4651a55a642047ebfa450e863ec6758c65cd1d93
[rust-lightning] / lightning / src / chain / channelmonitor.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
11 //! here.
12 //!
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
16 //!
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
22
23 use bitcoin::blockdata::block::{Block, BlockHeader};
24 use bitcoin::blockdata::transaction::{TxOut,Transaction};
25 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
26 use bitcoin::blockdata::script::{Script, Builder};
27 use bitcoin::blockdata::opcodes;
28
29 use bitcoin::hashes::Hash;
30 use bitcoin::hashes::sha256::Hash as Sha256;
31 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32
33 use bitcoin::secp256k1::{Secp256k1,Signature};
34 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
35 use bitcoin::secp256k1;
36
37 use ln::msgs::DecodeError;
38 use ln::chan_utils;
39 use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCType, ChannelTransactionParameters, HolderCommitmentTransaction};
40 use ln::channelmanager::{HTLCSource, PaymentPreimage, PaymentHash};
41 use ln::onchaintx::{OnchainTxHandler, InputDescriptors};
42 use chain;
43 use chain::WatchedOutput;
44 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
45 use chain::transaction::{OutPoint, TransactionData};
46 use chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, Sign, KeysInterface};
47 use chain::Filter;
48 use util::logger::Logger;
49 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writer, Writeable, U48};
50 use util::byte_utils;
51 use util::events::Event;
52
53 use std::collections::{HashMap, HashSet};
54 use std::{cmp, mem};
55 use std::io::Error;
56 use std::ops::Deref;
57 use std::sync::Mutex;
58
59 /// An update generated by the underlying Channel itself which contains some new information the
60 /// ChannelMonitor should be made aware of.
61 #[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
62 #[derive(Clone)]
63 #[must_use]
64 pub struct ChannelMonitorUpdate {
65         pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
66         /// The sequence number of this update. Updates *must* be replayed in-order according to this
67         /// sequence number (and updates may panic if they are not). The update_id values are strictly
68         /// increasing and increase by one for each new update, with one exception specified below.
69         ///
70         /// This sequence number is also used to track up to which points updates which returned
71         /// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
72         /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
73         ///
74         /// The only instance where update_id values are not strictly increasing is the case where we
75         /// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
76         /// its docs for more details.
77         pub update_id: u64,
78 }
79
80 /// If:
81 ///    (1) a channel has been force closed and
82 ///    (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
83 ///        this channel's (the backward link's) broadcasted commitment transaction
84 /// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
85 /// with the update providing said payment preimage. No other update types are allowed after
86 /// force-close.
87 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = std::u64::MAX;
88
89 impl Writeable for ChannelMonitorUpdate {
90         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
91                 self.update_id.write(w)?;
92                 (self.updates.len() as u64).write(w)?;
93                 for update_step in self.updates.iter() {
94                         update_step.write(w)?;
95                 }
96                 Ok(())
97         }
98 }
99 impl Readable for ChannelMonitorUpdate {
100         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
101                 let update_id: u64 = Readable::read(r)?;
102                 let len: u64 = Readable::read(r)?;
103                 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::std::mem::size_of::<ChannelMonitorUpdateStep>()));
104                 for _ in 0..len {
105                         updates.push(Readable::read(r)?);
106                 }
107                 Ok(Self { update_id, updates })
108         }
109 }
110
111 /// An error enum representing a failure to persist a channel monitor update.
112 #[derive(Clone, Debug)]
113 pub enum ChannelMonitorUpdateErr {
114         /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
115         /// our state failed, but is expected to succeed at some point in the future).
116         ///
117         /// Such a failure will "freeze" a channel, preventing us from revoking old states or
118         /// submitting new commitment transactions to the counterparty. Once the update(s) which failed
119         /// have been successfully applied, ChannelManager::channel_monitor_updated can be used to
120         /// restore the channel to an operational state.
121         ///
122         /// Note that a given ChannelManager will *never* re-generate a given ChannelMonitorUpdate. If
123         /// you return a TemporaryFailure you must ensure that it is written to disk safely before
124         /// writing out the latest ChannelManager state.
125         ///
126         /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
127         /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
128         /// to claim it on this channel) and those updates must be applied wherever they can be. At
129         /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
130         /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
131         /// the channel which would invalidate previous ChannelMonitors are not made when a channel has
132         /// been "frozen".
133         ///
134         /// Note that even if updates made after TemporaryFailure succeed you must still call
135         /// channel_monitor_updated to ensure you have the latest monitor and re-enable normal channel
136         /// operation.
137         ///
138         /// Note that the update being processed here will not be replayed for you when you call
139         /// ChannelManager::channel_monitor_updated, so you must store the update itself along
140         /// with the persisted ChannelMonitor on your own local disk prior to returning a
141         /// TemporaryFailure. You may, of course, employ a journaling approach, storing only the
142         /// ChannelMonitorUpdate on disk without updating the monitor itself, replaying the journal at
143         /// reload-time.
144         ///
145         /// For deployments where a copy of ChannelMonitors and other local state are backed up in a
146         /// remote location (with local copies persisted immediately), it is anticipated that all
147         /// updates will return TemporaryFailure until the remote copies could be updated.
148         TemporaryFailure,
149         /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
150         /// different watchtower and cannot update with all watchtowers that were previously informed
151         /// of this channel).
152         ///
153         /// At reception of this error, ChannelManager will force-close the channel and return at
154         /// least a final ChannelMonitorUpdate::ChannelForceClosed which must be delivered to at
155         /// least one ChannelMonitor copy. Revocation secret MUST NOT be released and offchain channel
156         /// update must be rejected.
157         ///
158         /// This failure may also signal a failure to update the local persisted copy of one of
159         /// the channel monitor instance.
160         ///
161         /// Note that even when you fail a holder commitment transaction update, you must store the
162         /// update to ensure you can claim from it in case of a duplicate copy of this ChannelMonitor
163         /// broadcasts it (e.g distributed channel-monitor deployment)
164         ///
165         /// In case of distributed watchtowers deployment, the new version must be written to disk, as
166         /// state may have been stored but rejected due to a block forcing a commitment broadcast. This
167         /// storage is used to claim outputs of rejected state confirmed onchain by another watchtower,
168         /// lagging behind on block processing.
169         PermanentFailure,
170 }
171
172 /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
173 /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::update_monitor this
174 /// means you tried to update a monitor for a different channel or the ChannelMonitorUpdate was
175 /// corrupted.
176 /// Contains a developer-readable error message.
177 #[derive(Clone, Debug)]
178 pub struct MonitorUpdateError(pub &'static str);
179
180 /// An event to be processed by the ChannelManager.
181 #[derive(Clone, PartialEq)]
182 pub enum MonitorEvent {
183         /// A monitor event containing an HTLCUpdate.
184         HTLCEvent(HTLCUpdate),
185
186         /// A monitor event that the Channel's commitment transaction was broadcasted.
187         CommitmentTxBroadcasted(OutPoint),
188 }
189
190 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
191 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
192 /// preimage claim backward will lead to loss of funds.
193 #[derive(Clone, PartialEq)]
194 pub struct HTLCUpdate {
195         pub(crate) payment_hash: PaymentHash,
196         pub(crate) payment_preimage: Option<PaymentPreimage>,
197         pub(crate) source: HTLCSource
198 }
199 impl_writeable!(HTLCUpdate, 0, { payment_hash, payment_preimage, source });
200
201 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
202 /// instead claiming it in its own individual transaction.
203 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
204 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
205 /// HTLC-Success transaction.
206 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
207 /// transaction confirmed (and we use it in a few more, equivalent, places).
208 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6;
209 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
210 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
211 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
212 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
213 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
214 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
215 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
216 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
217 /// accurate block height.
218 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
219 /// with at worst this delay, so we are not only using this value as a mercy for them but also
220 /// us as a safeguard to delay with enough time.
221 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
222 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound
223 /// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money.
224 /// We use also this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
225 /// It may cause spurrious generation of bumped claim txn but that's allright given the outpoint is already
226 /// solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
227 /// keeping bumping another claim tx to solve the outpoint.
228 pub(crate) const ANTI_REORG_DELAY: u32 = 6;
229 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
230 /// refuse to accept a new HTLC.
231 ///
232 /// This is used for a few separate purposes:
233 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
234 ///    waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
235 ///    fail this HTLC,
236 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
237 ///    condition with the above), we will fail this HTLC without telling the user we received it,
238 /// 3) if we are waiting on a connection or a channel state update to send an HTLC to a peer, and
239 ///    that HTLC expires within this many blocks, we will simply fail the HTLC instead.
240 ///
241 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
242 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
243 ///
244 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
245 /// in a race condition between the user connecting a block (which would fail it) and the user
246 /// providing us the preimage (which would claim it).
247 ///
248 /// (3) is about our counterparty - we don't want to relay an HTLC to a counterparty when they may
249 /// end up force-closing the channel on us to claim it.
250 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
251
252 // TODO(devrandom) replace this with HolderCommitmentTransaction
253 #[derive(Clone, PartialEq)]
254 struct HolderSignedTx {
255         /// txid of the transaction in tx, just used to make comparison faster
256         txid: Txid,
257         revocation_key: PublicKey,
258         a_htlc_key: PublicKey,
259         b_htlc_key: PublicKey,
260         delayed_payment_key: PublicKey,
261         per_commitment_point: PublicKey,
262         feerate_per_kw: u32,
263         htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
264 }
265
266 /// We use this to track counterparty commitment transactions and htlcs outputs and
267 /// use it to generate any justice or 2nd-stage preimage/timeout transactions.
268 #[derive(PartialEq)]
269 struct CounterpartyCommitmentTransaction {
270         counterparty_delayed_payment_base_key: PublicKey,
271         counterparty_htlc_base_key: PublicKey,
272         on_counterparty_tx_csv: u16,
273         per_htlc: HashMap<Txid, Vec<HTLCOutputInCommitment>>
274 }
275
276 impl Writeable for CounterpartyCommitmentTransaction {
277         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
278                 self.counterparty_delayed_payment_base_key.write(w)?;
279                 self.counterparty_htlc_base_key.write(w)?;
280                 w.write_all(&byte_utils::be16_to_array(self.on_counterparty_tx_csv))?;
281                 w.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?;
282                 for (ref txid, ref htlcs) in self.per_htlc.iter() {
283                         w.write_all(&txid[..])?;
284                         w.write_all(&byte_utils::be64_to_array(htlcs.len() as u64))?;
285                         for &ref htlc in htlcs.iter() {
286                                 htlc.write(w)?;
287                         }
288                 }
289                 Ok(())
290         }
291 }
292 impl Readable for CounterpartyCommitmentTransaction {
293         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
294                 let counterparty_commitment_transaction = {
295                         let counterparty_delayed_payment_base_key = Readable::read(r)?;
296                         let counterparty_htlc_base_key = Readable::read(r)?;
297                         let on_counterparty_tx_csv: u16 = Readable::read(r)?;
298                         let per_htlc_len: u64 = Readable::read(r)?;
299                         let mut per_htlc = HashMap::with_capacity(cmp::min(per_htlc_len as usize, MAX_ALLOC_SIZE / 64));
300                         for _  in 0..per_htlc_len {
301                                 let txid: Txid = Readable::read(r)?;
302                                 let htlcs_count: u64 = Readable::read(r)?;
303                                 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
304                                 for _ in 0..htlcs_count {
305                                         let htlc = Readable::read(r)?;
306                                         htlcs.push(htlc);
307                                 }
308                                 if let Some(_) = per_htlc.insert(txid, htlcs) {
309                                         return Err(DecodeError::InvalidValue);
310                                 }
311                         }
312                         CounterpartyCommitmentTransaction {
313                                 counterparty_delayed_payment_base_key,
314                                 counterparty_htlc_base_key,
315                                 on_counterparty_tx_csv,
316                                 per_htlc,
317                         }
318                 };
319                 Ok(counterparty_commitment_transaction)
320         }
321 }
322
323 /// When ChannelMonitor discovers an onchain outpoint being a step of a channel and that it needs
324 /// to generate a tx to push channel state forward, we cache outpoint-solving tx material to build
325 /// a new bumped one in case of lenghty confirmation delay
326 #[derive(Clone, PartialEq)]
327 pub(crate) enum InputMaterial {
328         Revoked {
329                 per_commitment_point: PublicKey,
330                 counterparty_delayed_payment_base_key: PublicKey,
331                 counterparty_htlc_base_key: PublicKey,
332                 per_commitment_key: SecretKey,
333                 input_descriptor: InputDescriptors,
334                 amount: u64,
335                 htlc: Option<HTLCOutputInCommitment>,
336                 on_counterparty_tx_csv: u16,
337         },
338         CounterpartyHTLC {
339                 per_commitment_point: PublicKey,
340                 counterparty_delayed_payment_base_key: PublicKey,
341                 counterparty_htlc_base_key: PublicKey,
342                 preimage: Option<PaymentPreimage>,
343                 htlc: HTLCOutputInCommitment
344         },
345         HolderHTLC {
346                 preimage: Option<PaymentPreimage>,
347                 amount: u64,
348         },
349         Funding {
350                 funding_redeemscript: Script,
351         }
352 }
353
354 impl Writeable for InputMaterial  {
355         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
356                 match self {
357                         &InputMaterial::Revoked { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref per_commitment_key, ref input_descriptor, ref amount, ref htlc, ref on_counterparty_tx_csv} => {
358                                 writer.write_all(&[0; 1])?;
359                                 per_commitment_point.write(writer)?;
360                                 counterparty_delayed_payment_base_key.write(writer)?;
361                                 counterparty_htlc_base_key.write(writer)?;
362                                 writer.write_all(&per_commitment_key[..])?;
363                                 input_descriptor.write(writer)?;
364                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
365                                 htlc.write(writer)?;
366                                 on_counterparty_tx_csv.write(writer)?;
367                         },
368                         &InputMaterial::CounterpartyHTLC { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref preimage, ref htlc} => {
369                                 writer.write_all(&[1; 1])?;
370                                 per_commitment_point.write(writer)?;
371                                 counterparty_delayed_payment_base_key.write(writer)?;
372                                 counterparty_htlc_base_key.write(writer)?;
373                                 preimage.write(writer)?;
374                                 htlc.write(writer)?;
375                         },
376                         &InputMaterial::HolderHTLC { ref preimage, ref amount } => {
377                                 writer.write_all(&[2; 1])?;
378                                 preimage.write(writer)?;
379                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
380                         },
381                         &InputMaterial::Funding { ref funding_redeemscript } => {
382                                 writer.write_all(&[3; 1])?;
383                                 funding_redeemscript.write(writer)?;
384                         }
385                 }
386                 Ok(())
387         }
388 }
389
390 impl Readable for InputMaterial {
391         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
392                 let input_material = match <u8 as Readable>::read(reader)? {
393                         0 => {
394                                 let per_commitment_point = Readable::read(reader)?;
395                                 let counterparty_delayed_payment_base_key = Readable::read(reader)?;
396                                 let counterparty_htlc_base_key = Readable::read(reader)?;
397                                 let per_commitment_key = Readable::read(reader)?;
398                                 let input_descriptor = Readable::read(reader)?;
399                                 let amount = Readable::read(reader)?;
400                                 let htlc = Readable::read(reader)?;
401                                 let on_counterparty_tx_csv = Readable::read(reader)?;
402                                 InputMaterial::Revoked {
403                                         per_commitment_point,
404                                         counterparty_delayed_payment_base_key,
405                                         counterparty_htlc_base_key,
406                                         per_commitment_key,
407                                         input_descriptor,
408                                         amount,
409                                         htlc,
410                                         on_counterparty_tx_csv
411                                 }
412                         },
413                         1 => {
414                                 let per_commitment_point = Readable::read(reader)?;
415                                 let counterparty_delayed_payment_base_key = Readable::read(reader)?;
416                                 let counterparty_htlc_base_key = Readable::read(reader)?;
417                                 let preimage = Readable::read(reader)?;
418                                 let htlc = Readable::read(reader)?;
419                                 InputMaterial::CounterpartyHTLC {
420                                         per_commitment_point,
421                                         counterparty_delayed_payment_base_key,
422                                         counterparty_htlc_base_key,
423                                         preimage,
424                                         htlc
425                                 }
426                         },
427                         2 => {
428                                 let preimage = Readable::read(reader)?;
429                                 let amount = Readable::read(reader)?;
430                                 InputMaterial::HolderHTLC {
431                                         preimage,
432                                         amount,
433                                 }
434                         },
435                         3 => {
436                                 InputMaterial::Funding {
437                                         funding_redeemscript: Readable::read(reader)?,
438                                 }
439                         }
440                         _ => return Err(DecodeError::InvalidValue),
441                 };
442                 Ok(input_material)
443         }
444 }
445
446 /// ClaimRequest is a descriptor structure to communicate between detection
447 /// and reaction module. They are generated by ChannelMonitor while parsing
448 /// onchain txn leaked from a channel and handed over to OnchainTxHandler which
449 /// is responsible for opportunistic aggregation, selecting and enforcing
450 /// bumping logic, building and signing transactions.
