1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::Header;
24 use bitcoin::blockdata::transaction::{OutPoint as BitcoinOutPoint, TxOut, Transaction};
25 use bitcoin::blockdata::script::{Script, ScriptBuf};
27 use bitcoin::hashes::Hash;
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hash_types::{Txid, BlockHash};
31 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
32 use bitcoin::secp256k1::{SecretKey, PublicKey};
33 use bitcoin::secp256k1;
34 use bitcoin::sighash::EcdsaSighashType;
36 use crate::ln::channel::INITIAL_COMMITMENT_NUMBER;
37 use crate::ln::{PaymentHash, PaymentPreimage, ChannelId};
38 use crate::ln::msgs::DecodeError;
39 use crate::ln::channel_keys::{DelayedPaymentKey, DelayedPaymentBasepoint, HtlcBasepoint, HtlcKey, RevocationKey, RevocationBasepoint};
40 use crate::ln::chan_utils::{self,CommitmentTransaction, CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCClaim, ChannelTransactionParameters, HolderCommitmentTransaction, TxCreationKeys};
41 use crate::ln::channelmanager::{HTLCSource, SentHTLCId};
43 use crate::chain::{BestBlock, WatchedOutput};
44 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator, LowerBoundedFeeEstimator};
45 use crate::chain::transaction::{OutPoint, TransactionData};
46 use crate::sign::{ChannelDerivationParameters, HTLCDescriptor, SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, ecdsa::WriteableEcdsaChannelSigner, SignerProvider, EntropySource};
47 use crate::chain::onchaintx::{ClaimEvent, FeerateStrategy, OnchainTxHandler};
48 use crate::chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
49 use crate::chain::Filter;
50 use crate::util::logger::{Logger, Record};
51 use crate::util::ser::{Readable, ReadableArgs, RequiredWrapper, MaybeReadable, UpgradableRequired, Writer, Writeable, U48};
52 use crate::util::byte_utils;
53 use crate::events::{Event, EventHandler};
54 use crate::events::bump_transaction::{AnchorDescriptor, BumpTransactionEvent};
56 use crate::prelude::*;
58 use crate::io::{self, Error};
59 use core::convert::TryInto;
61 use crate::sync::{Mutex, LockTestExt};
63 /// An update generated by the underlying channel itself which contains some new information the
64 /// [`ChannelMonitor`] should be made aware of.
66 /// Because this represents only a small number of updates to the underlying state, it is generally
67 /// much smaller than a full [`ChannelMonitor`]. However, for large single commitment transaction
68 /// updates (e.g. ones during which there are hundreds of HTLCs pending on the commitment
69 /// transaction), a single update may reach upwards of 1 MiB in serialized size.
70 #[derive(Clone, Debug, PartialEq, Eq)]
72 pub struct ChannelMonitorUpdate {
73 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
74 /// Historically, [`ChannelMonitor`]s didn't know their counterparty node id. However,
75 /// `ChannelManager` really wants to know it so that it can easily look up the corresponding
76 /// channel. For now, this results in a temporary map in `ChannelManager` to look up channels
77 /// by only the funding outpoint.
79 /// To eventually remove that, we repeat the counterparty node id here so that we can upgrade
80 /// `ChannelMonitor`s to become aware of the counterparty node id if they were generated prior
81 /// to when it was stored directly in them.
82 pub(crate) counterparty_node_id: Option<PublicKey>,
83 /// The sequence number of this update. Updates *must* be replayed in-order according to this
84 /// sequence number (and updates may panic if they are not). The update_id values are strictly
85 /// increasing and increase by one for each new update, with two exceptions specified below.
87 /// This sequence number is also used to track up to which points updates which returned
88 /// [`ChannelMonitorUpdateStatus::InProgress`] have been applied to all copies of a given
89 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
91 /// The only instances we allow where update_id values are not strictly increasing have a
92 /// special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. This update ID is used for updates that
93 /// will force close the channel by broadcasting the latest commitment transaction or
94 /// special post-force-close updates, like providing preimages necessary to claim outputs on the
95 /// broadcast commitment transaction. See its docs for more details.
97 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
99 /// The channel ID associated with these updates.
101 /// Will be `None` for `ChannelMonitorUpdate`s constructed on LDK versions prior to 0.0.121 and
102 /// always `Some` otherwise.
103 pub channel_id: Option<ChannelId>,
106 /// The update ID used for a [`ChannelMonitorUpdate`] that is either:
108 /// (1) attempting to force close the channel by broadcasting our latest commitment transaction or
109 /// (2) providing a preimage (after the channel has been force closed) from a forward link that
110 /// allows us to spend an HTLC output on this channel's (the backward link's) broadcasted
111 /// commitment transaction.
