1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::BlockHeader;
24 use bitcoin::blockdata::transaction::{TxOut,Transaction};
25 use bitcoin::blockdata::script::{Script, Builder};
26 use bitcoin::blockdata::opcodes;
28 use bitcoin::hashes::Hash;
29 use bitcoin::hashes::sha256::Hash as Sha256;
30 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
33 use bitcoin::secp256k1::{SecretKey, PublicKey};
34 use bitcoin::secp256k1;
36 use ln::{PaymentHash, PaymentPreimage};
37 use ln::msgs::DecodeError;
39 use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCType, ChannelTransactionParameters, HolderCommitmentTransaction};
40 use ln::channelmanager::HTLCSource;
42 use chain::{BestBlock, WatchedOutput};
43 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
44 use chain::transaction::{OutPoint, TransactionData};
45 use chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, Sign, KeysInterface};
46 use chain::onchaintx::OnchainTxHandler;
47 use chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
49 use util::logger::Logger;
50 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writer, Writeable, U48, OptionDeserWrapper};
52 use util::events::Event;
56 use io::{self, Error};
60 /// An update generated by the underlying Channel itself which contains some new information the
61 /// ChannelMonitor should be made aware of.
62 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq))]
65 pub struct ChannelMonitorUpdate {
66 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
67 /// The sequence number of this update. Updates *must* be replayed in-order according to this
68 /// sequence number (and updates may panic if they are not). The update_id values are strictly
69 /// increasing and increase by one for each new update, with one exception specified below.
71 /// This sequence number is also used to track up to which points updates which returned
72 /// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
73 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
75 /// The only instance where update_id values are not strictly increasing is the case where we
76 /// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
77 /// its docs for more details.
82 /// (1) a channel has been force closed and
83 /// (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
84 /// this channel's (the backward link's) broadcasted commitment transaction
85 /// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
86 /// with the update providing said payment preimage. No other update types are allowed after
88 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
90 impl Writeable for ChannelMonitorUpdate {
91 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
92 write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
93 self.update_id.write(w)?;
94 (self.updates.len() as u64).write(w)?;
95 for update_step in self.updates.iter() {
96 update_step.write(w)?;
98 write_tlv_fields!(w, {});
102 impl Readable for ChannelMonitorUpdate {
103 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
104 let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
105 let update_id: u64 = Readable::read(r)?;
106 let len: u64 = Readable::read(r)?;
107 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
109 if let Some(upd) = MaybeReadable::read(r)? {
113 read_tlv_fields!(r, {});
114 Ok(Self { update_id, updates })
118 /// An event to be processed by the ChannelManager.
119 #[derive(Clone, PartialEq)]
120 pub enum MonitorEvent {
121 /// A monitor event containing an HTLCUpdate.
122 HTLCEvent(HTLCUpdate),
124 /// A monitor event that the Channel's commitment transaction was confirmed.
125 CommitmentTxConfirmed(OutPoint),
127 /// Indicates a [`ChannelMonitor`] update has completed. See
128 /// [`ChannelMonitorUpdateErr::TemporaryFailure`] for more information on how this is used.
130 /// [`ChannelMonitorUpdateErr::TemporaryFailure`]: super::ChannelMonitorUpdateErr::TemporaryFailure
132 /// The funding outpoint of the [`ChannelMonitor`] that was updated
133 funding_txo: OutPoint,
134 /// The Update ID from [`ChannelMonitorUpdate::update_id`] which was applied or
135 /// [`ChannelMonitor::get_latest_update_id`].
137 /// Note that this should only be set to a given update's ID if all previous updates for the
138 /// same [`ChannelMonitor`] have been applied and persisted.
139 monitor_update_id: u64,
142 /// Indicates a [`ChannelMonitor`] update has failed. See
143 /// [`ChannelMonitorUpdateErr::PermanentFailure`] for more information on how this is used.
145 /// [`ChannelMonitorUpdateErr::PermanentFailure`]: super::ChannelMonitorUpdateErr::PermanentFailure
146 UpdateFailed(OutPoint),
148 impl_writeable_tlv_based_enum_upgradable!(MonitorEvent,
149 // Note that UpdateCompleted and UpdateFailed are currently never serialized to disk as they are
150 // generated only in ChainMonitor
151 (0, UpdateCompleted) => {
152 (0, funding_txo, required),
153 (2, monitor_update_id, required),
157 (4, CommitmentTxConfirmed),
161 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
162 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
163 /// preimage claim backward will lead to loss of funds.
164 #[derive(Clone, PartialEq)]
165 pub struct HTLCUpdate {
166 pub(crate) payment_hash: PaymentHash,
167 pub(crate) payment_preimage: Option<PaymentPreimage>,
168 pub(crate) source: HTLCSource,
169 pub(crate) htlc_value_satoshis: Option<u64>,
171 impl_writeable_tlv_based!(HTLCUpdate, {
172 (0, payment_hash, required),
173 (1, htlc_value_satoshis, option),
174 (2, source, required),
175 (4, payment_preimage, option),
178 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
179 /// instead claiming it in its own individual transaction.
180 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
181 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
182 /// HTLC-Success transaction.
183 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
184 /// transaction confirmed (and we use it in a few more, equivalent, places).
185 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
186 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
187 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
188 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
189 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
190 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
191 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
192 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
193 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
194 /// accurate block height.
195 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
196 /// with at worst this delay, so we are not only using this value as a mercy for them but also
197 /// us as a safeguard to delay with enough time.
198 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
199 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding
200 /// inbound HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us
203 /// Note that this is a library-wide security assumption. If a reorg deeper than this number of
204 /// blocks occurs, counterparties may be able to steal funds or claims made by and balances exposed
205 /// by a [`ChannelMonitor`] may be incorrect.
206 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
207 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
208 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
209 // keep bumping another claim tx to solve the outpoint.
210 pub const ANTI_REORG_DELAY: u32 = 6;
211 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
212 /// refuse to accept a new HTLC.
214 /// This is used for a few separate purposes:
215 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
216 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
218 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
219 /// condition with the above), we will fail this HTLC without telling the user we received it,
221 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
222 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
224 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
225 /// in a race condition between the user connecting a block (which would fail it) and the user
226 /// providing us the preimage (which would claim it).
227 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
229 // TODO(devrandom) replace this with HolderCommitmentTransaction
230 #[derive(Clone, PartialEq)]
231 struct HolderSignedTx {
232 /// txid of the transaction in tx, just used to make comparison faster
234 revocation_key: PublicKey,
235 a_htlc_key: PublicKey,
236 b_htlc_key: PublicKey,
237 delayed_payment_key: PublicKey,
238 per_commitment_point: PublicKey,
239 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
240 to_self_value_sat: u64,
243 impl_writeable_tlv_based!(HolderSignedTx, {
245 // Note that this is filled in with data from OnchainTxHandler if it's missing.
246 // For HolderSignedTx objects serialized with 0.0.100+, this should be filled in.
247 (1, to_self_value_sat, (default_value, u64::max_value())),
248 (2, revocation_key, required),
249 (4, a_htlc_key, required),
250 (6, b_htlc_key, required),
251 (8, delayed_payment_key, required),
252 (10, per_commitment_point, required),
253 (12, feerate_per_kw, required),
254 (14, htlc_outputs, vec_type)
257 /// We use this to track static counterparty commitment transaction data and to generate any
258 /// justice or 2nd-stage preimage/timeout transactions.
260 struct CounterpartyCommitmentParameters {
261 counterparty_delayed_payment_base_key: PublicKey,
262 counterparty_htlc_base_key: PublicKey,
263 on_counterparty_tx_csv: u16,
266 impl Writeable for CounterpartyCommitmentParameters {
267 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
268 w.write_all(&byte_utils::be64_to_array(0))?;
269 write_tlv_fields!(w, {
270 (0, self.counterparty_delayed_payment_base_key, required),
271 (2, self.counterparty_htlc_base_key, required),
272 (4, self.on_counterparty_tx_csv, required),
277 impl Readable for CounterpartyCommitmentParameters {
278 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
279 let counterparty_commitment_transaction = {
280 // Versions prior to 0.0.100 had some per-HTLC state stored here, which is no longer
281 // used. Read it for compatibility.
282 let per_htlc_len: u64 = Readable::read(r)?;
283 for _ in 0..per_htlc_len {
284 let _txid: Txid = Readable::read(r)?;
285 let htlcs_count: u64 = Readable::read(r)?;
286 for _ in 0..htlcs_count {
287 let _htlc: HTLCOutputInCommitment = Readable::read(r)?;
291 let mut counterparty_delayed_payment_base_key = OptionDeserWrapper(None);
292 let mut counterparty_htlc_base_key = OptionDeserWrapper(None);
293 let mut on_counterparty_tx_csv: u16 = 0;
294 read_tlv_fields!(r, {
295 (0, counterparty_delayed_payment_base_key, required),
296 (2, counterparty_htlc_base_key, required),
297 (4, on_counterparty_tx_csv, required),
299 CounterpartyCommitmentParameters {
300 counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
301 counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
302 on_counterparty_tx_csv,
305 Ok(counterparty_commitment_transaction)
309 /// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
310 /// transaction causing it.
312 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
314 struct OnchainEventEntry {
320 impl OnchainEventEntry {
321 fn confirmation_threshold(&self) -> u32 {
322 let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
324 OnchainEvent::MaturingOutput {
325 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
327 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
328 // it's broadcastable when we see the previous block.
329 conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
331 OnchainEvent::FundingSpendConfirmation { on_local_output_csv: Some(csv), .. } |
332 OnchainEvent::HTLCSpendConfirmation { on_to_local_output_csv: Some(csv), .. } => {
333 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
334 // it's broadcastable when we see the previous block.
335 conf_threshold = cmp::max(conf_threshold, self.height + csv as u32 - 1);
342 fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
343 best_block.height() >= self.confirmation_threshold()
347 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
348 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
351 /// An outbound HTLC failing after a transaction is confirmed. Used
352 /// * when an outbound HTLC output is spent by us after the HTLC timed out
353 /// * an outbound HTLC which was not present in the commitment transaction which appeared
354 /// on-chain (either because it was not fully committed to or it was dust).
355 /// Note that this is *not* used for preimage claims, as those are passed upstream immediately,
356 /// appearing only as an `HTLCSpendConfirmation`, below.
359 payment_hash: PaymentHash,
360 htlc_value_satoshis: Option<u64>,
361 /// None in the second case, above, ie when there is no relevant output in the commitment
362 /// transaction which appeared on chain.
363 commitment_tx_output_idx: Option<u32>,
366 descriptor: SpendableOutputDescriptor,
368 /// A spend of the funding output, either a commitment transaction or a cooperative closing
370 FundingSpendConfirmation {
371 /// The CSV delay for the output of the funding spend transaction (implying it is a local
372 /// commitment transaction, and this is the delay on the to_self output).
373 on_local_output_csv: Option<u16>,
375 /// A spend of a commitment transaction HTLC output, set in the cases where *no* `HTLCUpdate`
376 /// is constructed. This is used when
377 /// * an outbound HTLC is claimed by our counterparty with a preimage, causing us to
378 /// immediately claim the HTLC on the inbound edge and track the resolution here,
379 /// * an inbound HTLC is claimed by our counterparty (with a timeout),
380 /// * an inbound HTLC is claimed by us (with a preimage).
381 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by the revocation
383 HTLCSpendConfirmation {
384 commitment_tx_output_idx: u32,
385 /// If the claim was made by either party with a preimage, this is filled in
386 preimage: Option<PaymentPreimage>,
387 /// If the claim was made by us on an inbound HTLC against a local commitment transaction,
388 /// we set this to the output CSV value which we will have to wait until to spend the
389 /// output (and generate a SpendableOutput event).
390 on_to_local_output_csv: Option<u16>,
394 impl Writeable for OnchainEventEntry {
395 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
396 write_tlv_fields!(writer, {
397 (0, self.txid, required),
398 (2, self.height, required),
399 (4, self.event, required),
405 impl MaybeReadable for OnchainEventEntry {
406 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
407 let mut txid = Default::default();
409 let mut event = None;
410 read_tlv_fields!(reader, {
412 (2, height, required),
413 (4, event, ignorable),
415 if let Some(ev) = event {
416 Ok(Some(Self { txid, height, event: ev }))
423 impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
425 (0, source, required),
426 (1, htlc_value_satoshis, option),
427 (2, payment_hash, required),
428 (3, commitment_tx_output_idx, option),
430 (1, MaturingOutput) => {
431 (0, descriptor, required),
433 (3, FundingSpendConfirmation) => {
434 (0, on_local_output_csv, option),
436 (5, HTLCSpendConfirmation) => {
437 (0, commitment_tx_output_idx, required),
438 (2, preimage, option),
439 (4, on_to_local_output_csv, option),
444 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq))]
446 pub(crate) enum ChannelMonitorUpdateStep {
447 LatestHolderCommitmentTXInfo {
448 commitment_tx: HolderCommitmentTransaction,
449 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
451 LatestCounterpartyCommitmentTXInfo {
452 commitment_txid: Txid,
453 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
454 commitment_number: u64,
455 their_per_commitment_point: PublicKey,
458 payment_preimage: PaymentPreimage,
464 /// Used to indicate that the no future updates will occur, and likely that the latest holder
465 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
467 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
468 /// think we've fallen behind!
469 should_broadcast: bool,
472 scriptpubkey: Script,
476 impl ChannelMonitorUpdateStep {
477 fn variant_name(&self) -> &'static str {
479 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { .. } => "LatestHolderCommitmentTXInfo",
480 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } => "LatestCounterpartyCommitmentTXInfo",
481 ChannelMonitorUpdateStep::PaymentPreimage { .. } => "PaymentPreimage",
482 ChannelMonitorUpdateStep::CommitmentSecret { .. } => "CommitmentSecret",
483 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => "ChannelForceClosed",
484 ChannelMonitorUpdateStep::ShutdownScript { .. } => "ShutdownScript",
489 impl_writeable_tlv_based_enum_upgradable!(ChannelMonitorUpdateStep,
490 (0, LatestHolderCommitmentTXInfo) => {
491 (0, commitment_tx, required),
492 (2, htlc_outputs, vec_type),
494 (1, LatestCounterpartyCommitmentTXInfo) => {
495 (0, commitment_txid, required),
496 (2, commitment_number, required),
497 (4, their_per_commitment_point, required),
498 (6, htlc_outputs, vec_type),
500 (2, PaymentPreimage) => {
501 (0, payment_preimage, required),
503 (3, CommitmentSecret) => {
505 (2, secret, required),
507 (4, ChannelForceClosed) => {
508 (0, should_broadcast, required),
510 (5, ShutdownScript) => {
511 (0, scriptpubkey, required),
515 /// Details about the balance(s) available for spending once the channel appears on chain.