451 pub(crate) struct ClaimRequest {
452         // Block height before which claiming is exclusive to one party,
453         // after reaching it, claiming may be contentious.
454         pub(crate) absolute_timelock: u32,
455         // Timeout tx must have nLocktime set which means aggregating multiple
456         // ones must take the higher nLocktime among them to satisfy all of them.
457         // Sadly it has few pitfalls, a) it takes longuer to get fund back b) CLTV_DELTA
458         // of a sooner-HTLC could be swallowed by the highest nLocktime of the HTLC set.
459         // Do simplify we mark them as non-aggregable.
460         pub(crate) aggregable: bool,
461         // Basic bitcoin outpoint (txid, vout)
462         pub(crate) outpoint: BitcoinOutPoint,
463         // Following outpoint type, set of data needed to generate transaction digest
464         // and satisfy witness program.
465         pub(crate) witness_data: InputMaterial
466 }
467
468 /// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
469 /// transaction causing it.
470 ///
471 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
472 #[derive(PartialEq)]
473 struct OnchainEventEntry {
474         txid: Txid,
475         height: u32,
476         event: OnchainEvent,
477 }
478
479 impl OnchainEventEntry {
480         fn confirmation_threshold(&self) -> u32 {
481                 self.height + ANTI_REORG_DELAY - 1
482         }
483
484         fn has_reached_confirmation_threshold(&self, height: u32) -> bool {
485                 height >= self.confirmation_threshold()
486         }
487 }
488
489 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
490 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
491 #[derive(PartialEq)]
492 enum OnchainEvent {
493         /// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve
494         /// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can
495         /// only win from it, so it's never an OnchainEvent
496         HTLCUpdate {
497                 htlc_update: (HTLCSource, PaymentHash),
498         },
499         MaturingOutput {
500                 descriptor: SpendableOutputDescriptor,
501         },
502 }
503
504 const SERIALIZATION_VERSION: u8 = 1;
505 const MIN_SERIALIZATION_VERSION: u8 = 1;
506
507 #[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
508 #[derive(Clone)]
509 pub(crate) enum ChannelMonitorUpdateStep {
510         LatestHolderCommitmentTXInfo {
511                 commitment_tx: HolderCommitmentTransaction,
512                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
513         },
514         LatestCounterpartyCommitmentTXInfo {
515                 commitment_txid: Txid,
516                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
517                 commitment_number: u64,
518                 their_revocation_point: PublicKey,
519         },
520         PaymentPreimage {
521                 payment_preimage: PaymentPreimage,
522         },
523         CommitmentSecret {
524                 idx: u64,
525                 secret: [u8; 32],
526         },
527         /// Used to indicate that the no future updates will occur, and likely that the latest holder
528         /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
529         ChannelForceClosed {
530                 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
531                 /// think we've fallen behind!
532                 should_broadcast: bool,
533         },
534 }
535
536 impl Writeable for ChannelMonitorUpdateStep {
537         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
538                 match self {
539                         &ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { ref commitment_tx, ref htlc_outputs } => {
540                                 0u8.write(w)?;
541                                 commitment_tx.write(w)?;
542                                 (htlc_outputs.len() as u64).write(w)?;
543                                 for &(ref output, ref signature, ref source) in htlc_outputs.iter() {
544                                         output.write(w)?;
545                                         signature.write(w)?;
546                                         source.write(w)?;
547                                 }
548                         }
549                         &ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, ref htlc_outputs, ref commitment_number, ref their_revocation_point } => {
550                                 1u8.write(w)?;
551                                 commitment_txid.write(w)?;
552                                 commitment_number.write(w)?;
553                                 their_revocation_point.write(w)?;
554                                 (htlc_outputs.len() as u64).write(w)?;
555                                 for &(ref output, ref source) in htlc_outputs.iter() {
556                                         output.write(w)?;
557                                         source.as_ref().map(|b| b.as_ref()).write(w)?;
558                                 }
559                         },
560                         &ChannelMonitorUpdateStep::PaymentPreimage { ref payment_preimage } => {
561                                 2u8.write(w)?;
562                                 payment_preimage.write(w)?;
563                         },
564                         &ChannelMonitorUpdateStep::CommitmentSecret { ref idx, ref secret } => {
565                                 3u8.write(w)?;
566                                 idx.write(w)?;
567                                 secret.write(w)?;
568                         },
569                         &ChannelMonitorUpdateStep::ChannelForceClosed { ref should_broadcast } => {
570                                 4u8.write(w)?;
571                                 should_broadcast.write(w)?;
572                         },
573                 }
574                 Ok(())
575         }
576 }
577 impl Readable for ChannelMonitorUpdateStep {
578         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
579                 match Readable::read(r)? {
580                         0u8 => {
581                                 Ok(ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo {
582                                         commitment_tx: Readable::read(r)?,
583                                         htlc_outputs: {
584                                                 let len: u64 = Readable::read(r)?;
585                                                 let mut res = Vec::new();
586                                                 for _ in 0..len {
587                                                         res.push((Readable::read(r)?, Readable::read(r)?, Readable::read(r)?));
588                                                 }
589                                                 res
590                                         },
591                                 })
592                         },
593                         1u8 => {
594                                 Ok(ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo {
595                                         commitment_txid: Readable::read(r)?,
596                                         commitment_number: Readable::read(r)?,
597                                         their_revocation_point: Readable::read(r)?,
598                                         htlc_outputs: {
599                                                 let len: u64 = Readable::read(r)?;
600                                                 let mut res = Vec::new();
601                                                 for _ in 0..len {
602                                                         res.push((Readable::read(r)?, <Option<HTLCSource> as Readable>::read(r)?.map(|o| Box::new(o))));
603                                                 }
604                                                 res
605                                         },
606                                 })
607                         },
608                         2u8 => {
609                                 Ok(ChannelMonitorUpdateStep::PaymentPreimage {
610                                         payment_preimage: Readable::read(r)?,
611                                 })
612                         },
613                         3u8 => {
614                                 Ok(ChannelMonitorUpdateStep::CommitmentSecret {
615                                         idx: Readable::read(r)?,
616                                         secret: Readable::read(r)?,
617                                 })
618                         },
619                         4u8 => {
620                                 Ok(ChannelMonitorUpdateStep::ChannelForceClosed {
621                                         should_broadcast: Readable::read(r)?
622                                 })
623                         },
624                         _ => Err(DecodeError::InvalidValue),
625                 }
626         }
627 }
628
629 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
630 /// on-chain transactions to ensure no loss of funds occurs.
631 ///
632 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
633 /// information and are actively monitoring the chain.
634 ///
635 /// Pending Events or updated HTLCs which have not yet been read out by
636 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
637 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
638 /// gotten are fully handled before re-serializing the new state.
639 ///
640 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
641 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
642 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
643 /// returned block hash and the the current chain and then reconnecting blocks to get to the
644 /// best chain) upon deserializing the object!
645 pub struct ChannelMonitor<Signer: Sign> {
646         #[cfg(test)]
647         pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
648         #[cfg(not(test))]
649         inner: Mutex<ChannelMonitorImpl<Signer>>,
650 }
651
652 pub(crate) struct ChannelMonitorImpl<Signer: Sign> {
653         latest_update_id: u64,
654         commitment_transaction_number_obscure_factor: u64,
655
656         destination_script: Script,
657         broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
658         counterparty_payment_script: Script,
659         shutdown_script: Script,
660
661         channel_keys_id: [u8; 32],
662         holder_revocation_basepoint: PublicKey,
663         funding_info: (OutPoint, Script),
664         current_counterparty_commitment_txid: Option<Txid>,
665         prev_counterparty_commitment_txid: Option<Txid>,
666
667         counterparty_tx_cache: CounterpartyCommitmentTransaction,
668         funding_redeemscript: Script,
669         channel_value_satoshis: u64,
670         // first is the idx of the first of the two revocation points
671         their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
672
673         on_holder_tx_csv: u16,
674
675         commitment_secrets: CounterpartyCommitmentSecrets,
676         counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
677         /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
678         /// Nor can we figure out their commitment numbers without the commitment transaction they are
679         /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
680         /// commitment transactions which we find on-chain, mapping them to the commitment number which
681         /// can be used to derive the revocation key and claim the transactions.
682         counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
683         /// Cache used to make pruning of payment_preimages faster.
684         /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
685         /// counterparty transactions (ie should remain pretty small).
686         /// Serialized to disk but should generally not be sent to Watchtowers.
687         counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
688
689         // We store two holder commitment transactions to avoid any race conditions where we may update
690         // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
691         // various monitors for one channel being out of sync, and us broadcasting a holder
692         // transaction for which we have deleted claim information on some watchtowers.
693         prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
694         current_holder_commitment_tx: HolderSignedTx,
695
696         // Used just for ChannelManager to make sure it has the latest channel data during
697         // deserialization
698         current_counterparty_commitment_number: u64,
699         // Used just for ChannelManager to make sure it has the latest channel data during
700         // deserialization
701         current_holder_commitment_number: u64,
702
703         payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
704
705         pending_monitor_events: Vec<MonitorEvent>,
706         pending_events: Vec<Event>,
707
708         // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
709         // which to take actions once they reach enough confirmations. Each entry includes the
710         // transaction's id and the height when the transaction was confirmed on chain.
711         onchain_events_waiting_threshold_conf: Vec<OnchainEventEntry>,
712
713         // If we get serialized out and re-read, we need to make sure that the chain monitoring
714         // interface knows about the TXOs that we want to be notified of spends of. We could probably
715         // be smart and derive them from the above storage fields, but its much simpler and more
716         // Obviously Correct (tm) if we just keep track of them explicitly.
717         outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
718
719         #[cfg(test)]
720         pub onchain_tx_handler: OnchainTxHandler<Signer>,
721         #[cfg(not(test))]
722         onchain_tx_handler: OnchainTxHandler<Signer>,
723
724         // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
725         // channel has been force-closed. After this is set, no further holder commitment transaction
726         // updates may occur, and we panic!() if one is provided.
727         lockdown_from_offchain: bool,
728
729         // Set once we've signed a holder commitment transaction and handed it over to our
730         // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
731         // may occur, and we fail any such monitor updates.
732         //
733         // In case of update rejection due to a locally already signed commitment transaction, we
734         // nevertheless store update content to track in case of concurrent broadcast by another
735         // remote monitor out-of-order with regards to the block view.
736         holder_tx_signed: bool,
737
738         // We simply modify last_block_hash in Channel's block_connected so that serialization is
739         // consistent but hopefully the users' copy handles block_connected in a consistent way.
740         // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
741         // their last_block_hash from its state and not based on updated copies that didn't run through
742         // the full block_connected).
743         last_block_hash: BlockHash,
744         secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
745 }
746
747 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
748 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
749 /// underlying object
750 impl<Signer: Sign> PartialEq for ChannelMonitor<Signer> {
751         fn eq(&self, other: &Self) -> bool {
752                 let inner = self.inner.lock().unwrap();
753                 let other = other.inner.lock().unwrap();
754                 inner.eq(&other)
755         }
756 }
757
758 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
759 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
760 /// underlying object
761 impl<Signer: Sign> PartialEq for ChannelMonitorImpl<Signer> {
762         fn eq(&self, other: &Self) -> bool {
763                 if self.latest_update_id != other.latest_update_id ||
764                         self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
765                         self.destination_script != other.destination_script ||
766                         self.broadcasted_holder_revokable_script != other.broadcasted_holder_revokable_script ||
767                         self.counterparty_payment_script != other.counterparty_payment_script ||
768                         self.channel_keys_id != other.channel_keys_id ||
769                         self.holder_revocation_basepoint != other.holder_revocation_basepoint ||
770                         self.funding_info != other.funding_info ||
771                         self.current_counterparty_commitment_txid != other.current_counterparty_commitment_txid ||
772                         self.prev_counterparty_commitment_txid != other.prev_counterparty_commitment_txid ||
773                         self.counterparty_tx_cache != other.counterparty_tx_cache ||
774                         self.funding_redeemscript != other.funding_redeemscript ||
775                         self.channel_value_satoshis != other.channel_value_satoshis ||
776                         self.their_cur_revocation_points != other.their_cur_revocation_points ||
777                         self.on_holder_tx_csv != other.on_holder_tx_csv ||
778                         self.commitment_secrets != other.commitment_secrets ||
779                         self.counterparty_claimable_outpoints != other.counterparty_claimable_outpoints ||
780                         self.counterparty_commitment_txn_on_chain != other.counterparty_commitment_txn_on_chain ||
781                         self.counterparty_hash_commitment_number != other.counterparty_hash_commitment_number ||
782                         self.prev_holder_signed_commitment_tx != other.prev_holder_signed_commitment_tx ||
783                         self.current_counterparty_commitment_number != other.current_counterparty_commitment_number ||
784                         self.current_holder_commitment_number != other.current_holder_commitment_number ||
785                         self.current_holder_commitment_tx != other.current_holder_commitment_tx ||
786                         self.payment_preimages != other.payment_preimages ||
787                         self.pending_monitor_events != other.pending_monitor_events ||
788                         self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly
789                         self.onchain_events_waiting_threshold_conf != other.onchain_events_waiting_threshold_conf ||
790                         self.outputs_to_watch != other.outputs_to_watch ||
791                         self.lockdown_from_offchain != other.lockdown_from_offchain ||
792                         self.holder_tx_signed != other.holder_tx_signed
793                 {
794                         false
795                 } else {
796                         true
797                 }
798         }
799 }
800
801 impl<Signer: Sign> Writeable for ChannelMonitor<Signer> {
802         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
803                 //TODO: We still write out all the serialization here manually instead of using the fancy
804                 //serialization framework we have, we should migrate things over to it.