113 /// No other [`ChannelMonitorUpdate`]s are allowed after force-close.
114 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
116 impl Writeable for ChannelMonitorUpdate {
117 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
118 write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
119 self.update_id.write(w)?;
120 (self.updates.len() as u64).write(w)?;
121 for update_step in self.updates.iter() {
122 update_step.write(w)?;
124 write_tlv_fields!(w, {
125 (1, self.counterparty_node_id, option),
126 (3, self.channel_id, option),
131 impl Readable for ChannelMonitorUpdate {
132 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
133 let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
134 let update_id: u64 = Readable::read(r)?;
135 let len: u64 = Readable::read(r)?;
136 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
138 if let Some(upd) = MaybeReadable::read(r)? {
142 let mut counterparty_node_id = None;
143 let mut channel_id = None;
144 read_tlv_fields!(r, {
145 (1, counterparty_node_id, option),
146 (3, channel_id, option),
148 Ok(Self { update_id, counterparty_node_id, updates, channel_id })
152 /// An event to be processed by the ChannelManager.
153 #[derive(Clone, PartialEq, Eq)]
154 pub enum MonitorEvent {
155 /// A monitor event containing an HTLCUpdate.
156 HTLCEvent(HTLCUpdate),
158 /// Indicates we broadcasted the channel's latest commitment transaction and thus closed the
160 HolderForceClosed(OutPoint),
162 /// Indicates a [`ChannelMonitor`] update has completed. See
163 /// [`ChannelMonitorUpdateStatus::InProgress`] for more information on how this is used.
165 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
167 /// The funding outpoint of the [`ChannelMonitor`] that was updated
168 funding_txo: OutPoint,
169 /// The channel ID of the channel associated with the [`ChannelMonitor`]
170 channel_id: ChannelId,
171 /// The Update ID from [`ChannelMonitorUpdate::update_id`] which was applied or
172 /// [`ChannelMonitor::get_latest_update_id`].
174 /// Note that this should only be set to a given update's ID if all previous updates for the
175 /// same [`ChannelMonitor`] have been applied and persisted.
176 monitor_update_id: u64,
179 impl_writeable_tlv_based_enum_upgradable!(MonitorEvent,
180 // Note that Completed is currently never serialized to disk as it is generated only in
183 (0, funding_txo, required),
184 (2, monitor_update_id, required),
185 (4, channel_id, required),
189 (4, HolderForceClosed),
190 // 6 was `UpdateFailed` until LDK 0.0.117
193 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
194 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
195 /// preimage claim backward will lead to loss of funds.
196 #[derive(Clone, PartialEq, Eq)]
197 pub struct HTLCUpdate {
198 pub(crate) payment_hash: PaymentHash,
199 pub(crate) payment_preimage: Option<PaymentPreimage>,
200 pub(crate) source: HTLCSource,
201 pub(crate) htlc_value_satoshis: Option<u64>,
203 impl_writeable_tlv_based!(HTLCUpdate, {
204 (0, payment_hash, required),
205 (1, htlc_value_satoshis, option),
206 (2, source, required),
207 (4, payment_preimage, option),
210 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
211 /// instead claiming it in its own individual transaction.
212 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
213 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
214 /// HTLC-Success transaction.
215 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
216 /// transaction confirmed (and we use it in a few more, equivalent, places).
217 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
218 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
219 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
220 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
221 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
222 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
223 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
224 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
225 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
226 /// accurate block height.
227 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
228 /// with at worst this delay, so we are not only using this value as a mercy for them but also
229 /// us as a safeguard to delay with enough time.
230 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
231 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding
232 /// inbound HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us
235 /// Note that this is a library-wide security assumption. If a reorg deeper than this number of
236 /// blocks occurs, counterparties may be able to steal funds or claims made by and balances exposed
237 /// by a [`ChannelMonitor`] may be incorrect.
238 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
239 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
240 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
241 // keep bumping another claim tx to solve the outpoint.
242 pub const ANTI_REORG_DELAY: u32 = 6;
243 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
244 /// refuse to accept a new HTLC.
246 /// This is used for a few separate purposes:
247 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
248 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
250 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
251 /// condition with the above), we will fail this HTLC without telling the user we received it,
253 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
254 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
256 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
257 /// in a race condition between the user connecting a block (which would fail it) and the user
258 /// providing us the preimage (which would claim it).