517 /// See [`ChannelMonitor::get_claimable_balances`] for more details on when these will or will not
519 #[derive(Clone, Debug, PartialEq, Eq)]
520 #[cfg_attr(test, derive(PartialOrd, Ord))]
522 /// The channel is not yet closed (or the commitment or closing transaction has not yet
523 /// appeared in a block). The given balance is claimable (less on-chain fees) if the channel is
524 /// force-closed now.
525 ClaimableOnChannelClose {
526 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
527 /// required to do so.
528 claimable_amount_satoshis: u64,
530 /// The channel has been closed, and the given balance is ours but awaiting confirmations until
531 /// we consider it spendable.
532 ClaimableAwaitingConfirmations {
533 /// The amount available to claim, in satoshis, possibly excluding the on-chain fees which
534 /// were spent in broadcasting the transaction.
535 claimable_amount_satoshis: u64,
536 /// The height at which an [`Event::SpendableOutputs`] event will be generated for this
538 confirmation_height: u32,
540 /// The channel has been closed, and the given balance should be ours but awaiting spending
541 /// transaction confirmation. If the spending transaction does not confirm in time, it is
542 /// possible our counterparty can take the funds by broadcasting an HTLC timeout on-chain.
544 /// Once the spending transaction confirms, before it has reached enough confirmations to be
545 /// considered safe from chain reorganizations, the balance will instead be provided via
546 /// [`Balance::ClaimableAwaitingConfirmations`].
547 ContentiousClaimable {
548 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
549 /// required to do so.
550 claimable_amount_satoshis: u64,
551 /// The height at which the counterparty may be able to claim the balance if we have not
555 /// HTLCs which we sent to our counterparty which are claimable after a timeout (less on-chain
556 /// fees) if the counterparty does not know the preimage for the HTLCs. These are somewhat
557 /// likely to be claimed by our counterparty before we do.
558 MaybeClaimableHTLCAwaitingTimeout {
559 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
560 /// required to do so.
561 claimable_amount_satoshis: u64,
562 /// The height at which we will be able to claim the balance if our counterparty has not
564 claimable_height: u32,
568 /// An HTLC which has been irrevocably resolved on-chain, and has reached ANTI_REORG_DELAY.
570 struct IrrevocablyResolvedHTLC {
571 commitment_tx_output_idx: u32,
572 /// Only set if the HTLC claim was ours using a payment preimage
573 payment_preimage: Option<PaymentPreimage>,
576 impl_writeable_tlv_based!(IrrevocablyResolvedHTLC, {
577 (0, commitment_tx_output_idx, required),
578 (2, payment_preimage, option),
581 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
582 /// on-chain transactions to ensure no loss of funds occurs.
584 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
585 /// information and are actively monitoring the chain.
587 /// Pending Events or updated HTLCs which have not yet been read out by
588 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
589 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
590 /// gotten are fully handled before re-serializing the new state.
592 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
593 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
594 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
595 /// returned block hash and the the current chain and then reconnecting blocks to get to the
596 /// best chain) upon deserializing the object!
597 pub struct ChannelMonitor<Signer: Sign> {
599 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
601 inner: Mutex<ChannelMonitorImpl<Signer>>,
604 pub(crate) struct ChannelMonitorImpl<Signer: Sign> {
605 latest_update_id: u64,
606 commitment_transaction_number_obscure_factor: u64,
608 destination_script: Script,
609 broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
610 counterparty_payment_script: Script,
611 shutdown_script: Option<Script>,
613 channel_keys_id: [u8; 32],
614 holder_revocation_basepoint: PublicKey,
615 funding_info: (OutPoint, Script),
616 current_counterparty_commitment_txid: Option<Txid>,
617 prev_counterparty_commitment_txid: Option<Txid>,
619 counterparty_commitment_params: CounterpartyCommitmentParameters,
620 funding_redeemscript: Script,
621 channel_value_satoshis: u64,
622 // first is the idx of the first of the two per-commitment points
623 their_cur_per_commitment_points: Option<(u64, PublicKey, Option<PublicKey>)>,
625 on_holder_tx_csv: u16,
627 commitment_secrets: CounterpartyCommitmentSecrets,
628 /// The set of outpoints in each counterparty commitment transaction. We always need at least
629 /// the payment hash from `HTLCOutputInCommitment` to claim even a revoked commitment
630 /// transaction broadcast as we need to be able to construct the witness script in all cases.
631 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
632 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
633 /// Nor can we figure out their commitment numbers without the commitment transaction they are
634 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
635 /// commitment transactions which we find on-chain, mapping them to the commitment number which
636 /// can be used to derive the revocation key and claim the transactions.
637 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
638 /// Cache used to make pruning of payment_preimages faster.
639 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
640 /// counterparty transactions (ie should remain pretty small).
641 /// Serialized to disk but should generally not be sent to Watchtowers.
642 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
644 // We store two holder commitment transactions to avoid any race conditions where we may update
645 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
646 // various monitors for one channel being out of sync, and us broadcasting a holder
647 // transaction for which we have deleted claim information on some watchtowers.
648 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
649 current_holder_commitment_tx: HolderSignedTx,
651 // Used just for ChannelManager to make sure it has the latest channel data during
653 current_counterparty_commitment_number: u64,
654 // Used just for ChannelManager to make sure it has the latest channel data during
656 current_holder_commitment_number: u64,
658 /// The set of payment hashes from inbound payments for which we know the preimage. Payment
659 /// preimages that are not included in any unrevoked local commitment transaction or unrevoked
660 /// remote commitment transactions are automatically removed when commitment transactions are
662 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
664 // Note that `MonitorEvent`s MUST NOT be generated during update processing, only generated
665 // during chain data processing. This prevents a race in `ChainMonitor::update_channel` (and
666 // presumably user implementations thereof as well) where we update the in-memory channel
667 // object, then before the persistence finishes (as it's all under a read-lock), we return
668 // pending events to the user or to the relevant `ChannelManager`. Then, on reload, we'll have
669 // the pre-event state here, but have processed the event in the `ChannelManager`.
670 // Note that because the `event_lock` in `ChainMonitor` is only taken in
671 // block/transaction-connected events and *not* during block/transaction-disconnected events,
672 // we further MUST NOT generate events during block/transaction-disconnection.
673 pending_monitor_events: Vec<MonitorEvent>,
675 pending_events: Vec<Event>,
677 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
678 // which to take actions once they reach enough confirmations. Each entry includes the
679 // transaction's id and the height when the transaction was confirmed on chain.
680 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
682 // If we get serialized out and re-read, we need to make sure that the chain monitoring
683 // interface knows about the TXOs that we want to be notified of spends of. We could probably
684 // be smart and derive them from the above storage fields, but its much simpler and more
685 // Obviously Correct (tm) if we just keep track of them explicitly.
686 outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
689 pub onchain_tx_handler: OnchainTxHandler<Signer>,
691 onchain_tx_handler: OnchainTxHandler<Signer>,
693 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
694 // channel has been force-closed. After this is set, no further holder commitment transaction
695 // updates may occur, and we panic!() if one is provided.
696 lockdown_from_offchain: bool,
698 // Set once we've signed a holder commitment transaction and handed it over to our
699 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
700 // may occur, and we fail any such monitor updates.
702 // In case of update rejection due to a locally already signed commitment transaction, we
703 // nevertheless store update content to track in case of concurrent broadcast by another
704 // remote monitor out-of-order with regards to the block view.
705 holder_tx_signed: bool,
707 // If a spend of the funding output is seen, we set this to true and reject any further
708 // updates. This prevents any further changes in the offchain state no matter the order
709 // of block connection between ChannelMonitors and the ChannelManager.
710 funding_spend_seen: bool,
712 funding_spend_confirmed: Option<Txid>,
713 /// The set of HTLCs which have been either claimed or failed on chain and have reached
714 /// the requisite confirmations on the claim/fail transaction (either ANTI_REORG_DELAY or the
715 /// spending CSV for revocable outputs).
716 htlcs_resolved_on_chain: Vec<IrrevocablyResolvedHTLC>,
718 // We simply modify best_block in Channel's block_connected so that serialization is
719 // consistent but hopefully the users' copy handles block_connected in a consistent way.
720 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
721 // their best_block from its state and not based on updated copies that didn't run through
722 // the full block_connected).
723 best_block: BestBlock,
725 secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
728 /// Transaction outputs to watch for on-chain spends.
729 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
731 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
732 /// Used only in testing and fuzzing to check serialization roundtrips don't change the underlying
734 impl<Signer: Sign> PartialEq for ChannelMonitor<Signer> {
735 fn eq(&self, other: &Self) -> bool {
736 let inner = self.inner.lock().unwrap();
737 let other = other.inner.lock().unwrap();
742 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
743 /// Used only in testing and fuzzing to check serialization roundtrips don't change the underlying
745 impl<Signer: Sign> PartialEq for ChannelMonitorImpl<Signer> {
746 fn eq(&self, other: &Self) -> bool {
747 if self.latest_update_id != other.latest_update_id ||
748 self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
749 self.destination_script != other.destination_script ||
750 self.broadcasted_holder_revokable_script != other.broadcasted_holder_revokable_script ||
751 self.counterparty_payment_script != other.counterparty_payment_script ||
752 self.channel_keys_id != other.channel_keys_id ||
753 self.holder_revocation_basepoint != other.holder_revocation_basepoint ||
754 self.funding_info != other.funding_info ||
755 self.current_counterparty_commitment_txid != other.current_counterparty_commitment_txid ||
756 self.prev_counterparty_commitment_txid != other.prev_counterparty_commitment_txid ||
757 self.counterparty_commitment_params != other.counterparty_commitment_params ||
758 self.funding_redeemscript != other.funding_redeemscript ||
759 self.channel_value_satoshis != other.channel_value_satoshis ||
760 self.their_cur_per_commitment_points != other.their_cur_per_commitment_points ||
761 self.on_holder_tx_csv != other.on_holder_tx_csv ||
762 self.commitment_secrets != other.commitment_secrets ||
763 self.counterparty_claimable_outpoints != other.counterparty_claimable_outpoints ||
764 self.counterparty_commitment_txn_on_chain != other.counterparty_commitment_txn_on_chain ||
765 self.counterparty_hash_commitment_number != other.counterparty_hash_commitment_number ||
766 self.prev_holder_signed_commitment_tx != other.prev_holder_signed_commitment_tx ||
767 self.current_counterparty_commitment_number != other.current_counterparty_commitment_number ||
768 self.current_holder_commitment_number != other.current_holder_commitment_number ||
769 self.current_holder_commitment_tx != other.current_holder_commitment_tx ||
770 self.payment_preimages != other.payment_preimages ||
771 self.pending_monitor_events != other.pending_monitor_events ||
772 self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly
773 self.onchain_events_awaiting_threshold_conf != other.onchain_events_awaiting_threshold_conf ||
774 self.outputs_to_watch != other.outputs_to_watch ||
775 self.lockdown_from_offchain != other.lockdown_from_offchain ||
776 self.holder_tx_signed != other.holder_tx_signed ||
777 self.funding_spend_seen != other.funding_spend_seen ||
778 self.funding_spend_confirmed != other.funding_spend_confirmed ||
779 self.htlcs_resolved_on_chain != other.htlcs_resolved_on_chain
788 impl<Signer: Sign> Writeable for ChannelMonitor<Signer> {
789 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
790 self.inner.lock().unwrap().write(writer)
794 // These are also used for ChannelMonitorUpdate, above.