805                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
806                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
807
808                 self.inner.lock().unwrap().write(writer)
809         }
810 }
811
812 impl<Signer: Sign> Writeable for ChannelMonitorImpl<Signer> {
813         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
814                 self.latest_update_id.write(writer)?;
815
816                 // Set in initial Channel-object creation, so should always be set by now:
817                 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
818
819                 self.destination_script.write(writer)?;
820                 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
821                         writer.write_all(&[0; 1])?;
822                         broadcasted_holder_revokable_script.0.write(writer)?;
823                         broadcasted_holder_revokable_script.1.write(writer)?;
824                         broadcasted_holder_revokable_script.2.write(writer)?;
825                 } else {
826                         writer.write_all(&[1; 1])?;
827                 }
828
829                 self.counterparty_payment_script.write(writer)?;
830                 self.shutdown_script.write(writer)?;
831
832                 self.channel_keys_id.write(writer)?;
833                 self.holder_revocation_basepoint.write(writer)?;
834                 writer.write_all(&self.funding_info.0.txid[..])?;
835                 writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?;
836                 self.funding_info.1.write(writer)?;
837                 self.current_counterparty_commitment_txid.write(writer)?;
838                 self.prev_counterparty_commitment_txid.write(writer)?;
839
840                 self.counterparty_tx_cache.write(writer)?;
841                 self.funding_redeemscript.write(writer)?;
842                 self.channel_value_satoshis.write(writer)?;
843
844                 match self.their_cur_revocation_points {
845                         Some((idx, pubkey, second_option)) => {
846                                 writer.write_all(&byte_utils::be48_to_array(idx))?;
847                                 writer.write_all(&pubkey.serialize())?;
848                                 match second_option {
849                                         Some(second_pubkey) => {
850                                                 writer.write_all(&second_pubkey.serialize())?;
851                                         },
852                                         None => {
853                                                 writer.write_all(&[0; 33])?;
854                                         },
855                                 }
856                         },
857                         None => {
858                                 writer.write_all(&byte_utils::be48_to_array(0))?;
859                         },
860                 }
861
862                 writer.write_all(&byte_utils::be16_to_array(self.on_holder_tx_csv))?;
863
864                 self.commitment_secrets.write(writer)?;
865
866                 macro_rules! serialize_htlc_in_commitment {
867                         ($htlc_output: expr) => {
868                                 writer.write_all(&[$htlc_output.offered as u8; 1])?;
869                                 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
870                                 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
871                                 writer.write_all(&$htlc_output.payment_hash.0[..])?;
872                                 $htlc_output.transaction_output_index.write(writer)?;
873                         }
874                 }
875
876                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_claimable_outpoints.len() as u64))?;
877                 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
878                         writer.write_all(&txid[..])?;
879                         writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
880                         for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
881                                 serialize_htlc_in_commitment!(htlc_output);
882                                 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
883                         }
884                 }
885
886                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_commitment_txn_on_chain.len() as u64))?;
887                 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
888                         writer.write_all(&txid[..])?;
889                         writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
890                 }
891
892                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_hash_commitment_number.len() as u64))?;
893                 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
894                         writer.write_all(&payment_hash.0[..])?;
895                         writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
896                 }
897
898                 macro_rules! serialize_holder_tx {
899                         ($holder_tx: expr) => {
900                                 $holder_tx.txid.write(writer)?;
901                                 writer.write_all(&$holder_tx.revocation_key.serialize())?;
902                                 writer.write_all(&$holder_tx.a_htlc_key.serialize())?;
903                                 writer.write_all(&$holder_tx.b_htlc_key.serialize())?;
904                                 writer.write_all(&$holder_tx.delayed_payment_key.serialize())?;
905                                 writer.write_all(&$holder_tx.per_commitment_point.serialize())?;
906
907                                 writer.write_all(&byte_utils::be32_to_array($holder_tx.feerate_per_kw))?;
908                                 writer.write_all(&byte_utils::be64_to_array($holder_tx.htlc_outputs.len() as u64))?;
909                                 for &(ref htlc_output, ref sig, ref htlc_source) in $holder_tx.htlc_outputs.iter() {
910                                         serialize_htlc_in_commitment!(htlc_output);
911                                         if let &Some(ref their_sig) = sig {
912                                                 1u8.write(writer)?;
913                                                 writer.write_all(&their_sig.serialize_compact())?;
914                                         } else {
915                                                 0u8.write(writer)?;
916                                         }
917                                         htlc_source.write(writer)?;
918                                 }
919                         }
920                 }
921
922                 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
923                         writer.write_all(&[1; 1])?;
924                         serialize_holder_tx!(prev_holder_tx);
925                 } else {
926                         writer.write_all(&[0; 1])?;
927                 }
928
929                 serialize_holder_tx!(self.current_holder_commitment_tx);
930
931                 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
932                 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
933
934                 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
935                 for payment_preimage in self.payment_preimages.values() {
936                         writer.write_all(&payment_preimage.0[..])?;
937                 }
938
939                 writer.write_all(&byte_utils::be64_to_array(self.pending_monitor_events.len() as u64))?;
940                 for event in self.pending_monitor_events.iter() {
941                         match event {
942                                 MonitorEvent::HTLCEvent(upd) => {
943                                         0u8.write(writer)?;
944                                         upd.write(writer)?;
945                                 },
946                                 MonitorEvent::CommitmentTxBroadcasted(_) => 1u8.write(writer)?
947                         }
948                 }
949
950                 writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?;
951                 for event in self.pending_events.iter() {
952                         event.write(writer)?;
953                 }
954
955                 self.last_block_hash.write(writer)?;
956
957                 writer.write_all(&byte_utils::be64_to_array(self.onchain_events_waiting_threshold_conf.len() as u64))?;
958                 for ref entry in self.onchain_events_waiting_threshold_conf.iter() {
959                         entry.txid.write(writer)?;
960                         writer.write_all(&byte_utils::be32_to_array(entry.height))?;
961                         match entry.event {
962                                 OnchainEvent::HTLCUpdate { ref htlc_update } => {
963                                         0u8.write(writer)?;
964                                         htlc_update.0.write(writer)?;
965                                         htlc_update.1.write(writer)?;
966                                 },
967                                 OnchainEvent::MaturingOutput { ref descriptor } => {
968                                         1u8.write(writer)?;
969                                         descriptor.write(writer)?;
970                                 },
971                         }
972                 }
973
974                 (self.outputs_to_watch.len() as u64).write(writer)?;
975                 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
976                         txid.write(writer)?;
977                         (idx_scripts.len() as u64).write(writer)?;
978                         for (idx, script) in idx_scripts.iter() {
979                                 idx.write(writer)?;
980                                 script.write(writer)?;
981                         }
982                 }
983                 self.onchain_tx_handler.write(writer)?;
984
985                 self.lockdown_from_offchain.write(writer)?;
986                 self.holder_tx_signed.write(writer)?;
987
988                 Ok(())
989         }
990 }
991
992 impl<Signer: Sign> ChannelMonitor<Signer> {
993         pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_pubkey: &PublicKey,
994                           on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
995                           channel_parameters: &ChannelTransactionParameters,
996                           funding_redeemscript: Script, channel_value_satoshis: u64,
997                           commitment_transaction_number_obscure_factor: u64,
998                           initial_holder_commitment_tx: HolderCommitmentTransaction,
999                           last_block_hash: BlockHash) -> ChannelMonitor<Signer> {
1000
1001                 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1002                 let our_channel_close_key_hash = WPubkeyHash::hash(&shutdown_pubkey.serialize());
1003                 let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
1004                 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
1005                 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
1006
1007                 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
1008                 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
1009                 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
1010                 let counterparty_tx_cache = CounterpartyCommitmentTransaction { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv, per_htlc: HashMap::new() };
1011
1012                 let channel_keys_id = keys.channel_keys_id();
1013                 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1014
1015                 // block for Rust 1.34 compat
1016                 let (holder_commitment_tx, current_holder_commitment_number) = {
1017                         let trusted_tx = initial_holder_commitment_tx.trust();
1018                         let txid = trusted_tx.txid();
1019
1020                         let tx_keys = trusted_tx.keys();
1021                         let holder_commitment_tx = HolderSignedTx {
1022                                 txid,
1023                                 revocation_key: tx_keys.revocation_key,
1024                                 a_htlc_key: tx_keys.broadcaster_htlc_key,
1025                                 b_htlc_key: tx_keys.countersignatory_htlc_key,
1026                                 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1027                                 per_commitment_point: tx_keys.per_commitment_point,
1028                                 feerate_per_kw: trusted_tx.feerate_per_kw(),
1029                                 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1030                         };
1031                         (holder_commitment_tx, trusted_tx.commitment_number())
1032                 };
1033
1034                 let onchain_tx_handler =
1035                         OnchainTxHandler::new(destination_script.clone(), keys,
1036                         channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx.clone());
1037
1038                 let mut outputs_to_watch = HashMap::new();
1039                 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1040
1041                 ChannelMonitor {
1042                         inner: Mutex::new(ChannelMonitorImpl {
1043                                 latest_update_id: 0,
1044                                 commitment_transaction_number_obscure_factor,
1045
1046                                 destination_script: destination_script.clone(),
1047                                 broadcasted_holder_revokable_script: None,
1048                                 counterparty_payment_script,
1049                                 shutdown_script,
1050
1051                                 channel_keys_id,
1052                                 holder_revocation_basepoint,
1053                                 funding_info,
1054                                 current_counterparty_commitment_txid: None,
1055                                 prev_counterparty_commitment_txid: None,
1056
1057                                 counterparty_tx_cache,
1058                                 funding_redeemscript,
1059                                 channel_value_satoshis,
1060                                 their_cur_revocation_points: None,
1061
1062                                 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1063
1064                                 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1065                                 counterparty_claimable_outpoints: HashMap::new(),
1066                                 counterparty_commitment_txn_on_chain: HashMap::new(),
1067                                 counterparty_hash_commitment_number: HashMap::new(),
1068
1069                                 prev_holder_signed_commitment_tx: None,
1070                                 current_holder_commitment_tx: holder_commitment_tx,
1071                                 current_counterparty_commitment_number: 1 << 48,
1072                                 current_holder_commitment_number,
1073
1074                                 payment_preimages: HashMap::new(),
1075                                 pending_monitor_events: Vec::new(),
1076                                 pending_events: Vec::new(),
1077
1078                                 onchain_events_waiting_threshold_conf: Vec::new(),
1079                                 outputs_to_watch,
1080
1081                                 onchain_tx_handler,
1082
1083                                 lockdown_from_offchain: false,
1084                                 holder_tx_signed: false,
1085
1086                                 last_block_hash,
1087                                 secp_ctx,
1088                         }),
1089                 }
1090         }
1091
1092         #[cfg(test)]
1093         fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
1094                 self.inner.lock().unwrap().provide_secret(idx, secret)
1095         }
1096
1097         /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1098         /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1099         /// possibly future revocation/preimage information) to claim outputs where possible.
1100         /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1101         pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
1102                 &self,
1103                 txid: Txid,
1104                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1105                 commitment_number: u64,
1106                 their_revocation_point: PublicKey,
1107                 logger: &L,
1108         ) where L::Target: Logger {
1109                 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1110                         txid, htlc_outputs, commitment_number, their_revocation_point, logger)
1111         }
1112
1113         #[cfg(test)]
1114         fn provide_latest_holder_commitment_tx(
1115                 &self,
1116                 holder_commitment_tx: HolderCommitmentTransaction,
1117                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1118         ) -> Result<(), MonitorUpdateError> {
1119                 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(
1120                         holder_commitment_tx, htlc_outputs)
1121         }
1122
1123         #[cfg(test)]
1124         pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1125                 &self,
1126                 payment_hash: &PaymentHash,
1127                 payment_preimage: &PaymentPreimage,
1128                 broadcaster: &B,
1129                 fee_estimator: &F,
1130                 logger: &L,
1131         ) where
1132                 B::Target: BroadcasterInterface,
1133                 F::Target: FeeEstimator,
1134                 L::Target: Logger,
1135         {
1136                 self.inner.lock().unwrap().provide_payment_preimage(
1137                         payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1138         }
1139
1140         pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1141                 &self,
1142                 broadcaster: &B,
1143                 logger: &L,
1144         ) where
1145                 B::Target: BroadcasterInterface,
1146                 L::Target: Logger,
1147         {
1148                 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger)
1149         }
1150
1151         /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1152         /// itself.
1153         ///
1154         /// panics if the given update is not the next update by update_id.
1155         pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1156                 &self,
1157                 updates: &ChannelMonitorUpdate,
1158                 broadcaster: &B,
1159                 fee_estimator: &F,
1160                 logger: &L,
1161         ) -> Result<(), MonitorUpdateError>
1162         where
1163                 B::Target: BroadcasterInterface,
1164                 F::Target: FeeEstimator,
1165                 L::Target: Logger,
1166         {
1167                 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1168         }
1169
1170         /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1171         /// ChannelMonitor.
1172         pub fn get_latest_update_id(&self) -> u64 {
1173                 self.inner.lock().unwrap().get_latest_update_id()
1174         }
1175
1176         /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1177         pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1178                 self.inner.lock().unwrap().get_funding_txo().clone()
1179         }
1180
1181         /// Gets a list of txids, with their output scripts (in the order they appear in the
1182         /// transaction), which we must learn about spends of via block_connected().
1183         pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1184                 self.inner.lock().unwrap().get_outputs_to_watch()
1185                         .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1186         }
1187
1188         /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1189         /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1190         /// have been registered.