259 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
261 // TODO(devrandom) replace this with HolderCommitmentTransaction
262 #[derive(Clone, PartialEq, Eq)]
263 struct HolderSignedTx {
264 /// txid of the transaction in tx, just used to make comparison faster
266 revocation_key: RevocationKey,
269 delayed_payment_key: DelayedPaymentKey,
270 per_commitment_point: PublicKey,
271 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
272 to_self_value_sat: u64,
275 impl_writeable_tlv_based!(HolderSignedTx, {
277 // Note that this is filled in with data from OnchainTxHandler if it's missing.
278 // For HolderSignedTx objects serialized with 0.0.100+, this should be filled in.
279 (1, to_self_value_sat, (default_value, u64::max_value())),
280 (2, revocation_key, required),
281 (4, a_htlc_key, required),
282 (6, b_htlc_key, required),
283 (8, delayed_payment_key, required),
284 (10, per_commitment_point, required),
285 (12, feerate_per_kw, required),
286 (14, htlc_outputs, required_vec)
289 impl HolderSignedTx {
290 fn non_dust_htlcs(&self) -> Vec<HTLCOutputInCommitment> {
291 self.htlc_outputs.iter().filter_map(|(htlc, _, _)| {
292 if let Some(_) = htlc.transaction_output_index {
302 /// We use this to track static counterparty commitment transaction data and to generate any
303 /// justice or 2nd-stage preimage/timeout transactions.
304 #[derive(Clone, PartialEq, Eq)]
305 struct CounterpartyCommitmentParameters {
306 counterparty_delayed_payment_base_key: DelayedPaymentBasepoint,
307 counterparty_htlc_base_key: HtlcBasepoint,
308 on_counterparty_tx_csv: u16,
311 impl Writeable for CounterpartyCommitmentParameters {
312 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
313 w.write_all(&(0 as u64).to_be_bytes())?;
314 write_tlv_fields!(w, {
315 (0, self.counterparty_delayed_payment_base_key, required),
316 (2, self.counterparty_htlc_base_key, required),
317 (4, self.on_counterparty_tx_csv, required),
322 impl Readable for CounterpartyCommitmentParameters {
323 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
324 let counterparty_commitment_transaction = {
325 // Versions prior to 0.0.100 had some per-HTLC state stored here, which is no longer
326 // used. Read it for compatibility.
327 let per_htlc_len: u64 = Readable::read(r)?;
328 for _ in 0..per_htlc_len {
329 let _txid: Txid = Readable::read(r)?;
330 let htlcs_count: u64 = Readable::read(r)?;
331 for _ in 0..htlcs_count {
332 let _htlc: HTLCOutputInCommitment = Readable::read(r)?;
336 let mut counterparty_delayed_payment_base_key = RequiredWrapper(None);
337 let mut counterparty_htlc_base_key = RequiredWrapper(None);
338 let mut on_counterparty_tx_csv: u16 = 0;
339 read_tlv_fields!(r, {
340 (0, counterparty_delayed_payment_base_key, required),
341 (2, counterparty_htlc_base_key, required),
342 (4, on_counterparty_tx_csv, required),
344 CounterpartyCommitmentParameters {
345 counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
346 counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
347 on_counterparty_tx_csv,
350 Ok(counterparty_commitment_transaction)
354 /// An entry for an [`OnchainEvent`], stating the block height and hash when the event was
355 /// observed, as well as the transaction causing it.
357 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
358 #[derive(Clone, PartialEq, Eq)]
359 struct OnchainEventEntry {
362 block_hash: Option<BlockHash>, // Added as optional, will be filled in for any entry generated on 0.0.113 or after
364 transaction: Option<Transaction>, // Added as optional, but always filled in, in LDK 0.0.110
367 impl OnchainEventEntry {
368 fn confirmation_threshold(&self) -> u32 {
369 let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
371 OnchainEvent::MaturingOutput {
372 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
374 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
375 // it's broadcastable when we see the previous block.
376 conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
378 OnchainEvent::FundingSpendConfirmation { on_local_output_csv: Some(csv), .. } |
379 OnchainEvent::HTLCSpendConfirmation { on_to_local_output_csv: Some(csv), .. } => {
380 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
381 // it's broadcastable when we see the previous block.
382 conf_threshold = cmp::max(conf_threshold, self.height + csv as u32 - 1);
389 fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
390 best_block.height >= self.confirmation_threshold()
394 /// The (output index, sats value) for the counterparty's output in a commitment transaction.
396 /// This was added as an `Option` in 0.0.110.