795 const SERIALIZATION_VERSION: u8 = 1;
796 const MIN_SERIALIZATION_VERSION: u8 = 1;
798 impl<Signer: Sign> Writeable for ChannelMonitorImpl<Signer> {
799 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
800 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
802 self.latest_update_id.write(writer)?;
804 // Set in initial Channel-object creation, so should always be set by now:
805 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
807 self.destination_script.write(writer)?;
808 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
809 writer.write_all(&[0; 1])?;
810 broadcasted_holder_revokable_script.0.write(writer)?;
811 broadcasted_holder_revokable_script.1.write(writer)?;
812 broadcasted_holder_revokable_script.2.write(writer)?;
814 writer.write_all(&[1; 1])?;
817 self.counterparty_payment_script.write(writer)?;
818 match &self.shutdown_script {
819 Some(script) => script.write(writer)?,
820 None => Script::new().write(writer)?,
823 self.channel_keys_id.write(writer)?;
824 self.holder_revocation_basepoint.write(writer)?;
825 writer.write_all(&self.funding_info.0.txid[..])?;
826 writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?;
827 self.funding_info.1.write(writer)?;
828 self.current_counterparty_commitment_txid.write(writer)?;
829 self.prev_counterparty_commitment_txid.write(writer)?;
831 self.counterparty_commitment_params.write(writer)?;
832 self.funding_redeemscript.write(writer)?;
833 self.channel_value_satoshis.write(writer)?;
835 match self.their_cur_per_commitment_points {
836 Some((idx, pubkey, second_option)) => {
837 writer.write_all(&byte_utils::be48_to_array(idx))?;
838 writer.write_all(&pubkey.serialize())?;
839 match second_option {
840 Some(second_pubkey) => {
841 writer.write_all(&second_pubkey.serialize())?;
844 writer.write_all(&[0; 33])?;
849 writer.write_all(&byte_utils::be48_to_array(0))?;
853 writer.write_all(&byte_utils::be16_to_array(self.on_holder_tx_csv))?;
855 self.commitment_secrets.write(writer)?;
857 macro_rules! serialize_htlc_in_commitment {
858 ($htlc_output: expr) => {
859 writer.write_all(&[$htlc_output.offered as u8; 1])?;
860 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
861 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
862 writer.write_all(&$htlc_output.payment_hash.0[..])?;
863 $htlc_output.transaction_output_index.write(writer)?;
867 writer.write_all(&byte_utils::be64_to_array(self.counterparty_claimable_outpoints.len() as u64))?;
868 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
869 writer.write_all(&txid[..])?;
870 writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
871 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
872 serialize_htlc_in_commitment!(htlc_output);
873 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
877 writer.write_all(&byte_utils::be64_to_array(self.counterparty_commitment_txn_on_chain.len() as u64))?;
878 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
879 writer.write_all(&txid[..])?;
880 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
883 writer.write_all(&byte_utils::be64_to_array(self.counterparty_hash_commitment_number.len() as u64))?;
884 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
885 writer.write_all(&payment_hash.0[..])?;
886 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
889 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
890 writer.write_all(&[1; 1])?;
891 prev_holder_tx.write(writer)?;
893 writer.write_all(&[0; 1])?;
896 self.current_holder_commitment_tx.write(writer)?;
898 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
899 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
901 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
902 for payment_preimage in self.payment_preimages.values() {
903 writer.write_all(&payment_preimage.0[..])?;
906 writer.write_all(&(self.pending_monitor_events.iter().filter(|ev| match ev {
907 MonitorEvent::HTLCEvent(_) => true,
908 MonitorEvent::CommitmentTxConfirmed(_) => true,
910 }).count() as u64).to_be_bytes())?;
911 for event in self.pending_monitor_events.iter() {
913 MonitorEvent::HTLCEvent(upd) => {
917 MonitorEvent::CommitmentTxConfirmed(_) => 1u8.write(writer)?,
918 _ => {}, // Covered in the TLV writes below
922 writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?;
923 for event in self.pending_events.iter() {
924 event.write(writer)?;
927 self.best_block.block_hash().write(writer)?;
928 writer.write_all(&byte_utils::be32_to_array(self.best_block.height()))?;
930 writer.write_all(&byte_utils::be64_to_array(self.onchain_events_awaiting_threshold_conf.len() as u64))?;
931 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
932 entry.write(writer)?;
935 (self.outputs_to_watch.len() as u64).write(writer)?;
936 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
938 (idx_scripts.len() as u64).write(writer)?;
939 for (idx, script) in idx_scripts.iter() {
941 script.write(writer)?;
944 self.onchain_tx_handler.write(writer)?;
946 self.lockdown_from_offchain.write(writer)?;
947 self.holder_tx_signed.write(writer)?;
949 write_tlv_fields!(writer, {
950 (1, self.funding_spend_confirmed, option),
951 (3, self.htlcs_resolved_on_chain, vec_type),
952 (5, self.pending_monitor_events, vec_type),
953 (7, self.funding_spend_seen, required),
960 impl<Signer: Sign> ChannelMonitor<Signer> {
961 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_script: Option<Script>,
962 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
963 channel_parameters: &ChannelTransactionParameters,
964 funding_redeemscript: Script, channel_value_satoshis: u64,
965 commitment_transaction_number_obscure_factor: u64,
966 initial_holder_commitment_tx: HolderCommitmentTransaction,
967 best_block: BestBlock) -> ChannelMonitor<Signer> {
969 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
970 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
971 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
973 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
974 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
975 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
976 let counterparty_commitment_params = CounterpartyCommitmentParameters { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv };
978 let channel_keys_id = keys.channel_keys_id();
979 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
981 // block for Rust 1.34 compat
982 let (holder_commitment_tx, current_holder_commitment_number) = {
983 let trusted_tx = initial_holder_commitment_tx.trust();
984 let txid = trusted_tx.txid();
986 let tx_keys = trusted_tx.keys();
987 let holder_commitment_tx = HolderSignedTx {
989 revocation_key: tx_keys.revocation_key,
990 a_htlc_key: tx_keys.broadcaster_htlc_key,
991 b_htlc_key: tx_keys.countersignatory_htlc_key,
992 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
993 per_commitment_point: tx_keys.per_commitment_point,
994 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
995 to_self_value_sat: initial_holder_commitment_tx.to_broadcaster_value_sat(),
996 feerate_per_kw: trusted_tx.feerate_per_kw(),
998 (holder_commitment_tx, trusted_tx.commitment_number())
1001 let onchain_tx_handler =
1002 OnchainTxHandler::new(destination_script.clone(), keys,
1003 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx.clone());
1005 let mut outputs_to_watch = HashMap::new();
1006 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1009 inner: Mutex::new(ChannelMonitorImpl {
1010 latest_update_id: 0,
1011 commitment_transaction_number_obscure_factor,
1013 destination_script: destination_script.clone(),
1014 broadcasted_holder_revokable_script: None,
1015 counterparty_payment_script,
1019 holder_revocation_basepoint,
1021 current_counterparty_commitment_txid: None,
1022 prev_counterparty_commitment_txid: None,
1024 counterparty_commitment_params,
1025 funding_redeemscript,
1026 channel_value_satoshis,
1027 their_cur_per_commitment_points: None,
1029 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1031 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1032 counterparty_claimable_outpoints: HashMap::new(),
1033 counterparty_commitment_txn_on_chain: HashMap::new(),
1034 counterparty_hash_commitment_number: HashMap::new(),
1036 prev_holder_signed_commitment_tx: None,
1037 current_holder_commitment_tx: holder_commitment_tx,
1038 current_counterparty_commitment_number: 1 << 48,
1039 current_holder_commitment_number,
1041 payment_preimages: HashMap::new(),
1042 pending_monitor_events: Vec::new(),
1043 pending_events: Vec::new(),
1045 onchain_events_awaiting_threshold_conf: Vec::new(),
1050 lockdown_from_offchain: false,
1051 holder_tx_signed: false,
1052 funding_spend_seen: false,
1053 funding_spend_confirmed: None,
1054 htlcs_resolved_on_chain: Vec::new(),
1064 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1065 self.inner.lock().unwrap().provide_secret(idx, secret)
1068 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1069 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1070 /// possibly future revocation/preimage information) to claim outputs where possible.
1071 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1072 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
1075 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1076 commitment_number: u64,
1077 their_per_commitment_point: PublicKey,
1079 ) where L::Target: Logger {
1080 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1081 txid, htlc_outputs, commitment_number, their_per_commitment_point, logger)
1085 fn provide_latest_holder_commitment_tx(
1086 &self, holder_commitment_tx: HolderCommitmentTransaction,
1087 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1088 ) -> Result<(), ()> {
1089 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(holder_commitment_tx, htlc_outputs).map_err(|_| ())
1092 /// This is used to provide payment preimage(s) out-of-band during startup without updating the
1093 /// off-chain state with a new commitment transaction.
1094 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1096 payment_hash: &PaymentHash,
1097 payment_preimage: &PaymentPreimage,
1102 B::Target: BroadcasterInterface,
1103 F::Target: FeeEstimator,
1106 self.inner.lock().unwrap().provide_payment_preimage(
1107 payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1110 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1115 B::Target: BroadcasterInterface,
1118 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger)
1121 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1124 /// panics if the given update is not the next update by update_id.
1125 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1127 updates: &ChannelMonitorUpdate,
1133 B::Target: BroadcasterInterface,
1134 F::Target: FeeEstimator,
1137 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1140 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1142 pub fn get_latest_update_id(&self) -> u64 {
1143 self.inner.lock().unwrap().get_latest_update_id()
1146 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1147 pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1148 self.inner.lock().unwrap().get_funding_txo().clone()
1151 /// Gets a list of txids, with their output scripts (in the order they appear in the
1152 /// transaction), which we must learn about spends of via block_connected().
1153 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1154 self.inner.lock().unwrap().get_outputs_to_watch()
1155 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1158 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1159 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1160 /// have been registered.
1161 pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1162 let lock = self.inner.lock().unwrap();
1163 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1164 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1165 for (index, script_pubkey) in outputs.iter() {
1166 assert!(*index <= u16::max_value() as u32);
1167 filter.register_output(WatchedOutput {
1169 outpoint: OutPoint { txid: *txid, index: *index as u16 },
1170 script_pubkey: script_pubkey.clone(),
1176 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1177 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1178 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1179 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1182 /// Gets the list of pending events which were generated by previous actions, clearing the list
1185 /// This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to
1186 /// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
1187 /// no internal locking in ChannelMonitors.
1188 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1189 self.inner.lock().unwrap().get_and_clear_pending_events()
1192 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1193 self.inner.lock().unwrap().get_min_seen_secret()
1196 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1197 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1200 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1201 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1204 /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1205 /// the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of
1206 /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows
1207 /// a higher revocation secret than the holder commitment number we are aware of. Broadcasting these
1208 /// transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to
1209 /// broadcast them if counterparty don't close channel with his higher commitment transaction after a
1210 /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
1211 /// out-of-band the other node operator to coordinate with him if option is available to you.
1212 /// In any-case, choice is up to the user.
1213 pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1214 where L::Target: Logger {
1215 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1218 /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1219 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1220 /// revoked commitment transaction.
1221 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1222 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1223 where L::Target: Logger {
1224 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1227 /// Processes transactions in a newly connected block, which may result in any of the following:
1228 /// - update the monitor's state against resolved HTLCs
1229 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1230 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1231 /// - detect settled outputs for later spending
1232 /// - schedule and bump any in-flight claims
1234 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1235 /// [`get_outputs_to_watch`].
1237 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1238 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1240 header: &BlockHeader,
1241 txdata: &TransactionData,
1246 ) -> Vec<TransactionOutputs>
1248 B::Target: BroadcasterInterface,
1249 F::Target: FeeEstimator,
1252 self.inner.lock().unwrap().block_connected(
1253 header, txdata, height, broadcaster, fee_estimator, logger)
1256 /// Determines if the disconnected block contained any transactions of interest and updates
1258 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1260 header: &BlockHeader,
1266 B::Target: BroadcasterInterface,
1267 F::Target: FeeEstimator,
1270 self.inner.lock().unwrap().block_disconnected(
1271 header, height, broadcaster, fee_estimator, logger)
1274 /// Processes transactions confirmed in a block with the given header and height, returning new
1275 /// outputs to watch. See [`block_connected`] for details.
1277 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1278 /// blocks. See [`chain::Confirm`] for calling expectations.
1280 /// [`block_connected`]: Self::block_connected
1281 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1283 header: &BlockHeader,
1284 txdata: &TransactionData,
1289 ) -> Vec<TransactionOutputs>
1291 B::Target: BroadcasterInterface,
1292 F::Target: FeeEstimator,
1295 self.inner.lock().unwrap().transactions_confirmed(
1296 header, txdata, height, broadcaster, fee_estimator, logger)
1299 /// Processes a transaction that was reorganized out of the chain.
1301 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1302 /// than blocks. See [`chain::Confirm`] for calling expectations.
1304 /// [`block_disconnected`]: Self::block_disconnected
1305 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1312 B::Target: BroadcasterInterface,
1313 F::Target: FeeEstimator,
1316 self.inner.lock().unwrap().transaction_unconfirmed(
1317 txid, broadcaster, fee_estimator, logger);
1320 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1321 /// [`block_connected`] for details.
1323 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1324 /// blocks. See [`chain::Confirm`] for calling expectations.
1326 /// [`block_connected`]: Self::block_connected
1327 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1329 header: &BlockHeader,
1334 ) -> Vec<TransactionOutputs>
1336 B::Target: BroadcasterInterface,
1337 F::Target: FeeEstimator,
1340 self.inner.lock().unwrap().best_block_updated(
1341 header, height, broadcaster, fee_estimator, logger)
1344 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1345 pub fn get_relevant_txids(&self) -> Vec<Txid> {
1346 let inner = self.inner.lock().unwrap();
1347 let mut txids: Vec<Txid> = inner.onchain_events_awaiting_threshold_conf
1349 .map(|entry| entry.txid)
1350 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1352 txids.sort_unstable();
1357 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
1358 /// [`chain::Confirm`] interfaces.
1359 pub fn current_best_block(&self) -> BestBlock {
1360 self.inner.lock().unwrap().best_block.clone()
1363 /// Gets the balances in this channel which are either claimable by us if we were to
1364 /// force-close the channel now or which are claimable on-chain (possibly awaiting
1367 /// Any balances in the channel which are available on-chain (excluding on-chain fees) are
1368 /// included here until an [`Event::SpendableOutputs`] event has been generated for the
1369 /// balance, or until our counterparty has claimed the balance and accrued several
1370 /// confirmations on the claim transaction.
1372 /// Note that the balances available when you or your counterparty have broadcasted revoked
1373 /// state(s) may not be fully captured here.
1376 /// See [`Balance`] for additional details on the types of claimable balances which
1377 /// may be returned here and their meanings.
1378 pub fn get_claimable_balances(&self) -> Vec<Balance> {
1379 let mut res = Vec::new();
1380 let us = self.inner.lock().unwrap();
1382 let mut confirmed_txid = us.funding_spend_confirmed;
1383 let mut pending_commitment_tx_conf_thresh = None;
1384 let funding_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1385 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
1386 Some((event.txid, event.confirmation_threshold()))
1389 if let Some((txid, conf_thresh)) = funding_spend_pending {
1390 debug_assert!(us.funding_spend_confirmed.is_none(),
1391 "We have a pending funding spend awaiting anti-reorg confirmation, we can't have confirmed it already!");
1392 confirmed_txid = Some(txid);
1393 pending_commitment_tx_conf_thresh = Some(conf_thresh);
1396 macro_rules! walk_htlcs {
1397 ($holder_commitment: expr, $htlc_iter: expr) => {
1398 for htlc in $htlc_iter {
1399 if let Some(htlc_commitment_tx_output_idx) = htlc.transaction_output_index {
1400 if let Some(conf_thresh) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1401 if let OnchainEvent::MaturingOutput { descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) } = &event.event {
1402 if descriptor.outpoint.index as u32 == htlc_commitment_tx_output_idx { Some(event.confirmation_threshold()) } else { None }
1405 debug_assert!($holder_commitment);
1406 res.push(Balance::ClaimableAwaitingConfirmations {
1407 claimable_amount_satoshis: htlc.amount_msat / 1000,
1408 confirmation_height: conf_thresh,
1410 } else if us.htlcs_resolved_on_chain.iter().any(|v| v.commitment_tx_output_idx == htlc_commitment_tx_output_idx) {
1411 // Funding transaction spends should be fully confirmed by the time any
1412 // HTLC transactions are resolved, unless we're talking about a holder
1413 // commitment tx, whose resolution is delayed until the CSV timeout is
1414 // reached, even though HTLCs may be resolved after only
1415 // ANTI_REORG_DELAY confirmations.
1416 debug_assert!($holder_commitment || us.funding_spend_confirmed.is_some());
1417 } else if htlc.offered == $holder_commitment {
1418 // If the payment was outbound, check if there's an HTLCUpdate
1419 // indicating we have spent this HTLC with a timeout, claiming it back
1420 // and awaiting confirmations on it.
1421 let htlc_update_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1422 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
1423 if commitment_tx_output_idx == htlc_commitment_tx_output_idx {
1424 Some(event.confirmation_threshold()) } else { None }
1427 if let Some(conf_thresh) = htlc_update_pending {
1428 res.push(Balance::ClaimableAwaitingConfirmations {
1429 claimable_amount_satoshis: htlc.amount_msat / 1000,
1430 confirmation_height: conf_thresh,
1433 res.push(Balance::MaybeClaimableHTLCAwaitingTimeout {
1434 claimable_amount_satoshis: htlc.amount_msat / 1000,
1435 claimable_height: htlc.cltv_expiry,
1438 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
1439 // Otherwise (the payment was inbound), only expose it as claimable if
1440 // we know the preimage.
