_else(|| {
2064 us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
2065 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
2071 if confirmed_txid.is_none() {
2072 // If we have not seen a commitment transaction on-chain (ie the channel is not yet
2073 // closed), just get the full set.
2075 return self.get_all_current_outbound_htlcs();
2078 let mut res = HashMap::new();
2079 macro_rules! walk_htlcs {
2080 ($holder_commitment: expr, $htlc_iter: expr) => {
2081 for (htlc, source) in $htlc_iter {
2082 if us.htlcs_resolved_on_chain.iter().any(|v| v.commitment_tx_output_idx == htlc.transaction_output_index) {
2083 // We should assert that funding_spend_confirmed is_some() here, but we
2084 // have some unit tests which violate HTLC transaction CSVs entirely and
2086 // TODO: Once tests all connect transactions at consensus-valid times, we
2087 // should assert here like we do in `get_claimable_balances`.
2088 } else if htlc.offered == $holder_commitment {
2089 // If the payment was outbound, check if there's an HTLCUpdate
2090 // indicating we have spent this HTLC with a timeout, claiming it back
2091 // and awaiting confirmations on it.
2092 let htlc_update_confd = us.onchain_events_awaiting_threshold_conf.iter().any(|event| {
2093 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
2094 // If the HTLC was timed out, we wait for ANTI_REORG_DELAY blocks
2095 // before considering it "no longer pending" - this matches when we
2096 // provide the ChannelManager an HTLC failure event.
2097 Some(commitment_tx_output_idx) == htlc.transaction_output_index &&
2098 us.best_block.height() >= event.height + ANTI_REORG_DELAY - 1
2099 } else if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, .. } = event.event {
2100 // If the HTLC was fulfilled with a preimage, we consider the HTLC
2101 // immediately non-pending, matching when we provide ChannelManager
2103 Some(commitment_tx_output_idx) == htlc.transaction_output_index
2106 let counterparty_resolved_preimage_opt =
2107 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned();
2108 if !htlc_update_confd || counterparty_resolved_preimage_opt.is_some() {
2109 res.insert(source.clone(), (htlc.clone(), counterparty_resolved_preimage_opt));
2116 let txid = confirmed_txid.unwrap();
2117 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
2118 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().filter_map(|(a, b)| {
2119 if let &Some(ref source) = b {
2120 Some((a, &**source))
2123 } else if txid == us.current_holder_commitment_tx.txid {
2124 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().filter_map(|(a, _, c)| {
2125 if let Some(source) = c { Some((a, source)) } else { None }
2127 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
2128 if txid == prev_commitment.txid {
2129 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().filter_map(|(a, _, c)| {
2130 if let Some(source) = c { Some((a, source)) } else { None }
2138 pub(crate) fn get_stored_preimages(&self) -> HashMap<PaymentHash, PaymentPreimage> {
2139 self.inner.lock().unwrap().payment_preimages.clone()
2143 /// Compares a broadcasted commitment transaction's HTLCs with those in the latest state,
2144 /// failing any HTLCs which didn't make it into the broadcasted commitment transaction back
2145 /// after ANTI_REORG_DELAY blocks.
2147 /// We always compare against the set of HTLCs in counterparty commitment transactions, as those
2148 /// are the commitment transactions which are generated by us. The off-chain state machine in
2149 /// `Channel` will automatically resolve any HTLCs which were never included in a commitment
2150 /// transaction when it detects channel closure, but it is up to us to ensure any HTLCs which were
2151 /// included in a remote commitment transaction are failed back if they are not present in the
2152 /// broadcasted commitment transaction.
2154 /// Specifically, the removal process for HTLCs in `Channel` is always based on the counterparty
2155 /// sending a `revoke_and_ack`, which causes us to clear `prev_counterparty_commitment_txid`. Thus,
2156 /// as long as we examine both the current counterparty commitment transaction and, if it hasn't
2157 /// been revoked yet, the previous one, we we will never "forget" to resolve an HTLC.
2158 macro_rules! fail_unbroadcast_htlcs {
2159 ($self: expr, $commitment_tx_type: expr, $commitment_txid_confirmed: expr, $commitment_tx_confirmed: expr,
2160 $commitment_tx_conf_height: expr, $commitment_tx_conf_hash: expr, $confirmed_htlcs_list: expr, $logger: expr) => { {
2161 debug_assert_eq!($commitment_tx_confirmed.txid(), $commitment_txid_confirmed);
2163 macro_rules! check_htlc_fails {
2164 ($txid: expr, $commitment_tx: expr) => {
2165 if let Some(ref latest_outpoints) = $self.counterparty_claimable_outpoints.get($txid) {
2166 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
2167 if let &Some(ref source) = source_option {
2168 // Check if the HTLC is present in the commitment transaction that was
2169 // broadcast, but not if it was below the dust limit, which we should
2170 // fail backwards immediately as there is no way for us to learn the
2171 // payment_preimage.
2172 // Note that if the dust limit were allowed to change between
2173 // commitment transactions we'd want to be check whether *any*
2174 // broadcastable commitment transaction has the HTLC in it, but it
2175 // cannot currently change after channel initialization, so we don't
2177 let confirmed_htlcs_iter: &mut Iterator<Item = (&HTLCOutputInCommitment, Option<&HTLCSource>)> = &mut $confirmed_htlcs_list;
2179 let mut matched_htlc = false;
2180 for (ref broadcast_htlc, ref broadcast_source) in confirmed_htlcs_iter {
2181 if broadcast_htlc.transaction_output_index.is_some() &&
2182 (Some(&**source) == *broadcast_source ||
2183 (broadcast_source.is_none() &&
2184 broadcast_htlc.payment_hash == htlc.payment_hash &&
2185 broadcast_htlc.amount_msat == htlc.amount_msat)) {
2186 matched_htlc = true;
2190 if matched_htlc { continue; }
2191 if $self.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).is_some() {
2194 $self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
2195 if entry.height != $commitment_tx_conf_height { return true; }
2197 OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
2198 *update_source != **source
2203 let entry = OnchainEventEntry {
2204 txid: $commitment_txid_confirmed,
2205 transaction: Some($commitment_tx_confirmed.clone()),
2206 height: $commitment_tx_conf_height,
2207 block_hash: Some(*$commitment_tx_conf_hash),
2208 event: OnchainEvent::HTLCUpdate {
2209 source: (**source).clone(),
2210 payment_hash: htlc.payment_hash.clone(),
2211 htlc_value_satoshis: Some(htlc.amount_msat / 1000),
2212 commitment_tx_output_idx: None,
2215 log_trace!($logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of {} commitment transaction {}, waiting for confirmation (at height {})",
2216 &htlc.payment_hash, $commitment_tx, $commitment_tx_type,
2217 $commitment_txid_confirmed, entry.confirmation_threshold());
2218 $self.onchain_events_awaiting_threshold_conf.push(entry);
2224 if let Some(ref txid) = $self.current_counterparty_commitment_txid {
2225 check_htlc_fails!(txid, "current");
2227 if let Some(ref txid) = $self.prev_counterparty_commitment_txid {
2228 check_htlc_fails!(txid, "previous");
2233 // In the `test_invalid_funding_tx` test, we need a bogus script which matches the HTLC-Accepted
2234 // witness length match (ie is 136 bytes long). We generate one here which we also use in some
2235 // in-line tests later.
2238 pub fn deliberately_bogus_accepted_htlc_witness_program() -> Vec<u8> {
2239 let mut ret = [opcodes::all::OP_NOP.to_u8(); 136];
2240 ret[131] = opcodes::all::OP_DROP.to_u8();
2241 ret[132] = opcodes::all::OP_DROP.to_u8();
2242 ret[133] = opcodes::all::OP_DROP.to_u8();
2243 ret[134] = opcodes::all::OP_DROP.to_u8();
2244 ret[135] = opcodes::OP_TRUE.to_u8();
2249 pub fn deliberately_bogus_accepted_htlc_witness() -> Vec<Vec<u8>> {
2250 vec![Vec::new(), Vec::new(), Vec::new(), Vec::new(), deliberately_bogus_accepted_htlc_witness_program().into()].into()
2253 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
2254 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
2255 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
2256 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
2257 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
2258 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
2259 return Err("Previous secret did not match new one");
2262 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
2263 // events for now-revoked/fulfilled HTLCs.
2264 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
2265 if self.current_counterparty_commitment_txid.unwrap() != txid {
2266 let cur_claimables = self.counterparty_claimable_outpoints.get(
2267 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2268 for (_, ref source_opt) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2269 if let Some(source) = source_opt {
2270 if !cur_claimables.iter()
2271 .any(|(_, cur_source_opt)| cur_source_opt == source_opt)
2273 self.counterparty_fulfilled_htlcs.remove(&SentHTLCId::from_source(source));
2277 for &mut (_, ref mut source_opt) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
2281 assert!(cfg!(fuzzing), "Commitment txids are unique outside of fuzzing, where hashes can collide");
2285 if !self.payment_preimages.is_empty() {
2286 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
2287 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
2288 let min_idx = self.get_min_seen_secret();
2289 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
2291 self.payment_preimages.retain(|&k, _| {
2292 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
2293 if k == htlc.payment_hash {
2297 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
2298 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
2299 if k == htlc.payment_hash {
2304 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
2311 counterparty_hash_commitment_number.remove(&k);
2320 pub(crate) fn provide_initial_counterparty_commitment_tx<L: Deref>(
2321 &mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
2322 commitment_number: u64, their_per_commitment_point: PublicKey, feerate_per_kw: u32,
2323 to_broadcaster_value: u64, to_countersignatory_value: u64, logger: &L
2325 where L::Target: Logger
2327 self.initial_counterparty_commitment_info = Some((their_per_commitment_point.clone(),
2328 feerate_per_kw, to_broadcaster_value, to_countersignatory_value));
2330 #[cfg(debug_assertions)] {
2331 let rebuilt_commitment_tx = self.initial_counterparty_commitment_tx().unwrap();
2332 debug_assert_eq!(rebuilt_commitment_tx.trust().txid(), txid);
2335 self.provide_latest_counterparty_commitment_tx(txid, htlc_outputs, commitment_number,
2336 their_per_commitment_point, logger);
2339 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_per_commitment_point: PublicKey, logger: &L) where L::Target: Logger {
2340 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
2341 // so that a remote monitor doesn't learn anything unless there is a malicious close.
2342 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
2344 for &(ref htlc, _) in &htlc_outputs {
2345 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
2348 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
2349 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
2350 self.current_counterparty_commitment_txid = Some(txid);
2351 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
2352 self.current_counterparty_commitment_number = commitment_number;
2353 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
2354 match self.their_cur_per_commitment_points {
2355 Some(old_points) => {
2356 if old_points.0 == commitment_number + 1 {
2357 self.their_cur_per_commitment_points = Some((old_points.0, old_points.1, Some(their_per_commitment_point)));
2358 } else if old_points.0 == commitment_number + 2 {
2359 if let Some(old_second_point) = old_points.2 {
2360 self.their_cur_per_commitment_points = Some((old_points.0 - 1, old_second_point, Some(their_per_commitment_point)));
2362 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2365 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2369 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2372 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
2373 for htlc in htlc_outputs {
2374 if htlc.0.transaction_output_index.is_some() {
2380 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
2381 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
2382 /// is important that any clones of this channel monitor (including remote clones) by kept
2383 /// up-to-date as our holder commitment transaction is updated.
2384 /// Panics if set_on_holder_tx_csv has never been called.
2385 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, mut htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>, claimed_htlcs: &[(SentHTLCId, PaymentPreimage)], nondust_htlc_sources: Vec<HTLCSource>) -> Result<(), &'static str> {
2386 if htlc_outputs.iter().any(|(_, s, _)| s.is_some()) {
2387 // If we have non-dust HTLCs in htlc_outputs, ensure they match the HTLCs in the
2388 // `holder_commitment_tx`. In the future, we'll no longer provide the redundant data
2389 // and just pass in source data via `nondust_htlc_sources`.