1191         pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1192                 let lock = self.inner.lock().unwrap();
1193                 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1194                 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1195                         for (index, script_pubkey) in outputs.iter() {
1196                                 assert!(*index <= u16::max_value() as u32);
1197                                 filter.register_output(WatchedOutput {
1198                                         block_hash: None,
1199                                         outpoint: OutPoint { txid: *txid, index: *index as u16 },
1200                                         script_pubkey: script_pubkey.clone(),
1201                                 });
1202                         }
1203                 }
1204         }
1205
1206         /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1207         /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1208         pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1209                 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1210         }
1211
1212         /// Gets the list of pending events which were generated by previous actions, clearing the list
1213         /// in the process.
1214         ///
1215         /// This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to
1216         /// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
1217         /// no internal locking in ChannelMonitors.
1218         pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1219                 self.inner.lock().unwrap().get_and_clear_pending_events()
1220         }
1221
1222         pub(crate) fn get_min_seen_secret(&self) -> u64 {
1223                 self.inner.lock().unwrap().get_min_seen_secret()
1224         }
1225
1226         pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1227                 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1228         }
1229
1230         pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1231                 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1232         }
1233
1234         /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1235         /// the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of
1236         /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows
1237         /// a higher revocation secret than the holder commitment number we are aware of. Broadcasting these
1238         /// transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to
1239         /// broadcast them if counterparty don't close channel with his higher commitment transaction after a
1240         /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
1241         /// out-of-band the other node operator to coordinate with him if option is available to you.
1242         /// In any-case, choice is up to the user.
1243         pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1244         where L::Target: Logger {
1245                 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1246         }
1247
1248         /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1249         /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1250         /// revoked commitment transaction.
1251         #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1252         pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1253         where L::Target: Logger {
1254                 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1255         }
1256
1257         /// Processes transactions in a newly connected block, which may result in any of the following:
1258         /// - update the monitor's state against resolved HTLCs
1259         /// - punish the counterparty in the case of seeing a revoked commitment transaction
1260         /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1261         /// - detect settled outputs for later spending
1262         /// - schedule and bump any in-flight claims
1263         ///
1264         /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1265         /// [`get_outputs_to_watch`].
1266         ///
1267         /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1268         pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1269                 &self,
1270                 header: &BlockHeader,
1271                 txdata: &TransactionData,
1272                 height: u32,
1273                 broadcaster: B,
1274                 fee_estimator: F,
1275                 logger: L,
1276         ) -> Vec<(Txid, Vec<(u32, TxOut)>)>
1277         where
1278                 B::Target: BroadcasterInterface,
1279                 F::Target: FeeEstimator,
1280                 L::Target: Logger,
1281         {
1282                 self.inner.lock().unwrap().block_connected(
1283                         header, txdata, height, broadcaster, fee_estimator, logger)
1284         }
1285
1286         /// Determines if the disconnected block contained any transactions of interest and updates
1287         /// appropriately.
1288         pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1289                 &self,
1290                 header: &BlockHeader,
1291                 height: u32,
1292                 broadcaster: B,
1293                 fee_estimator: F,
1294                 logger: L,
1295         ) where
1296                 B::Target: BroadcasterInterface,
1297                 F::Target: FeeEstimator,
1298                 L::Target: Logger,
1299         {
1300                 self.inner.lock().unwrap().block_disconnected(
1301                         header, height, broadcaster, fee_estimator, logger)
1302         }
1303 }
1304
1305 impl<Signer: Sign> ChannelMonitorImpl<Signer> {
1306         /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
1307         /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
1308         /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
1309         fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
1310                 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
1311                         return Err(MonitorUpdateError("Previous secret did not match new one"));
1312                 }
1313
1314                 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
1315                 // events for now-revoked/fulfilled HTLCs.
1316                 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
1317                         for &mut (_, ref mut source) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
1318                                 *source = None;
1319                         }
1320                 }
1321
1322                 if !self.payment_preimages.is_empty() {
1323                         let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
1324                         let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
1325                         let min_idx = self.get_min_seen_secret();
1326                         let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
1327
1328                         self.payment_preimages.retain(|&k, _| {
1329                                 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
1330                                         if k == htlc.payment_hash {
1331                                                 return true
1332                                         }
1333                                 }
1334                                 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
1335                                         for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
1336                                                 if k == htlc.payment_hash {
1337                                                         return true
1338                                                 }
1339                                         }
1340                                 }
1341                                 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
1342                                         if *cn < min_idx {
1343                                                 return true
1344                                         }
1345                                         true
1346                                 } else { false };
1347                                 if contains {
1348                                         counterparty_hash_commitment_number.remove(&k);
1349                                 }
1350                                 false
1351                         });
1352                 }
1353
1354                 Ok(())
1355         }
1356
1357         pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey, logger: &L) where L::Target: Logger {
1358                 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
1359                 // so that a remote monitor doesn't learn anything unless there is a malicious close.
1360                 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
1361                 // timeouts)
1362                 for &(ref htlc, _) in &htlc_outputs {
1363                         self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
1364                 }
1365
1366                 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
1367                 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
1368                 self.current_counterparty_commitment_txid = Some(txid);
1369                 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
1370                 self.current_counterparty_commitment_number = commitment_number;
1371                 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
1372                 match self.their_cur_revocation_points {
1373                         Some(old_points) => {
1374                                 if old_points.0 == commitment_number + 1 {
1375                                         self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
1376                                 } else if old_points.0 == commitment_number + 2 {
1377                                         if let Some(old_second_point) = old_points.2 {
1378                                                 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
1379                                         } else {
1380                                                 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1381                                         }
1382                                 } else {
1383                                         self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1384                                 }
1385                         },
1386                         None => {
1387                                 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1388                         }
1389                 }
1390                 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
1391                 for htlc in htlc_outputs {
1392                         if htlc.0.transaction_output_index.is_some() {
1393                                 htlcs.push(htlc.0);
1394                         }
1395                 }
1396                 self.counterparty_tx_cache.per_htlc.insert(txid, htlcs);
1397         }
1398
1399         /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
1400         /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
1401         /// is important that any clones of this channel monitor (including remote clones) by kept
1402         /// up-to-date as our holder commitment transaction is updated.
1403         /// Panics if set_on_holder_tx_csv has never been called.
1404         fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>) -> Result<(), MonitorUpdateError> {
1405                 // block for Rust 1.34 compat
1406                 let mut new_holder_commitment_tx = {
1407                         let trusted_tx = holder_commitment_tx.trust();
1408                         let txid = trusted_tx.txid();
1409                         let tx_keys = trusted_tx.keys();
1410                         self.current_holder_commitment_number = trusted_tx.commitment_number();
1411                         HolderSignedTx {
1412                                 txid,
1413                                 revocation_key: tx_keys.revocation_key,
1414                                 a_htlc_key: tx_keys.broadcaster_htlc_key,
1415                                 b_htlc_key: tx_keys.countersignatory_htlc_key,
1416                                 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1417                                 per_commitment_point: tx_keys.per_commitment_point,
1418                                 feerate_per_kw: trusted_tx.feerate_per_kw(),
1419                                 htlc_outputs,
1420                         }
1421                 };
1422                 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
1423                 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
1424                 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
1425                 if self.holder_tx_signed {
1426                         return Err(MonitorUpdateError("Latest holder commitment signed has already been signed, update is rejected"));
1427                 }
1428                 Ok(())
1429         }
1430
1431         /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
1432         /// commitment_tx_infos which contain the payment hash have been revoked.
1433         fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B, fee_estimator: &F, logger: &L)
1434         where B::Target: BroadcasterInterface,
1435                     F::Target: FeeEstimator,
1436                     L::Target: Logger,
1437         {
1438                 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
1439
1440                 // If the channel is force closed, try to claim the output from this preimage.
1441                 // First check if a counterparty commitment transaction has been broadcasted:
1442                 macro_rules! claim_htlcs {
1443                         ($commitment_number: expr, $txid: expr) => {
1444                                 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs($commitment_number, $txid, None);
1445                                 self.onchain_tx_handler.update_claims_view(&Vec::new(), htlc_claim_reqs, None, broadcaster, fee_estimator, logger);
1446                         }
1447                 }
1448                 if let Some(txid) = self.current_counterparty_commitment_txid {
1449                         if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1450                                 claim_htlcs!(*commitment_number, txid);
1451                                 return;
1452                         }
1453                 }
1454                 if let Some(txid) = self.prev_counterparty_commitment_txid {
1455                         if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1456                                 claim_htlcs!(*commitment_number, txid);
1457                                 return;
1458                         }
1459                 }
1460
1461                 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
1462                 // claiming the HTLC output from each of the holder commitment transactions.
1463                 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
1464                 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
1465                 // holder commitment transactions.
1466                 if self.broadcasted_holder_revokable_script.is_some() {
1467                         let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
1468                         self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, None, broadcaster, fee_estimator, logger);
1469                         if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
1470                                 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx);
1471                                 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, None, broadcaster, fee_estimator, logger);
1472                         }
1473                 }
1474         }
1475
1476         pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
1477                 where B::Target: BroadcasterInterface,
1478                                         L::Target: Logger,
1479         {
1480                 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
1481                         broadcaster.broadcast_transaction(tx);
1482                 }
1483                 self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
1484         }
1485
1486         pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: &F, logger: &L) -> Result<(), MonitorUpdateError>
1487         where B::Target: BroadcasterInterface,
1488                     F::Target: FeeEstimator,
1489                     L::Target: Logger,
1490         {
1491                 // ChannelMonitor updates may be applied after force close if we receive a
1492                 // preimage for a broadcasted commitment transaction HTLC output that we'd
1493                 // like to claim on-chain. If this is the case, we no longer have guaranteed
1494                 // access to the monitor's update ID, so we use a sentinel value instead.
1495                 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
1496                         match updates.updates[0] {
1497                                 ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
1498                                 _ => panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage"),
1499                         }
1500                         assert_eq!(updates.updates.len(), 1);
1501                 } else if self.latest_update_id + 1 != updates.update_id {
1502                         panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
1503                 }
1504                 for update in updates.updates.iter() {
1505                         match update {
1506                                 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs } => {
1507                                         log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
1508                                         if self.lockdown_from_offchain { panic!(); }
1509                                         self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone())?
1510                                 }
1511                                 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_revocation_point } => {
1512                                         log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
1513                                         self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_revocation_point, logger)
1514                                 },
1515                                 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
1516                                         log_trace!(logger, "Updating ChannelMonitor with payment preimage");
1517                                         self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, fee_estimator, logger)
1518                                 },
1519                                 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
1520                                         log_trace!(logger, "Updating ChannelMonitor with commitment secret");
1521                                         self.provide_secret(*idx, *secret)?
1522                                 },
1523                                 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
1524                                         log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
1525                                         self.lockdown_from_offchain = true;
1526                                         if *should_broadcast {
1527                                                 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
1528                                         } else if !self.holder_tx_signed {
1529                                                 log_error!(logger, "You have a toxic holder commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_holder_commitment_txn to be informed of manual action to take");
1530                                         } else {
1531                                                 // If we generated a MonitorEvent::CommitmentTxBroadcasted, the ChannelManager
1532                                                 // will still give us a ChannelForceClosed event with !should_broadcast, but we
1533                                                 // shouldn't print the scary warning above.
1534                                                 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
1535                                         }
1536                                 }
1537                         }
1538                 }
1539                 self.latest_update_id = updates.update_id;
1540                 Ok(())
1541         }
1542
1543         pub fn get_latest_update_id(&self) -> u64 {
1544                 self.latest_update_id
1545         }
1546
1547         pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
1548                 &self.funding_info
1549         }
1550
1551         pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
1552                 // If we've detected a counterparty commitment tx on chain, we must include it in the set
1553                 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
1554                 // its trivial to do, double-check that here.
1555                 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
1556                         self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
1557                 }
1558                 &self.outputs_to_watch
1559         }
1560
1561         pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
1562                 let mut ret = Vec::new();
1563                 mem::swap(&mut ret, &mut self.pending_monitor_events);
1564                 ret
1565         }
1566
1567         pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
1568                 let mut ret = Vec::new();
1569                 mem::swap(&mut ret, &mut self.pending_events);
1570                 ret
1571         }
1572
1573         /// Can only fail if idx is < get_min_seen_secret
1574         fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
1575                 self.commitment_secrets.get_secret(idx)
1576         }
1577
1578         pub(crate) fn get_min_seen_secret(&self) -> u64 {
1579                 self.commitment_secrets.get_min_seen_secret()
1580         }
1581
1582         pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1583                 self.current_counterparty_commitment_number
1584         }
1585
1586         pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1587                 self.current_holder_commitment_number
1588         }
1589
1590         /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
1591         /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
1592         /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
1593         /// HTLC-Success/HTLC-Timeout transactions.
1594         /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
1595         /// revoked counterparty commitment tx
1596         fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<ClaimRequest>, (Txid, Vec<(u32, TxOut)>)) where L::Target: Logger {
1597                 // Most secp and related errors trying to create keys means we have no hope of constructing
1598                 // a spend transaction...so we return no transactions to broadcast
1599                 let mut claimable_outpoints = Vec::new();
1600                 let mut watch_outputs = Vec::new();
1601
1602                 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1603                 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
1604
1605                 macro_rules! ignore_error {
1606                         ( $thing : expr ) => {
1607                                 match $thing {
1608                                         Ok(a) => a,
1609                                         Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs))
1610                                 }
1611                         };
1612                 }
1613
1614                 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1615                 if commitment_number >= self.get_min_seen_secret() {
1616                         let secret = self.get_secret(commitment_number).unwrap();
1617                         let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1618                         let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1619                         let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint));
1620                         let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.counterparty_tx_cache.counterparty_delayed_payment_base_key));
1621
1622                         let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_tx_cache.on_counterparty_tx_csv, &delayed_key);
1623                         let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
1624
1625                         // First, process non-htlc outputs (to_holder & to_counterparty)
1626                         for (idx, outp) in tx.output.iter().enumerate() {
1627                                 if outp.script_pubkey == revokeable_p2wsh {
1628                                         let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: outp.value, htlc: None, on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv};
1629                                         claimable_outpoints.push(ClaimRequest { absolute_timelock: height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 }, witness_data});
1630                                 }
1631                         }
1632
1633                         // Then, try to find revoked htlc outputs
1634                         if let Some(ref per_commitment_data) = per_commitment_option {
1635                                 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1636                                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1637                                                 if transaction_output_index as usize >= tx.output.len() ||
1638                                                                 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1639                                                         return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
1640                                                 }
1641                                                 let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }, amount: tx.output[transaction_output_index as usize].value, htlc: Some(htlc.clone()), on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv};
1642                                                 claimable_outpoints.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data });
1643                                         }
1644                                 }
1645                         }
1646
1647                         // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
1648                         if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
1649                                 // We're definitely a counterparty commitment transaction!