1441 // Note that if there is a pending claim, but it did not use the
1442 // preimage, we lost funds to our counterparty! We will then continue
1443 // to show it as ContentiousClaimable until ANTI_REORG_DELAY.
1444 let htlc_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1445 if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } = event.event {
1446 if commitment_tx_output_idx == htlc_commitment_tx_output_idx {
1447 Some((event.confirmation_threshold(), preimage.is_some()))
1451 if let Some((conf_thresh, true)) = htlc_spend_pending {
1452 res.push(Balance::ClaimableAwaitingConfirmations {
1453 claimable_amount_satoshis: htlc.amount_msat / 1000,
1454 confirmation_height: conf_thresh,
1457 res.push(Balance::ContentiousClaimable {
1458 claimable_amount_satoshis: htlc.amount_msat / 1000,
1459 timeout_height: htlc.cltv_expiry,
1468 if let Some(txid) = confirmed_txid {
1469 let mut found_commitment_tx = false;
1470 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1471 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().map(|(a, _)| a));
1472 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1473 if let Some(value) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1474 if let OnchainEvent::MaturingOutput {
1475 descriptor: SpendableOutputDescriptor::StaticPaymentOutput(descriptor)
1477 Some(descriptor.output.value)
1480 res.push(Balance::ClaimableAwaitingConfirmations {
1481 claimable_amount_satoshis: value,
1482 confirmation_height: conf_thresh,
1485 // If a counterparty commitment transaction is awaiting confirmation, we
1486 // should either have a StaticPaymentOutput MaturingOutput event awaiting
1487 // confirmation with the same height or have never met our dust amount.
1490 found_commitment_tx = true;
1491 } else if txid == us.current_holder_commitment_tx.txid {
1492 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, _)| a));
1493 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1494 res.push(Balance::ClaimableAwaitingConfirmations {
1495 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1496 confirmation_height: conf_thresh,
1499 found_commitment_tx = true;
1500 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1501 if txid == prev_commitment.txid {
1502 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().map(|(a, _, _)| a));
1503 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1504 res.push(Balance::ClaimableAwaitingConfirmations {
1505 claimable_amount_satoshis: prev_commitment.to_self_value_sat,
1506 confirmation_height: conf_thresh,
1509 found_commitment_tx = true;
1512 if !found_commitment_tx {
1513 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1514 // We blindly assume this is a cooperative close transaction here, and that
1515 // neither us nor our counterparty misbehaved. At worst we've under-estimated
1516 // the amount we can claim as we'll punish a misbehaving counterparty.
1517 res.push(Balance::ClaimableAwaitingConfirmations {
1518 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1519 confirmation_height: conf_thresh,
1523 // TODO: Add logic to provide claimable balances for counterparty broadcasting revoked
1526 let mut claimable_inbound_htlc_value_sat = 0;
1527 for (htlc, _, _) in us.current_holder_commitment_tx.htlc_outputs.iter() {
1528 if htlc.transaction_output_index.is_none() { continue; }
1530 res.push(Balance::MaybeClaimableHTLCAwaitingTimeout {
1531 claimable_amount_satoshis: htlc.amount_msat / 1000,
1532 claimable_height: htlc.cltv_expiry,
1534 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
1535 claimable_inbound_htlc_value_sat += htlc.amount_msat / 1000;
1538 res.push(Balance::ClaimableOnChannelClose {
1539 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat + claimable_inbound_htlc_value_sat,
1546 /// Gets the set of outbound HTLCs which are pending resolution in this channel.
1547 /// This is used to reconstruct pending outbound payments on restart in the ChannelManager.
1548 pub(crate) fn get_pending_outbound_htlcs(&self) -> HashMap<HTLCSource, HTLCOutputInCommitment> {
1549 let mut res = HashMap::new();
1550 let us = self.inner.lock().unwrap();
1552 macro_rules! walk_htlcs {
1553 ($holder_commitment: expr, $htlc_iter: expr) => {
1554 for (htlc, source) in $htlc_iter {
1555 if us.htlcs_resolved_on_chain.iter().any(|v| Some(v.commitment_tx_output_idx) == htlc.transaction_output_index) {
1556 // We should assert that funding_spend_confirmed is_some() here, but we
1557 // have some unit tests which violate HTLC transaction CSVs entirely and
1559 // TODO: Once tests all connect transactions at consensus-valid times, we
1560 // should assert here like we do in `get_claimable_balances`.
1561 } else if htlc.offered == $holder_commitment {
1562 // If the payment was outbound, check if there's an HTLCUpdate
1563 // indicating we have spent this HTLC with a timeout, claiming it back
1564 // and awaiting confirmations on it.
1565 let htlc_update_confd = us.onchain_events_awaiting_threshold_conf.iter().any(|event| {
1566 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
1567 // If the HTLC was timed out, we wait for ANTI_REORG_DELAY blocks
1568 // before considering it "no longer pending" - this matches when we
1569 // provide the ChannelManager an HTLC failure event.
1570 Some(commitment_tx_output_idx) == htlc.transaction_output_index &&
1571 us.best_block.height() >= event.height + ANTI_REORG_DELAY - 1
1572 } else if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, .. } = event.event {
1573 // If the HTLC was fulfilled with a preimage, we consider the HTLC
1574 // immediately non-pending, matching when we provide ChannelManager
1576 Some(commitment_tx_output_idx) == htlc.transaction_output_index
1579 if !htlc_update_confd {
1580 res.insert(source.clone(), htlc.clone());
1587 // We're only concerned with the confirmation count of HTLC transactions, and don't
1588 // actually care how many confirmations a commitment transaction may or may not have. Thus,
1589 // we look for either a FundingSpendConfirmation event or a funding_spend_confirmed.
1590 let confirmed_txid = us.funding_spend_confirmed.or_else(|| {
1591 us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1592 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
1597 if let Some(txid) = confirmed_txid {
1598 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1599 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().filter_map(|(a, b)| {
1600 if let &Some(ref source) = b {
1601 Some((a, &**source))
1604 } else if txid == us.current_holder_commitment_tx.txid {
1605 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().filter_map(|(a, _, c)| {
1606 if let Some(source) = c { Some((a, source)) } else { None }
1608 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1609 if txid == prev_commitment.txid {
1610 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().filter_map(|(a, _, c)| {
1611 if let Some(source) = c { Some((a, source)) } else { None }
1616 // If we have not seen a commitment transaction on-chain (ie the channel is not yet
1617 // closed), just examine the available counterparty commitment transactions. See docs
1618 // on `fail_unbroadcast_htlcs`, below, for justification.
1619 macro_rules! walk_counterparty_commitment {
1621 if let Some(ref latest_outpoints) = us.counterparty_claimable_outpoints.get($txid) {
1622 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1623 if let &Some(ref source) = source_option {
1624 res.insert((**source).clone(), htlc.clone());
1630 if let Some(ref txid) = us.current_counterparty_commitment_txid {
1631 walk_counterparty_commitment!(txid);
1633 if let Some(ref txid) = us.prev_counterparty_commitment_txid {
1634 walk_counterparty_commitment!(txid);
1641 pub(crate) fn get_stored_preimages(&self) -> HashMap<PaymentHash, PaymentPreimage> {
1642 self.inner.lock().unwrap().payment_preimages.clone()
1646 /// Compares a broadcasted commitment transaction's HTLCs with those in the latest state,
1647 /// failing any HTLCs which didn't make it into the broadcasted commitment transaction back
1648 /// after ANTI_REORG_DELAY blocks.
1650 /// We always compare against the set of HTLCs in counterparty commitment transactions, as those
1651 /// are the commitment transactions which are generated by us. The off-chain state machine in
1652 /// `Channel` will automatically resolve any HTLCs which were never included in a commitment
1653 /// transaction when it detects channel closure, but it is up to us to ensure any HTLCs which were
1654 /// included in a remote commitment transaction are failed back if they are not present in the
1655 /// broadcasted commitment transaction.
1657 /// Specifically, the removal process for HTLCs in `Channel` is always based on the counterparty
1658 /// sending a `revoke_and_ack`, which causes us to clear `prev_counterparty_commitment_txid`. Thus,
1659 /// as long as we examine both the current counterparty commitment transaction and, if it hasn't
1660 /// been revoked yet, the previous one, we we will never "forget" to resolve an HTLC.
1661 macro_rules! fail_unbroadcast_htlcs {
1662 ($self: expr, $commitment_tx_type: expr, $commitment_tx_conf_height: expr, $confirmed_htlcs_list: expr, $logger: expr) => { {
1663 macro_rules! check_htlc_fails {
1664 ($txid: expr, $commitment_tx: expr) => {
1665 if let Some(ref latest_outpoints) = $self.counterparty_claimable_outpoints.get($txid) {
1666 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1667 if let &Some(ref source) = source_option {
1668 // Check if the HTLC is present in the commitment transaction that was
1669 // broadcast, but not if it was below the dust limit, which we should
1670 // fail backwards immediately as there is no way for us to learn the
1671 // payment_preimage.
1672 // Note that if the dust limit were allowed to change between
1673 // commitment transactions we'd want to be check whether *any*
1674 // broadcastable commitment transaction has the HTLC in it, but it
1675 // cannot currently change after channel initialization, so we don't
1677 let confirmed_htlcs_iter: &mut Iterator<Item = (&HTLCOutputInCommitment, Option<&HTLCSource>)> = &mut $confirmed_htlcs_list;
1678 let mut matched_htlc = false;
1679 for (ref broadcast_htlc, ref broadcast_source) in confirmed_htlcs_iter {
1680 if broadcast_htlc.transaction_output_index.is_some() && Some(&**source) == *broadcast_source {
1681 matched_htlc = true;
1685 if matched_htlc { continue; }
1686 $self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1687 if entry.height != $commitment_tx_conf_height { return true; }
1689 OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
1690 *update_source != **source
1695 let entry = OnchainEventEntry {
1697 height: $commitment_tx_conf_height,
1698 event: OnchainEvent::HTLCUpdate {
1699 source: (**source).clone(),
1700 payment_hash: htlc.payment_hash.clone(),
1701 htlc_value_satoshis: Some(htlc.amount_msat / 1000),
1702 commitment_tx_output_idx: None,
1705 log_trace!($logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of {} commitment transaction, waiting for confirmation (at height {})",
1706 log_bytes!(htlc.payment_hash.0), $commitment_tx, $commitment_tx_type, entry.confirmation_threshold());
1707 $self.onchain_events_awaiting_threshold_conf.push(entry);
1713 if let Some(ref txid) = $self.current_counterparty_commitment_txid {
1714 check_htlc_fails!(txid, "current");
1716 if let Some(ref txid) = $self.prev_counterparty_commitment_txid {
1717 check_htlc_fails!(txid, "previous");
1722 impl<Signer: Sign> ChannelMonitorImpl<Signer> {
1723 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
1724 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
1725 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
1726 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1727 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
1728 return Err("Previous secret did not match new one");
1731 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
1732 // events for now-revoked/fulfilled HTLCs.
1733 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
1734 for &mut (_, ref mut source) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
1739 if !self.payment_preimages.is_empty() {
1740 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
1741 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
1742 let min_idx = self.get_min_seen_secret();
1743 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
1745 self.payment_preimages.retain(|&k, _| {
1746 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
1747 if k == htlc.payment_hash {
1751 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
1752 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
1753 if k == htlc.payment_hash {
1758 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
1765 counterparty_hash_commitment_number.remove(&k);
1774 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_per_commitment_point: PublicKey, logger: &L) where L::Target: Logger {
1775 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
1776 // so that a remote monitor doesn't learn anything unless there is a malicious close.
1777 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
1779 for &(ref htlc, _) in &htlc_outputs {
1780 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
1783 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
1784 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
1785 self.current_counterparty_commitment_txid = Some(txid);
1786 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
1787 self.current_counterparty_commitment_number = commitment_number;
1788 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
1789 match self.their_cur_per_commitment_points {
1790 Some(old_points) => {
1791 if old_points.0 == commitment_number + 1 {
1792 self.their_cur_per_commitment_points = Some((old_points.0, old_points.1, Some(their_per_commitment_point)));
1793 } else if old_points.0 == commitment_number + 2 {
1794 if let Some(old_second_point) = old_points.2 {
1795 self.their_cur_per_commitment_points = Some((old_points.0 - 1, old_second_point, Some(their_per_commitment_point)));
1797 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
1800 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
1804 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
1807 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
1808 for htlc in htlc_outputs {
1809 if htlc.0.transaction_output_index.is_some() {
1815 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
1816 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
1817 /// is important that any clones of this channel monitor (including remote clones) by kept
1818 /// up-to-date as our holder commitment transaction is updated.
1819 /// Panics if set_on_holder_tx_csv has never been called.
1820 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>) -> Result<(), &'static str> {
1821 // block for Rust 1.34 compat
1822 let mut new_holder_commitment_tx = {
1823 let trusted_tx = holder_commitment_tx.trust();
1824 let txid = trusted_tx.txid();
1825 let tx_keys = trusted_tx.keys();
1826 self.current_holder_commitment_number = trusted_tx.commitment_number();
1829 revocation_key: tx_keys.revocation_key,
1830 a_htlc_key: tx_keys.broadcaster_htlc_key,
1831 b_htlc_key: tx_keys.countersignatory_htlc_key,
1832 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1833 per_commitment_point: tx_keys.per_commitment_point,
1835 to_self_value_sat: holder_commitment_tx.to_broadcaster_value_sat(),
1836 feerate_per_kw: trusted_tx.feerate_per_kw(),
1839 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
1840 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
1841 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
1842 if self.holder_tx_signed {
1843 return Err("Latest holder commitment signed has already been signed, update is rejected");
1848 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
1849 /// commitment_tx_infos which contain the payment hash have been revoked.
1850 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B, fee_estimator: &F, logger: &L)
1851 where B::Target: BroadcasterInterface,
1852 F::Target: FeeEstimator,
1855 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
1857 // If the channel is force closed, try to claim the output from this preimage.
1858 // First check if a counterparty commitment transaction has been broadcasted:
1859 macro_rules! claim_htlcs {
1860 ($commitment_number: expr, $txid: expr) => {
1861 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs($commitment_number, $txid, None);
1862 self.onchain_tx_handler.update_claims_view(&Vec::new(), htlc_claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
1865 if let Some(txid) = self.current_counterparty_commitment_txid {
1866 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1867 claim_htlcs!(*commitment_number, txid);
1871 if let Some(txid) = self.prev_counterparty_commitment_txid {
1872 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1873 claim_htlcs!(*commitment_number, txid);
1878 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
1879 // claiming the HTLC output from each of the holder commitment transactions.