397 type CommitmentTxCounterpartyOutputInfo = Option<(u32, u64)>;
399 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
400 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
401 #[derive(Clone, PartialEq, Eq)]
403 /// An outbound HTLC failing after a transaction is confirmed. Used
404 /// * when an outbound HTLC output is spent by us after the HTLC timed out
405 /// * an outbound HTLC which was not present in the commitment transaction which appeared
406 /// on-chain (either because it was not fully committed to or it was dust).
407 /// Note that this is *not* used for preimage claims, as those are passed upstream immediately,
408 /// appearing only as an `HTLCSpendConfirmation`, below.
411 payment_hash: PaymentHash,
412 htlc_value_satoshis: Option<u64>,
413 /// None in the second case, above, ie when there is no relevant output in the commitment
414 /// transaction which appeared on chain.
415 commitment_tx_output_idx: Option<u32>,
417 /// An output waiting on [`ANTI_REORG_DELAY`] confirmations before we hand the user the
418 /// [`SpendableOutputDescriptor`].
420 descriptor: SpendableOutputDescriptor,
422 /// A spend of the funding output, either a commitment transaction or a cooperative closing
424 FundingSpendConfirmation {
425 /// The CSV delay for the output of the funding spend transaction (implying it is a local
426 /// commitment transaction, and this is the delay on the to_self output).
427 on_local_output_csv: Option<u16>,
428 /// If the funding spend transaction was a known remote commitment transaction, we track
429 /// the output index and amount of the counterparty's `to_self` output here.
431 /// This allows us to generate a [`Balance::CounterpartyRevokedOutputClaimable`] for the
432 /// counterparty output.
433 commitment_tx_to_counterparty_output: CommitmentTxCounterpartyOutputInfo,
435 /// A spend of a commitment transaction HTLC output, set in the cases where *no* `HTLCUpdate`
436 /// is constructed. This is used when
437 /// * an outbound HTLC is claimed by our counterparty with a preimage, causing us to
438 /// immediately claim the HTLC on the inbound edge and track the resolution here,
439 /// * an inbound HTLC is claimed by our counterparty (with a timeout),
440 /// * an inbound HTLC is claimed by us (with a preimage).
441 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by the revocation
443 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by an
444 /// HTLC-Success/HTLC-Failure transaction (and is still claimable with a revocation
446 HTLCSpendConfirmation {
447 commitment_tx_output_idx: u32,
448 /// If the claim was made by either party with a preimage, this is filled in
449 preimage: Option<PaymentPreimage>,
450 /// If the claim was made by us on an inbound HTLC against a local commitment transaction,
451 /// we set this to the output CSV value which we will have to wait until to spend the
452 /// output (and generate a SpendableOutput event).
453 on_to_local_output_csv: Option<u16>,
457 impl Writeable for OnchainEventEntry {
458 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
459 write_tlv_fields!(writer, {
460 (0, self.txid, required),
461 (1, self.transaction, option),
462 (2, self.height, required),
463 (3, self.block_hash, option),
464 (4, self.event, required),
470 impl MaybeReadable for OnchainEventEntry {
471 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
472 let mut txid = Txid::all_zeros();
473 let mut transaction = None;
474 let mut block_hash = None;
476 let mut event = UpgradableRequired(None);
477 read_tlv_fields!(reader, {
479 (1, transaction, option),
480 (2, height, required),
481 (3, block_hash, option),
482 (4, event, upgradable_required),
484 Ok(Some(Self { txid, transaction, height, block_hash, event: _init_tlv_based_struct_field!(event, upgradable_required) }))
488 impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
490 (0, source, required),
491 (1, htlc_value_satoshis, option),
492 (2, payment_hash, required),
493 (3, commitment_tx_output_idx, option),
495 (1, MaturingOutput) => {
496 (0, descriptor, required),
498 (3, FundingSpendConfirmation) => {
499 (0, on_local_output_csv, option),
500 (1, commitment_tx_to_counterparty_output, option),
502 (5, HTLCSpendConfirmation) => {
503 (0, commitment_tx_output_idx, required),
504 (2, preimage, option),
505 (4, on_to_local_output_csv, option),
510 #[derive(Clone, Debug, PartialEq, Eq)]
511 pub(crate) enum ChannelMonitorUpdateStep {
512 LatestHolderCommitmentTXInfo {
513 commitment_tx: HolderCommitmentTransaction,
514 /// Note that LDK after 0.0.115 supports this only containing dust HTLCs (implying the
515 /// `Signature` field is never filled in). At that point, non-dust HTLCs are implied by the
516 /// HTLC fields in `commitment_tx` and the sources passed via `nondust_htlc_sources`.