2390 debug_assert_eq!(htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).count(), holder_commitment_tx.trust().htlcs().len());
2391 for (a, b) in htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).map(|(h, _, _)| h).zip(holder_commitment_tx.trust().htlcs().iter()) {
2392 debug_assert_eq!(a, b);
2394 debug_assert_eq!(htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).count(), holder_commitment_tx.counterparty_htlc_sigs.len());
2395 for (a, b) in htlc_outputs.iter().filter_map(|(_, s, _)| s.as_ref()).zip(holder_commitment_tx.counterparty_htlc_sigs.iter()) {
2396 debug_assert_eq!(a, b);
2398 debug_assert!(nondust_htlc_sources.is_empty());
2400 // If we don't have any non-dust HTLCs in htlc_outputs, assume they were all passed via
2401 // `nondust_htlc_sources`, building up the final htlc_outputs by combining
2402 // `nondust_htlc_sources` and the `holder_commitment_tx`
2403 #[cfg(debug_assertions)] {
2405 for htlc in holder_commitment_tx.trust().htlcs().iter() {
2406 assert!(htlc.transaction_output_index.unwrap() as i32 > prev);
2407 prev = htlc.transaction_output_index.unwrap() as i32;
2410 debug_assert!(htlc_outputs.iter().all(|(htlc, _, _)| htlc.transaction_output_index.is_none()));
2411 debug_assert!(htlc_outputs.iter().all(|(_, sig_opt, _)| sig_opt.is_none()));
2412 debug_assert_eq!(holder_commitment_tx.trust().htlcs().len(), holder_commitment_tx.counterparty_htlc_sigs.len());
2414 let mut sources_iter = nondust_htlc_sources.into_iter();
2416 for (htlc, counterparty_sig) in holder_commitment_tx.trust().htlcs().iter()
2417 .zip(holder_commitment_tx.counterparty_htlc_sigs.iter())
2420 let source = sources_iter.next().expect("Non-dust HTLC sources didn't match commitment tx");
2421 #[cfg(debug_assertions)] {
2422 assert!(source.possibly_matches_output(htlc));
2424 htlc_outputs.push((htlc.clone(), Some(counterparty_sig.clone()), Some(source)));
2426 htlc_outputs.push((htlc.clone(), Some(counterparty_sig.clone()), None));
2429 debug_assert!(sources_iter.next().is_none());
2432 let trusted_tx = holder_commitment_tx.trust();
2433 let txid = trusted_tx.txid();
2434 let tx_keys = trusted_tx.keys();
2435 self.current_holder_commitment_number = trusted_tx.commitment_number();
2436 let mut new_holder_commitment_tx = HolderSignedTx {
2438 revocation_key: tx_keys.revocation_key,
2439 a_htlc_key: tx_keys.broadcaster_htlc_key,
2440 b_htlc_key: tx_keys.countersignatory_htlc_key,
2441 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
2442 per_commitment_point: tx_keys.per_commitment_point,
2444 to_self_value_sat: holder_commitment_tx.to_broadcaster_value_sat(),
2445 feerate_per_kw: trusted_tx.feerate_per_kw(),
2447 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
2448 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
2449 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
2450 for (claimed_htlc_id, claimed_preimage) in claimed_htlcs {
2451 #[cfg(debug_assertions)] {
2452 let cur_counterparty_htlcs = self.counterparty_claimable_outpoints.get(
2453 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2454 assert!(cur_counterparty_htlcs.iter().any(|(_, source_opt)| {
2455 if let Some(source) = source_opt {
2456 SentHTLCId::from_source(source) == *claimed_htlc_id
2460 self.counterparty_fulfilled_htlcs.insert(*claimed_htlc_id, *claimed_preimage);
2462 if self.holder_tx_signed {
2463 return Err("Latest holder commitment signed has already been signed, update is rejected");
2468 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
2469 /// commitment_tx_infos which contain the payment hash have been revoked.
2470 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
2471 &mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B,
2472 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L)
2473 where B::Target: BroadcasterInterface,
2474 F::Target: FeeEstimator,
2477 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
2479 // If the channel is force closed, try to claim the output from this preimage.
2480 // First check if a counterparty commitment transaction has been broadcasted:
2481 macro_rules! claim_htlcs {
2482 ($commitment_number: expr, $txid: expr) => {
2483 let (htlc_claim_reqs, _) = self.get_counterparty_output_claim_info($commitment_number, $txid, None);
2484 self.onchain_tx_handler.update_claims_view_from_requests(htlc_claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2487 if let Some(txid) = self.current_counterparty_commitment_txid {
2488 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2489 claim_htlcs!(*commitment_number, txid);
2493 if let Some(txid) = self.prev_counterparty_commitment_txid {
2494 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2495 claim_htlcs!(*commitment_number, txid);
2500 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
2501 // claiming the HTLC output from each of the holder commitment transactions.
2502 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
2503 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
2504 // holder commitment transactions.
2505 if self.broadcasted_holder_revokable_script.is_some() {
2506 // Assume that the broadcasted commitment transaction confirmed in the current best
2507 // block. Even if not, its a reasonable metric for the bump criteria on the HTLC
2509 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
2510 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2511 if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
2512 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx, self.best_block.height());
2513 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2518 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
2519 where B::Target: BroadcasterInterface,
2522 let commit_txs = self.get_latest_holder_commitment_txn(logger);
2523 let mut txs = vec![];
2524 for tx in commit_txs.iter() {
2525 log_info!(logger, "Broadcasting local {}", log_tx!(tx));
2528 broadcaster.broadcast_transactions(&txs);
2529 self.pending_monitor_events.push(MonitorEvent::HolderForceClosed(self.funding_info.0));
2532 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: F, logger: &L) -> Result<(), ()>
2533 where B::Target: BroadcasterInterface,
2534 F::Target: FeeEstimator,
2537 if self.latest_update_id == CLOSED_CHANNEL_UPDATE_ID && updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2538 log_info!(logger, "Applying post-force-closed update to monitor {} with {} change(s).",
2539 log_funding_info!(self), updates.updates.len());
2540 } else if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2541 log_info!(logger, "Applying force close update to monitor {} with {} change(s).",
2542 log_funding_info!(self), updates.updates.len());
2544 log_info!(logger, "Applying update to monitor {}, bringing update_id from {} to {} with {} change(s).",
2545 log_funding_info!(self), self.latest_update_id, updates.update_id, updates.updates.len());
2547 // ChannelMonitor updates may be applied after force close if we receive a preimage for a
2548 // broadcasted commitment transaction HTLC output that we'd like to claim on-chain. If this
2549 // is the case, we no longer have guaranteed access to the monitor's update ID, so we use a
2550 // sentinel value instead.
2552 // The `ChannelManager` may also queue redundant `ChannelForceClosed` updates if it still
2553 // thinks the channel needs to have its commitment transaction broadcast, so we'll allow
2555 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2556 assert_eq!(updates.updates.len(), 1);
2557 match updates.updates[0] {
2558 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => {},
2559 // We should have already seen a `ChannelForceClosed` update if we're trying to
2560 // provide a preimage at this point.
2561 ChannelMonitorUpdateStep::PaymentPreimage { .. } =>
2562 debug_assert_eq!(self.latest_update_id, CLOSED_CHANNEL_UPDATE_ID),
2564 log_error!(logger, "Attempted to apply post-force-close ChannelMonitorUpdate of type {}", updates.updates[0].variant_name());
2565 panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage");
2568 } else if self.latest_update_id + 1 != updates.update_id {
2569 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
2571 let mut ret = Ok(());
2572 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&*fee_estimator);
2573 for update in updates.updates.iter() {
2575 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs, claimed_htlcs, nondust_htlc_sources } => {
2576 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
2577 if self.lockdown_from_offchain { panic!(); }
2578 if let Err(e) = self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone(), &claimed_htlcs, nondust_htlc_sources.clone()) {
2579 log_error!(logger, "Providing latest holder commitment transaction failed/was refused:");
2580 log_error!(logger, " {}", e);
2584 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_per_commitment_point, .. } => {
2585 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
2586 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_per_commitment_point, logger)
2588 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
2589 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
2590 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, &bounded_fee_estimator, logger)
2592 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
2593 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
2594 if let Err(e) = self.provide_secret(*idx, *secret) {
2595 debug_assert!(false, "Latest counterparty commitment secret was invalid");
2596 log_error!(logger, "Providing latest counterparty commitment secret failed/was refused:");
2597 log_error!(logger, " {}", e);
2601 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
2602 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
2603 self.lockdown_from_offchain = true;
2604 if *should_broadcast {
2605 // There's no need to broadcast our commitment transaction if we've seen one
2606 // confirmed (even with 1 confirmation) as it'll be rejected as
2607 // duplicate/conflicting.
2608 let detected_funding_spend = self.funding_spend_confirmed.is_some() ||
2609 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
2610 OnchainEvent::FundingSpendConfirmation { .. } => true,
2613 if detected_funding_spend {
2614 log_trace!(logger, "Avoiding commitment broadcast, already detected confirmed spend onchain");
2617 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
2618 // If the channel supports anchor outputs, we'll need to emit an external
2619 // event to be consumed such that a child transaction is broadcast with a
2620 // high enough feerate for the parent commitment transaction to confirm.
2621 if self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
2622 let funding_output = HolderFundingOutput::build(
2623 self.funding_redeemscript.clone(), self.channel_value_satoshis,
2624 self.onchain_tx_handler.channel_type_features().clone(),
2626 let best_block_height = self.best_block.height();
2627 let commitment_package = PackageTemplate::build_package(
2628 self.funding_info.0.txid.clone(), self.funding_info.0.index as u32,
2629 PackageSolvingData::HolderFundingOutput(funding_output),
2630 best_block_height, best_block_height
2632 self.onchain_tx_handler.update_claims_view_from_requests(
2633 vec![commitment_package], best_block_height, best_block_height,
2634 broadcaster, &bounded_fee_estimator, logger,
2637 } else if !self.holder_tx_signed {
2638 log_error!(logger, "WARNING: You have a potentially-unsafe holder commitment transaction available to broadcast");
2639 log_error!(logger, " in channel monitor for channel {}!", &self.funding_info.0.to_channel_id());
2640 log_error!(logger, " Read the docs for ChannelMonitor::get_latest_holder_commitment_txn and take manual action!");
2642 // If we generated a MonitorEvent::HolderForceClosed, the ChannelManager
2643 // will still give us a ChannelForceClosed event with !should_broadcast, but we
2644 // shouldn't print the scary warning above.
2645 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
2648 ChannelMonitorUpdateStep::ShutdownScript { scriptpubkey } => {
2649 log_trace!(logger, "Updating ChannelMonitor with shutdown script");
2650 if let Some(shutdown_script) = self.shutdown_script.replace(scriptpubkey.clone()) {
2651 panic!("Attempted to replace shutdown script {} with {}", shutdown_script, scriptpubkey);
2657 #[cfg(debug_assertions)] {
2658 self.counterparty_commitment_txs_from_update(updates);
2661 // If the updates succeeded and we were in an already closed channel state, then there's no
2662 // need to refuse any updates we expect to receive afer seeing a confirmed commitment.
2663 if ret.is_ok() && updates.update_id == CLOSED_CHANNEL_UPDATE_ID && self.latest_update_id == updates.update_id {
2667 self.latest_update_id = updates.update_id;
2669 // Refuse updates after we've detected a spend onchain, but only if we haven't processed a
2670 // force closed monitor update yet.
2671 if ret.is_ok() && self.funding_spend_seen && self.latest_update_id != CLOSED_CHANNEL_UPDATE_ID {
2672 log_error!(logger, "Refusing Channel Monitor Update as counterparty attempted to update commitment after funding was spent");
2677 pub fn get_latest_update_id(&self) -> u64 {
2678 self.latest_update_id
2681 pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
2685 pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
2686 // If we've detected a counterparty commitment tx on chain, we must include it in the set
2687 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
2688 // its trivial to do, double-check that here.
2689 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
2690 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
2692 &self.outputs_to_watch
2695 pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
2696 let mut ret = Vec::new();
2697 mem::swap(&mut ret, &mut self.pending_monitor_events);
2701 /// Gets the set of events that are repeated regularly (e.g. those which RBF bump
2702 /// transactions). We're okay if we lose these on restart as they'll be regenerated for us at
2703 /// some regular interval via [`ChannelMonitor::rebroadcast_pending_claims`].