1650                                 log_trace!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
1651                                 for (idx, outp) in tx.output.iter().enumerate() {
1652                                         watch_outputs.push((idx as u32, outp.clone()));
1653                                 }
1654                                 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
1655
1656                                 macro_rules! check_htlc_fails {
1657                                         ($txid: expr, $commitment_tx: expr) => {
1658                                                 if let Some(ref outpoints) = self.counterparty_claimable_outpoints.get($txid) {
1659                                                         for &(ref htlc, ref source_option) in outpoints.iter() {
1660                                                                 if let &Some(ref source) = source_option {
1661                                                                         self.onchain_events_waiting_threshold_conf.retain(|ref entry| {
1662                                                                                 if entry.height != height { return true; }
1663                                                                                 match entry.event {
1664                                                                                          OnchainEvent::HTLCUpdate { ref htlc_update } => {
1665                                                                                                  htlc_update.0 != **source
1666                                                                                          },
1667                                                                                          _ => true,
1668                                                                                 }
1669                                                                         });
1670                                                                         let entry = OnchainEventEntry {
1671                                                                                 txid: *$txid,
1672                                                                                 height,
1673                                                                                 event: OnchainEvent::HTLCUpdate {
1674                                                                                         htlc_update: ((**source).clone(), htlc.payment_hash.clone())
1675                                                                                 },
1676                                                                         };
1677                                                                         log_info!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of revoked counterparty commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, entry.confirmation_threshold());
1678                                                                         self.onchain_events_waiting_threshold_conf.push(entry);
1679                                                                 }
1680                                                         }
1681                                                 }
1682                                         }
1683                                 }
1684                                 if let Some(ref txid) = self.current_counterparty_commitment_txid {
1685                                         check_htlc_fails!(txid, "current");
1686                                 }
1687                                 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
1688                                         check_htlc_fails!(txid, "counterparty");
1689                                 }
1690                                 // No need to check holder commitment txn, symmetric HTLCSource must be present as per-htlc data on counterparty commitment tx
1691                         }
1692                 } else if let Some(per_commitment_data) = per_commitment_option {
1693                         // While this isn't useful yet, there is a potential race where if a counterparty
1694                         // revokes a state at the same time as the commitment transaction for that state is
1695                         // confirmed, and the watchtower receives the block before the user, the user could
1696                         // upload a new ChannelMonitor with the revocation secret but the watchtower has
1697                         // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
1698                         // not being generated by the above conditional. Thus, to be safe, we go ahead and
1699                         // insert it here.
1700                         for (idx, outp) in tx.output.iter().enumerate() {
1701                                 watch_outputs.push((idx as u32, outp.clone()));
1702                         }
1703                         self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
1704
1705                         log_trace!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
1706
1707                         macro_rules! check_htlc_fails {
1708                                 ($txid: expr, $commitment_tx: expr, $id: tt) => {
1709                                         if let Some(ref latest_outpoints) = self.counterparty_claimable_outpoints.get($txid) {
1710                                                 $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1711                                                         if let &Some(ref source) = source_option {
1712                                                                 // Check if the HTLC is present in the commitment transaction that was
1713                                                                 // broadcast, but not if it was below the dust limit, which we should
1714                                                                 // fail backwards immediately as there is no way for us to learn the
1715                                                                 // payment_preimage.
1716                                                                 // Note that if the dust limit were allowed to change between
1717                                                                 // commitment transactions we'd want to be check whether *any*
1718                                                                 // broadcastable commitment transaction has the HTLC in it, but it
1719                                                                 // cannot currently change after channel initialization, so we don't
1720                                                                 // need to here.
1721                                                                 for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
1722                                                                         if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
1723                                                                                 continue $id;
1724                                                                         }
1725                                                                 }
1726                                                                 log_trace!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of counterparty commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1727                                                                 self.onchain_events_waiting_threshold_conf.retain(|ref entry| {
1728                                                                         if entry.height != height { return true; }
1729                                                                         match entry.event {
1730                                                                                  OnchainEvent::HTLCUpdate { ref htlc_update } => {
1731                                                                                          htlc_update.0 != **source
1732                                                                                  },
1733                                                                                  _ => true,
1734                                                                         }
1735                                                                 });
1736                                                                 self.onchain_events_waiting_threshold_conf.push(OnchainEventEntry {
1737                                                                         txid: *$txid,
1738                                                                         height,
1739                                                                         event: OnchainEvent::HTLCUpdate {
1740                                                                                 htlc_update: ((**source).clone(), htlc.payment_hash.clone())
1741                                                                         },
1742                                                                 });
1743                                                         }
1744                                                 }
1745                                         }
1746                                 }
1747                         }
1748                         if let Some(ref txid) = self.current_counterparty_commitment_txid {
1749                                 check_htlc_fails!(txid, "current", 'current_loop);
1750                         }
1751                         if let Some(ref txid) = self.prev_counterparty_commitment_txid {
1752                                 check_htlc_fails!(txid, "previous", 'prev_loop);
1753                         }
1754
1755                         let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs(commitment_number, commitment_txid, Some(tx));
1756                         for req in htlc_claim_reqs {
1757                                 claimable_outpoints.push(req);
1758                         }
1759
1760                 }
1761                 (claimable_outpoints, (commitment_txid, watch_outputs))
1762         }
1763
1764         fn get_counterparty_htlc_output_claim_reqs(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>) -> Vec<ClaimRequest> {
1765                 let mut claims = Vec::new();
1766                 if let Some(htlc_outputs) = self.counterparty_claimable_outpoints.get(&commitment_txid) {
1767                         if let Some(revocation_points) = self.their_cur_revocation_points {
1768                                 let revocation_point_option =
1769                                         // If the counterparty commitment tx is the latest valid state, use their latest
1770                                         // per-commitment point
1771                                         if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
1772                                         else if let Some(point) = revocation_points.2.as_ref() {
1773                                                 // If counterparty commitment tx is the state previous to the latest valid state, use
1774                                                 // their previous per-commitment point (non-atomicity of revocation means it's valid for
1775                                                 // them to temporarily have two valid commitment txns from our viewpoint)
1776                                                 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
1777                                         } else { None };
1778                                 if let Some(revocation_point) = revocation_point_option {
1779                                         for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
1780                                                 if let Some(transaction_output_index) = htlc.transaction_output_index {
1781                                                         if let Some(transaction) = tx {
1782                                                                 if transaction_output_index as usize >= transaction.output.len() ||
1783                                                                         transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1784                                                                                 return claims; // Corrupted per_commitment_data, fuck this user
1785                                                                         }
1786                                                         }
1787                                                         let preimage =
1788                                                                 if htlc.offered {
1789                                                                         if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) {
1790                                                                                 Some(*p)
1791                                                                         } else { None }
1792                                                                 } else { None };
1793                                                         let aggregable = if !htlc.offered { false } else { true };
1794                                                         if preimage.is_some() || !htlc.offered {
1795                                                                 let witness_data = InputMaterial::CounterpartyHTLC { per_commitment_point: *revocation_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, preimage, htlc: htlc.clone() };
1796                                                                 claims.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data });
1797                                                         }
1798                                                 }
1799                                         }
1800                                 }
1801                         }
1802                 }
1803                 claims
1804         }
1805
1806         /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
1807         fn check_spend_counterparty_htlc<L: Deref>(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec<ClaimRequest>, Option<(Txid, Vec<(u32, TxOut)>)>) where L::Target: Logger {
1808                 let htlc_txid = tx.txid();
1809                 if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 {
1810                         return (Vec::new(), None)
1811                 }
1812
1813                 macro_rules! ignore_error {
1814                         ( $thing : expr ) => {
1815                                 match $thing {
1816                                         Ok(a) => a,
1817                                         Err(_) => return (Vec::new(), None)
1818                                 }
1819                         };
1820                 }
1821
1822                 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
1823                 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1824                 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1825
1826                 log_trace!(logger, "Counterparty HTLC broadcast {}:{}", htlc_txid, 0);
1827                 let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key,  per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: tx.output[0].value, htlc: None, on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv };
1828                 let claimable_outpoints = vec!(ClaimRequest { absolute_timelock: height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: htlc_txid, vout: 0}, witness_data });
1829                 let outputs = vec![(0, tx.output[0].clone())];
1830                 (claimable_outpoints, Some((htlc_txid, outputs)))
1831         }
1832
1833         // Returns (1) `ClaimRequest`s that can be given to the OnChainTxHandler, so that the handler can
1834         // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
1835         // script so we can detect whether a holder transaction has been seen on-chain.
1836         fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx) -> (Vec<ClaimRequest>, Option<(Script, PublicKey, PublicKey)>) {
1837                 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
1838
1839                 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
1840                 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
1841
1842                 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
1843                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1844                                 claim_requests.push(ClaimRequest { absolute_timelock: ::std::u32::MAX, aggregable: false, outpoint: BitcoinOutPoint { txid: holder_tx.txid, vout: transaction_output_index as u32 },
1845                                         witness_data: InputMaterial::HolderHTLC {
1846                                                 preimage: if !htlc.offered {
1847                                                                 if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1848                                                                         Some(preimage.clone())
1849                                                                 } else {
1850                                                                         // We can't build an HTLC-Success transaction without the preimage
1851                                                                         continue;
1852                                                                 }
1853                                                         } else { None },
1854                                                 amount: htlc.amount_msat,
1855                                 }});
1856                         }
1857                 }
1858
1859                 (claim_requests, broadcasted_holder_revokable_script)
1860         }
1861
1862         // Returns holder HTLC outputs to watch and react to in case of spending.
1863         fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
1864                 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
1865                 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
1866                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1867                                 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
1868                         }
1869                 }
1870                 watch_outputs
1871         }
1872
1873         /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
1874         /// revoked using data in holder_claimable_outpoints.
1875         /// Should not be used if check_spend_revoked_transaction succeeds.
1876         fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<ClaimRequest>, (Txid, Vec<(u32, TxOut)>)) where L::Target: Logger {
1877                 let commitment_txid = tx.txid();
1878                 let mut claim_requests = Vec::new();
1879                 let mut watch_outputs = Vec::new();
1880
1881                 macro_rules! wait_threshold_conf {
1882                         ($source: expr, $commitment_tx: expr, $payment_hash: expr) => {
1883                                 self.onchain_events_waiting_threshold_conf.retain(|ref entry| {
1884                                         if entry.height != height { return true; }
1885                                         match entry.event {
1886                                                  OnchainEvent::HTLCUpdate { ref htlc_update } => {
1887                                                          htlc_update.0 != $source
1888                                                  },
1889                                                  _ => true,
1890                                         }
1891                                 });
1892                                 let entry = OnchainEventEntry {
1893                                         txid: commitment_txid,
1894                                         height,
1895                                         event: OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash) },
1896                                 };
1897                                 log_trace!(logger, "Failing HTLC with payment_hash {} from {} holder commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, entry.confirmation_threshold());
1898                                 self.onchain_events_waiting_threshold_conf.push(entry);
1899                         }
1900                 }
1901
1902                 macro_rules! append_onchain_update {
1903                         ($updates: expr, $to_watch: expr) => {
1904                                 claim_requests = $updates.0;
1905                                 self.broadcasted_holder_revokable_script = $updates.1;
1906                                 watch_outputs.append(&mut $to_watch);
1907                         }
1908                 }
1909
1910                 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
1911                 let mut is_holder_tx = false;
1912
1913                 if self.current_holder_commitment_tx.txid == commitment_txid {
1914                         is_holder_tx = true;
1915                         log_trace!(logger, "Got latest holder commitment tx broadcast, searching for available HTLCs to claim");
1916                         let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
1917                         let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
1918                         append_onchain_update!(res, to_watch);
1919                 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
1920                         if holder_tx.txid == commitment_txid {
1921                                 is_holder_tx = true;
1922                                 log_trace!(logger, "Got previous holder commitment tx broadcast, searching for available HTLCs to claim");
1923                                 let res = self.get_broadcasted_holder_claims(holder_tx);
1924                                 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
1925                                 append_onchain_update!(res, to_watch);
1926                         }
1927                 }
1928
1929                 macro_rules! fail_dust_htlcs_after_threshold_conf {
1930                         ($holder_tx: expr) => {
1931                                 for &(ref htlc, _, ref source) in &$holder_tx.htlc_outputs {
1932                                         if htlc.transaction_output_index.is_none() {
1933                                                 if let &Some(ref source) = source {
1934                                                         wait_threshold_conf!(source.clone(), "lastest", htlc.payment_hash.clone());
1935                                                 }
1936                                         }
1937                                 }
1938                         }
1939                 }
1940
1941                 if is_holder_tx {
1942                         fail_dust_htlcs_after_threshold_conf!(self.current_holder_commitment_tx);
1943                         if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
1944                                 fail_dust_htlcs_after_threshold_conf!(holder_tx);
1945                         }
1946                 }
1947
1948                 (claim_requests, (commitment_txid, watch_outputs))
1949         }
1950
1951         pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
1952                 log_trace!(logger, "Getting signed latest holder commitment transaction!");
1953                 self.holder_tx_signed = true;
1954                 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
1955                 let txid = commitment_tx.txid();
1956                 let mut res = vec![commitment_tx];
1957                 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
1958                         if let Some(vout) = htlc.0.transaction_output_index {
1959                                 let preimage = if !htlc.0.offered {
1960                                         if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
1961                                                 // We can't build an HTLC-Success transaction without the preimage
1962                                                 continue;
1963                                         }
1964                                 } else { None };
1965                                 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
1966                                         &::bitcoin::OutPoint { txid, vout }, &preimage) {
1967                                         res.push(htlc_tx);
1968                                 }
1969                         }
1970                 }
1971                 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
1972                 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
1973                 return res;
1974         }
1975
1976         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
1977         fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
1978                 log_trace!(logger, "Getting signed copy of latest holder commitment transaction!");
1979                 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
1980                 let txid = commitment_tx.txid();
1981                 let mut res = vec![commitment_tx];
1982                 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
1983                         if let Some(vout) = htlc.0.transaction_output_index {
1984                                 let preimage = if !htlc.0.offered {
1985                                         if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
1986                                                 // We can't build an HTLC-Success transaction without the preimage
1987                                                 continue;
1988                                         }
1989                                 } else { None };
1990                                 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
1991                                         &::bitcoin::OutPoint { txid, vout }, &preimage) {
1992                                         res.push(htlc_tx);
1993                                 }
1994                         }
1995                 }
1996                 return res
1997         }
1998
1999         pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L)-> Vec<(Txid, Vec<(u32, TxOut)>)>
2000                 where B::Target: BroadcasterInterface,
2001                       F::Target: FeeEstimator,
2002                                         L::Target: Logger,
2003         {
2004                 let txn_matched = self.filter_block(txdata);
2005                 for tx in &txn_matched {
2006                         let mut output_val = 0;
2007                         for out in tx.output.iter() {
2008                                 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2009                                 output_val += out.value;
2010                                 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2011                         }
2012                 }
2013
2014                 let block_hash = header.block_hash();
2015                 log_trace!(logger, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len());
2016
2017                 let mut watch_outputs = Vec::new();
2018                 let mut claimable_outpoints = Vec::new();
2019                 for tx in &txn_matched {
2020                         if tx.input.len() == 1 {
2021                                 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2022                                 // commitment transactions and HTLC transactions will all only ever have one input,
2023                                 // which is an easy way to filter out any potential non-matching txn for lazy
2024                                 // filters.