517 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
518 claimed_htlcs: Vec<(SentHTLCId, PaymentPreimage)>,
519 nondust_htlc_sources: Vec<HTLCSource>,
521 LatestCounterpartyCommitmentTXInfo {
522 commitment_txid: Txid,
523 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
524 commitment_number: u64,
525 their_per_commitment_point: PublicKey,
526 feerate_per_kw: Option<u32>,
527 to_broadcaster_value_sat: Option<u64>,
528 to_countersignatory_value_sat: Option<u64>,
531 payment_preimage: PaymentPreimage,
537 /// Used to indicate that the no future updates will occur, and likely that the latest holder
538 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
540 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
541 /// think we've fallen behind!
542 should_broadcast: bool,
545 scriptpubkey: ScriptBuf,
549 impl ChannelMonitorUpdateStep {
550 fn variant_name(&self) -> &'static str {
552 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { .. } => "LatestHolderCommitmentTXInfo",
553 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } => "LatestCounterpartyCommitmentTXInfo",
554 ChannelMonitorUpdateStep::PaymentPreimage { .. } => "PaymentPreimage",
555 ChannelMonitorUpdateStep::CommitmentSecret { .. } => "CommitmentSecret",
556 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => "ChannelForceClosed",
557 ChannelMonitorUpdateStep::ShutdownScript { .. } => "ShutdownScript",
562 impl_writeable_tlv_based_enum_upgradable!(ChannelMonitorUpdateStep,
563 (0, LatestHolderCommitmentTXInfo) => {
564 (0, commitment_tx, required),
565 (1, claimed_htlcs, optional_vec),
566 (2, htlc_outputs, required_vec),
567 (4, nondust_htlc_sources, optional_vec),
569 (1, LatestCounterpartyCommitmentTXInfo) => {
570 (0, commitment_txid, required),
571 (1, feerate_per_kw, option),
572 (2, commitment_number, required),
573 (3, to_broadcaster_value_sat, option),
574 (4, their_per_commitment_point, required),
575 (5, to_countersignatory_value_sat, option),
576 (6, htlc_outputs, required_vec),
578 (2, PaymentPreimage) => {
579 (0, payment_preimage, required),
581 (3, CommitmentSecret) => {
583 (2, secret, required),
585 (4, ChannelForceClosed) => {
586 (0, should_broadcast, required),
588 (5, ShutdownScript) => {
589 (0, scriptpubkey, required),
593 /// Details about the balance(s) available for spending once the channel appears on chain.
595 /// See [`ChannelMonitor::get_claimable_balances`] for more details on when these will or will not
597 #[derive(Clone, Debug, PartialEq, Eq)]
598 #[cfg_attr(test, derive(PartialOrd, Ord))]
600 /// The channel is not yet closed (or the commitment or closing transaction has not yet
601 /// appeared in a block). The given balance is claimable (less on-chain fees) if the channel is
602 /// force-closed now.
603 ClaimableOnChannelClose {
604 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
605 /// required to do so.
606 amount_satoshis: u64,
608 /// The channel has been closed, and the given balance is ours but awaiting confirmations until
609 /// we consider it spendable.
610 ClaimableAwaitingConfirmations {
611 /// The amount available to claim, in satoshis, possibly excluding the on-chain fees which
612 /// were spent in broadcasting the transaction.
613 amount_satoshis: u64,
614 /// The height at which an [`Event::SpendableOutputs`] event will be generated for this
616 confirmation_height: u32,
618 /// The channel has been closed, and the given balance should be ours but awaiting spending
619 /// transaction confirmation. If the spending transaction does not confirm in time, it is
620 /// possible our counterparty can take the funds by broadcasting an HTLC timeout on-chain.
622 /// Once the spending transaction confirms, before it has reached enough confirmations to be
623 /// considered safe from chain reorganizations, the balance will instead be provided via
624 /// [`Balance::ClaimableAwaitingConfirmations`].
625 ContentiousClaimable {
626 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
627 /// required to do so.
628 amount_satoshis: u64,
629 /// The height at which the counterparty may be able to claim the balance if we have not
632 /// The payment hash that locks this HTLC.
633 payment_hash: PaymentHash,
634 /// The preimage that can be used to claim this HTLC.
635 payment_preimage: PaymentPreimage,
637 /// HTLCs which we sent to our counterparty which are claimable after a timeout (less on-chain
638 /// fees) if the counterparty does not know the preimage for the HTLCs. These are somewhat
639 /// likely to be claimed by our counterparty before we do.