2704 pub(super) fn get_repeated_events(&mut self) -> Vec<Event> {
2705 let pending_claim_events = self.onchain_tx_handler.get_and_clear_pending_claim_events();
2706 let mut ret = Vec::with_capacity(pending_claim_events.len());
2707 for (claim_id, claim_event) in pending_claim_events {
2709 ClaimEvent::BumpCommitment {
2710 package_target_feerate_sat_per_1000_weight, commitment_tx, anchor_output_idx,
2712 let commitment_txid = commitment_tx.txid();
2713 debug_assert_eq!(self.current_holder_commitment_tx.txid, commitment_txid);
2714 let pending_htlcs = self.current_holder_commitment_tx.non_dust_htlcs();
2715 let commitment_tx_fee_satoshis = self.channel_value_satoshis -
2716 commitment_tx.output.iter().fold(0u64, |sum, output| sum + output.value);
2717 ret.push(Event::BumpTransaction(BumpTransactionEvent::ChannelClose {
2719 package_target_feerate_sat_per_1000_weight,
2721 commitment_tx_fee_satoshis,
2722 anchor_descriptor: AnchorDescriptor {
2723 channel_derivation_parameters: ChannelDerivationParameters {
2724 keys_id: self.channel_keys_id,
2725 value_satoshis: self.channel_value_satoshis,
2726 transaction_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
2728 outpoint: BitcoinOutPoint {
2729 txid: commitment_txid,
2730 vout: anchor_output_idx,
2736 ClaimEvent::BumpHTLC {
2737 target_feerate_sat_per_1000_weight, htlcs, tx_lock_time,
2739 let mut htlc_descriptors = Vec::with_capacity(htlcs.len());
2741 htlc_descriptors.push(HTLCDescriptor {
2742 channel_derivation_parameters: ChannelDerivationParameters {
2743 keys_id: self.channel_keys_id,
2744 value_satoshis: self.channel_value_satoshis,
2745 transaction_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
2747 commitment_txid: htlc.commitment_txid,
2748 per_commitment_number: htlc.per_commitment_number,
2749 per_commitment_point: self.onchain_tx_handler.signer.get_per_commitment_point(
2750 htlc.per_commitment_number, &self.onchain_tx_handler.secp_ctx,
2753 preimage: htlc.preimage,
2754 counterparty_sig: htlc.counterparty_sig,
2757 ret.push(Event::BumpTransaction(BumpTransactionEvent::HTLCResolution {
2759 target_feerate_sat_per_1000_weight,
2769 pub(crate) fn initial_counterparty_commitment_tx(&mut self) -> Option<CommitmentTransaction> {
2770 let (their_per_commitment_point, feerate_per_kw, to_broadcaster_value,
2771 to_countersignatory_value) = self.initial_counterparty_commitment_info?;
2772 let htlc_outputs = vec![];
2774 let commitment_tx = self.build_counterparty_commitment_tx(INITIAL_COMMITMENT_NUMBER,
2775 &their_per_commitment_point, to_broadcaster_value, to_countersignatory_value,
2776 feerate_per_kw, htlc_outputs);
2780 fn build_counterparty_commitment_tx(
2781 &self, commitment_number: u64, their_per_commitment_point: &PublicKey,
2782 to_broadcaster_value: u64, to_countersignatory_value: u64, feerate_per_kw: u32,
2783 mut nondust_htlcs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>
2784 ) -> CommitmentTransaction {
2785 let broadcaster_keys = &self.onchain_tx_handler.channel_transaction_parameters
2786 .counterparty_parameters.as_ref().unwrap().pubkeys;
2787 let countersignatory_keys =
2788 &self.onchain_tx_handler.channel_transaction_parameters.holder_pubkeys;
2790 let broadcaster_funding_key = broadcaster_keys.funding_pubkey;
2791 let countersignatory_funding_key = countersignatory_keys.funding_pubkey;
2792 let keys = TxCreationKeys::from_channel_static_keys(&their_per_commitment_point,
2793 &broadcaster_keys, &countersignatory_keys, &self.onchain_tx_handler.secp_ctx);
2794 let channel_parameters =
2795 &self.onchain_tx_handler.channel_transaction_parameters.as_counterparty_broadcastable();
2797 CommitmentTransaction::new_with_auxiliary_htlc_data(commitment_number,
2798 to_broadcaster_value, to_countersignatory_value, broadcaster_funding_key,
2799 countersignatory_funding_key, keys, feerate_per_kw, &mut nondust_htlcs,
2803 pub(crate) fn counterparty_commitment_txs_from_update(&self, update: &ChannelMonitorUpdate) -> Vec<CommitmentTransaction> {
2804 update.updates.iter().filter_map(|update| {
2806 &ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid,
2807 ref htlc_outputs, commitment_number, their_per_commitment_point,
2808 feerate_per_kw: Some(feerate_per_kw),
2809 to_broadcaster_value_sat: Some(to_broadcaster_value),
2810 to_countersignatory_value_sat: Some(to_countersignatory_value) } => {
2812 let nondust_htlcs = htlc_outputs.iter().filter_map(|(htlc, _)| {
2813 htlc.transaction_output_index.map(|_| (htlc.clone(), None))
2814 }).collect::<Vec<_>>();
2816 let commitment_tx = self.build_counterparty_commitment_tx(commitment_number,
2817 &their_per_commitment_point, to_broadcaster_value,
2818 to_countersignatory_value, feerate_per_kw, nondust_htlcs);
2820 debug_assert_eq!(commitment_tx.trust().txid(), commitment_txid);
2829 pub(crate) fn sign_to_local_justice_tx(
2830 &self, mut justice_tx: Transaction, input_idx: usize, value: u64, commitment_number: u64
2831 ) -> Result<Transaction, ()> {
2832 let secret = self.get_secret(commitment_number).ok_or(())?;
2833 let per_commitment_key = SecretKey::from_slice(&secret).map_err(|_| ())?;
2834 let their_per_commitment_point = PublicKey::from_secret_key(
2835 &self.onchain_tx_handler.secp_ctx, &per_commitment_key);
2837 let revocation_pubkey = chan_utils::derive_public_revocation_key(
2838 &self.onchain_tx_handler.secp_ctx, &their_per_commitment_point,
2839 &self.holder_revocation_basepoint);
2840 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx,
2841 &their_per_commitment_point,
2842 &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
2843 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
2844 self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
2846 let sig = self.onchain_tx_handler.signer.sign_justice_revoked_output(
2847 &justice_tx, input_idx, value, &per_commitment_key, &self.onchain_tx_handler.secp_ctx)?;
2848 justice_tx.input[input_idx].witness.push_bitcoin_signature(&sig.serialize_der(), EcdsaSighashType::All);
2849 justice_tx.input[input_idx].witness.push(&[1u8]);
2850 justice_tx.input[input_idx].witness.push(revokeable_redeemscript.as_bytes());
2854 /// Can only fail if idx is < get_min_seen_secret
2855 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
2856 self.commitment_secrets.get_secret(idx)
2859 pub(crate) fn get_min_seen_secret(&self) -> u64 {
2860 self.commitment_secrets.get_min_seen_secret()
2863 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
2864 self.current_counterparty_commitment_number
2867 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
2868 self.current_holder_commitment_number
2871 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
2872 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
2873 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
2874 /// HTLC-Success/HTLC-Timeout transactions.
2876 /// Returns packages to claim the revoked output(s), as well as additional outputs to watch and
2877 /// general information about the output that is to the counterparty in the commitment
2879 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L)
2880 -> (Vec<PackageTemplate>, TransactionOutputs, CommitmentTxCounterpartyOutputInfo)
2881 where L::Target: Logger {
2882 // Most secp and related errors trying to create keys means we have no hope of constructing
2883 // a spend transaction...so we return no transactions to broadcast
2884 let mut claimable_outpoints = Vec::new();
2885 let mut watch_outputs = Vec::new();
2886 let mut to_counterparty_output_info = None;
2888 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
2889 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
2891 macro_rules! ignore_error {
2892 ( $thing : expr ) => {
2895 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
2900 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence.0 as u64 & 0xffffff) << 3*8) | (tx.lock_time.0 as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
2901 if commitment_number >= self.get_min_seen_secret() {
2902 let secret = self.get_secret(commitment_number).unwrap();
2903 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2904 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
2905 let revocation_pubkey = chan_utils::derive_public_revocation_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint);
2906 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx, &PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key), &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
2908 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
2909 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
2911 // First, process non-htlc outputs (to_holder & to_counterparty)
2912 for (idx, outp) in tx.output.iter().enumerate() {
2913 if outp.script_pubkey == revokeable_p2wsh {
2914 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_commitment_params.on_counterparty_tx_csv, self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx());
2915 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, height);
2916 claimable_outpoints.push(justice_package);
2917 to_counterparty_output_info =
2918 Some((idx.try_into().expect("Txn can't have more than 2^32 outputs"), outp.value));
2922 // Then, try to find revoked htlc outputs
2923 if let Some(ref per_commitment_data) = per_commitment_option {
2924 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
2925 if let Some(transaction_output_index) = htlc.transaction_output_index {
2926 if transaction_output_index as usize >= tx.output.len() ||
2927 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2928 // per_commitment_data is corrupt or our commitment signing key leaked!
2929 return (claimable_outpoints, (commitment_txid, watch_outputs),
2930 to_counterparty_output_info);
2932 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone(), &self.onchain_tx_handler.channel_transaction_parameters.channel_type_features);
2933 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, height);
2934 claimable_outpoints.push(justice_package);
2939 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
2940 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
2941 // We're definitely a counterparty commitment transaction!
2942 log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
2943 for (idx, outp) in tx.output.iter().enumerate() {
2944 watch_outputs.push((idx as u32, outp.clone()));
2946 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2948 if let Some(per_commitment_data) = per_commitment_option {
2949 fail_unbroadcast_htlcs!(self, "revoked_counterparty", commitment_txid, tx, height,
2950 block_hash, per_commitment_data.iter().map(|(htlc, htlc_source)|
2951 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2954 debug_assert!(false, "We should have per-commitment option for any recognized old commitment txn");
2955 fail_unbroadcast_htlcs!(self, "revoked counterparty", commitment_txid, tx, height,
2956 block_hash, [].iter().map(|reference| *reference), logger);
2959 } else if let Some(per_commitment_data) = per_commitment_option {
2960 // While this isn't useful yet, there is a potential race where if a counterparty
2961 // revokes a state at the same time as the commitment transaction for that state is
2962 // confirmed, and the watchtower receives the block before the user, the user could
2963 // upload a new ChannelMonitor with the revocation secret but the watchtower has
2964 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
2965 // not being generated by the above conditional. Thus, to be safe, we go ahead and
2967 for (idx, outp) in tx.output.iter().enumerate() {
2968 watch_outputs.push((idx as u32, outp.clone()));
2970 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2972 log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
2973 fail_unbroadcast_htlcs!(self, "counterparty", commitment_txid, tx, height, block_hash,
2974 per_commitment_data.iter().map(|(htlc, htlc_source)|
2975 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2978 let (htlc_claim_reqs, counterparty_output_info) =
2979 self.get_counterparty_output_claim_info(commitment_number, commitment_txid, Some(tx));
2980 to_counterparty_output_info = counterparty_output_info;
2981 for req in htlc_claim_reqs {
2982 claimable_outpoints.push(req);
2986 (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
2989 /// Returns the HTLC claim package templates and the counterparty output info
2990 fn get_counterparty_output_claim_info(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>)
2991 -> (Vec<PackageTemplate>, CommitmentTxCounterpartyOutputInfo) {
2992 let mut claimable_outpoints = Vec::new();
2993 let mut to_counterparty_output_info: CommitmentTxCounterpartyOutputInfo = None;
2995 let htlc_outputs = match self.counterparty_claimable_outpoints.get(&commitment_txid) {
2996 Some(outputs) => outputs,
2997 None => return (claimable_outpoints, to_counterparty_output_info),
2999 let per_commitment_points = match self.their_cur_per_commitment_points {
3000 Some(points) => points,
3001 None => return (claimable_outpoints, to_counterparty_output_info),
3004 let per_commitment_point =
3005 // If the counterparty commitment tx is the latest valid state, use their latest
3006 // per-commitment point
3007 if per_commitment_points.0 == commitment_number { &per_commitment_points.1 }
3008 else if let Some(point) = per_commitment_points.2.as_ref() {
3009 // If counterparty commitment tx is the state previous to the latest valid state, use
3010 // their previous per-commitment point (non-atomicity of revocation means it's valid for
3011 // them to temporarily have two valid commitment txns from our viewpoint)
3012 if per_commitment_points.0 == commitment_number + 1 {
3014 } else { return (claimable_outpoints, to_counterparty_output_info); }
3015 } else { return (claimable_outpoints, to_counterparty_output_info); };
3017 if let Some(transaction) = tx {
3018 let revocation_pubkey = chan_utils::derive_public_revocation_key(
3019 &self.onchain_tx_handler.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint);
3020 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx,
3021 &per_commitment_point,
3022 &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
3023 let revokeable_p2wsh = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
3024 self.counterparty_commitment_params.on_counterparty_tx_csv,
3025 &delayed_key).to_v0_p2wsh();
3026 for (idx, outp) in transaction.output.iter().enumerate() {
3027 if outp.script_pubkey == revokeable_p2wsh {
3028 to_counterparty_output_info =
3029 Some((idx.try_into().expect("Can't have > 2^32 outputs"), outp.value));
3034 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
3035 if let Some(transaction_output_index) = htlc.transaction_output_index {
3036 if let Some(transaction) = tx {
3037 if transaction_output_index as usize >= transaction.output.len() ||
3038 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
3039 // per_commitment_data is corrupt or our commitment signing key leaked!