2025                                 let prevout = &tx.input[0].previous_output;
2026                                 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
2027                                         if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
2028                                                 let (mut new_outpoints, new_outputs) = self.check_spend_counterparty_transaction(&tx, height, &logger);
2029                                                 if !new_outputs.1.is_empty() {
2030                                                         watch_outputs.push(new_outputs);
2031                                                 }
2032                                                 if new_outpoints.is_empty() {
2033                                                         let (mut new_outpoints, new_outputs) = self.check_spend_holder_transaction(&tx, height, &logger);
2034                                                         if !new_outputs.1.is_empty() {
2035                                                                 watch_outputs.push(new_outputs);
2036                                                         }
2037                                                         claimable_outpoints.append(&mut new_outpoints);
2038                                                 }
2039                                                 claimable_outpoints.append(&mut new_outpoints);
2040                                         }
2041                                 } else {
2042                                         if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&prevout.txid) {
2043                                                 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(&tx, commitment_number, height, &logger);
2044                                                 claimable_outpoints.append(&mut new_outpoints);
2045                                                 if let Some(new_outputs) = new_outputs_option {
2046                                                         watch_outputs.push(new_outputs);
2047                                                 }
2048                                         }
2049                                 }
2050                         }
2051                         // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
2052                         // can also be resolved in a few other ways which can have more than one output. Thus,
2053                         // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
2054                         self.is_resolving_htlc_output(&tx, height, &logger);
2055
2056                         self.is_paying_spendable_output(&tx, height, &logger);
2057                 }
2058                 let should_broadcast = self.would_broadcast_at_height(height, &logger);
2059                 if should_broadcast {
2060                         claimable_outpoints.push(ClaimRequest { absolute_timelock: height, aggregable: false, outpoint: BitcoinOutPoint { txid: self.funding_info.0.txid.clone(), vout: self.funding_info.0.index as u32 }, witness_data: InputMaterial::Funding { funding_redeemscript: self.funding_redeemscript.clone() }});
2061                 }
2062                 if should_broadcast {
2063                         self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
2064                         let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2065                         self.holder_tx_signed = true;
2066                         let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
2067                         let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
2068                         if !new_outputs.is_empty() {
2069                                 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
2070                         }
2071                         claimable_outpoints.append(&mut new_outpoints);
2072                 }
2073
2074                 // Find which on-chain events have reached their confirmation threshold.
2075                 let onchain_events_waiting_threshold_conf =
2076                         self.onchain_events_waiting_threshold_conf.drain(..).collect::<Vec<_>>();
2077                 let mut onchain_events_reaching_threshold_conf = Vec::new();
2078                 for entry in onchain_events_waiting_threshold_conf {
2079                         if entry.has_reached_confirmation_threshold(height) {
2080                                 onchain_events_reaching_threshold_conf.push(entry);
2081                         } else {
2082                                 self.onchain_events_waiting_threshold_conf.push(entry);
2083                         }
2084                 }
2085
2086                 // Used to check for duplicate HTLC resolutions.
2087                 #[cfg(debug_assertions)]
2088                 let unmatured_htlcs: Vec<_> = self.onchain_events_waiting_threshold_conf
2089                         .iter()
2090                         .filter_map(|entry| match &entry.event {
2091                                 OnchainEvent::HTLCUpdate { htlc_update } => Some(htlc_update.0.clone()),
2092                                 OnchainEvent::MaturingOutput { .. } => None,
2093                         })
2094                         .collect();
2095                 #[cfg(debug_assertions)]
2096                 let mut matured_htlcs = Vec::new();
2097
2098                 // Produce actionable events from on-chain events having reached their threshold.
2099                 for entry in onchain_events_reaching_threshold_conf.drain(..) {
2100                         match entry.event {
2101                                 OnchainEvent::HTLCUpdate { htlc_update } => {
2102                                         // Check for duplicate HTLC resolutions.
2103                                         #[cfg(debug_assertions)]
2104                                         {
2105                                                 debug_assert!(
2106                                                         unmatured_htlcs.iter().find(|&htlc| htlc == &htlc_update.0).is_none(),
2107                                                         "An unmature HTLC transaction conflicts with a maturing one; failed to \
2108                                                          call block_disconnected for a block containing the conflicting \
2109                                                          transaction.");
2110                                                 debug_assert!(
2111                                                         matured_htlcs.iter().find(|&htlc| htlc == &htlc_update.0).is_none(),
2112                                                         "A matured HTLC transaction conflicts with a maturing one; failed to \
2113                                                          call block_disconnected for a block containing the conflicting \
2114                                                          transaction.");
2115                                                 matured_htlcs.push(htlc_update.0.clone());
2116                                         }
2117
2118                                         log_trace!(logger, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!((htlc_update.1).0));
2119                                         self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2120                                                 payment_hash: htlc_update.1,
2121                                                 payment_preimage: None,
2122                                                 source: htlc_update.0,
2123                                         }));
2124                                 },
2125                                 OnchainEvent::MaturingOutput { descriptor } => {
2126                                         log_trace!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
2127                                         self.pending_events.push(Event::SpendableOutputs {
2128                                                 outputs: vec![descriptor]
2129                                         });
2130                                 }
2131                         }
2132                 }
2133
2134                 self.onchain_tx_handler.update_claims_view(&txn_matched, claimable_outpoints, Some(height), &&*broadcaster, &&*fee_estimator, &&*logger);
2135                 self.last_block_hash = block_hash;
2136
2137                 // Determine new outputs to watch by comparing against previously known outputs to watch,
2138                 // updating the latter in the process.
2139                 watch_outputs.retain(|&(ref txid, ref txouts)| {
2140                         let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
2141                         self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
2142                 });
2143                 #[cfg(test)]
2144                 {
2145                         // If we see a transaction for which we registered outputs previously,
2146                         // make sure the registered scriptpubkey at the expected index match
2147                         // the actual transaction output one. We failed this case before #653.
2148                         for tx in &txn_matched {
2149                                 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
2150                                         for idx_and_script in outputs.iter() {
2151                                                 assert!((idx_and_script.0 as usize) < tx.output.len());
2152                                                 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
2153                                         }
2154                                 }
2155                         }
2156                 }
2157                 watch_outputs
2158         }
2159
2160         pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
2161                 where B::Target: BroadcasterInterface,
2162                       F::Target: FeeEstimator,
2163                       L::Target: Logger,
2164         {
2165                 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
2166
2167                 //We may discard:
2168                 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
2169                 //- maturing spendable output has transaction paying us has been disconnected
2170                 self.onchain_events_waiting_threshold_conf.retain(|ref entry| entry.height != height);
2171
2172                 self.onchain_tx_handler.block_disconnected(height, broadcaster, fee_estimator, logger);
2173
2174                 self.last_block_hash = header.prev_blockhash;
2175         }
2176
2177         /// Filters a block's `txdata` for transactions spending watched outputs or for any child
2178         /// transactions thereof.
2179         fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
2180                 let mut matched_txn = HashSet::new();
2181                 txdata.iter().filter(|&&(_, tx)| {
2182                         let mut matches = self.spends_watched_output(tx);
2183                         for input in tx.input.iter() {
2184                                 if matches { break; }
2185                                 if matched_txn.contains(&input.previous_output.txid) {
2186                                         matches = true;
2187                                 }
2188                         }
2189                         if matches {
2190                                 matched_txn.insert(tx.txid());
2191                         }
2192                         matches
2193                 }).map(|(_, tx)| *tx).collect()
2194         }
2195
2196         /// Checks if a given transaction spends any watched outputs.
2197         fn spends_watched_output(&self, tx: &Transaction) -> bool {
2198                 for input in tx.input.iter() {
2199                         if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
2200                                 for (idx, _script_pubkey) in outputs.iter() {
2201                                         if *idx == input.previous_output.vout {
2202                                                 #[cfg(test)]
2203                                                 {
2204                                                         // If the expected script is a known type, check that the witness
2205                                                         // appears to be spending the correct type (ie that the match would
2206                                                         // actually succeed in BIP 158/159-style filters).
2207                                                         if _script_pubkey.is_v0_p2wsh() {
2208                                                                 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().clone()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
2209                                                         } else if _script_pubkey.is_v0_p2wpkh() {
2210                                                                 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
2211                                                         } else { panic!(); }
2212                                                 }
2213                                                 return true;
2214                                         }
2215                                 }
2216                         }
2217                 }
2218
2219                 false
2220         }
2221
2222         fn would_broadcast_at_height<L: Deref>(&self, height: u32, logger: &L) -> bool where L::Target: Logger {
2223                 // We need to consider all HTLCs which are:
2224                 //  * in any unrevoked counterparty commitment transaction, as they could broadcast said
2225                 //    transactions and we'd end up in a race, or
2226                 //  * are in our latest holder commitment transaction, as this is the thing we will
2227                 //    broadcast if we go on-chain.
2228                 // Note that we consider HTLCs which were below dust threshold here - while they don't
2229                 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
2230                 // to the source, and if we don't fail the channel we will have to ensure that the next
2231                 // updates that peer sends us are update_fails, failing the channel if not. It's probably
2232                 // easier to just fail the channel as this case should be rare enough anyway.
2233                 macro_rules! scan_commitment {
2234                         ($htlcs: expr, $holder_tx: expr) => {
2235                                 for ref htlc in $htlcs {
2236                                         // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
2237                                         // chain with enough room to claim the HTLC without our counterparty being able to
2238                                         // time out the HTLC first.
2239                                         // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
2240                                         // concern is being able to claim the corresponding inbound HTLC (on another
2241                                         // channel) before it expires. In fact, we don't even really care if our
2242                                         // counterparty here claims such an outbound HTLC after it expired as long as we
2243                                         // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
2244                                         // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
2245                                         // we give ourselves a few blocks of headroom after expiration before going
2246                                         // on-chain for an expired HTLC.
2247                                         // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
2248                                         // from us until we've reached the point where we go on-chain with the
2249                                         // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
2250                                         // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
2251                                         //  aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
2252                                         //      inbound_cltv == height + CLTV_CLAIM_BUFFER
2253                                         //      outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
2254                                         //      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
2255                                         //      CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
2256                                         //      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
2257                                         //  The final, above, condition is checked for statically in channelmanager
2258                                         //  with CHECK_CLTV_EXPIRY_SANITY_2.
2259                                         let htlc_outbound = $holder_tx == htlc.offered;
2260                                         if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
2261                                            (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
2262                                                 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
2263                                                 return true;
2264                                         }
2265                                 }
2266                         }
2267                 }
2268
2269                 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
2270
2271                 if let Some(ref txid) = self.current_counterparty_commitment_txid {
2272                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2273                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2274                         }
2275                 }
2276                 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
2277                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2278                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2279                         }
2280                 }
2281
2282                 false
2283         }
2284
2285         /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
2286         /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
2287         fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2288                 'outer_loop: for input in &tx.input {
2289                         let mut payment_data = None;
2290                         let revocation_sig_claim = (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC) && input.witness[1].len() == 33)
2291                                 || (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::AcceptedHTLC) && input.witness[1].len() == 33);
2292                         let accepted_preimage_claim = input.witness.len() == 5 && HTLCType::scriptlen_to_htlctype(input.witness[4].len()) == Some(HTLCType::AcceptedHTLC);
2293                         let offered_preimage_claim = input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC);
2294
2295                         macro_rules! log_claim {
2296                                 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
2297                                         // We found the output in question, but aren't failing it backwards
2298                                         // as we have no corresponding source and no valid counterparty commitment txid
2299                                         // to try a weak source binding with same-hash, same-value still-valid offered HTLC.
2300                                         // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction.
2301                                         let outbound_htlc = $holder_tx == $htlc.offered;
2302                                         if ($holder_tx && revocation_sig_claim) ||
2303                                                         (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
2304                                                 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
2305                                                         $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2306                                                         if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2307                                                         if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
2308                                         } else {
2309                                                 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
2310                                                         $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2311                                                         if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2312                                                         if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2313                                         }
2314                                 }
2315                         }
2316
2317                         macro_rules! check_htlc_valid_counterparty {
2318                                 ($counterparty_txid: expr, $htlc_output: expr) => {
2319                                         if let Some(txid) = $counterparty_txid {
2320                                                 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2321                                                         if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2322                                                                 if let &Some(ref source) = pending_source {
2323                                                                         log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
2324                                                                         payment_data = Some(((**source).clone(), $htlc_output.payment_hash));
2325                                                                         break;
2326                                                                 }
2327                                                         }
2328                                                 }
2329                                         }
2330                                 }
2331                         }
2332
2333                         macro_rules! scan_commitment {
2334                                 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
2335                                         for (ref htlc_output, source_option) in $htlcs {
2336                                                 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2337                                                         if let Some(ref source) = source_option {
2338                                                                 log_claim!($tx_info, $holder_tx, htlc_output, true);
2339                                                                 // We have a resolution of an HTLC either from one of our latest
2340                                                                 // holder commitment transactions or an unrevoked counterparty commitment
2341                                                                 // transaction. This implies we either learned a preimage, the HTLC
2342                                                                 // has timed out, or we screwed up. In any case, we should now
2343                                                                 // resolve the source HTLC with the original sender.