1880 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
1881 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
1882 // holder commitment transactions.
1883 if self.broadcasted_holder_revokable_script.is_some() {
1884 // Assume that the broadcasted commitment transaction confirmed in the current best
1885 // block. Even if not, its a reasonable metric for the bump criteria on the HTLC
1887 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
1888 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
1889 if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
1890 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx, self.best_block.height());
1891 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
1896 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
1897 where B::Target: BroadcasterInterface,
1900 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
1901 log_info!(logger, "Broadcasting local {}", log_tx!(tx));
1902 broadcaster.broadcast_transaction(tx);
1904 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
1907 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: &F, logger: &L) -> Result<(), ()>
1908 where B::Target: BroadcasterInterface,
1909 F::Target: FeeEstimator,
1912 log_info!(logger, "Applying update to monitor {}, bringing update_id from {} to {} with {} changes.",
1913 log_funding_info!(self), self.latest_update_id, updates.update_id, updates.updates.len());
1914 // ChannelMonitor updates may be applied after force close if we receive a
1915 // preimage for a broadcasted commitment transaction HTLC output that we'd
1916 // like to claim on-chain. If this is the case, we no longer have guaranteed
1917 // access to the monitor's update ID, so we use a sentinel value instead.
1918 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
1919 assert_eq!(updates.updates.len(), 1);
1920 match updates.updates[0] {
1921 ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
1923 log_error!(logger, "Attempted to apply post-force-close ChannelMonitorUpdate of type {}", updates.updates[0].variant_name());
1924 panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage");
1927 } else if self.latest_update_id + 1 != updates.update_id {
1928 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
1930 let mut ret = Ok(());
1931 for update in updates.updates.iter() {
1933 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs } => {
1934 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
1935 if self.lockdown_from_offchain { panic!(); }
1936 if let Err(e) = self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone()) {
1937 log_error!(logger, "Providing latest holder commitment transaction failed/was refused:");
1938 log_error!(logger, " {}", e);
1942 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_per_commitment_point } => {
1943 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
1944 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_per_commitment_point, logger)
1946 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
1947 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
1948 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, fee_estimator, logger)
1950 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
1951 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
1952 if let Err(e) = self.provide_secret(*idx, *secret) {
1953 log_error!(logger, "Providing latest counterparty commitment secret failed/was refused:");
1954 log_error!(logger, " {}", e);
1958 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
1959 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
1960 self.lockdown_from_offchain = true;
1961 if *should_broadcast {
1962 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
1963 } else if !self.holder_tx_signed {
1964 log_error!(logger, "You have a toxic holder commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_holder_commitment_txn to be informed of manual action to take");
1966 // If we generated a MonitorEvent::CommitmentTxConfirmed, the ChannelManager
1967 // will still give us a ChannelForceClosed event with !should_broadcast, but we
1968 // shouldn't print the scary warning above.
1969 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
1972 ChannelMonitorUpdateStep::ShutdownScript { scriptpubkey } => {
1973 log_trace!(logger, "Updating ChannelMonitor with shutdown script");
1974 if let Some(shutdown_script) = self.shutdown_script.replace(scriptpubkey.clone()) {
1975 panic!("Attempted to replace shutdown script {} with {}", shutdown_script, scriptpubkey);
1980 self.latest_update_id = updates.update_id;
1982 if ret.is_ok() && self.funding_spend_seen {
1983 log_error!(logger, "Refusing Channel Monitor Update as counterparty attempted to update commitment after funding was spent");
1988 pub fn get_latest_update_id(&self) -> u64 {
1989 self.latest_update_id
1992 pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
1996 pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
1997 // If we've detected a counterparty commitment tx on chain, we must include it in the set
1998 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
1999 // its trivial to do, double-check that here.
2000 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
2001 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
2003 &self.outputs_to_watch
2006 pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
2007 let mut ret = Vec::new();
2008 mem::swap(&mut ret, &mut self.pending_monitor_events);
2012 pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
2013 let mut ret = Vec::new();
2014 mem::swap(&mut ret, &mut self.pending_events);
2018 /// Can only fail if idx is < get_min_seen_secret
2019 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
2020 self.commitment_secrets.get_secret(idx)
2023 pub(crate) fn get_min_seen_secret(&self) -> u64 {
2024 self.commitment_secrets.get_min_seen_secret()
2027 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
2028 self.current_counterparty_commitment_number
2031 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
2032 self.current_holder_commitment_number
2035 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
2036 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
2037 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
2038 /// HTLC-Success/HTLC-Timeout transactions.
2039 /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
2040 /// revoked counterparty commitment tx
2041 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<PackageTemplate>, TransactionOutputs) where L::Target: Logger {
2042 // Most secp and related errors trying to create keys means we have no hope of constructing
2043 // a spend transaction...so we return no transactions to broadcast
2044 let mut claimable_outpoints = Vec::new();
2045 let mut watch_outputs = Vec::new();
2047 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
2048 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
2050 macro_rules! ignore_error {
2051 ( $thing : expr ) => {
2054 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs))
2059 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
2060 if commitment_number >= self.get_min_seen_secret() {
2061 let secret = self.get_secret(commitment_number).unwrap();
2062 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2063 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
2064 let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint));
2065 let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.counterparty_commitment_params.counterparty_delayed_payment_base_key));
2067 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
2068 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
2070 // First, process non-htlc outputs (to_holder & to_counterparty)
2071 for (idx, outp) in tx.output.iter().enumerate() {
2072 if outp.script_pubkey == revokeable_p2wsh {
2073 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_commitment_params.on_counterparty_tx_csv);
2074 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height);
2075 claimable_outpoints.push(justice_package);
2079 // Then, try to find revoked htlc outputs
2080 if let Some(ref per_commitment_data) = per_commitment_option {
2081 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
2082 if let Some(transaction_output_index) = htlc.transaction_output_index {
2083 if transaction_output_index as usize >= tx.output.len() ||
2084 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2085 return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
2087 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone(), self.onchain_tx_handler.channel_transaction_parameters.opt_anchors.is_some());
2088 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, true, height);
2089 claimable_outpoints.push(justice_package);
2094 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
2095 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
2096 // We're definitely a counterparty commitment transaction!
2097 log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
2098 for (idx, outp) in tx.output.iter().enumerate() {
2099 watch_outputs.push((idx as u32, outp.clone()));
2101 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2103 fail_unbroadcast_htlcs!(self, "revoked counterparty", height, [].iter().map(|a| *a), logger);
2105 } else if let Some(per_commitment_data) = per_commitment_option {
2106 // While this isn't useful yet, there is a potential race where if a counterparty
2107 // revokes a state at the same time as the commitment transaction for that state is
2108 // confirmed, and the watchtower receives the block before the user, the user could
2109 // upload a new ChannelMonitor with the revocation secret but the watchtower has
2110 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
2111 // not being generated by the above conditional. Thus, to be safe, we go ahead and
2113 for (idx, outp) in tx.output.iter().enumerate() {
2114 watch_outputs.push((idx as u32, outp.clone()));
2116 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2118 log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
2119 fail_unbroadcast_htlcs!(self, "counterparty", height, per_commitment_data.iter().map(|(a, b)| (a, b.as_ref().map(|b| b.as_ref()))), logger);
2121 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs(commitment_number, commitment_txid, Some(tx));
2122 for req in htlc_claim_reqs {
2123 claimable_outpoints.push(req);
2127 (claimable_outpoints, (commitment_txid, watch_outputs))
2130 fn get_counterparty_htlc_output_claim_reqs(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>) -> Vec<PackageTemplate> {
2131 let mut claimable_outpoints = Vec::new();
2132 if let Some(htlc_outputs) = self.counterparty_claimable_outpoints.get(&commitment_txid) {
2133 if let Some(per_commitment_points) = self.their_cur_per_commitment_points {
2134 let per_commitment_point_option =
2135 // If the counterparty commitment tx is the latest valid state, use their latest
2136 // per-commitment point
2137 if per_commitment_points.0 == commitment_number { Some(&per_commitment_points.1) }
2138 else if let Some(point) = per_commitment_points.2.as_ref() {
2139 // If counterparty commitment tx is the state previous to the latest valid state, use
2140 // their previous per-commitment point (non-atomicity of revocation means it's valid for
2141 // them to temporarily have two valid commitment txns from our viewpoint)
2142 if per_commitment_points.0 == commitment_number + 1 { Some(point) } else { None }
2144 if let Some(per_commitment_point) = per_commitment_point_option {
2145 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
2146 if let Some(transaction_output_index) = htlc.transaction_output_index {
2147 if let Some(transaction) = tx {
2148 if transaction_output_index as usize >= transaction.output.len() ||
2149 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2150 return claimable_outpoints; // Corrupted per_commitment_data, fuck this user
2153 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
2154 if preimage.is_some() || !htlc.offered {
2155 let counterparty_htlc_outp = if htlc.offered {
2156 PackageSolvingData::CounterpartyOfferedHTLCOutput(
2157 CounterpartyOfferedHTLCOutput::build(*per_commitment_point,
2158 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2159 self.counterparty_commitment_params.counterparty_htlc_base_key,
2160 preimage.unwrap(), htlc.clone()))
2162 PackageSolvingData::CounterpartyReceivedHTLCOutput(
2163 CounterpartyReceivedHTLCOutput::build(*per_commitment_point,
2164 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2165 self.counterparty_commitment_params.counterparty_htlc_base_key,
2168 let aggregation = if !htlc.offered { false } else { true };
2169 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry,aggregation, 0);
2170 claimable_outpoints.push(counterparty_package);
2180 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
2181 fn check_spend_counterparty_htlc<L: Deref>(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
2182 let htlc_txid = tx.txid();
2183 if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 {
2184 return (Vec::new(), None)
2187 macro_rules! ignore_error {
2188 ( $thing : expr ) => {
2191 Err(_) => return (Vec::new(), None)
2196 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
2197 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2198 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
2200 log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, 0);
2201 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, tx.output[0].value, self.counterparty_commitment_params.on_counterparty_tx_csv);
2202 let justice_package = PackageTemplate::build_package(htlc_txid, 0, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height);
2203 let claimable_outpoints = vec!(justice_package);
2204 let outputs = vec![(0, tx.output[0].clone())];
2205 (claimable_outpoints, Some((htlc_txid, outputs)))
2208 // Returns (1) `PackageTemplate`s that can be given to the OnChainTxHandler, so that the handler can
2209 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
2210 // script so we can detect whether a holder transaction has been seen on-chain.
2211 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(Script, PublicKey, PublicKey)>) {
2212 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
2214 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
2215 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
2217 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2218 if let Some(transaction_output_index) = htlc.transaction_output_index {
2219 let htlc_output = if htlc.offered {
2220 HolderHTLCOutput::build_offered(htlc.amount_msat, htlc.cltv_expiry)
2222 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
2225 // We can't build an HTLC-Success transaction without the preimage
2228 HolderHTLCOutput::build_accepted(payment_preimage, htlc.amount_msat)
2230 let htlc_package = PackageTemplate::build_package(holder_tx.txid, transaction_output_index, PackageSolvingData::HolderHTLCOutput(htlc_output), htlc.cltv_expiry, false, conf_height);
2231 claim_requests.push(htlc_package);
2235 (claim_requests, broadcasted_holder_revokable_script)
2238 // Returns holder HTLC outputs to watch and react to in case of spending.
2239 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
2240 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
2241 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2242 if let Some(transaction_output_index) = htlc.transaction_output_index {
2243 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
2249 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
2250 /// revoked using data in holder_claimable_outpoints.
2251 /// Should not be used if check_spend_revoked_transaction succeeds.
2252 /// Returns None unless the transaction is definitely one of our commitment transactions.
2253 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> Option<(Vec<PackageTemplate>, TransactionOutputs)> where L::Target: Logger {
2254 let commitment_txid = tx.txid();
2255 let mut claim_requests = Vec::new();
2256 let mut watch_outputs = Vec::new();
2258 macro_rules! append_onchain_update {
2259 ($updates: expr, $to_watch: expr) => {
2260 claim_requests = $updates.0;
2261 self.broadcasted_holder_revokable_script = $updates.1;
2262 watch_outputs.append(&mut $to_watch);
2266 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
2267 let mut is_holder_tx = false;
2269 if self.current_holder_commitment_tx.txid == commitment_txid {
2270 is_holder_tx = true;
2271 log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2272 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
2273 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
2274 append_onchain_update!(res, to_watch);
2275 fail_unbroadcast_htlcs!(self, "latest holder", height, self.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, c)| (a, c.as_ref())), logger);
2276 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
2277 if holder_tx.txid == commitment_txid {
2278 is_holder_tx = true;
2279 log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2280 let res = self.get_broadcasted_holder_claims(holder_tx, height);
2281 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
2282 append_onchain_update!(res, to_watch);
2283 fail_unbroadcast_htlcs!(self, "previous holder", height, holder_tx.htlc_outputs.iter().map(|(a, _, c)| (a, c.as_ref())), logger);
2288 Some((claim_requests, (commitment_txid, watch_outputs)))
2294 pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2295 log_debug!(logger, "Getting signed latest holder commitment transaction!");
2296 self.holder_tx_signed = true;
2297 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2298 let txid = commitment_tx.txid();
2299 let mut holder_transactions = vec![commitment_tx];
2300 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2301 if let Some(vout) = htlc.0.transaction_output_index {
2302 let preimage = if !htlc.0.offered {
2303 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2304 // We can't build an HTLC-Success transaction without the preimage
2307 } else if htlc.0.cltv_expiry > self.best_block.height() + 1 {
2308 // Don't broadcast HTLC-Timeout transactions immediately as they don't meet the
2309 // current locktime requirements on-chain. We will broadcast them in
2310 // `block_confirmed` when `should_broadcast_holder_commitment_txn` returns true.
2311 // Note that we add + 1 as transactions are broadcastable when they can be
2312 // confirmed in the next block.
2315 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
2316 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2317 holder_transactions.push(htlc_tx);
2321 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
2322 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
2326 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
2327 /// Note that this includes possibly-locktimed-in-the-future transactions!