3040 return (claimable_outpoints, to_counterparty_output_info);
3043 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
3044 if preimage.is_some() || !htlc.offered {
3045 let counterparty_htlc_outp = if htlc.offered {
3046 PackageSolvingData::CounterpartyOfferedHTLCOutput(
3047 CounterpartyOfferedHTLCOutput::build(*per_commitment_point,
3048 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3049 self.counterparty_commitment_params.counterparty_htlc_base_key,
3050 preimage.unwrap(), htlc.clone(), self.onchain_tx_handler.channel_type_features().clone()))
3052 PackageSolvingData::CounterpartyReceivedHTLCOutput(
3053 CounterpartyReceivedHTLCOutput::build(*per_commitment_point,
3054 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3055 self.counterparty_commitment_params.counterparty_htlc_base_key,
3056 htlc.clone(), self.onchain_tx_handler.channel_type_features().clone()))
3058 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry, 0);
3059 claimable_outpoints.push(counterparty_package);
3064 (claimable_outpoints, to_counterparty_output_info)
3067 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
3068 fn check_spend_counterparty_htlc<L: Deref>(
3069 &mut self, tx: &Transaction, commitment_number: u64, commitment_txid: &Txid, height: u32, logger: &L
3070 ) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
3071 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
3072 let per_commitment_key = match SecretKey::from_slice(&secret) {
3074 Err(_) => return (Vec::new(), None)
3076 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
3078 let htlc_txid = tx.txid();
3079 let mut claimable_outpoints = vec![];
3080 let mut outputs_to_watch = None;
3081 // Previously, we would only claim HTLCs from revoked HTLC transactions if they had 1 input
3082 // with a witness of 5 elements and 1 output. This wasn't enough for anchor outputs, as the
3083 // counterparty can now aggregate multiple HTLCs into a single transaction thanks to
3084 // `SIGHASH_SINGLE` remote signatures, leading us to not claim any HTLCs upon seeing a
3085 // confirmed revoked HTLC transaction (for more details, see
3086 // https://lists.linuxfoundation.org/pipermail/lightning-dev/2022-April/003561.html).
3088 // We make sure we're not vulnerable to this case by checking all inputs of the transaction,
3089 // and claim those which spend the commitment transaction, have a witness of 5 elements, and
3090 // have a corresponding output at the same index within the transaction.
3091 for (idx, input) in tx.input.iter().enumerate() {
3092 if input.previous_output.txid == *commitment_txid && input.witness.len() == 5 && tx.output.get(idx).is_some() {
3093 log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, idx);
3094 let revk_outp = RevokedOutput::build(
3095 per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3096 self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key,
3097 tx.output[idx].value, self.counterparty_commitment_params.on_counterparty_tx_csv,
3100 let justice_package = PackageTemplate::build_package(
3101 htlc_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp),
3102 height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, height
3104 claimable_outpoints.push(justice_package);
3105 if outputs_to_watch.is_none() {
3106 outputs_to_watch = Some((htlc_txid, vec![]));
3108 outputs_to_watch.as_mut().unwrap().1.push((idx as u32, tx.output[idx].clone()));
3111 (claimable_outpoints, outputs_to_watch)
3114 // Returns (1) `PackageTemplate`s that can be given to the OnchainTxHandler, so that the handler can
3115 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
3116 // script so we can detect whether a holder transaction has been seen on-chain.
3117 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(Script, PublicKey, PublicKey)>) {
3118 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
3120 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
3121 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
3123 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
3124 if let Some(transaction_output_index) = htlc.transaction_output_index {
3125 let htlc_output = if htlc.offered {
3126 let htlc_output = HolderHTLCOutput::build_offered(
3127 htlc.amount_msat, htlc.cltv_expiry, self.onchain_tx_handler.channel_type_features().clone()
3131 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
3134 // We can't build an HTLC-Success transaction without the preimage
3137 let htlc_output = HolderHTLCOutput::build_accepted(
3138 payment_preimage, htlc.amount_msat, self.onchain_tx_handler.channel_type_features().clone()
3142 let htlc_package = PackageTemplate::build_package(
3143 holder_tx.txid, transaction_output_index,
3144 PackageSolvingData::HolderHTLCOutput(htlc_output),
3145 htlc.cltv_expiry, conf_height
3147 claim_requests.push(htlc_package);
3151 (claim_requests, broadcasted_holder_revokable_script)
3154 // Returns holder HTLC outputs to watch and react to in case of spending.
3155 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
3156 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
3157 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
3158 if let Some(transaction_output_index) = htlc.transaction_output_index {
3159 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
3165 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
3166 /// revoked using data in holder_claimable_outpoints.
3167 /// Should not be used if check_spend_revoked_transaction succeeds.
3168 /// Returns None unless the transaction is definitely one of our commitment transactions.
3169 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) -> Option<(Vec<PackageTemplate>, TransactionOutputs)> where L::Target: Logger {
3170 let commitment_txid = tx.txid();
3171 let mut claim_requests = Vec::new();
3172 let mut watch_outputs = Vec::new();
3174 macro_rules! append_onchain_update {
3175 ($updates: expr, $to_watch: expr) => {
3176 claim_requests = $updates.0;
3177 self.broadcasted_holder_revokable_script = $updates.1;
3178 watch_outputs.append(&mut $to_watch);
3182 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
3183 let mut is_holder_tx = false;
3185 if self.current_holder_commitment_tx.txid == commitment_txid {
3186 is_holder_tx = true;
3187 log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
3188 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
3189 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
3190 append_onchain_update!(res, to_watch);
3191 fail_unbroadcast_htlcs!(self, "latest holder", commitment_txid, tx, height,
3192 block_hash, self.current_holder_commitment_tx.htlc_outputs.iter()
3193 .map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())), logger);
3194 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
3195 if holder_tx.txid == commitment_txid {
3196 is_holder_tx = true;
3197 log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
3198 let res = self.get_broadcasted_holder_claims(holder_tx, height);
3199 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
3200 append_onchain_update!(res, to_watch);
3201 fail_unbroadcast_htlcs!(self, "previous holder", commitment_txid, tx, height, block_hash,
3202 holder_tx.htlc_outputs.iter().map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())),
3208 Some((claim_requests, (commitment_txid, watch_outputs)))
3214 pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
3215 log_debug!(logger, "Getting signed latest holder commitment transaction!");
3216 self.holder_tx_signed = true;
3217 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
3218 let txid = commitment_tx.txid();
3219 let mut holder_transactions = vec![commitment_tx];
3220 // When anchor outputs are present, the HTLC transactions are only valid once the commitment
3221 // transaction confirms.
3222 if self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
3223 return holder_transactions;
3225 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
3226 if let Some(vout) = htlc.0.transaction_output_index {
3227 let preimage = if !htlc.0.offered {
3228 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
3229 // We can't build an HTLC-Success transaction without the preimage
3232 } else if htlc.0.cltv_expiry > self.best_block.height() + 1 {
3233 // Don't broadcast HTLC-Timeout transactions immediately as they don't meet the
3234 // current locktime requirements on-chain. We will broadcast them in
3235 // `block_confirmed` when `should_broadcast_holder_commitment_txn` returns true.
3236 // Note that we add + 1 as transactions are broadcastable when they can be
3237 // confirmed in the next block.
3240 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
3241 &::bitcoin::OutPoint { txid, vout }, &preimage) {
3242 holder_transactions.push(htlc_tx);
3246 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
3247 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
3251 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
3252 /// Note that this includes possibly-locktimed-in-the-future transactions!
3253 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
3254 log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
3255 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
3256 let txid = commitment_tx.txid();
3257 let mut holder_transactions = vec![commitment_tx];
3258 // When anchor outputs are present, the HTLC transactions are only final once the commitment
3259 // transaction confirms due to the CSV 1 encumberance.
3260 if self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
3261 return holder_transactions;
3263 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
3264 if let Some(vout) = htlc.0.transaction_output_index {
3265 let preimage = if !htlc.0.offered {
3266 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
3267 // We can't build an HTLC-Success transaction without the preimage
3271 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
3272 &::bitcoin::OutPoint { txid, vout }, &preimage) {
3273 holder_transactions.push(htlc_tx);
3280 pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
3281 where B::Target: BroadcasterInterface,
3282 F::Target: FeeEstimator,
3285 let block_hash = header.block_hash();
3286 self.best_block = BestBlock::new(block_hash, height);
3288 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
3289 self.transactions_confirmed(header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
3292 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
3294 header: &BlockHeader,
3297 fee_estimator: &LowerBoundedFeeEstimator<F>,
3299 ) -> Vec<TransactionOutputs>
3301 B::Target: BroadcasterInterface,
3302 F::Target: FeeEstimator,
3305 let block_hash = header.block_hash();
3307 if height > self.best_block.height() {
3308 self.best_block = BestBlock::new(block_hash, height);
3309 self.block_confirmed(height, block_hash, vec![], vec![], vec![], &broadcaster, &fee_estimator, &logger)
3310 } else if block_hash != self.best_block.block_hash() {
3311 self.best_block = BestBlock::new(block_hash, height);
3312 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
3313 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
3315 } else { Vec::new() }
3318 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
3320 header: &BlockHeader,
3321 txdata: &TransactionData,
3324 fee_estimator: &LowerBoundedFeeEstimator<F>,
3326 ) -> Vec<TransactionOutputs>
3328 B::Target: BroadcasterInterface,
3329 F::Target: FeeEstimator,
3332 let txn_matched = self.filter_block(txdata);
3333 for tx in &txn_matched {
3334 let mut output_val = 0;
3335 for out in tx.output.iter() {
3336 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
3337 output_val += out.value;
3338 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
3342 let block_hash = header.block_hash();
3344 let mut watch_outputs = Vec::new();
3345 let mut claimable_outpoints = Vec::new();
3346 'tx_iter: for tx in &txn_matched {
3347 let txid = tx.txid();
3348 // If a transaction has already been confirmed, ensure we don't bother processing it duplicatively.