2344                                                                 payment_data = Some(((*source).clone(), htlc_output.payment_hash));
2345                                                         } else if !$holder_tx {
2346                                                                         check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
2347                                                                 if payment_data.is_none() {
2348                                                                         check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
2349                                                                 }
2350                                                         }
2351                                                         if payment_data.is_none() {
2352                                                                 log_claim!($tx_info, $holder_tx, htlc_output, false);
2353                                                                 continue 'outer_loop;
2354                                                         }
2355                                                 }
2356                                         }
2357                                 }
2358                         }
2359
2360                         if input.previous_output.txid == self.current_holder_commitment_tx.txid {
2361                                 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2362                                         "our latest holder commitment tx", true);
2363                         }
2364                         if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
2365                                 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
2366                                         scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2367                                                 "our previous holder commitment tx", true);
2368                                 }
2369                         }
2370                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
2371                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2372                                         "counterparty commitment tx", false);
2373                         }
2374
2375                         // Check that scan_commitment, above, decided there is some source worth relaying an
2376                         // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2377                         if let Some((source, payment_hash)) = payment_data {
2378                                 let mut payment_preimage = PaymentPreimage([0; 32]);
2379                                 if accepted_preimage_claim {
2380                                         if !self.pending_monitor_events.iter().any(
2381                                                 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
2382                                                 payment_preimage.0.copy_from_slice(&input.witness[3]);
2383                                                 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2384                                                         source,
2385                                                         payment_preimage: Some(payment_preimage),
2386                                                         payment_hash
2387                                                 }));
2388                                         }
2389                                 } else if offered_preimage_claim {
2390                                         if !self.pending_monitor_events.iter().any(
2391                                                 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
2392                                                         upd.source == source
2393                                                 } else { false }) {
2394                                                 payment_preimage.0.copy_from_slice(&input.witness[1]);
2395                                                 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2396                                                         source,
2397                                                         payment_preimage: Some(payment_preimage),
2398                                                         payment_hash
2399                                                 }));
2400                                         }
2401                                 } else {
2402                                         self.onchain_events_waiting_threshold_conf.retain(|ref entry| {
2403                                                 if entry.height != height { return true; }
2404                                                 match entry.event {
2405                                                          OnchainEvent::HTLCUpdate { ref htlc_update } => {
2406                                                                  htlc_update.0 != source
2407                                                          },
2408                                                          _ => true,
2409                                                 }
2410                                         });
2411                                         let entry = OnchainEventEntry {
2412                                                 txid: tx.txid(),
2413                                                 height,
2414                                                 event: OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash) },
2415                                         };
2416                                         log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height{})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
2417                                         self.onchain_events_waiting_threshold_conf.push(entry);
2418                                 }
2419                         }
2420                 }
2421         }
2422
2423         /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
2424         fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2425                 let mut spendable_output = None;
2426                 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
2427                         if i > ::std::u16::MAX as usize {
2428                                 // While it is possible that an output exists on chain which is greater than the
2429                                 // 2^16th output in a given transaction, this is only possible if the output is not
2430                                 // in a lightning transaction and was instead placed there by some third party who
2431                                 // wishes to give us money for no reason.
2432                                 // Namely, any lightning transactions which we pre-sign will never have anywhere
2433                                 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
2434                                 // scripts are not longer than one byte in length and because they are inherently
2435                                 // non-standard due to their size.
2436                                 // Thus, it is completely safe to ignore such outputs, and while it may result in
2437                                 // us ignoring non-lightning fund to us, that is only possible if someone fills
2438                                 // nearly a full block with garbage just to hit this case.
2439                                 continue;
2440                         }
2441                         if outp.script_pubkey == self.destination_script {
2442                                 spendable_output =  Some(SpendableOutputDescriptor::StaticOutput {
2443                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2444                                         output: outp.clone(),
2445                                 });
2446                                 break;
2447                         } else if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
2448                                 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
2449                                         spendable_output =  Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
2450                                                 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2451                                                 per_commitment_point: broadcasted_holder_revokable_script.1,
2452                                                 to_self_delay: self.on_holder_tx_csv,
2453                                                 output: outp.clone(),
2454                                                 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
2455                                                 channel_keys_id: self.channel_keys_id,
2456                                                 channel_value_satoshis: self.channel_value_satoshis,
2457                                         }));
2458                                         break;
2459                                 }
2460                         } else if self.counterparty_payment_script == outp.script_pubkey {
2461                                 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
2462                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2463                                         output: outp.clone(),
2464                                         channel_keys_id: self.channel_keys_id,
2465                                         channel_value_satoshis: self.channel_value_satoshis,
2466                                 }));
2467                                 break;
2468                         } else if outp.script_pubkey == self.shutdown_script {
2469                                 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
2470                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2471                                         output: outp.clone(),
2472                                 });
2473                         }
2474                 }
2475                 if let Some(spendable_output) = spendable_output {
2476                         let entry = OnchainEventEntry {
2477                                 txid: tx.txid(),
2478                                 height: height,
2479                                 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
2480                         };
2481                         log_trace!(logger, "Maturing {} until {}", log_spendable!(spendable_output), entry.confirmation_threshold());
2482                         self.onchain_events_waiting_threshold_conf.push(entry);
2483                 }
2484         }
2485 }
2486
2487 /// `Persist` defines behavior for persisting channel monitors: this could mean
2488 /// writing once to disk, and/or uploading to one or more backup services.
2489 ///
2490 /// Note that for every new monitor, you **must** persist the new `ChannelMonitor`
2491 /// to disk/backups. And, on every update, you **must** persist either the
2492 /// `ChannelMonitorUpdate` or the updated monitor itself. Otherwise, there is risk
2493 /// of situations such as revoking a transaction, then crashing before this
2494 /// revocation can be persisted, then unintentionally broadcasting a revoked
2495 /// transaction and losing money. This is a risk because previous channel states
2496 /// are toxic, so it's important that whatever channel state is persisted is
2497 /// kept up-to-date.
2498 pub trait Persist<ChannelSigner: Sign>: Send + Sync {
2499         /// Persist a new channel's data. The data can be stored any way you want, but
2500         /// the identifier provided by Rust-Lightning is the channel's outpoint (and
2501         /// it is up to you to maintain a correct mapping between the outpoint and the
2502         /// stored channel data). Note that you **must** persist every new monitor to
2503         /// disk. See the `Persist` trait documentation for more details.
2504         ///
2505         /// See [`ChannelMonitor::write`] for writing out a `ChannelMonitor`,
2506         /// and [`ChannelMonitorUpdateErr`] for requirements when returning errors.
2507         fn persist_new_channel(&self, id: OutPoint, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
2508
2509         /// Update one channel's data. The provided `ChannelMonitor` has already
2510         /// applied the given update.
2511         ///
2512         /// Note that on every update, you **must** persist either the
2513         /// `ChannelMonitorUpdate` or the updated monitor itself to disk/backups. See
2514         /// the `Persist` trait documentation for more details.
2515         ///
2516         /// If an implementer chooses to persist the updates only, they need to make
2517         /// sure that all the updates are applied to the `ChannelMonitors` *before*
2518         /// the set of channel monitors is given to the `ChannelManager`
2519         /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
2520         /// applying a monitor update to a monitor. If full `ChannelMonitors` are
2521         /// persisted, then there is no need to persist individual updates.
2522         ///
2523         /// Note that there could be a performance tradeoff between persisting complete
2524         /// channel monitors on every update vs. persisting only updates and applying
2525         /// them in batches. The size of each monitor grows `O(number of state updates)`
2526         /// whereas updates are small and `O(1)`.
2527         ///
2528         /// See [`ChannelMonitor::write`] for writing out a `ChannelMonitor`,
2529         /// [`ChannelMonitorUpdate::write`] for writing out an update, and
2530         /// [`ChannelMonitorUpdateErr`] for requirements when returning errors.
2531         fn update_persisted_channel(&self, id: OutPoint, update: &ChannelMonitorUpdate, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
2532 }
2533
2534 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
2535 where
2536         T::Target: BroadcasterInterface,
2537         F::Target: FeeEstimator,
2538         L::Target: Logger,
2539 {
2540         fn block_connected(&self, block: &Block, height: u32) {
2541                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
2542                 self.0.block_connected(&block.header, &txdata, height, &*self.1, &*self.2, &*self.3);
2543         }
2544
2545         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
2546                 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
2547         }
2548 }
2549
2550 const MAX_ALLOC_SIZE: usize = 64*1024;
2551
2552 impl<'a, Signer: Sign, K: KeysInterface<Signer = Signer>> ReadableArgs<&'a K>
2553                 for (BlockHash, ChannelMonitor<Signer>) {
2554         fn read<R: ::std::io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
2555                 macro_rules! unwrap_obj {
2556                         ($key: expr) => {
2557                                 match $key {
2558                                         Ok(res) => res,
2559                                         Err(_) => return Err(DecodeError::InvalidValue),
2560                                 }
2561                         }
2562                 }
2563
2564                 let _ver: u8 = Readable::read(reader)?;
2565                 let min_ver: u8 = Readable::read(reader)?;
2566                 if min_ver > SERIALIZATION_VERSION {
2567                         return Err(DecodeError::UnknownVersion);
2568                 }
2569
2570                 let latest_update_id: u64 = Readable::read(reader)?;
2571                 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
2572
2573                 let destination_script = Readable::read(reader)?;
2574                 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
2575                         0 => {
2576                                 let revokable_address = Readable::read(reader)?;
2577                                 let per_commitment_point = Readable::read(reader)?;
2578                                 let revokable_script = Readable::read(reader)?;
2579                                 Some((revokable_address, per_commitment_point, revokable_script))
2580                         },
2581                         1 => { None },
2582                         _ => return Err(DecodeError::InvalidValue),
2583                 };
2584                 let counterparty_payment_script = Readable::read(reader)?;
2585                 let shutdown_script = Readable::read(reader)?;
2586
2587                 let channel_keys_id = Readable::read(reader)?;
2588                 let holder_revocation_basepoint = Readable::read(reader)?;
2589                 // Technically this can fail and serialize fail a round-trip, but only for serialization of
2590                 // barely-init'd ChannelMonitors that we can't do anything with.
2591                 let outpoint = OutPoint {
2592                         txid: Readable::read(reader)?,
2593                         index: Readable::read(reader)?,
2594                 };
2595                 let funding_info = (outpoint, Readable::read(reader)?);
2596                 let current_counterparty_commitment_txid = Readable::read(reader)?;
2597                 let prev_counterparty_commitment_txid = Readable::read(reader)?;
2598
2599                 let counterparty_tx_cache = Readable::read(reader)?;
2600                 let funding_redeemscript = Readable::read(reader)?;
2601                 let channel_value_satoshis = Readable::read(reader)?;
2602
2603                 let their_cur_revocation_points = {
2604                         let first_idx = <U48 as Readable>::read(reader)?.0;
2605                         if first_idx == 0 {
2606                                 None
2607                         } else {
2608                                 let first_point = Readable::read(reader)?;
2609                                 let second_point_slice: [u8; 33] = Readable::read(reader)?;
2610                                 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
2611                                         Some((first_idx, first_point, None))
2612                                 } else {
2613                                         Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
2614                                 }
2615                         }
2616                 };
2617
2618                 let on_holder_tx_csv: u16 = Readable::read(reader)?;
2619
2620                 let commitment_secrets = Readable::read(reader)?;
2621
2622                 macro_rules! read_htlc_in_commitment {
2623                         () => {
2624                                 {
2625                                         let offered: bool = Readable::read(reader)?;
2626                                         let amount_msat: u64 = Readable::read(reader)?;
2627                                         let cltv_expiry: u32 = Readable::read(reader)?;
2628                                         let payment_hash: PaymentHash = Readable::read(reader)?;
2629                                         let transaction_output_index: Option<u32> = Readable::read(reader)?;
2630
2631                                         HTLCOutputInCommitment {
2632                                                 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
2633                                         }
2634                                 }
2635                         }
2636                 }
2637
2638                 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
2639                 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
2640                 for _ in 0..counterparty_claimable_outpoints_len {
2641                         let txid: Txid = Readable::read(reader)?;
2642                         let htlcs_count: u64 = Readable::read(reader)?;
2643                         let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
2644                         for _ in 0..htlcs_count {
2645                                 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
2646                         }
2647                         if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
2648                                 return Err(DecodeError::InvalidValue);
2649                         }
2650                 }
2651
2652                 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
2653                 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
2654                 for _ in 0..counterparty_commitment_txn_on_chain_len {
2655                         let txid: Txid = Readable::read(reader)?;
2656                         let commitment_number = <U48 as Readable>::read(reader)?.0;
2657                         if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
2658                                 return Err(DecodeError::InvalidValue);
2659                         }
2660                 }
2661
2662                 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
2663                 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
2664                 for _ in 0..counterparty_hash_commitment_number_len {
2665                         let payment_hash: PaymentHash = Readable::read(reader)?;
2666                         let commitment_number = <U48 as Readable>::read(reader)?.0;
2667                         if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
2668                                 return Err(DecodeError::InvalidValue);
2669                         }
2670                 }
2671
2672                 macro_rules! read_holder_tx {
2673                         () => {
2674                                 {
2675                                         let txid = Readable::read(reader)?;
2676                                         let revocation_key = Readable::read(reader)?;
2677                                         let a_htlc_key = Readable::read(reader)?;
2678                                         let b_htlc_key = Readable::read(reader)?;
2679                                         let delayed_payment_key = Readable::read(reader)?;
2680                                         let per_commitment_point = Readable::read(reader)?;
2681                                         let feerate_per_kw: u32 = Readable::read(reader)?;
2682
2683                                         let htlcs_len: u64 = Readable::read(reader)?;
2684                                         let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128));
2685                                         for _ in 0..htlcs_len {
2686                                                 let htlc = read_htlc_in_commitment!();
2687                                                 let sigs = match <u8 as Readable>::read(reader)? {
2688                                                         0 => None,
2689                                                         1 => Some(Readable::read(reader)?),
2690                                                         _ => return Err(DecodeError::InvalidValue),
2691                                                 };
2692                                                 htlcs.push((htlc, sigs, Readable::read(reader)?));
2693                                         }
2694
2695                                         HolderSignedTx {
2696                                                 txid,
2697                                                 revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, per_commitment_point, feerate_per_kw,
2698                                                 htlc_outputs: htlcs
2699                                         }
2700                                 }
2701                         }
2702                 }
2703
2704                 let prev_holder_signed_commitment_tx = match <u8 as Readable>::read(reader)? {
2705                         0 => None,
2706                         1 => {
2707                                 Some(read_holder_tx!())
2708                         },
2709                         _ => return Err(DecodeError::InvalidValue),
2710                 };
2711                 let current_holder_commitment_tx = read_holder_tx!();
2712