2328 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2329 log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
2330 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
2331 let txid = commitment_tx.txid();
2332 let mut holder_transactions = vec![commitment_tx];
2333 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2334 if let Some(vout) = htlc.0.transaction_output_index {
2335 let preimage = if !htlc.0.offered {
2336 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2337 // We can't build an HTLC-Success transaction without the preimage
2341 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
2342 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2343 holder_transactions.push(htlc_tx);
2350 pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
2351 where B::Target: BroadcasterInterface,
2352 F::Target: FeeEstimator,
2355 let block_hash = header.block_hash();
2356 self.best_block = BestBlock::new(block_hash, height);
2358 self.transactions_confirmed(header, txdata, height, broadcaster, fee_estimator, logger)
2361 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
2363 header: &BlockHeader,
2368 ) -> Vec<TransactionOutputs>
2370 B::Target: BroadcasterInterface,
2371 F::Target: FeeEstimator,
2374 let block_hash = header.block_hash();
2376 if height > self.best_block.height() {
2377 self.best_block = BestBlock::new(block_hash, height);
2378 self.block_confirmed(height, vec![], vec![], vec![], &broadcaster, &fee_estimator, &logger)
2379 } else if block_hash != self.best_block.block_hash() {
2380 self.best_block = BestBlock::new(block_hash, height);
2381 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
2382 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
2384 } else { Vec::new() }
2387 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
2389 header: &BlockHeader,
2390 txdata: &TransactionData,
2395 ) -> Vec<TransactionOutputs>
2397 B::Target: BroadcasterInterface,
2398 F::Target: FeeEstimator,
2401 let txn_matched = self.filter_block(txdata);
2402 for tx in &txn_matched {
2403 let mut output_val = 0;
2404 for out in tx.output.iter() {
2405 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2406 output_val += out.value;
2407 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2411 let block_hash = header.block_hash();
2413 let mut watch_outputs = Vec::new();
2414 let mut claimable_outpoints = Vec::new();
2415 for tx in &txn_matched {
2416 if tx.input.len() == 1 {
2417 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2418 // commitment transactions and HTLC transactions will all only ever have one input,
2419 // which is an easy way to filter out any potential non-matching txn for lazy
2421 let prevout = &tx.input[0].previous_output;
2422 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
2423 let mut balance_spendable_csv = None;
2424 log_info!(logger, "Channel {} closed by funding output spend in txid {}.",
2425 log_bytes!(self.funding_info.0.to_channel_id()), tx.txid());
2426 self.funding_spend_seen = true;
2427 if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
2428 let (mut new_outpoints, new_outputs) = self.check_spend_counterparty_transaction(&tx, height, &logger);
2429 if !new_outputs.1.is_empty() {
2430 watch_outputs.push(new_outputs);
2432 claimable_outpoints.append(&mut new_outpoints);
2433 if new_outpoints.is_empty() {
2434 if let Some((mut new_outpoints, new_outputs)) = self.check_spend_holder_transaction(&tx, height, &logger) {
2435 if !new_outputs.1.is_empty() {
2436 watch_outputs.push(new_outputs);
2438 claimable_outpoints.append(&mut new_outpoints);
2439 balance_spendable_csv = Some(self.on_holder_tx_csv);
2443 let txid = tx.txid();
2444 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
2447 event: OnchainEvent::FundingSpendConfirmation {
2448 on_local_output_csv: balance_spendable_csv,
2452 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&prevout.txid) {
2453 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(&tx, commitment_number, height, &logger);
2454 claimable_outpoints.append(&mut new_outpoints);
2455 if let Some(new_outputs) = new_outputs_option {
2456 watch_outputs.push(new_outputs);
2461 // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
2462 // can also be resolved in a few other ways which can have more than one output. Thus,
2463 // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
2464 self.is_resolving_htlc_output(&tx, height, &logger);
2466 self.is_paying_spendable_output(&tx, height, &logger);
2469 if height > self.best_block.height() {
2470 self.best_block = BestBlock::new(block_hash, height);
2473 self.block_confirmed(height, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, &logger)
2476 /// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
2477 /// `self.best_block` before calling if a new best blockchain tip is available. More
2478 /// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
2479 /// complexity especially in `OnchainTx::update_claims_view`.
2481 /// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
2482 /// confirmed at, even if it is not the current best height.
2483 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
2486 txn_matched: Vec<&Transaction>,
2487 mut watch_outputs: Vec<TransactionOutputs>,
2488 mut claimable_outpoints: Vec<PackageTemplate>,
2492 ) -> Vec<TransactionOutputs>
2494 B::Target: BroadcasterInterface,
2495 F::Target: FeeEstimator,
2498 log_trace!(logger, "Processing {} matched transactions for block at height {}.", txn_matched.len(), conf_height);
2499 debug_assert!(self.best_block.height() >= conf_height);
2501 let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
2502 if should_broadcast {
2503 let funding_outp = HolderFundingOutput::build(self.funding_redeemscript.clone());
2504 let commitment_package = PackageTemplate::build_package(self.funding_info.0.txid.clone(), self.funding_info.0.index as u32, PackageSolvingData::HolderFundingOutput(funding_outp), self.best_block.height(), false, self.best_block.height());
2505 claimable_outpoints.push(commitment_package);
2506 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
2507 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2508 self.holder_tx_signed = true;
2509 // Because we're broadcasting a commitment transaction, we should construct the package
2510 // assuming it gets confirmed in the next block. Sadly, we have code which considers
2511 // "not yet confirmed" things as discardable, so we cannot do that here.
2512 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
2513 let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
2514 if !new_outputs.is_empty() {
2515 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
2517 claimable_outpoints.append(&mut new_outpoints);
2520 // Find which on-chain events have reached their confirmation threshold.
2521 let onchain_events_awaiting_threshold_conf =
2522 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
2523 let mut onchain_events_reaching_threshold_conf = Vec::new();
2524 for entry in onchain_events_awaiting_threshold_conf {
2525 if entry.has_reached_confirmation_threshold(&self.best_block) {
2526 onchain_events_reaching_threshold_conf.push(entry);
2528 self.onchain_events_awaiting_threshold_conf.push(entry);
2532 // Used to check for duplicate HTLC resolutions.
2533 #[cfg(debug_assertions)]
2534 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
2536 .filter_map(|entry| match &entry.event {
2537 OnchainEvent::HTLCUpdate { source, .. } => Some(source),
2541 #[cfg(debug_assertions)]
2542 let mut matured_htlcs = Vec::new();
2544 // Produce actionable events from on-chain events having reached their threshold.
2545 for entry in onchain_events_reaching_threshold_conf.drain(..) {
2547 OnchainEvent::HTLCUpdate { ref source, payment_hash, htlc_value_satoshis, commitment_tx_output_idx } => {
2548 // Check for duplicate HTLC resolutions.
2549 #[cfg(debug_assertions)]
2552 unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
2553 "An unmature HTLC transaction conflicts with a maturing one; failed to \
2554 call either transaction_unconfirmed for the conflicting transaction \
2555 or block_disconnected for a block containing it.");
2557 matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
2558 "A matured HTLC transaction conflicts with a maturing one; failed to \
2559 call either transaction_unconfirmed for the conflicting transaction \
2560 or block_disconnected for a block containing it.");
2561 matured_htlcs.push(source.clone());
2564 log_debug!(logger, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!(payment_hash.0));
2565 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2567 payment_preimage: None,
2568 source: source.clone(),
2569 htlc_value_satoshis,
2571 if let Some(idx) = commitment_tx_output_idx {
2572 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC { commitment_tx_output_idx: idx, payment_preimage: None });
2575 OnchainEvent::MaturingOutput { descriptor } => {
2576 log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
2577 self.pending_events.push(Event::SpendableOutputs {
2578 outputs: vec![descriptor]
2581 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } => {
2582 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC { commitment_tx_output_idx, payment_preimage: preimage });
2584 OnchainEvent::FundingSpendConfirmation { .. } => {
2585 self.funding_spend_confirmed = Some(entry.txid);
2590 self.onchain_tx_handler.update_claims_view(&txn_matched, claimable_outpoints, conf_height, self.best_block.height(), broadcaster, fee_estimator, logger);
2592 // Determine new outputs to watch by comparing against previously known outputs to watch,
2593 // updating the latter in the process.
2594 watch_outputs.retain(|&(ref txid, ref txouts)| {
2595 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
2596 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
2600 // If we see a transaction for which we registered outputs previously,
2601 // make sure the registered scriptpubkey at the expected index match
2602 // the actual transaction output one. We failed this case before #653.
2603 for tx in &txn_matched {
2604 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
2605 for idx_and_script in outputs.iter() {
2606 assert!((idx_and_script.0 as usize) < tx.output.len());
2607 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
2615 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
2616 where B::Target: BroadcasterInterface,
2617 F::Target: FeeEstimator,
2620 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
2623 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
2624 //- maturing spendable output has transaction paying us has been disconnected
2625 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
2627 self.onchain_tx_handler.block_disconnected(height, broadcaster, fee_estimator, logger);
2629 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
2632 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
2639 B::Target: BroadcasterInterface,
2640 F::Target: FeeEstimator,
2643 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.txid != *txid);
2644 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
2647 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
2648 /// transactions thereof.
2649 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
2650 let mut matched_txn = HashSet::new();
2651 txdata.iter().filter(|&&(_, tx)| {
2652 let mut matches = self.spends_watched_output(tx);
2653 for input in tx.input.iter() {
2654 if matches { break; }
2655 if matched_txn.contains(&input.previous_output.txid) {
2660 matched_txn.insert(tx.txid());
2663 }).map(|(_, tx)| *tx).collect()
2666 /// Checks if a given transaction spends any watched outputs.
2667 fn spends_watched_output(&self, tx: &Transaction) -> bool {
2668 for input in tx.input.iter() {
2669 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
2670 for (idx, _script_pubkey) in outputs.iter() {
2671 if *idx == input.previous_output.vout {
2674 // If the expected script is a known type, check that the witness
2675 // appears to be spending the correct type (ie that the match would
2676 // actually succeed in BIP 158/159-style filters).
2677 if _script_pubkey.is_v0_p2wsh() {
2678 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().to_vec()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
2679 } else if _script_pubkey.is_v0_p2wpkh() {
2680 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
2681 } else { panic!(); }
2692 fn should_broadcast_holder_commitment_txn<L: Deref>(&self, logger: &L) -> bool where L::Target: Logger {
2693 // We need to consider all HTLCs which are:
2694 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
2695 // transactions and we'd end up in a race, or
2696 // * are in our latest holder commitment transaction, as this is the thing we will
2697 // broadcast if we go on-chain.
2698 // Note that we consider HTLCs which were below dust threshold here - while they don't
2699 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
2700 // to the source, and if we don't fail the channel we will have to ensure that the next
2701 // updates that peer sends us are update_fails, failing the channel if not. It's probably
2702 // easier to just fail the channel as this case should be rare enough anyway.
2703 let height = self.best_block.height();
2704 macro_rules! scan_commitment {
2705 ($htlcs: expr, $holder_tx: expr) => {
2706 for ref htlc in $htlcs {
2707 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
2708 // chain with enough room to claim the HTLC without our counterparty being able to
2709 // time out the HTLC first.
2710 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
2711 // concern is being able to claim the corresponding inbound HTLC (on another
2712 // channel) before it expires. In fact, we don't even really care if our
2713 // counterparty here claims such an outbound HTLC after it expired as long as we
2714 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
2715 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
2716 // we give ourselves a few blocks of headroom after expiration before going
2717 // on-chain for an expired HTLC.
2718 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
2719 // from us until we've reached the point where we go on-chain with the
2720 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
2721 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
2722 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
2723 // inbound_cltv == height + CLTV_CLAIM_BUFFER
2724 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
2725 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
2726 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
2727 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
2728 // The final, above, condition is checked for statically in channelmanager
2729 // with CHECK_CLTV_EXPIRY_SANITY_2.
2730 let htlc_outbound = $holder_tx == htlc.offered;
2731 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
2732 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
2733 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
2740 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
2742 if let Some(ref txid) = self.current_counterparty_commitment_txid {
2743 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2744 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2747 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
2748 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2749 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2756 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
2757 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
2758 fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2759 'outer_loop: for input in &tx.input {
2760 let mut payment_data = None;
2761 let witness_items = input.witness.len();
2762 let htlctype = input.witness.last().map(|w| w.len()).and_then(HTLCType::scriptlen_to_htlctype);
2763 let prev_last_witness_len = input.witness.second_to_last().map(|w| w.len()).unwrap_or(0);
2764 let revocation_sig_claim = (witness_items == 3 && htlctype == Some(HTLCType::OfferedHTLC) && prev_last_witness_len == 33)
2765 || (witness_items == 3 && htlctype == Some(HTLCType::AcceptedHTLC) && prev_last_witness_len == 33);
2766 let accepted_preimage_claim = witness_items == 5 && htlctype == Some(HTLCType::AcceptedHTLC);
2767 #[cfg(not(fuzzing))]
2768 let accepted_timeout_claim = witness_items == 3 && htlctype == Some(HTLCType::AcceptedHTLC) && !revocation_sig_claim;
2769 let offered_preimage_claim = witness_items == 3 && htlctype == Some(HTLCType::OfferedHTLC) && !revocation_sig_claim;
2770 #[cfg(not(fuzzing))]
2771 let offered_timeout_claim = witness_items == 5 && htlctype == Some(HTLCType::OfferedHTLC);
2773 let mut payment_preimage = PaymentPreimage([0; 32]);
2774 if accepted_preimage_claim {
2775 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
2776 } else if offered_preimage_claim {
2777 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
2780 macro_rules! log_claim {
2781 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
2782 let outbound_htlc = $holder_tx == $htlc.offered;
2783 // HTLCs must either be claimed by a matching script type or through the
2785 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
2786 debug_assert!(!$htlc.offered || offered_preimage_claim || offered_timeout_claim || revocation_sig_claim);
2787 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
2788 debug_assert!($htlc.offered || accepted_preimage_claim || accepted_timeout_claim || revocation_sig_claim);
2789 // Further, only exactly one of the possible spend paths should have been
2790 // matched by any HTLC spend:
2791 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
2792 debug_assert_eq!(accepted_preimage_claim as u8 + accepted_timeout_claim as u8 +
2793 offered_preimage_claim as u8 + offered_timeout_claim as u8 +
2794 revocation_sig_claim as u8, 1);
2795 if ($holder_tx && revocation_sig_claim) ||
2796 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
2797 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
2798 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2799 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2800 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
2802 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
2803 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2804 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2805 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2810 macro_rules! check_htlc_valid_counterparty {
2811 ($counterparty_txid: expr, $htlc_output: expr) => {
2812 if let Some(txid) = $counterparty_txid {
2813 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2814 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2815 if let &Some(ref source) = pending_source {
2816 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
2817 payment_data = Some(((**source).clone(), $htlc_output.payment_hash, $htlc_output.amount_msat));
2826 macro_rules! scan_commitment {
2827 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
2828 for (ref htlc_output, source_option) in $htlcs {
2829 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2830 if let Some(ref source) = source_option {
2831 log_claim!($tx_info, $holder_tx, htlc_output, true);
2832 // We have a resolution of an HTLC either from one of our latest
2833 // holder commitment transactions or an unrevoked counterparty commitment
2834 // transaction. This implies we either learned a preimage, the HTLC
2835 // has timed out, or we screwed up. In any case, we should now
2836 // resolve the source HTLC with the original sender.