3349 if Some(txid) == self.funding_spend_confirmed {
3350 log_debug!(logger, "Skipping redundant processing of funding-spend tx {} as it was previously confirmed", txid);
3353 for ev in self.onchain_events_awaiting_threshold_conf.iter() {
3354 if ev.txid == txid {
3355 if let Some(conf_hash) = ev.block_hash {
3356 assert_eq!(header.block_hash(), conf_hash,
3357 "Transaction {} was already confirmed and is being re-confirmed in a different block.\n\
3358 This indicates a severe bug in the transaction connection logic - a reorg should have been processed first!", ev.txid);
3360 log_debug!(logger, "Skipping redundant processing of confirming tx {} as it was previously confirmed", txid);
3364 for htlc in self.htlcs_resolved_on_chain.iter() {
3365 if Some(txid) == htlc.resolving_txid {
3366 log_debug!(logger, "Skipping redundant processing of HTLC resolution tx {} as it was previously confirmed", txid);
3370 for spendable_txid in self.spendable_txids_confirmed.iter() {
3371 if txid == *spendable_txid {
3372 log_debug!(logger, "Skipping redundant processing of spendable tx {} as it was previously confirmed", txid);
3377 if tx.input.len() == 1 {
3378 // Assuming our keys were not leaked (in which case we're screwed no matter what),
3379 // commitment transactions and HTLC transactions will all only ever have one input
3380 // (except for HTLC transactions for channels with anchor outputs), which is an easy
3381 // way to filter out any potential non-matching txn for lazy filters.
3382 let prevout = &tx.input[0].previous_output;
3383 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
3384 let mut balance_spendable_csv = None;
3385 log_info!(logger, "Channel {} closed by funding output spend in txid {}.",
3386 &self.funding_info.0.to_channel_id(), txid);
3387 self.funding_spend_seen = true;
3388 let mut commitment_tx_to_counterparty_output = None;
3389 if (tx.input[0].sequence.0 >> 8*3) as u8 == 0x80 && (tx.lock_time.0 >> 8*3) as u8 == 0x20 {
3390 let (mut new_outpoints, new_outputs, counterparty_output_idx_sats) =
3391 self.check_spend_counterparty_transaction(&tx, height, &block_hash, &logger);
3392 commitment_tx_to_counterparty_output = counterparty_output_idx_sats;
3393 if !new_outputs.1.is_empty() {
3394 watch_outputs.push(new_outputs);
3396 claimable_outpoints.append(&mut new_outpoints);
3397 if new_outpoints.is_empty() {
3398 if let Some((mut new_outpoints, new_outputs)) = self.check_spend_holder_transaction(&tx, height, &block_hash, &logger) {
3399 debug_assert!(commitment_tx_to_counterparty_output.is_none(),
3400 "A commitment transaction matched as both a counterparty and local commitment tx?");
3401 if !new_outputs.1.is_empty() {
3402 watch_outputs.push(new_outputs);
3404 claimable_outpoints.append(&mut new_outpoints);
3405 balance_spendable_csv = Some(self.on_holder_tx_csv);
3409 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3411 transaction: Some((*tx).clone()),
3413 block_hash: Some(block_hash),
3414 event: OnchainEvent::FundingSpendConfirmation {
3415 on_local_output_csv: balance_spendable_csv,
3416 commitment_tx_to_counterparty_output,
3421 if tx.input.len() >= 1 {
3422 // While all commitment transactions have one input, HTLC transactions may have more
3423 // if the HTLC was present in an anchor channel. HTLCs can also be resolved in a few
3424 // other ways which can have more than one output.
3425 for tx_input in &tx.input {
3426 let commitment_txid = tx_input.previous_output.txid;
3427 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&commitment_txid) {
3428 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(
3429 &tx, commitment_number, &commitment_txid, height, &logger
3431 claimable_outpoints.append(&mut new_outpoints);
3432 if let Some(new_outputs) = new_outputs_option {
3433 watch_outputs.push(new_outputs);
3435 // Since there may be multiple HTLCs for this channel (all spending the
3436 // same commitment tx) being claimed by the counterparty within the same
3437 // transaction, and `check_spend_counterparty_htlc` already checks all the
3438 // ones relevant to this channel, we can safely break from our loop.
3442 self.is_resolving_htlc_output(&tx, height, &block_hash, &logger);
3444 self.is_paying_spendable_output(&tx, height, &block_hash, &logger);
3448 if height > self.best_block.height() {
3449 self.best_block = BestBlock::new(block_hash, height);
3452 self.block_confirmed(height, block_hash, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, &logger)
3455 /// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
3456 /// `self.best_block` before calling if a new best blockchain tip is available. More
3457 /// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
3458 /// complexity especially in
3459 /// `OnchainTx::update_claims_view_from_requests`/`OnchainTx::update_claims_view_from_matched_txn`.
3461 /// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
3462 /// confirmed at, even if it is not the current best height.
3463 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
3466 conf_hash: BlockHash,
3467 txn_matched: Vec<&Transaction>,
3468 mut watch_outputs: Vec<TransactionOutputs>,
3469 mut claimable_outpoints: Vec<PackageTemplate>,
3471 fee_estimator: &LowerBoundedFeeEstimator<F>,
3473 ) -> Vec<TransactionOutputs>
3475 B::Target: BroadcasterInterface,
3476 F::Target: FeeEstimator,
3479 log_trace!(logger, "Processing {} matched transactions for block at height {}.", txn_matched.len(), conf_height);
3480 debug_assert!(self.best_block.height() >= conf_height);
3482 let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
3483 if should_broadcast {
3484 let funding_outp = HolderFundingOutput::build(self.funding_redeemscript.clone(), self.channel_value_satoshis, self.onchain_tx_handler.channel_type_features().clone());
3485 let commitment_package = PackageTemplate::build_package(self.funding_info.0.txid.clone(), self.funding_info.0.index as u32, PackageSolvingData::HolderFundingOutput(funding_outp), self.best_block.height(), self.best_block.height());
3486 claimable_outpoints.push(commitment_package);
3487 self.pending_monitor_events.push(MonitorEvent::HolderForceClosed(self.funding_info.0));
3488 // Although we aren't signing the transaction directly here, the transaction will be signed
3489 // in the claim that is queued to OnchainTxHandler. We set holder_tx_signed here to reject
3490 // new channel updates.
3491 self.holder_tx_signed = true;
3492 // We can't broadcast our HTLC transactions while the commitment transaction is
3493 // unconfirmed. We'll delay doing so until we detect the confirmed commitment in
3494 // `transactions_confirmed`.
3495 if !self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
3496 // Because we're broadcasting a commitment transaction, we should construct the package
3497 // assuming it gets confirmed in the next block. Sadly, we have code which considers
3498 // "not yet confirmed" things as discardable, so we cannot do that here.
3499 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
3500 let unsigned_commitment_tx = self.onchain_tx_handler.get_unsigned_holder_commitment_tx();
3501 let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &unsigned_commitment_tx);
3502 if !new_outputs.is_empty() {
3503 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
3505 claimable_outpoints.append(&mut new_outpoints);
3509 // Find which on-chain events have reached their confirmation threshold.
3510 let onchain_events_awaiting_threshold_conf =
3511 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
3512 let mut onchain_events_reaching_threshold_conf = Vec::new();
3513 for entry in onchain_events_awaiting_threshold_conf {
3514 if entry.has_reached_confirmation_threshold(&self.best_block) {
3515 onchain_events_reaching_threshold_conf.push(entry);
3517 self.onchain_events_awaiting_threshold_conf.push(entry);
3521 // Used to check for duplicate HTLC resolutions.
3522 #[cfg(debug_assertions)]
3523 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
3525 .filter_map(|entry| match &entry.event {
3526 OnchainEvent::HTLCUpdate { source, .. } => Some(source),
3530 #[cfg(debug_assertions)]
3531 let mut matured_htlcs = Vec::new();
3533 // Produce actionable events from on-chain events having reached their threshold.
3534 for entry in onchain_events_reaching_threshold_conf.drain(..) {
3536 OnchainEvent::HTLCUpdate { ref source, payment_hash, htlc_value_satoshis, commitment_tx_output_idx } => {
3537 // Check for duplicate HTLC resolutions.
3538 #[cfg(debug_assertions)]
3541 unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
3542 "An unmature HTLC transaction conflicts with a maturing one; failed to \
3543 call either transaction_unconfirmed for the conflicting transaction \
3544 or block_disconnected for a block containing it.");
3546 matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
3547 "A matured HTLC transaction conflicts with a maturing one; failed to \
3548 call either transaction_unconfirmed for the conflicting transaction \
3549 or block_disconnected for a block containing it.");
3550 matured_htlcs.push(source.clone());
3553 log_debug!(logger, "HTLC {} failure update in {} has got enough confirmations to be passed upstream",
3554 &payment_hash, entry.txid);
3555 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3557 payment_preimage: None,
3558 source: source.clone(),
3559 htlc_value_satoshis,
3561 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3562 commitment_tx_output_idx,
3563 resolving_txid: Some(entry.txid),
3564 resolving_tx: entry.transaction,
3565 payment_preimage: None,
3568 OnchainEvent::MaturingOutput { descriptor } => {
3569 log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
3570 self.pending_events.push(Event::SpendableOutputs {
3571 outputs: vec![descriptor],
3572 channel_id: Some(self.funding_info.0.to_channel_id()),
3574 self.spendable_txids_confirmed.push(entry.txid);
3576 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } => {
3577 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3578 commitment_tx_output_idx: Some(commitment_tx_output_idx),
3579 resolving_txid: Some(entry.txid),
3580 resolving_tx: entry.transaction,
3581 payment_preimage: preimage,
3584 OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } => {
3585 self.funding_spend_confirmed = Some(entry.txid);
3586 self.confirmed_commitment_tx_counterparty_output = commitment_tx_to_counterparty_output;
3591 self.onchain_tx_handler.update_claims_view_from_requests(claimable_outpoints, conf_height, self.best_block.height(), broadcaster, fee_estimator, logger);
3592 self.onchain_tx_handler.update_claims_view_from_matched_txn(&txn_matched, conf_height, conf_hash, self.best_block.height(), broadcaster, fee_estimator, logger);
3594 // Determine new outputs to watch by comparing against previously known outputs to watch,
3595 // updating the latter in the process.
3596 watch_outputs.retain(|&(ref txid, ref txouts)| {
3597 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
3598 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
3602 // If we see a transaction for which we registered outputs previously,
3603 // make sure the registered scriptpubkey at the expected index match
3604 // the actual transaction output one. We failed this case before #653.
3605 for tx in &txn_matched {
3606 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
3607 for idx_and_script in outputs.iter() {
3608 assert!((idx_and_script.0 as usize) < tx.output.len());
3609 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
3617 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
3618 where B::Target: BroadcasterInterface,
3619 F::Target: FeeEstimator,
3622 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
3625 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
3626 //- maturing spendable output has transaction paying us has been disconnected
3627 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
3629 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
3630 self.onchain_tx_handler.block_disconnected(height, broadcaster, &bounded_fee_estimator, logger);
3632 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
3635 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
3639 fee_estimator: &LowerBoundedFeeEstimator<F>,
3642 B::Target: BroadcasterInterface,
3643 F::Target: FeeEstimator,
3646 let mut removed_height = None;
3647 for entry in self.onchain_events_awaiting_threshold_conf.iter() {
3648 if entry.txid == *txid {
3649 removed_height = Some(entry.height);
3654 if let Some(removed_height) = removed_height {
3655 log_info!(logger, "transaction_unconfirmed of txid {} implies height {} was reorg'd out", txid, removed_height);
3656 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| if entry.height >= removed_height {
3657 log_info!(logger, "Transaction {} reorg'd out", entry.txid);
3662 debug_assert!(!self.onchain_events_awaiting_threshold_conf.iter().any(|ref entry| entry.txid == *txid));
3664 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
3667 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
3668 /// transactions thereof.
3669 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
3670 let mut matched_txn = HashSet::new();
3671 txdata.iter().filter(|&&(_, tx)| {
3672 let mut matches = self.spends_watched_output(tx);
3673 for input in tx.input.iter() {
3674 if matches { break; }
3675 if matched_txn.contains(&input.previous_output.txid) {
3680 matched_txn.insert(tx.txid());
3683 }).map(|(_, tx)| *tx).collect()
3686 /// Checks if a given transaction spends any watched outputs.
3687 fn spends_watched_output(&self, tx: &Transaction) -> bool {
3688 for input in tx.input.iter() {
3689 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
3690 for (idx, _script_pubkey) in outputs.iter() {
3691 if *idx == input.previous_output.vout {
3694 // If the expected script is a known type, check that the witness
3695 // appears to be spending the correct type (ie that the match would
3696 // actually succeed in BIP 158/159-style filters).