640 MaybeTimeoutClaimableHTLC {
641 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
642 /// which will be required to do so.
643 amount_satoshis: u64,
644 /// The height at which we will be able to claim the balance if our counterparty has not
646 claimable_height: u32,
647 /// The payment hash whose preimage our counterparty needs to claim this HTLC.
648 payment_hash: PaymentHash,
650 /// HTLCs which we received from our counterparty which are claimable with a preimage which we
651 /// do not currently have. This will only be claimable if we receive the preimage from the node
652 /// to which we forwarded this HTLC before the timeout.
653 MaybePreimageClaimableHTLC {
654 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
655 /// which will be required to do so.
656 amount_satoshis: u64,
657 /// The height at which our counterparty will be able to claim the balance if we have not
658 /// yet received the preimage and claimed it ourselves.
660 /// The payment hash whose preimage we need to claim this HTLC.
661 payment_hash: PaymentHash,
663 /// The channel has been closed, and our counterparty broadcasted a revoked commitment
666 /// Thus, we're able to claim all outputs in the commitment transaction, one of which has the
667 /// following amount.
668 CounterpartyRevokedOutputClaimable {
669 /// The amount, in satoshis, of the output which we can claim.
671 /// Note that for outputs from HTLC balances this may be excluding some on-chain fees that
672 /// were already spent.
673 amount_satoshis: u64,
678 /// The amount claimable, in satoshis. This excludes balances that we are unsure if we are able
679 /// to claim, this is because we are waiting for a preimage or for a timeout to expire. For more
680 /// information on these balances see [`Balance::MaybeTimeoutClaimableHTLC`] and
681 /// [`Balance::MaybePreimageClaimableHTLC`].
683 /// On-chain fees required to claim the balance are not included in this amount.
684 pub fn claimable_amount_satoshis(&self) -> u64 {
686 Balance::ClaimableOnChannelClose { amount_satoshis, .. }|
687 Balance::ClaimableAwaitingConfirmations { amount_satoshis, .. }|
688 Balance::ContentiousClaimable { amount_satoshis, .. }|
689 Balance::CounterpartyRevokedOutputClaimable { amount_satoshis, .. }
691 Balance::MaybeTimeoutClaimableHTLC { .. }|
692 Balance::MaybePreimageClaimableHTLC { .. }
698 /// An HTLC which has been irrevocably resolved on-chain, and has reached ANTI_REORG_DELAY.
699 #[derive(Clone, PartialEq, Eq)]
700 struct IrrevocablyResolvedHTLC {
701 commitment_tx_output_idx: Option<u32>,
702 /// The txid of the transaction which resolved the HTLC, this may be a commitment (if the HTLC
703 /// was not present in the confirmed commitment transaction), HTLC-Success, or HTLC-Timeout
705 resolving_txid: Option<Txid>, // Added as optional, but always filled in, in 0.0.110
706 resolving_tx: Option<Transaction>,
707 /// Only set if the HTLC claim was ours using a payment preimage
708 payment_preimage: Option<PaymentPreimage>,
711 // In LDK versions prior to 0.0.111 commitment_tx_output_idx was not Option-al and
712 // IrrevocablyResolvedHTLC objects only existed for non-dust HTLCs. This was a bug, but to maintain
713 // backwards compatibility we must ensure we always write out a commitment_tx_output_idx field,
714 // using `u32::max_value()` as a sentinal to indicate the HTLC was dust.
715 impl Writeable for IrrevocablyResolvedHTLC {
716 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
717 let mapped_commitment_tx_output_idx = self.commitment_tx_output_idx.unwrap_or(u32::max_value());
718 write_tlv_fields!(writer, {
719 (0, mapped_commitment_tx_output_idx, required),
720 (1, self.resolving_txid, option),
721 (2, self.payment_preimage, option),
722 (3, self.resolving_tx, option),
728 impl Readable for IrrevocablyResolvedHTLC {
729 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
730 let mut mapped_commitment_tx_output_idx = 0;
731 let mut resolving_txid = None;
732 let mut payment_preimage = None;
733 let mut resolving_tx = None;
734 read_tlv_fields!(reader, {
735 (0, mapped_commitment_tx_output_idx, required),
736 (1, resolving_txid, option),
737 (2, payment_preimage, option),
738 (3, resolving_tx, option),
741 commitment_tx_output_idx: if mapped_commitment_tx_output_idx == u32::max_value() { None } else { Some(mapped_commitment_tx_output_idx) },
749 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
750 /// on-chain transactions to ensure no loss of funds occurs.