2837 payment_data = Some(((*source).clone(), htlc_output.payment_hash, htlc_output.amount_msat));
2838 } else if !$holder_tx {
2839 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
2840 if payment_data.is_none() {
2841 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
2844 if payment_data.is_none() {
2845 log_claim!($tx_info, $holder_tx, htlc_output, false);
2846 let outbound_htlc = $holder_tx == htlc_output.offered;
2847 if !outbound_htlc || revocation_sig_claim {
2848 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
2849 txid: tx.txid(), height,
2850 event: OnchainEvent::HTLCSpendConfirmation {
2851 commitment_tx_output_idx: input.previous_output.vout,
2852 preimage: if accepted_preimage_claim || offered_preimage_claim {
2853 Some(payment_preimage) } else { None },
2854 // If this is a payment to us (!outbound_htlc, above),
2855 // wait for the CSV delay before dropping the HTLC from
2856 // claimable balance if the claim was an HTLC-Success
2858 on_to_local_output_csv: if accepted_preimage_claim {
2859 Some(self.on_holder_tx_csv) } else { None },
2863 // Outbound claims should always have payment_data, unless
2864 // we've already failed the HTLC as the commitment transaction
2865 // which was broadcasted was revoked. In that case, we should
2866 // spend the HTLC output here immediately, and expose that fact
2867 // as a Balance, something which we do not yet do.
2868 // TODO: Track the above as claimable!
2870 continue 'outer_loop;
2877 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
2878 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2879 "our latest holder commitment tx", true);
2881 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
2882 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
2883 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2884 "our previous holder commitment tx", true);
2887 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
2888 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2889 "counterparty commitment tx", false);
2892 // Check that scan_commitment, above, decided there is some source worth relaying an
2893 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2894 if let Some((source, payment_hash, amount_msat)) = payment_data {
2895 if accepted_preimage_claim {
2896 if !self.pending_monitor_events.iter().any(
2897 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
2898 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
2901 event: OnchainEvent::HTLCSpendConfirmation {
2902 commitment_tx_output_idx: input.previous_output.vout,
2903 preimage: Some(payment_preimage),
2904 on_to_local_output_csv: None,
2907 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2909 payment_preimage: Some(payment_preimage),
2911 htlc_value_satoshis: Some(amount_msat / 1000),
2914 } else if offered_preimage_claim {
2915 if !self.pending_monitor_events.iter().any(
2916 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
2917 upd.source == source
2919 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
2922 event: OnchainEvent::HTLCSpendConfirmation {
2923 commitment_tx_output_idx: input.previous_output.vout,
2924 preimage: Some(payment_preimage),
2925 on_to_local_output_csv: None,
2928 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2930 payment_preimage: Some(payment_preimage),
2932 htlc_value_satoshis: Some(amount_msat / 1000),
2936 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
2937 if entry.height != height { return true; }
2939 OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
2940 *htlc_source != source
2945 let entry = OnchainEventEntry {
2948 event: OnchainEvent::HTLCUpdate {
2949 source, payment_hash,
2950 htlc_value_satoshis: Some(amount_msat / 1000),
2951 commitment_tx_output_idx: Some(input.previous_output.vout),
2954 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
2955 self.onchain_events_awaiting_threshold_conf.push(entry);
2961 /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
2962 fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2963 let mut spendable_output = None;
2964 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
2965 if i > ::core::u16::MAX as usize {
2966 // While it is possible that an output exists on chain which is greater than the
2967 // 2^16th output in a given transaction, this is only possible if the output is not
2968 // in a lightning transaction and was instead placed there by some third party who
2969 // wishes to give us money for no reason.
2970 // Namely, any lightning transactions which we pre-sign will never have anywhere
2971 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
2972 // scripts are not longer than one byte in length and because they are inherently
2973 // non-standard due to their size.
2974 // Thus, it is completely safe to ignore such outputs, and while it may result in
2975 // us ignoring non-lightning fund to us, that is only possible if someone fills
2976 // nearly a full block with garbage just to hit this case.
2979 if outp.script_pubkey == self.destination_script {
2980 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
2981 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2982 output: outp.clone(),
2986 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
2987 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
2988 spendable_output = Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
2989 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2990 per_commitment_point: broadcasted_holder_revokable_script.1,
2991 to_self_delay: self.on_holder_tx_csv,
2992 output: outp.clone(),
2993 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
2994 channel_keys_id: self.channel_keys_id,
2995 channel_value_satoshis: self.channel_value_satoshis,
3000 if self.counterparty_payment_script == outp.script_pubkey {
3001 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
3002 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3003 output: outp.clone(),
3004 channel_keys_id: self.channel_keys_id,
3005 channel_value_satoshis: self.channel_value_satoshis,
3009 if self.shutdown_script.as_ref() == Some(&outp.script_pubkey) {
3010 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3011 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3012 output: outp.clone(),
3017 if let Some(spendable_output) = spendable_output {
3018 let entry = OnchainEventEntry {
3021 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
3023 log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
3024 self.onchain_events_awaiting_threshold_conf.push(entry);
3029 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
3031 T::Target: BroadcasterInterface,
3032 F::Target: FeeEstimator,
3035 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3036 self.0.block_connected(header, txdata, height, &*self.1, &*self.2, &*self.3);
3039 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3040 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
3044 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Confirm for (ChannelMonitor<Signer>, T, F, L)
3046 T::Target: BroadcasterInterface,
3047 F::Target: FeeEstimator,
3050 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3051 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
3054 fn transaction_unconfirmed(&self, txid: &Txid) {
3055 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
3058 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3059 self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
3062 fn get_relevant_txids(&self) -> Vec<Txid> {
3063 self.0.get_relevant_txids()
3067 const MAX_ALLOC_SIZE: usize = 64*1024;
3069 impl<'a, Signer: Sign, K: KeysInterface<Signer = Signer>> ReadableArgs<&'a K>
3070 for (BlockHash, ChannelMonitor<Signer>) {
3071 fn read<R: io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
3072 macro_rules! unwrap_obj {
3076 Err(_) => return Err(DecodeError::InvalidValue),
3081 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
3083 let latest_update_id: u64 = Readable::read(reader)?;
3084 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
3086 let destination_script = Readable::read(reader)?;
3087 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
3089 let revokable_address = Readable::read(reader)?;
3090 let per_commitment_point = Readable::read(reader)?;
3091 let revokable_script = Readable::read(reader)?;
3092 Some((revokable_address, per_commitment_point, revokable_script))
3095 _ => return Err(DecodeError::InvalidValue),
3097 let counterparty_payment_script = Readable::read(reader)?;
3098 let shutdown_script = {
3099 let script = <Script as Readable>::read(reader)?;
3100 if script.is_empty() { None } else { Some(script) }
3103 let channel_keys_id = Readable::read(reader)?;
3104 let holder_revocation_basepoint = Readable::read(reader)?;
3105 // Technically this can fail and serialize fail a round-trip, but only for serialization of
3106 // barely-init'd ChannelMonitors that we can't do anything with.
3107 let outpoint = OutPoint {
3108 txid: Readable::read(reader)?,
3109 index: Readable::read(reader)?,
3111 let funding_info = (outpoint, Readable::read(reader)?);
3112 let current_counterparty_commitment_txid = Readable::read(reader)?;
3113 let prev_counterparty_commitment_txid = Readable::read(reader)?;
3115 let counterparty_commitment_params = Readable::read(reader)?;
3116 let funding_redeemscript = Readable::read(reader)?;
3117 let channel_value_satoshis = Readable::read(reader)?;
3119 let their_cur_per_commitment_points = {
3120 let first_idx = <U48 as Readable>::read(reader)?.0;
3124 let first_point = Readable::read(reader)?;
3125 let second_point_slice: [u8; 33] = Readable::read(reader)?;
3126 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
3127 Some((first_idx, first_point, None))
3129 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
3134 let on_holder_tx_csv: u16 = Readable::read(reader)?;
3136 let commitment_secrets = Readable::read(reader)?;
3138 macro_rules! read_htlc_in_commitment {
3141 let offered: bool = Readable::read(reader)?;
3142 let amount_msat: u64 = Readable::read(reader)?;
3143 let cltv_expiry: u32 = Readable::read(reader)?;
3144 let payment_hash: PaymentHash = Readable::read(reader)?;
3145 let transaction_output_index: Option<u32> = Readable::read(reader)?;
3147 HTLCOutputInCommitment {
3148 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
3154 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
3155 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
3156 for _ in 0..counterparty_claimable_outpoints_len {
3157 let txid: Txid = Readable::read(reader)?;
3158 let htlcs_count: u64 = Readable::read(reader)?;
3159 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
3160 for _ in 0..htlcs_count {
3161 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
3163 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
3164 return Err(DecodeError::InvalidValue);
3168 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
3169 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
3170 for _ in 0..counterparty_commitment_txn_on_chain_len {
3171 let txid: Txid = Readable::read(reader)?;
3172 let commitment_number = <U48 as Readable>::read(reader)?.0;
3173 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
3174 return Err(DecodeError::InvalidValue);
3178 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
3179 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
3180 for _ in 0..counterparty_hash_commitment_number_len {
3181 let payment_hash: PaymentHash = Readable::read(reader)?;
3182 let commitment_number = <U48 as Readable>::read(reader)?.0;
3183 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
3184 return Err(DecodeError::InvalidValue);
3188 let mut prev_holder_signed_commitment_tx: Option<HolderSignedTx> =
3189 match <u8 as Readable>::read(reader)? {
3192 Some(Readable::read(reader)?)
3194 _ => return Err(DecodeError::InvalidValue),
3196 let mut current_holder_commitment_tx: HolderSignedTx = Readable::read(reader)?;
3198 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
3199 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
3201 let payment_preimages_len: u64 = Readable::read(reader)?;
3202 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
3203 for _ in 0..payment_preimages_len {
3204 let preimage: PaymentPreimage = Readable::read(reader)?;
3205 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3206 if let Some(_) = payment_preimages.insert(hash, preimage) {
3207 return Err(DecodeError::InvalidValue);
3211 let pending_monitor_events_len: u64 = Readable::read(reader)?;
3212 let mut pending_monitor_events = Some(
3213 Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))));
3214 for _ in 0..pending_monitor_events_len {
3215 let ev = match <u8 as Readable>::read(reader)? {
3216 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
3217 1 => MonitorEvent::CommitmentTxConfirmed(funding_info.0),
3218 _ => return Err(DecodeError::InvalidValue)
3220 pending_monitor_events.as_mut().unwrap().push(ev);
3223 let pending_events_len: u64 = Readable::read(reader)?;
3224 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
3225 for _ in 0..pending_events_len {
3226 if let Some(event) = MaybeReadable::read(reader)? {
3227 pending_events.push(event);
3231 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
3233 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
3234 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
3235 for _ in 0..waiting_threshold_conf_len {
3236 if let Some(val) = MaybeReadable::read(reader)? {
3237 onchain_events_awaiting_threshold_conf.push(val);
3241 let outputs_to_watch_len: u64 = Readable::read(reader)?;
3242 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
3243 for _ in 0..outputs_to_watch_len {
3244 let txid = Readable::read(reader)?;
3245 let outputs_len: u64 = Readable::read(reader)?;
3246 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
3247 for _ in 0..outputs_len {
3248 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
3250 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
3251 return Err(DecodeError::InvalidValue);
3254 let onchain_tx_handler: OnchainTxHandler<Signer> = ReadableArgs::read(reader, keys_manager)?;
3256 let lockdown_from_offchain = Readable::read(reader)?;
3257 let holder_tx_signed = Readable::read(reader)?;
3259 if let Some(prev_commitment_tx) = prev_holder_signed_commitment_tx.as_mut() {
3260 let prev_holder_value = onchain_tx_handler.get_prev_holder_commitment_to_self_value();
3261 if prev_holder_value.is_none() { return Err(DecodeError::InvalidValue); }
3262 if prev_commitment_tx.to_self_value_sat == u64::max_value() {
3263 prev_commitment_tx.to_self_value_sat = prev_holder_value.unwrap();
3264 } else if prev_commitment_tx.to_self_value_sat != prev_holder_value.unwrap() {
3265 return Err(DecodeError::InvalidValue);
3269 let cur_holder_value = onchain_tx_handler.get_cur_holder_commitment_to_self_value();
3270 if current_holder_commitment_tx.to_self_value_sat == u64::max_value() {
3271 current_holder_commitment_tx.to_self_value_sat = cur_holder_value;
3272 } else if current_holder_commitment_tx.to_self_value_sat != cur_holder_value {
3273 return Err(DecodeError::InvalidValue);
3276 let mut funding_spend_confirmed = None;
3277 let mut htlcs_resolved_on_chain = Some(Vec::new());
3278 let mut funding_spend_seen = Some(false);
3279 read_tlv_fields!(reader, {
3280 (1, funding_spend_confirmed, option),
3281 (3, htlcs_resolved_on_chain, vec_type),
3282 (5, pending_monitor_events, vec_type),
3283 (7, funding_spend_seen, option),
3286 let mut secp_ctx = Secp256k1::new();
3287 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
3289 Ok((best_block.block_hash(), ChannelMonitor {
3290 inner: Mutex::new(ChannelMonitorImpl {
3292 commitment_transaction_number_obscure_factor,
3295 broadcasted_holder_revokable_script,
3296 counterparty_payment_script,
3300 holder_revocation_basepoint,
3302 current_counterparty_commitment_txid,
3303 prev_counterparty_commitment_txid,
3305 counterparty_commitment_params,
3306 funding_redeemscript,
3307 channel_value_satoshis,
3308 their_cur_per_commitment_points,
3313 counterparty_claimable_outpoints,
3314 counterparty_commitment_txn_on_chain,
3315 counterparty_hash_commitment_number,
3317 prev_holder_signed_commitment_tx,
3318 current_holder_commitment_tx,
3319 current_counterparty_commitment_number,
3320 current_holder_commitment_number,
3323 pending_monitor_events: pending_monitor_events.unwrap(),
3326 onchain_events_awaiting_threshold_conf,
3331 lockdown_from_offchain,
3333 funding_spend_seen: funding_spend_seen.unwrap(),
3334 funding_spend_confirmed,
3335 htlcs_resolved_on_chain: htlcs_resolved_on_chain.unwrap(),
3347 use bitcoin::blockdata::block::BlockHeader;
3348 use bitcoin::blockdata::script::{Script, Builder};
3349 use bitcoin::blockdata::opcodes;
3350 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, EcdsaSighashType};
3351 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
3352 use bitcoin::util::sighash;
3353 use bitcoin::hashes::Hash;
3354 use bitcoin::hashes::sha256::Hash as Sha256;
3355 use bitcoin::hashes::hex::FromHex;
3356 use bitcoin::hash_types::{BlockHash, Txid};
3357 use bitcoin::network::constants::Network;
3358 use bitcoin::secp256k1::{SecretKey,PublicKey};
3359 use bitcoin::secp256k1::Secp256k1;
3363 use super::ChannelMonitorUpdateStep;
3364 use ::{check_added_monitors, check_closed_broadcast, check_closed_event, check_spends, get_local_commitment_txn, get_monitor, get_route_and_payment_hash, unwrap_send_err};
3365 use chain::{BestBlock, Confirm};
3366 use chain::channelmonitor::ChannelMonitor;
3367 use chain::package::{weight_offered_htlc, weight_received_htlc, weight_revoked_offered_htlc, weight_revoked_received_htlc, WEIGHT_REVOKED_OUTPUT};
3368 use chain::transaction::OutPoint;
3369 use chain::keysinterface::InMemorySigner;
3370 use ln::{PaymentPreimage, PaymentHash};
3372 use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
3373 use ln::channelmanager::PaymentSendFailure;
3374 use ln::features::InitFeatures;
3375 use ln::functional_test_utils::*;
3376 use ln::script::ShutdownScript;
3377 use util::errors::APIError;
3378 use util::events::{ClosureReason, MessageSendEventsProvider};
3379 use util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
3380 use util::ser::{ReadableArgs, Writeable};
3381 use sync::{Arc, Mutex};
3383 use bitcoin::Witness;
3386 fn do_test_funding_spend_refuses_updates(use_local_txn: bool) {
3387 // Previously, monitor updates were allowed freely even after a funding-spend transaction
3388 // confirmed. This would allow a race condition where we could receive a payment (including
3389 // the counterparty revoking their broadcasted state!) and accept it without recourse as
3390 // long as the ChannelMonitor receives the block first, the full commitment update dance
3391 // occurs after the block is connected, and before the ChannelManager receives the block.