3697 if _script_pubkey.is_v0_p2wsh() {
3698 if input.witness.last().unwrap().to_vec() == deliberately_bogus_accepted_htlc_witness_program() {
3699 // In at least one test we use a deliberately bogus witness
3700 // script which hit an old panic. Thus, we check for that here
3701 // and avoid the assert if its the expected bogus script.
3705 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().to_vec()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
3706 } else if _script_pubkey.is_v0_p2wpkh() {
3707 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
3708 } else { panic!(); }
3719 fn should_broadcast_holder_commitment_txn<L: Deref>(&self, logger: &L) -> bool where L::Target: Logger {
3720 // There's no need to broadcast our commitment transaction if we've seen one confirmed (even
3721 // with 1 confirmation) as it'll be rejected as duplicate/conflicting.
3722 if self.funding_spend_confirmed.is_some() ||
3723 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
3724 OnchainEvent::FundingSpendConfirmation { .. } => true,
3730 // We need to consider all HTLCs which are:
3731 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
3732 // transactions and we'd end up in a race, or
3733 // * are in our latest holder commitment transaction, as this is the thing we will
3734 // broadcast if we go on-chain.
3735 // Note that we consider HTLCs which were below dust threshold here - while they don't
3736 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
3737 // to the source, and if we don't fail the channel we will have to ensure that the next
3738 // updates that peer sends us are update_fails, failing the channel if not. It's probably
3739 // easier to just fail the channel as this case should be rare enough anyway.
3740 let height = self.best_block.height();
3741 macro_rules! scan_commitment {
3742 ($htlcs: expr, $holder_tx: expr) => {
3743 for ref htlc in $htlcs {
3744 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
3745 // chain with enough room to claim the HTLC without our counterparty being able to
3746 // time out the HTLC first.
3747 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
3748 // concern is being able to claim the corresponding inbound HTLC (on another
3749 // channel) before it expires. In fact, we don't even really care if our
3750 // counterparty here claims such an outbound HTLC after it expired as long as we
3751 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
3752 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
3753 // we give ourselves a few blocks of headroom after expiration before going
3754 // on-chain for an expired HTLC.
3755 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
3756 // from us until we've reached the point where we go on-chain with the
3757 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
3758 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
3759 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
3760 // inbound_cltv == height + CLTV_CLAIM_BUFFER
3761 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
3762 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
3763 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
3764 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
3765 // The final, above, condition is checked for statically in channelmanager
3766 // with CHECK_CLTV_EXPIRY_SANITY_2.
3767 let htlc_outbound = $holder_tx == htlc.offered;
3768 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
3769 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
3770 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
3777 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
3779 if let Some(ref txid) = self.current_counterparty_commitment_txid {
3780 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
3781 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
3784 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
3785 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
3786 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
3793 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
3794 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
3795 fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) where L::Target: Logger {
3796 'outer_loop: for input in &tx.input {
3797 let mut payment_data = None;
3798 let htlc_claim = HTLCClaim::from_witness(&input.witness);
3799 let revocation_sig_claim = htlc_claim == Some(HTLCClaim::Revocation);
3800 let accepted_preimage_claim = htlc_claim == Some(HTLCClaim::AcceptedPreimage);
3801 #[cfg(not(fuzzing))]
3802 let accepted_timeout_claim = htlc_claim == Some(HTLCClaim::AcceptedTimeout);
3803 let offered_preimage_claim = htlc_claim == Some(HTLCClaim::OfferedPreimage);
3804 #[cfg(not(fuzzing))]
3805 let offered_timeout_claim = htlc_claim == Some(HTLCClaim::OfferedTimeout);
3807 let mut payment_preimage = PaymentPreimage([0; 32]);
3808 if offered_preimage_claim || accepted_preimage_claim {
3809 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
3812 macro_rules! log_claim {
3813 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
3814 let outbound_htlc = $holder_tx == $htlc.offered;
3815 // HTLCs must either be claimed by a matching script type or through the
3817 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3818 debug_assert!(!$htlc.offered || offered_preimage_claim || offered_timeout_claim || revocation_sig_claim);
3819 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3820 debug_assert!($htlc.offered || accepted_preimage_claim || accepted_timeout_claim || revocation_sig_claim);
3821 // Further, only exactly one of the possible spend paths should have been
3822 // matched by any HTLC spend:
3823 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3824 debug_assert_eq!(accepted_preimage_claim as u8 + accepted_timeout_claim as u8 +
3825 offered_preimage_claim as u8 + offered_timeout_claim as u8 +
3826 revocation_sig_claim as u8, 1);
3827 if ($holder_tx && revocation_sig_claim) ||
3828 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
3829 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
3830 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
3831 if outbound_htlc { "outbound" } else { "inbound" }, &$htlc.payment_hash,
3832 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back. We can likely claim the HTLC output with a revocation claim" });
3834 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
3835 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
3836 if outbound_htlc { "outbound" } else { "inbound" }, &$htlc.payment_hash,
3837 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
3842 macro_rules! check_htlc_valid_counterparty {
3843 ($counterparty_txid: expr, $htlc_output: expr) => {
3844 if let Some(txid) = $counterparty_txid {
3845 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
3846 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
3847 if let &Some(ref source) = pending_source {
3848 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
3849 payment_data = Some(((**source).clone(), $htlc_output.payment_hash, $htlc_output.amount_msat));
3858 macro_rules! scan_commitment {
3859 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
3860 for (ref htlc_output, source_option) in $htlcs {
3861 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
3862 if let Some(ref source) = source_option {
3863 log_claim!($tx_info, $holder_tx, htlc_output, true);
3864 // We have a resolution of an HTLC either from one of our latest
3865 // holder commitment transactions or an unrevoked counterparty commitment
3866 // transaction. This implies we either learned a preimage, the HTLC
3867 // has timed out, or we screwed up. In any case, we should now
3868 // resolve the source HTLC with the original sender.
3869 payment_data = Some(((*source).clone(), htlc_output.payment_hash, htlc_output.amount_msat));
3870 } else if !$holder_tx {
3871 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
3872 if payment_data.is_none() {
3873 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
3876 if payment_data.is_none() {
3877 log_claim!($tx_info, $holder_tx, htlc_output, false);
3878 let outbound_htlc = $holder_tx == htlc_output.offered;
3879 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3880 txid: tx.txid(), height, block_hash: Some(*block_hash), transaction: Some(tx.clone()),
3881 event: OnchainEvent::HTLCSpendConfirmation {
3882 commitment_tx_output_idx: input.previous_output.vout,
3883 preimage: if accepted_preimage_claim || offered_preimage_claim {
3884 Some(payment_preimage) } else { None },
3885 // If this is a payment to us (ie !outbound_htlc), wait for
3886 // the CSV delay before dropping the HTLC from claimable
3887 // balance if the claim was an HTLC-Success transaction (ie
3888 // accepted_preimage_claim).
3889 on_to_local_output_csv: if accepted_preimage_claim && !outbound_htlc {
3890 Some(self.on_holder_tx_csv) } else { None },
3893 continue 'outer_loop;
3900 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
3901 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
3902 "our latest holder commitment tx", true);
3904 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
3905 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
3906 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
3907 "our previous holder commitment tx", true);
3910 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
3911 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
3912 "counterparty commitment tx", false);
3915 // Check that scan_commitment, above, decided there is some source worth relaying an
3916 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
3917 if let Some((source, payment_hash, amount_msat)) = payment_data {
3918 if accepted_preimage_claim {
3919 if !self.pending_monitor_events.iter().any(
3920 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
3921 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3924 block_hash: Some(*block_hash),
3925 transaction: Some(tx.clone()),
3926 event: OnchainEvent::HTLCSpendConfirmation {
3927 commitment_tx_output_idx: input.previous_output.vout,
3928 preimage: Some(payment_preimage),
3929 on_to_local_output_csv: None,
3932 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3934 payment_preimage: Some(payment_preimage),
3936 htlc_value_satoshis: Some(amount_msat / 1000),
3939 } else if offered_preimage_claim {
3940 if !self.pending_monitor_events.iter().any(
3941 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
3942 upd.source == source
3944 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3946 transaction: Some(tx.clone()),
3948 block_hash: Some(*block_hash),
3949 event: OnchainEvent::HTLCSpendConfirmation {
3950 commitment_tx_output_idx: input.previous_output.vout,
3951 preimage: Some(payment_preimage),
3952 on_to_local_output_csv: None,
3955 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3957 payment_preimage: Some(payment_preimage),
3959 htlc_value_satoshis: Some(amount_msat / 1000),
3963 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
3964 if entry.height != height { return true; }
3966 OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
3967 *htlc_source != source
3972 let entry = OnchainEventEntry {
3974 transaction: Some(tx.clone()),
3976 block_hash: Some(*block_hash),
3977 event: OnchainEvent::HTLCUpdate {
3978 source, payment_hash,
3979 htlc_value_satoshis: Some(amount_msat / 1000),
3980 commitment_tx_output_idx: Some(input.previous_output.vout),
3983 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", &payment_hash, entry.confirmation_threshold());
3984 self.onchain_events_awaiting_threshold_conf.push(entry);
3990 /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
3991 fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) where L::Target: Logger {
3992 let mut spendable_output = None;
3993 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
3994 if i > ::core::u16::MAX as usize {
3995 // While it is possible that an output exists on chain which is greater than the
3996 // 2^16th output in a given transaction, this is only possible if the output is not
3997 // in a lightning transaction and was instead placed there by some third party who
3998 // wishes to give us money for no reason.
3999 // Namely, any lightning transactions which we pre-sign will never have anywhere
4000 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
4001 // scripts are not longer than one byte in length and because they are inherently
4002 // non-standard due to their size.
4003 // Thus, it is completely safe to ignore such outputs, and while it may result in
4004 // us ignoring non-lightning fund to us, that is only possible if someone fills
4005 // nearly a full block with garbage just to hit this case.
4008 if outp.script_pubkey == self.destination_script {
4009 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
4010 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4011 output: outp.clone(),
4015 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
4016 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
4017 spendable_output = Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
4018 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4019 per_commitment_point: broadcasted_holder_revokable_script.1,
4020 to_self_delay: self.on_holder_tx_csv,
4021 output: outp.clone(),
4022 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
4023 channel_keys_id: self.channel_keys_id,
4024 channel_value_satoshis: self.channel_value_satoshis,
4029 if self.counterparty_payment_script == outp.script_pubkey {
4030 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
4031 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4032 output: outp.clone(),
4033 channel_keys_id: self.channel_keys_id,
4034 channel_value_satoshis: self.channel_value_satoshis,
4038 if self.shutdown_script.as_ref() == Some(&outp.script_pubkey) {
4039 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
4040 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4041 output: outp.clone(),
4046 if let Some(spendable_output) = spendable_output {
4047 let entry = OnchainEventEntry {
4049 transaction: Some(tx.clone()),
4051 block_hash: Some(*block_hash),
4052 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
4054 log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
4055 self.onchain_events_awaiting_threshold_conf.push(entry);
4060 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
4062 T::Target: BroadcasterInterface,
4063 F::Target: FeeEstimator,
4066 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
4067 self.0.block_connected(header, txdata, height, &*self.1, &*self.2, &*self.3);
4070 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
4071 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
4075 impl<Signer: WriteableEcdsaChannelSigner, M, T: Deref, F: Deref, L: Deref> chain::Confirm for (M, T, F, L)
4077 M: Deref<Target = ChannelMonitor<Signer>>,
4078 T::Target: BroadcasterInterface,
4079 F::Target: FeeEstimator,
4082 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
4083 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
4086 fn transaction_unconfirmed(&self, txid: &Txid) {
4087 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
4090 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
4091 self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
4094 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
4095 self.0.get_relevant_txids()
4099 const MAX_ALLOC_SIZE: usize = 64*1024;
4101 impl<'a, 'b, ES: EntropySource, SP: SignerProvider> ReadableArgs<(&'a ES, &'b SP)>
4102 for (BlockHash, ChannelMonitor<SP::Signer>) {
4103 fn read<R: io::Read>(reader: &mut R, args: (&'a ES, &'b SP)) -> Result<Self, DecodeError> {
4104 macro_rules! unwrap_obj {
4108 Err(_) => return Err(DecodeError::InvalidValue),
4113 let (entropy_source, signer_provider) = args;
4115 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
4117 let latest_update_id: u64 = Readable::read(reader)?;
4118 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
4120 let destination_script = Readable::read(reader)?;
4121 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
4123 let revokable_address = Readable::read(reader)?;
4124 let per_commitment_point = Readable::read(reader)?;
4125 let revokable_script = Readable::read(reader)?;
4126 Some((revokable_address, per_commitment_point, revokable_script))
4129 _ => return Err(DecodeError::InvalidValue),
4131 let counterparty_payment_script = Readable::read(reader)?;
4132 let shutdown_script = {
4133 let script = <Script as Readable>::read(reader)?;
4134 if script.is_empty() { None } else { Some(script) }
4137 let channel_keys_id = Readable::read(reader)?;
4138 let holder_revocation_basepoint = Readable::read(reader)?;
4139 // Technically this can fail and serialize fail a round-trip, but only for serialization of
4140 // barely-init'd ChannelMonitors that we can't do anything with.