752 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
753 /// information and are actively monitoring the chain.
755 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
756 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
757 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
758 /// returned block hash and the the current chain and then reconnecting blocks to get to the
759 /// best chain) upon deserializing the object!
760 pub struct ChannelMonitor<Signer: WriteableEcdsaChannelSigner> {
762 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
764 pub(super) inner: Mutex<ChannelMonitorImpl<Signer>>,
767 impl<Signer: WriteableEcdsaChannelSigner> Clone for ChannelMonitor<Signer> where Signer: Clone {
768 fn clone(&self) -> Self {
769 let inner = self.inner.lock().unwrap().clone();
770 ChannelMonitor::from_impl(inner)
774 #[derive(Clone, PartialEq)]
775 pub(crate) struct ChannelMonitorImpl<Signer: WriteableEcdsaChannelSigner> {
776 latest_update_id: u64,
777 commitment_transaction_number_obscure_factor: u64,
779 destination_script: ScriptBuf,
780 broadcasted_holder_revokable_script: Option<(ScriptBuf, PublicKey, RevocationKey)>,
781 counterparty_payment_script: ScriptBuf,
782 shutdown_script: Option<ScriptBuf>,
784 channel_keys_id: [u8; 32],
785 holder_revocation_basepoint: RevocationBasepoint,
786 channel_id: ChannelId,
787 funding_info: (OutPoint, ScriptBuf),
788 current_counterparty_commitment_txid: Option<Txid>,
789 prev_counterparty_commitment_txid: Option<Txid>,
791 counterparty_commitment_params: CounterpartyCommitmentParameters,
792 funding_redeemscript: ScriptBuf,
793 channel_value_satoshis: u64,
794 // first is the idx of the first of the two per-commitment points
795 their_cur_per_commitment_points: Option<(u64, PublicKey, Option<PublicKey>)>,
797 on_holder_tx_csv: u16,
799 commitment_secrets: CounterpartyCommitmentSecrets,
800 /// The set of outpoints in each counterparty commitment transaction. We always need at least
801 /// the payment hash from `HTLCOutputInCommitment` to claim even a revoked commitment
802 /// transaction broadcast as we need to be able to construct the witness script in all cases.
803 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
804 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
805 /// Nor can we figure out their commitment numbers without the commitment transaction they are
806 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
807 /// commitment transactions which we find on-chain, mapping them to the commitment number which
808 /// can be used to derive the revocation key and claim the transactions.
809 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
810 /// Cache used to make pruning of payment_preimages faster.
811 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
812 /// counterparty transactions (ie should remain pretty small).
813 /// Serialized to disk but should generally not be sent to Watchtowers.
814 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
816 counterparty_fulfilled_htlcs: HashMap<SentHTLCId, PaymentPreimage>,
818 // We store two holder commitment transactions to avoid any race conditions where we may update
819 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
820 // various monitors for one channel being out of sync, and us broadcasting a holder
821 // transaction for which we have deleted claim information on some watchtowers.
822 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
823 current_holder_commitment_tx: HolderSignedTx,
825 // Used just for ChannelManager to make sure it has the latest channel data during
827 current_counterparty_commitment_number: u64,
828 // Used just for ChannelManager to make sure it has the latest channel data during
830 current_holder_commitment_number: u64,
832 /// The set of payment hashes from inbound payments for which we know the preimage. Payment
833 /// preimages that are not included in any unrevoked local commitment transaction or unrevoked
834 /// remote commitment transactions are automatically removed when commitment transactions are
836 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
838 // Note that `MonitorEvent`s MUST NOT be generated during update processing, only generated
839 // during chain data processing. This prevents a race in `ChainMonitor::update_channel` (and
840 // presumably user implementations thereof as well) where we update the in-memory channel
841 // object, then before the persistence finishes (as it's all under a read-lock), we return
842 // pending events to the user or to the relevant `ChannelManager`. Then, on reload, we'll have
843 // the pre-event state here, but have processed the event in the `ChannelManager`.
844 // Note that because the `event_lock` in `ChainMonitor` is only taken in
845 // block/transaction-connected events and *not* during block/transaction-disconnected events,
846 // we further MUST NOT generate events during block/transaction-disconnection.
847 pending_monitor_events: Vec<MonitorEvent>,
849 pub(super) pending_events: Vec<Event>,
850 pub(super) is_processing_pending_events: bool,
852 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
853 // which to take actions once they reach enough confirmations. Each entry includes the
854 // transaction's id and the height when the transaction was confirmed on chain.