2713                 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
2714                 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
2715
2716                 let payment_preimages_len: u64 = Readable::read(reader)?;
2717                 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
2718                 for _ in 0..payment_preimages_len {
2719                         let preimage: PaymentPreimage = Readable::read(reader)?;
2720                         let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2721                         if let Some(_) = payment_preimages.insert(hash, preimage) {
2722                                 return Err(DecodeError::InvalidValue);
2723                         }
2724                 }
2725
2726                 let pending_monitor_events_len: u64 = Readable::read(reader)?;
2727                 let mut pending_monitor_events = Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3)));
2728                 for _ in 0..pending_monitor_events_len {
2729                         let ev = match <u8 as Readable>::read(reader)? {
2730                                 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
2731                                 1 => MonitorEvent::CommitmentTxBroadcasted(funding_info.0),
2732                                 _ => return Err(DecodeError::InvalidValue)
2733                         };
2734                         pending_monitor_events.push(ev);
2735                 }
2736
2737                 let pending_events_len: u64 = Readable::read(reader)?;
2738                 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
2739                 for _ in 0..pending_events_len {
2740                         if let Some(event) = MaybeReadable::read(reader)? {
2741                                 pending_events.push(event);
2742                         }
2743                 }
2744
2745                 let last_block_hash: BlockHash = Readable::read(reader)?;
2746
2747                 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
2748                 let mut onchain_events_waiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
2749                 for _ in 0..waiting_threshold_conf_len {
2750                         let txid = Readable::read(reader)?;
2751                         let height = Readable::read(reader)?;
2752                         let event = match <u8 as Readable>::read(reader)? {
2753                                 0 => {
2754                                         let htlc_source = Readable::read(reader)?;
2755                                         let hash = Readable::read(reader)?;
2756                                         OnchainEvent::HTLCUpdate {
2757                                                 htlc_update: (htlc_source, hash)
2758                                         }
2759                                 },
2760                                 1 => {
2761                                         let descriptor = Readable::read(reader)?;
2762                                         OnchainEvent::MaturingOutput {
2763                                                 descriptor
2764                                         }
2765                                 },
2766                                 _ => return Err(DecodeError::InvalidValue),
2767                         };
2768                         onchain_events_waiting_threshold_conf.push(OnchainEventEntry { txid, height, event });
2769                 }
2770
2771                 let outputs_to_watch_len: u64 = Readable::read(reader)?;
2772                 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
2773                 for _ in 0..outputs_to_watch_len {
2774                         let txid = Readable::read(reader)?;
2775                         let outputs_len: u64 = Readable::read(reader)?;
2776                         let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
2777                         for _ in 0..outputs_len {
2778                                 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
2779                         }
2780                         if let Some(_) = outputs_to_watch.insert(txid, outputs) {
2781                                 return Err(DecodeError::InvalidValue);
2782                         }
2783                 }
2784                 let onchain_tx_handler = ReadableArgs::read(reader, keys_manager)?;
2785
2786                 let lockdown_from_offchain = Readable::read(reader)?;
2787                 let holder_tx_signed = Readable::read(reader)?;
2788
2789                 let mut secp_ctx = Secp256k1::new();
2790                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
2791
2792                 Ok((last_block_hash.clone(), ChannelMonitor {
2793                         inner: Mutex::new(ChannelMonitorImpl {
2794                                 latest_update_id,
2795                                 commitment_transaction_number_obscure_factor,
2796
2797                                 destination_script,
2798                                 broadcasted_holder_revokable_script,
2799                                 counterparty_payment_script,
2800                                 shutdown_script,
2801
2802                                 channel_keys_id,
2803                                 holder_revocation_basepoint,
2804                                 funding_info,
2805                                 current_counterparty_commitment_txid,
2806                                 prev_counterparty_commitment_txid,
2807
2808                                 counterparty_tx_cache,
2809                                 funding_redeemscript,
2810                                 channel_value_satoshis,
2811                                 their_cur_revocation_points,
2812
2813                                 on_holder_tx_csv,
2814
2815                                 commitment_secrets,
2816                                 counterparty_claimable_outpoints,
2817                                 counterparty_commitment_txn_on_chain,
2818                                 counterparty_hash_commitment_number,
2819
2820                                 prev_holder_signed_commitment_tx,
2821                                 current_holder_commitment_tx,
2822                                 current_counterparty_commitment_number,
2823                                 current_holder_commitment_number,
2824
2825                                 payment_preimages,
2826                                 pending_monitor_events,
2827                                 pending_events,
2828
2829                                 onchain_events_waiting_threshold_conf,
2830                                 outputs_to_watch,
2831
2832                                 onchain_tx_handler,
2833
2834                                 lockdown_from_offchain,
2835                                 holder_tx_signed,
2836
2837                                 last_block_hash,
2838                                 secp_ctx,
2839                         }),
2840                 }))
2841         }
2842 }
2843
2844 #[cfg(test)]
2845 mod tests {
2846         use bitcoin::blockdata::constants::genesis_block;
2847         use bitcoin::blockdata::script::{Script, Builder};
2848         use bitcoin::blockdata::opcodes;
2849         use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
2850         use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
2851         use bitcoin::util::bip143;
2852         use bitcoin::hashes::Hash;
2853         use bitcoin::hashes::sha256::Hash as Sha256;
2854         use bitcoin::hashes::hex::FromHex;
2855         use bitcoin::hash_types::Txid;
2856         use bitcoin::network::constants::Network;
2857         use hex;
2858         use chain::channelmonitor::ChannelMonitor;
2859         use chain::transaction::OutPoint;
2860         use ln::channelmanager::{PaymentPreimage, PaymentHash};
2861         use ln::onchaintx::{OnchainTxHandler, InputDescriptors};
2862         use ln::chan_utils;
2863         use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
2864         use util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
2865         use bitcoin::secp256k1::key::{SecretKey,PublicKey};
2866         use bitcoin::secp256k1::Secp256k1;
2867         use std::sync::{Arc, Mutex};
2868         use chain::keysinterface::InMemorySigner;
2869
2870         #[test]
2871         fn test_prune_preimages() {
2872                 let secp_ctx = Secp256k1::new();
2873                 let logger = Arc::new(TestLogger::new());
2874                 let broadcaster = Arc::new(TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())});
2875                 let fee_estimator = Arc::new(TestFeeEstimator { sat_per_kw: 253 });
2876
2877                 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
2878                 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
2879
2880                 let mut preimages = Vec::new();
2881                 {
2882                         for i in 0..20 {
2883                                 let preimage = PaymentPreimage([i; 32]);
2884                                 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2885                                 preimages.push((preimage, hash));
2886                         }
2887                 }
2888
2889                 macro_rules! preimages_slice_to_htlc_outputs {
2890                         ($preimages_slice: expr) => {
2891                                 {
2892                                         let mut res = Vec::new();
2893                                         for (idx, preimage) in $preimages_slice.iter().enumerate() {
2894                                                 res.push((HTLCOutputInCommitment {
2895                                                         offered: true,
2896                                                         amount_msat: 0,
2897                                                         cltv_expiry: 0,
2898                                                         payment_hash: preimage.1.clone(),
2899                                                         transaction_output_index: Some(idx as u32),
2900                                                 }, None));
2901                                         }
2902                                         res
2903                                 }
2904                         }
2905                 }
2906                 macro_rules! preimages_to_holder_htlcs {
2907                         ($preimages_slice: expr) => {
2908                                 {
2909                                         let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
2910                                         let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
2911                                         res
2912                                 }
2913                         }
2914                 }
2915
2916                 macro_rules! test_preimages_exist {
2917                         ($preimages_slice: expr, $monitor: expr) => {
2918                                 for preimage in $preimages_slice {
2919                                         assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
2920                                 }
2921                         }
2922                 }
2923
2924                 let keys = InMemorySigner::new(
2925                         &secp_ctx,
2926                         SecretKey::from_slice(&[41; 32]).unwrap(),
2927                         SecretKey::from_slice(&[41; 32]).unwrap(),
2928                         SecretKey::from_slice(&[41; 32]).unwrap(),
2929                         SecretKey::from_slice(&[41; 32]).unwrap(),
2930                         SecretKey::from_slice(&[41; 32]).unwrap(),
2931                         [41; 32],
2932                         0,
2933                         [0; 32]
2934                 );
2935
2936                 let counterparty_pubkeys = ChannelPublicKeys {
2937                         funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
2938                         revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
2939                         payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
2940                         delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
2941                         htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
2942                 };
2943                 let funding_outpoint = OutPoint { txid: Default::default(), index: u16::max_value() };
2944                 let channel_parameters = ChannelTransactionParameters {
2945                         holder_pubkeys: keys.holder_channel_pubkeys.clone(),
2946                         holder_selected_contest_delay: 66,
2947                         is_outbound_from_holder: true,
2948                         counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
2949                                 pubkeys: counterparty_pubkeys,
2950                                 selected_contest_delay: 67,
2951                         }),
2952                         funding_outpoint: Some(funding_outpoint),
2953                 };
2954                 // Prune with one old state and a holder commitment tx holding a few overlaps with the
2955                 // old state.
2956                 let last_block_hash = genesis_block(Network::Testnet).block_hash();
2957                 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
2958                                                   &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()), 0, &Script::new(),
2959                                                   (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
2960                                                   &channel_parameters,
2961                                                   Script::new(), 46, 0,
2962                                                   HolderCommitmentTransaction::dummy(), last_block_hash);
2963
2964                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
2965                 let dummy_txid = dummy_tx.txid();
2966                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
2967                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
2968                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
2969                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
2970                 for &(ref preimage, ref hash) in preimages.iter() {
2971                         monitor.provide_payment_preimage(hash, preimage, &broadcaster, &fee_estimator, &logger);
2972                 }
2973
2974                 // Now provide a secret, pruning preimages 10-15
2975                 let mut secret = [0; 32];
2976                 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2977                 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
2978                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
2979                 test_preimages_exist!(&preimages[0..10], monitor);
2980                 test_preimages_exist!(&preimages[15..20], monitor);
2981
2982                 // Now provide a further secret, pruning preimages 15-17
2983                 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2984                 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
2985                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
2986                 test_preimages_exist!(&preimages[0..10], monitor);
2987                 test_preimages_exist!(&preimages[17..20], monitor);
2988
2989                 // Now update holder commitment tx info, pruning only element 18 as we still care about the
2990                 // previous commitment tx's preimages too
2991                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
2992                 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2993                 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
2994                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
2995                 test_preimages_exist!(&preimages[0..10], monitor);
2996                 test_preimages_exist!(&preimages[18..20], monitor);
2997
2998                 // But if we do it again, we'll prune 5-10
2999                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
3000                 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3001                 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
3002                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
3003                 test_preimages_exist!(&preimages[0..5], monitor);
3004         }
3005
3006         #[test]
3007         fn test_claim_txn_weight_computation() {
3008                 // We test Claim txn weight, knowing that we want expected weigth and
3009                 // not actual case to avoid sigs and time-lock delays hell variances.
3010
3011                 let secp_ctx = Secp256k1::new();
3012                 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
3013                 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
3014                 let mut sum_actual_sigs = 0;
3015
3016                 macro_rules! sign_input {
3017                         ($sighash_parts: expr, $idx: expr, $amount: expr, $input_type: expr, $sum_actual_sigs: expr) => {
3018                                 let htlc = HTLCOutputInCommitment {
3019                                         offered: if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::OfferedHTLC { true } else { false },
3020                                         amount_msat: 0,
3021                                         cltv_expiry: 2 << 16,
3022                                         payment_hash: PaymentHash([1; 32]),
3023                                         transaction_output_index: Some($idx as u32),
3024                                 };
3025                                 let redeem_script = if *$input_type == InputDescriptors::RevokedOutput { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) };
3026                                 let sighash = hash_to_message!(&$sighash_parts.signature_hash($idx, &redeem_script, $amount, SigHashType::All)[..]);
3027                                 let sig = secp_ctx.sign(&sighash, &privkey);
3028                                 $sighash_parts.access_witness($idx).push(sig.serialize_der().to_vec());
3029                                 $sighash_parts.access_witness($idx)[0].push(SigHashType::All as u8);
3030                                 sum_actual_sigs += $sighash_parts.access_witness($idx)[0].len();
3031                                 if *$input_type == InputDescriptors::RevokedOutput {
3032                                         $sighash_parts.access_witness($idx).push(vec!(1));
3033                                 } else if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::RevokedReceivedHTLC {
3034                                         $sighash_parts.access_witness($idx).push(pubkey.clone().serialize().to_vec());
3035                                 } else if *$input_type == InputDescriptors::ReceivedHTLC {
3036                                         $sighash_parts.access_witness($idx).push(vec![0]);
3037                                 } else {
3038                                         $sighash_parts.access_witness($idx).push(PaymentPreimage([1; 32]).0.to_vec());
3039                                 }
3040                                 $sighash_parts.access_witness($idx).push(redeem_script.into_bytes());
3041                                 println!("witness[0] {}", $sighash_parts.access_witness($idx)[0].len());
3042                                 println!("witness[1] {}", $sighash_parts.access_witness($idx)[1].len());
3043                                 println!("witness[2] {}", $sighash_parts.access_witness($idx)[2].len());
3044                         }
3045                 }
3046
3047                 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
3048                 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
3049
3050                 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
3051                 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3052                 for i in 0..4 {
3053                         claim_tx.input.push(TxIn {
3054                                 previous_output: BitcoinOutPoint {
3055                                         txid,
3056                                         vout: i,
3057                                 },
3058                                 script_sig: Script::new(),
3059                                 sequence: 0xfffffffd,
3060                                 witness: Vec::new(),
3061                         });
3062                 }
3063                 claim_tx.output.push(TxOut {
3064                         script_pubkey: script_pubkey.clone(),
3065                         value: 0,
3066                 });
3067                 let base_weight = claim_tx.get_weight();
3068                 let inputs_des = vec![InputDescriptors::RevokedOutput, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedReceivedHTLC];
3069                 {
3070                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3071                         for (idx, inp) in inputs_des.iter().enumerate() {
3072                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3073                         }
3074                 }
3075                 assert_eq!(base_weight + OnchainTxHandler::<InMemorySigner>::get_witnesses_weight(&inputs_des[..]),  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
3076
3077                 // Claim tx with 1 offered HTLCs, 3 received HTLCs
3078                 claim_tx.input.clear();
3079                 sum_actual_sigs = 0;
3080                 for i in 0..4 {
3081                         claim_tx.input.push(TxIn {
3082                                 previous_output: BitcoinOutPoint {
3083                                         txid,
3084                                         vout: i,
3085                                 },
3086                                 script_sig: Script::new(),
3087                                 sequence: 0xfffffffd,
3088                                 witness: Vec::new(),
3089                         });
3090                 }
3091                 let base_weight = claim_tx.get_weight();
3092                 let inputs_des = vec![InputDescriptors::OfferedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC];
3093                 {
3094                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3095                         for (idx, inp) in inputs_des.iter().enumerate() {
3096                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3097                         }
3098                 }
3099                 assert_eq!(base_weight + OnchainTxHandler::<InMemorySigner>::get_witnesses_weight(&inputs_des[..]),  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
3100
3101                 // Justice tx with 1 revoked HTLC-Success tx output
3102                 claim_tx.input.clear();
3103                 sum_actual_sigs = 0;
3104                 claim_tx.input.push(TxIn {
3105                         previous_output: BitcoinOutPoint {
3106                                 txid,
3107                                 vout: 0,
3108                         },
3109                         script_sig: Script::new(),
3110                         sequence: 0xfffffffd,
3111                         witness: Vec::new(),
3112                 });
3113                 let base_weight = claim_tx.get_weight();
3114                 let inputs_des = vec![InputDescriptors::RevokedOutput];
3115                 {
3116                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3117                         for (idx, inp) in inputs_des.iter().enumerate() {
3118                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3119                         }
3120                 }
3121                 assert_eq!(base_weight + OnchainTxHandler::<InMemorySigner>::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_des.len() - sum_actual_sigs));
3122         }
3123
3124         // Further testing is done in the ChannelManager integration tests.
3125 }