4141 let outpoint = OutPoint {
4142 txid: Readable::read(reader)?,
4143 index: Readable::read(reader)?,
4145 let funding_info = (outpoint, Readable::read(reader)?);
4146 let current_counterparty_commitment_txid = Readable::read(reader)?;
4147 let prev_counterparty_commitment_txid = Readable::read(reader)?;
4149 let counterparty_commitment_params = Readable::read(reader)?;
4150 let funding_redeemscript = Readable::read(reader)?;
4151 let channel_value_satoshis = Readable::read(reader)?;
4153 let their_cur_per_commitment_points = {
4154 let first_idx = <U48 as Readable>::read(reader)?.0;
4158 let first_point = Readable::read(reader)?;
4159 let second_point_slice: [u8; 33] = Readable::read(reader)?;
4160 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
4161 Some((first_idx, first_point, None))
4163 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
4168 let on_holder_tx_csv: u16 = Readable::read(reader)?;
4170 let commitment_secrets = Readable::read(reader)?;
4172 macro_rules! read_htlc_in_commitment {
4175 let offered: bool = Readable::read(reader)?;
4176 let amount_msat: u64 = Readable::read(reader)?;
4177 let cltv_expiry: u32 = Readable::read(reader)?;
4178 let payment_hash: PaymentHash = Readable::read(reader)?;
4179 let transaction_output_index: Option<u32> = Readable::read(reader)?;
4181 HTLCOutputInCommitment {
4182 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
4188 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
4189 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
4190 for _ in 0..counterparty_claimable_outpoints_len {
4191 let txid: Txid = Readable::read(reader)?;
4192 let htlcs_count: u64 = Readable::read(reader)?;
4193 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
4194 for _ in 0..htlcs_count {
4195 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
4197 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
4198 return Err(DecodeError::InvalidValue);
4202 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
4203 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
4204 for _ in 0..counterparty_commitment_txn_on_chain_len {
4205 let txid: Txid = Readable::read(reader)?;
4206 let commitment_number = <U48 as Readable>::read(reader)?.0;
4207 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
4208 return Err(DecodeError::InvalidValue);
4212 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
4213 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
4214 for _ in 0..counterparty_hash_commitment_number_len {
4215 let payment_hash: PaymentHash = Readable::read(reader)?;
4216 let commitment_number = <U48 as Readable>::read(reader)?.0;
4217 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
4218 return Err(DecodeError::InvalidValue);
4222 let mut prev_holder_signed_commitment_tx: Option<HolderSignedTx> =
4223 match <u8 as Readable>::read(reader)? {
4226 Some(Readable::read(reader)?)
4228 _ => return Err(DecodeError::InvalidValue),
4230 let mut current_holder_commitment_tx: HolderSignedTx = Readable::read(reader)?;
4232 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
4233 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
4235 let payment_preimages_len: u64 = Readable::read(reader)?;
4236 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
4237 for _ in 0..payment_preimages_len {
4238 let preimage: PaymentPreimage = Readable::read(reader)?;
4239 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
4240 if let Some(_) = payment_preimages.insert(hash, preimage) {
4241 return Err(DecodeError::InvalidValue);
4245 let pending_monitor_events_len: u64 = Readable::read(reader)?;
4246 let mut pending_monitor_events = Some(
4247 Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))));
4248 for _ in 0..pending_monitor_events_len {
4249 let ev = match <u8 as Readable>::read(reader)? {
4250 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
4251 1 => MonitorEvent::HolderForceClosed(funding_info.0),
4252 _ => return Err(DecodeError::InvalidValue)
4254 pending_monitor_events.as_mut().unwrap().push(ev);
4257 let pending_events_len: u64 = Readable::read(reader)?;
4258 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
4259 for _ in 0..pending_events_len {
4260 if let Some(event) = MaybeReadable::read(reader)? {
4261 pending_events.push(event);
4265 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
4267 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
4268 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
4269 for _ in 0..waiting_threshold_conf_len {
4270 if let Some(val) = MaybeReadable::read(reader)? {
4271 onchain_events_awaiting_threshold_conf.push(val);
4275 let outputs_to_watch_len: u64 = Readable::read(reader)?;
4276 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
4277 for _ in 0..outputs_to_watch_len {
4278 let txid = Readable::read(reader)?;
4279 let outputs_len: u64 = Readable::read(reader)?;
4280 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
4281 for _ in 0..outputs_len {
4282 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
4284 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
4285 return Err(DecodeError::InvalidValue);
4288 let onchain_tx_handler: OnchainTxHandler<SP::Signer> = ReadableArgs::read(
4289 reader, (entropy_source, signer_provider, channel_value_satoshis, channel_keys_id)
4292 let lockdown_from_offchain = Readable::read(reader)?;
4293 let holder_tx_signed = Readable::read(reader)?;
4295 if let Some(prev_commitment_tx) = prev_holder_signed_commitment_tx.as_mut() {
4296 let prev_holder_value = onchain_tx_handler.get_prev_holder_commitment_to_self_value();
4297 if prev_holder_value.is_none() { return Err(DecodeError::InvalidValue); }
4298 if prev_commitment_tx.to_self_value_sat == u64::max_value() {
4299 prev_commitment_tx.to_self_value_sat = prev_holder_value.unwrap();
4300 } else if prev_commitment_tx.to_self_value_sat != prev_holder_value.unwrap() {
4301 return Err(DecodeError::InvalidValue);
4305 let cur_holder_value = onchain_tx_handler.get_cur_holder_commitment_to_self_value();
4306 if current_holder_commitment_tx.to_self_value_sat == u64::max_value() {
4307 current_holder_commitment_tx.to_self_value_sat = cur_holder_value;
4308 } else if current_holder_commitment_tx.to_self_value_sat != cur_holder_value {
4309 return Err(DecodeError::InvalidValue);
4312 let mut funding_spend_confirmed = None;
4313 let mut htlcs_resolved_on_chain = Some(Vec::new());
4314 let mut funding_spend_seen = Some(false);
4315 let mut counterparty_node_id = None;
4316 let mut confirmed_commitment_tx_counterparty_output = None;
4317 let mut spendable_txids_confirmed = Some(Vec::new());
4318 let mut counterparty_fulfilled_htlcs = Some(HashMap::new());
4319 let mut initial_counterparty_commitment_info = None;
4320 read_tlv_fields!(reader, {
4321 (1, funding_spend_confirmed, option),
4322 (3, htlcs_resolved_on_chain, optional_vec),
4323 (5, pending_monitor_events, optional_vec),
4324 (7, funding_spend_seen, option),
4325 (9, counterparty_node_id, option),
4326 (11, confirmed_commitment_tx_counterparty_output, option),
4327 (13, spendable_txids_confirmed, optional_vec),
4328 (15, counterparty_fulfilled_htlcs, option),
4329 (17, initial_counterparty_commitment_info, option),
4332 Ok((best_block.block_hash(), ChannelMonitor::from_impl(ChannelMonitorImpl {
4334 commitment_transaction_number_obscure_factor,
4337 broadcasted_holder_revokable_script,
4338 counterparty_payment_script,
4342 holder_revocation_basepoint,
4344 current_counterparty_commitment_txid,
4345 prev_counterparty_commitment_txid,
4347 counterparty_commitment_params,
4348 funding_redeemscript,
4349 channel_value_satoshis,
4350 their_cur_per_commitment_points,
4355 counterparty_claimable_outpoints,
4356 counterparty_commitment_txn_on_chain,
4357 counterparty_hash_commitment_number,
4358 counterparty_fulfilled_htlcs: counterparty_fulfilled_htlcs.unwrap(),
4360 prev_holder_signed_commitment_tx,
4361 current_holder_commitment_tx,
4362 current_counterparty_commitment_number,
4363 current_holder_commitment_number,
4366 pending_monitor_events: pending_monitor_events.unwrap(),
4368 is_processing_pending_events: false,
4370 onchain_events_awaiting_threshold_conf,
4375 lockdown_from_offchain,
4377 funding_spend_seen: funding_spend_seen.unwrap(),
4378 funding_spend_confirmed,
4379 confirmed_commitment_tx_counterparty_output,
4380 htlcs_resolved_on_chain: htlcs_resolved_on_chain.unwrap(),
4381 spendable_txids_confirmed: spendable_txids_confirmed.unwrap(),
4384 counterparty_node_id,
4385 initial_counterparty_commitment_info,
4392 use bitcoin::blockdata::script::{Script, Builder};
4393 use bitcoin::blockdata::opcodes;
4394 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, EcdsaSighashType};
4395 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
4396 use bitcoin::util::sighash;
4397 use bitcoin::hashes::Hash;
4398 use bitcoin::hashes::sha256::Hash as Sha256;
4399 use bitcoin::hashes::hex::FromHex;
4400 use bitcoin::hash_types::{BlockHash, Txid};
4401 use bitcoin::network::constants::Network;
4402 use bitcoin::secp256k1::{SecretKey,PublicKey};
4403 use bitcoin::secp256k1::Secp256k1;
4407 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
4409 use super::ChannelMonitorUpdateStep;
4410 use crate::{check_added_monitors, check_spends, get_local_commitment_txn, get_monitor, get_route_and_payment_hash, unwrap_send_err};
4411 use crate::chain::{BestBlock, Confirm};
4412 use crate::chain::channelmonitor::ChannelMonitor;
4413 use crate::chain::package::{weight_offered_htlc, weight_received_htlc, weight_revoked_offered_htlc, weight_revoked_received_htlc, WEIGHT_REVOKED_OUTPUT};
4414 use crate::chain::transaction::OutPoint;
4415 use crate::sign::InMemorySigner;
4416 use crate::ln::{PaymentPreimage, PaymentHash};
4417 use crate::ln::chan_utils;
4418 use crate::ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
4419 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId, RecipientOnionFields};
4420 use crate::ln::functional_test_utils::*;
4421 use crate::ln::script::ShutdownScript;
4422 use crate::util::errors::APIError;
4423 use crate::util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
4424 use crate::util::ser::{ReadableArgs, Writeable};
4425 use crate::sync::{Arc, Mutex};
4427 use bitcoin::{PackedLockTime, Sequence, Witness};
4428 use crate::ln::features::ChannelTypeFeatures;
4429 use crate::prelude::*;
4431 fn do_test_funding_spend_refuses_updates(use_local_txn: bool) {
4432 // Previously, monitor updates were allowed freely even after a funding-spend transaction
4433 // confirmed. This would allow a race condition where we could receive a payment (including
4434 // the counterparty revoking their broadcasted state!) and accept it without recourse as
4435 // long as the ChannelMonitor receives the block first, the full commitment update dance
4436 // occurs after the block is connected, and before the ChannelManager receives the block.
4437 // Obviously this is an incredibly contrived race given the counterparty would be risking
4438 // their full channel balance for it, but its worth fixing nonetheless as it makes the
4439 // potential ChannelMonitor states simpler to reason about.
4441 // This test checks said behavior, as well as ensuring a ChannelMonitorUpdate with multiple
4442 // updates is handled correctly in such conditions.