3392 // Obviously this is an incredibly contrived race given the counterparty would be risking
3393 // their full channel balance for it, but its worth fixing nonetheless as it makes the
3394 // potential ChannelMonitor states simpler to reason about.
3396 // This test checks said behavior, as well as ensuring a ChannelMonitorUpdate with multiple
3397 // updates is handled correctly in such conditions.
3398 let chanmon_cfgs = create_chanmon_cfgs(3);
3399 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
3400 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
3401 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
3402 let channel = create_announced_chan_between_nodes(
3403 &nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
3404 create_announced_chan_between_nodes(
3405 &nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
3407 // Rebalance somewhat
3408 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
3410 // First route two payments for testing at the end
3411 let payment_preimage_1 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
3412 let payment_preimage_2 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
3414 let local_txn = get_local_commitment_txn!(nodes[1], channel.2);
3415 assert_eq!(local_txn.len(), 1);
3416 let remote_txn = get_local_commitment_txn!(nodes[0], channel.2);
3417 assert_eq!(remote_txn.len(), 3); // Commitment and two HTLC-Timeouts
3418 check_spends!(remote_txn[1], remote_txn[0]);
3419 check_spends!(remote_txn[2], remote_txn[0]);
3420 let broadcast_tx = if use_local_txn { &local_txn[0] } else { &remote_txn[0] };
3422 // Connect a commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
3423 // channel is now closed, but the ChannelManager doesn't know that yet.
3424 let new_header = BlockHeader {
3425 version: 2, time: 0, bits: 0, nonce: 0,
3426 prev_blockhash: nodes[0].best_block_info().0,
3427 merkle_root: Default::default() };
3428 let conf_height = nodes[0].best_block_info().1 + 1;
3429 nodes[1].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
3430 &[(0, broadcast_tx)], conf_height);
3432 let (_, pre_update_monitor) = <(BlockHash, ChannelMonitor<InMemorySigner>)>::read(
3433 &mut io::Cursor::new(&get_monitor!(nodes[1], channel.2).encode()),
3434 &nodes[1].keys_manager.backing).unwrap();
3436 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
3437 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
3438 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 100_000);
3439 unwrap_send_err!(nodes[1].node.send_payment(&route, payment_hash, &Some(payment_secret)),
3440 true, APIError::ChannelUnavailable { ref err },
3441 assert!(err.contains("ChannelMonitor storage failure")));
3442 check_added_monitors!(nodes[1], 2); // After the failure we generate a close-channel monitor update
3443 check_closed_broadcast!(nodes[1], true);
3444 check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "ChannelMonitor storage failure".to_string() });
3446 // Build a new ChannelMonitorUpdate which contains both the failing commitment tx update
3447 // and provides the claim preimages for the two pending HTLCs. The first update generates
3448 // an error, but the point of this test is to ensure the later updates are still applied.
3449 let monitor_updates = nodes[1].chain_monitor.monitor_updates.lock().unwrap();
3450 let mut replay_update = monitor_updates.get(&channel.2).unwrap().iter().rev().skip(1).next().unwrap().clone();
3451 assert_eq!(replay_update.updates.len(), 1);
3452 if let ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } = replay_update.updates[0] {
3453 } else { panic!(); }
3454 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_1 });
3455 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_2 });
3457 let broadcaster = TestBroadcaster::new(Arc::clone(&nodes[1].blocks));
3459 pre_update_monitor.update_monitor(&replay_update, &&broadcaster, &&chanmon_cfgs[1].fee_estimator, &nodes[1].logger)
3461 // Even though we error'd on the first update, we should still have generated an HTLC claim
3463 let txn_broadcasted = broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
3464 assert!(txn_broadcasted.len() >= 2);
3465 let htlc_txn = txn_broadcasted.iter().filter(|tx| {
3466 assert_eq!(tx.input.len(), 1);
3467 tx.input[0].previous_output.txid == broadcast_tx.txid()
3468 }).collect::<Vec<_>>();
3469 assert_eq!(htlc_txn.len(), 2);
3470 check_spends!(htlc_txn[0], broadcast_tx);
3471 check_spends!(htlc_txn[1], broadcast_tx);
3474 fn test_funding_spend_refuses_updates() {
3475 do_test_funding_spend_refuses_updates(true);
3476 do_test_funding_spend_refuses_updates(false);
3480 fn test_prune_preimages() {
3481 let secp_ctx = Secp256k1::new();
3482 let logger = Arc::new(TestLogger::new());
3483 let broadcaster = Arc::new(TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))});
3484 let fee_estimator = Arc::new(TestFeeEstimator { sat_per_kw: Mutex::new(253) });
3486 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
3487 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3489 let mut preimages = Vec::new();
3492 let preimage = PaymentPreimage([i; 32]);
3493 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3494 preimages.push((preimage, hash));
3498 macro_rules! preimages_slice_to_htlc_outputs {
3499 ($preimages_slice: expr) => {
3501 let mut res = Vec::new();
3502 for (idx, preimage) in $preimages_slice.iter().enumerate() {
3503 res.push((HTLCOutputInCommitment {
3507 payment_hash: preimage.1.clone(),
3508 transaction_output_index: Some(idx as u32),
3515 macro_rules! preimages_to_holder_htlcs {
3516 ($preimages_slice: expr) => {
3518 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
3519 let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
3525 macro_rules! test_preimages_exist {
3526 ($preimages_slice: expr, $monitor: expr) => {
3527 for preimage in $preimages_slice {
3528 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
3533 let keys = InMemorySigner::new(
3535 SecretKey::from_slice(&[41; 32]).unwrap(),
3536 SecretKey::from_slice(&[41; 32]).unwrap(),
3537 SecretKey::from_slice(&[41; 32]).unwrap(),
3538 SecretKey::from_slice(&[41; 32]).unwrap(),
3539 SecretKey::from_slice(&[41; 32]).unwrap(),
3540 SecretKey::from_slice(&[41; 32]).unwrap(),
3546 let counterparty_pubkeys = ChannelPublicKeys {
3547 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
3548 revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
3549 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
3550 delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
3551 htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
3553 let funding_outpoint = OutPoint { txid: Default::default(), index: u16::max_value() };
3554 let channel_parameters = ChannelTransactionParameters {
3555 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
3556 holder_selected_contest_delay: 66,
3557 is_outbound_from_holder: true,
3558 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
3559 pubkeys: counterparty_pubkeys,
3560 selected_contest_delay: 67,
3562 funding_outpoint: Some(funding_outpoint),
3565 // Prune with one old state and a holder commitment tx holding a few overlaps with the
3567 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
3568 let best_block = BestBlock::from_genesis(Network::Testnet);
3569 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
3570 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &Script::new(),
3571 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
3572 &channel_parameters,
3573 Script::new(), 46, 0,
3574 HolderCommitmentTransaction::dummy(), best_block);
3576 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
3577 let dummy_txid = dummy_tx.txid();
3578 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
3579 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
3580 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
3581 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
3582 for &(ref preimage, ref hash) in preimages.iter() {
3583 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &fee_estimator, &logger);
3586 // Now provide a secret, pruning preimages 10-15
3587 let mut secret = [0; 32];
3588 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3589 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
3590 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
3591 test_preimages_exist!(&preimages[0..10], monitor);
3592 test_preimages_exist!(&preimages[15..20], monitor);
3594 // Now provide a further secret, pruning preimages 15-17
3595 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3596 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
3597 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
3598 test_preimages_exist!(&preimages[0..10], monitor);
3599 test_preimages_exist!(&preimages[17..20], monitor);
3601 // Now update holder commitment tx info, pruning only element 18 as we still care about the
3602 // previous commitment tx's preimages too
3603 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
3604 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3605 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
3606 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
3607 test_preimages_exist!(&preimages[0..10], monitor);
3608 test_preimages_exist!(&preimages[18..20], monitor);
3610 // But if we do it again, we'll prune 5-10
3611 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
3612 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3613 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
3614 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
3615 test_preimages_exist!(&preimages[0..5], monitor);
3619 fn test_claim_txn_weight_computation() {
3620 // We test Claim txn weight, knowing that we want expected weigth and
3621 // not actual case to avoid sigs and time-lock delays hell variances.
3623 let secp_ctx = Secp256k1::new();
3624 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
3625 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
3627 macro_rules! sign_input {
3628 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr, $opt_anchors: expr) => {
3629 let htlc = HTLCOutputInCommitment {
3630 offered: if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_offered_htlc($opt_anchors) { true } else { false },
3632 cltv_expiry: 2 << 16,
3633 payment_hash: PaymentHash([1; 32]),
3634 transaction_output_index: Some($idx as u32),
3636 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, $opt_anchors, &pubkey, &pubkey, &pubkey) };
3637 let sighash = hash_to_message!(&$sighash_parts.segwit_signature_hash($idx, &redeem_script, $amount, EcdsaSighashType::All).unwrap()[..]);
3638 let sig = secp_ctx.sign_ecdsa(&sighash, &privkey);
3639 let mut ser_sig = sig.serialize_der().to_vec();
3640 ser_sig.push(EcdsaSighashType::All as u8);
3641 $sum_actual_sigs += ser_sig.len();
3642 let witness = $sighash_parts.witness_mut($idx).unwrap();
3643 witness.push(ser_sig);
3644 if *$weight == WEIGHT_REVOKED_OUTPUT {
3645 witness.push(vec!(1));
3646 } else if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_revoked_received_htlc($opt_anchors) {
3647 witness.push(pubkey.clone().serialize().to_vec());
3648 } else if *$weight == weight_received_htlc($opt_anchors) {
3649 witness.push(vec![0]);
3651 witness.push(PaymentPreimage([1; 32]).0.to_vec());
3653 witness.push(redeem_script.into_bytes());
3654 let witness = witness.to_vec();
3655 println!("witness[0] {}", witness[0].len());
3656 println!("witness[1] {}", witness[1].len());
3657 println!("witness[2] {}", witness[2].len());
3661 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
3662 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
3664 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
3665 for &opt_anchors in [false, true].iter() {
3666 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3667 let mut sum_actual_sigs = 0;
3669 claim_tx.input.push(TxIn {
3670 previous_output: BitcoinOutPoint {
3674 script_sig: Script::new(),
3675 sequence: 0xfffffffd,
3676 witness: Witness::new(),
3679 claim_tx.output.push(TxOut {
3680 script_pubkey: script_pubkey.clone(),
3683 let base_weight = claim_tx.weight();
3684 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, weight_revoked_offered_htlc(opt_anchors), weight_revoked_offered_htlc(opt_anchors), weight_revoked_received_htlc(opt_anchors)];
3685 let mut inputs_total_weight = 2; // count segwit flags
3687 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
3688 for (idx, inp) in inputs_weight.iter().enumerate() {
3689 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
3690 inputs_total_weight += inp;
3693 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
3696 // Claim tx with 1 offered HTLCs, 3 received HTLCs
3697 for &opt_anchors in [false, true].iter() {
3698 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3699 let mut sum_actual_sigs = 0;
3701 claim_tx.input.push(TxIn {
3702 previous_output: BitcoinOutPoint {
3706 script_sig: Script::new(),
3707 sequence: 0xfffffffd,
3708 witness: Witness::new(),
3711 claim_tx.output.push(TxOut {
3712 script_pubkey: script_pubkey.clone(),
3715 let base_weight = claim_tx.weight();
3716 let inputs_weight = vec![weight_offered_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors)];
3717 let mut inputs_total_weight = 2; // count segwit flags
3719 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
3720 for (idx, inp) in inputs_weight.iter().enumerate() {
3721 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
3722 inputs_total_weight += inp;
3725 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
3728 // Justice tx with 1 revoked HTLC-Success tx output
3729 for &opt_anchors in [false, true].iter() {
3730 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3731 let mut sum_actual_sigs = 0;
3732 claim_tx.input.push(TxIn {
3733 previous_output: BitcoinOutPoint {
3737 script_sig: Script::new(),
3738 sequence: 0xfffffffd,
3739 witness: Witness::new(),
3741 claim_tx.output.push(TxOut {
3742 script_pubkey: script_pubkey.clone(),
3745 let base_weight = claim_tx.weight();
3746 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
3747 let mut inputs_total_weight = 2; // count segwit flags
3749 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
3750 for (idx, inp) in inputs_weight.iter().enumerate() {
3751 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
3752 inputs_total_weight += inp;
3755 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_isg */ (73 * inputs_weight.len() - sum_actual_sigs));
3759 // Further testing is done in the ChannelManager integration tests.