4443 let chanmon_cfgs = create_chanmon_cfgs(3);
4444 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
4445 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
4446 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
4447 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
4448 create_announced_chan_between_nodes(&nodes, 1, 2);
4450 // Rebalance somewhat
4451 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
4453 // First route two payments for testing at the end
4454 let payment_preimage_1 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4455 let payment_preimage_2 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4457 let local_txn = get_local_commitment_txn!(nodes[1], channel.2);
4458 assert_eq!(local_txn.len(), 1);
4459 let remote_txn = get_local_commitment_txn!(nodes[0], channel.2);
4460 assert_eq!(remote_txn.len(), 3); // Commitment and two HTLC-Timeouts
4461 check_spends!(remote_txn[1], remote_txn[0]);
4462 check_spends!(remote_txn[2], remote_txn[0]);
4463 let broadcast_tx = if use_local_txn { &local_txn[0] } else { &remote_txn[0] };
4465 // Connect a commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
4466 // channel is now closed, but the ChannelManager doesn't know that yet.
4467 let new_header = create_dummy_header(nodes[0].best_block_info().0, 0);
4468 let conf_height = nodes[0].best_block_info().1 + 1;
4469 nodes[1].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
4470 &[(0, broadcast_tx)], conf_height);
4472 let (_, pre_update_monitor) = <(BlockHash, ChannelMonitor<InMemorySigner>)>::read(
4473 &mut io::Cursor::new(&get_monitor!(nodes[1], channel.2).encode()),
4474 (&nodes[1].keys_manager.backing, &nodes[1].keys_manager.backing)).unwrap();
4476 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
4477 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
4478 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 100_000);
4479 unwrap_send_err!(nodes[1].node.send_payment_with_route(&route, payment_hash,
4480 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)
4481 ), false, APIError::MonitorUpdateInProgress, {});
4482 check_added_monitors!(nodes[1], 1);
4484 // Build a new ChannelMonitorUpdate which contains both the failing commitment tx update
4485 // and provides the claim preimages for the two pending HTLCs. The first update generates
4486 // an error, but the point of this test is to ensure the later updates are still applied.
4487 let monitor_updates = nodes[1].chain_monitor.monitor_updates.lock().unwrap();
4488 let mut replay_update = monitor_updates.get(&channel.2).unwrap().iter().rev().next().unwrap().clone();
4489 assert_eq!(replay_update.updates.len(), 1);
4490 if let ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } = replay_update.updates[0] {
4491 } else { panic!(); }
4492 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_1 });
4493 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_2 });
4495 let broadcaster = TestBroadcaster::with_blocks(Arc::clone(&nodes[1].blocks));
4497 pre_update_monitor.update_monitor(&replay_update, &&broadcaster, &chanmon_cfgs[1].fee_estimator, &nodes[1].logger)
4499 // Even though we error'd on the first update, we should still have generated an HTLC claim
4501 let txn_broadcasted = broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
4502 assert!(txn_broadcasted.len() >= 2);
4503 let htlc_txn = txn_broadcasted.iter().filter(|tx| {
4504 assert_eq!(tx.input.len(), 1);
4505 tx.input[0].previous_output.txid == broadcast_tx.txid()
4506 }).collect::<Vec<_>>();
4507 assert_eq!(htlc_txn.len(), 2);
4508 check_spends!(htlc_txn[0], broadcast_tx);
4509 check_spends!(htlc_txn[1], broadcast_tx);
4512 fn test_funding_spend_refuses_updates() {
4513 do_test_funding_spend_refuses_updates(true);
4514 do_test_funding_spend_refuses_updates(false);
4518 fn test_prune_preimages() {
4519 let secp_ctx = Secp256k1::new();
4520 let logger = Arc::new(TestLogger::new());
4521 let broadcaster = Arc::new(TestBroadcaster::new(Network::Testnet));
4522 let fee_estimator = TestFeeEstimator { sat_per_kw: Mutex::new(253) };
4524 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4526 let mut preimages = Vec::new();
4529 let preimage = PaymentPreimage([i; 32]);
4530 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
4531 preimages.push((preimage, hash));
4535 macro_rules! preimages_slice_to_htlcs {
4536 ($preimages_slice: expr) => {
4538 let mut res = Vec::new();
4539 for (idx, preimage) in $preimages_slice.iter().enumerate() {
4540 res.push((HTLCOutputInCommitment {
4544 payment_hash: preimage.1.clone(),
4545 transaction_output_index: Some(idx as u32),
4552 macro_rules! preimages_slice_to_htlc_outputs {
4553 ($preimages_slice: expr) => {
4554 preimages_slice_to_htlcs!($preimages_slice).into_iter().map(|(htlc, _)| (htlc, None)).collect()
4557 let dummy_sig = crate::util::crypto::sign(&secp_ctx,
4558 &bitcoin::secp256k1::Message::from_slice(&[42; 32]).unwrap(),
4559 &SecretKey::from_slice(&[42; 32]).unwrap());
4561 macro_rules! test_preimages_exist {
4562 ($preimages_slice: expr, $monitor: expr) => {
4563 for preimage in $preimages_slice {
4564 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
4569 let keys = InMemorySigner::new(
4571 SecretKey::from_slice(&[41; 32]).unwrap(),
4572 SecretKey::from_slice(&[41; 32]).unwrap(),
4573 SecretKey::from_slice(&[41; 32]).unwrap(),
4574 SecretKey::from_slice(&[41; 32]).unwrap(),
4575 SecretKey::from_slice(&[41; 32]).unwrap(),
4582 let counterparty_pubkeys = ChannelPublicKeys {
4583 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
4584 revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
4585 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
4586 delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
4587 htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
4589 let funding_outpoint = OutPoint { txid: Txid::all_zeros(), index: u16::max_value() };
4590 let channel_parameters = ChannelTransactionParameters {
4591 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
4592 holder_selected_contest_delay: 66,
4593 is_outbound_from_holder: true,
4594 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
4595 pubkeys: counterparty_pubkeys,
4596 selected_contest_delay: 67,
4598 funding_outpoint: Some(funding_outpoint),
4599 channel_type_features: ChannelTypeFeatures::only_static_remote_key()
4601 // Prune with one old state and a holder commitment tx holding a few overlaps with the
4603 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4604 let best_block = BestBlock::from_network(Network::Testnet);
4605 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
4606 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &Script::new(),
4607 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
4608 &channel_parameters, Script::new(), 46, 0, HolderCommitmentTransaction::dummy(&mut Vec::new()),
4609 best_block, dummy_key);
4611 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..10]);
4612 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4613 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx.clone(),
4614 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4615 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"1").into_inner()),
4616 preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
4617 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"2").into_inner()),
4618 preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
4619 for &(ref preimage, ref hash) in preimages.iter() {
4620 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&fee_estimator);
4621 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &bounded_fee_estimator, &logger);
4624 // Now provide a secret, pruning preimages 10-15
4625 let mut secret = [0; 32];
4626 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
4627 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
4628 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
4629 test_preimages_exist!(&preimages[0..10], monitor);
4630 test_preimages_exist!(&preimages[15..20], monitor);
4632 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"3").into_inner()),
4633 preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
4635 // Now provide a further secret, pruning preimages 15-17
4636 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
4637 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
4638 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
4639 test_preimages_exist!(&preimages[0..10], monitor);
4640 test_preimages_exist!(&preimages[17..20], monitor);
4642 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"4").into_inner()),
4643 preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
4645 // Now update holder commitment tx info, pruning only element 18 as we still care about the
4646 // previous commitment tx's preimages too
4647 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..5]);
4648 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4649 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx.clone(),
4650 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4651 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
4652 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
4653 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
4654 test_preimages_exist!(&preimages[0..10], monitor);
4655 test_preimages_exist!(&preimages[18..20], monitor);
4657 // But if we do it again, we'll prune 5-10
4658 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..3]);
4659 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4660 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx,
4661 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4662 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
4663 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
4664 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
4665 test_preimages_exist!(&preimages[0..5], monitor);
4669 fn test_claim_txn_weight_computation() {
4670 // We test Claim txn weight, knowing that we want expected weigth and
4671 // not actual case to avoid sigs and time-lock delays hell variances.
4673 let secp_ctx = Secp256k1::new();
4674 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
4675 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
4677 macro_rules! sign_input {
4678 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr, $opt_anchors: expr) => {
4679 let htlc = HTLCOutputInCommitment {
4680 offered: if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_offered_htlc($opt_anchors) { true } else { false },
4682 cltv_expiry: 2 << 16,
4683 payment_hash: PaymentHash([1; 32]),
4684 transaction_output_index: Some($idx as u32),
4686 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, $opt_anchors, &pubkey, &pubkey, &pubkey) };
4687 let sighash = hash_to_message!(&$sighash_parts.segwit_signature_hash($idx, &redeem_script, $amount, EcdsaSighashType::All).unwrap()[..]);
4688 let sig = secp_ctx.sign_ecdsa(&sighash, &privkey);
4689 let mut ser_sig = sig.serialize_der().to_vec();
4690 ser_sig.push(EcdsaSighashType::All as u8);
4691 $sum_actual_sigs += ser_sig.len();
4692 let witness = $sighash_parts.witness_mut($idx).unwrap();
4693 witness.push(ser_sig);
4694 if *$weight == WEIGHT_REVOKED_OUTPUT {
4695 witness.push(vec!(1));
4696 } else if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_revoked_received_htlc($opt_anchors) {
4697 witness.push(pubkey.clone().serialize().to_vec());
4698 } else if *$weight == weight_received_htlc($opt_anchors) {
4699 witness.push(vec![0]);
4701 witness.push(PaymentPreimage([1; 32]).0.to_vec());
4703 witness.push(redeem_script.into_bytes());
4704 let witness = witness.to_vec();
4705 println!("witness[0] {}", witness[0].len());
4706 println!("witness[1] {}", witness[1].len());
4707 println!("witness[2] {}", witness[2].len());
4711 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
4712 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
4714 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
4715 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
4716 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4717 let mut sum_actual_sigs = 0;
4719 claim_tx.input.push(TxIn {
4720 previous_output: BitcoinOutPoint {
4724 script_sig: Script::new(),
4725 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4726 witness: Witness::new(),
4729 claim_tx.output.push(TxOut {
4730 script_pubkey: script_pubkey.clone(),
4733 let base_weight = claim_tx.weight();
4734 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, weight_revoked_offered_htlc(channel_type_features), weight_revoked_offered_htlc(channel_type_features), weight_revoked_received_htlc(channel_type_features)];
4735 let mut inputs_total_weight = 2; // count segwit flags
4737 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4738 for (idx, inp) in inputs_weight.iter().enumerate() {
4739 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
4740 inputs_total_weight += inp;
4743 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
4746 // Claim tx with 1 offered HTLCs, 3 received HTLCs
4747 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
4748 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4749 let mut sum_actual_sigs = 0;
4751 claim_tx.input.push(TxIn {
4752 previous_output: BitcoinOutPoint {
4756 script_sig: Script::new(),
4757 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4758 witness: Witness::new(),
4761 claim_tx.output.push(TxOut {
4762 script_pubkey: script_pubkey.clone(),
4765 let base_weight = claim_tx.weight();
4766 let inputs_weight = vec![weight_offered_htlc(channel_type_features), weight_received_htlc(channel_type_features), weight_received_htlc(channel_type_features), weight_received_htlc(channel_type_features)];
4767 let mut inputs_total_weight = 2; // count segwit flags
4769 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4770 for (idx, inp) in inputs_weight.iter().enumerate() {
4771 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
4772 inputs_total_weight += inp;
4775 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
4778 // Justice tx with 1 revoked HTLC-Success tx output
4779 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
4780 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4781 let mut sum_actual_sigs = 0;
4782 claim_tx.input.push(TxIn {
4783 previous_output: BitcoinOutPoint {
4787 script_sig: Script::new(),
4788 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4789 witness: Witness::new(),
4791 claim_tx.output.push(TxOut {
4792 script_pubkey: script_pubkey.clone(),
4795 let base_weight = claim_tx.weight();
4796 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
4797 let mut inputs_total_weight = 2; // count segwit flags
4799 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4800 for (idx, inp) in inputs_weight.iter().enumerate() {
4801 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
4802 inputs_total_weight += inp;
4805 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_isg */ (73 * inputs_weight.len() - sum_actual_sigs));
4809 // Further testing is done in the ChannelManager integration tests.