855 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
857 // If we get serialized out and re-read, we need to make sure that the chain monitoring
858 // interface knows about the TXOs that we want to be notified of spends of. We could probably
859 // be smart and derive them from the above storage fields, but its much simpler and more
860 // Obviously Correct (tm) if we just keep track of them explicitly.
861 outputs_to_watch: HashMap<Txid, Vec<(u32, ScriptBuf)>>,
864 pub onchain_tx_handler: OnchainTxHandler<Signer>,
866 onchain_tx_handler: OnchainTxHandler<Signer>,
868 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
869 // channel has been force-closed. After this is set, no further holder commitment transaction
870 // updates may occur, and we panic!() if one is provided.
871 lockdown_from_offchain: bool,
873 // Set once we've signed a holder commitment transaction and handed it over to our
874 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
875 // may occur, and we fail any such monitor updates.
877 // In case of update rejection due to a locally already signed commitment transaction, we
878 // nevertheless store update content to track in case of concurrent broadcast by another
879 // remote monitor out-of-order with regards to the block view.
880 holder_tx_signed: bool,
882 // If a spend of the funding output is seen, we set this to true and reject any further
883 // updates. This prevents any further changes in the offchain state no matter the order
884 // of block connection between ChannelMonitors and the ChannelManager.
885 funding_spend_seen: bool,
887 /// Set to `Some` of the confirmed transaction spending the funding input of the channel after
888 /// reaching `ANTI_REORG_DELAY` confirmations.
889 funding_spend_confirmed: Option<Txid>,
891 confirmed_commitment_tx_counterparty_output: CommitmentTxCounterpartyOutputInfo,
892 /// The set of HTLCs which have been either claimed or failed on chain and have reached
893 /// the requisite confirmations on the claim/fail transaction (either ANTI_REORG_DELAY or the
894 /// spending CSV for revocable outputs).
895 htlcs_resolved_on_chain: Vec<IrrevocablyResolvedHTLC>,
897 /// The set of `SpendableOutput` events which we have already passed upstream to be claimed.
898 /// These are tracked explicitly to ensure that we don't generate the same events redundantly
899 /// if users duplicatively confirm old transactions. Specifically for transactions claiming a
900 /// revoked remote outpoint we otherwise have no tracking at all once they've reached
901 /// [`ANTI_REORG_DELAY`], so we have to track them here.
902 spendable_txids_confirmed: Vec<Txid>,
904 // We simply modify best_block in Channel's block_connected so that serialization is
905 // consistent but hopefully the users' copy handles block_connected in a consistent way.
906 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
907 // their best_block from its state and not based on updated copies that didn't run through
908 // the full block_connected).
909 best_block: BestBlock,
911 /// The node_id of our counterparty
912 counterparty_node_id: Option<PublicKey>,
914 /// Initial counterparty commmitment data needed to recreate the commitment tx
915 /// in the persistence pipeline for third-party watchtowers. This will only be present on
916 /// monitors created after 0.0.117.
918 /// Ordering of tuple data: (their_per_commitment_point, feerate_per_kw, to_broadcaster_sats,
919 /// to_countersignatory_sats)
920 initial_counterparty_commitment_info: Option<(PublicKey, u32, u64, u64)>,
923 /// Transaction outputs to watch for on-chain spends.
924 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
926 impl<Signer: WriteableEcdsaChannelSigner> PartialEq for ChannelMonitor<Signer> where Signer: PartialEq {
927 fn eq(&self, other: &Self) -> bool {
928 // We need some kind of total lockorder. Absent a better idea, we sort by position in
929 // memory and take locks in that order (assuming that we can't move within memory while a
931 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
932 let a = if ord { self.inner.unsafe_well_ordered_double_lock_self() } else { other.inner.unsafe_well_ordered_double_lock_self() };
933 let b = if ord { other.inner.unsafe_well_ordered_double_lock_self() } else { self.inner.unsafe_well_ordered_double_lock_self() };
938 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitor<Signer> {
939 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
940 self.inner.lock().unwrap().write(writer)
944 // These are also used for ChannelMonitorUpdate, above.
945 const SERIALIZATION_VERSION: u8 = 1;
946 const MIN_SERIALIZATION_VERSION: u8 = 1;
948 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitorImpl<Signer> {
949 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
950 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
952 self.latest_update_id.write(writer)?;
954 // Set in initial Channel-object creation, so should always be set by now:
955 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
957 self.destination_script.write(writer)?;
958 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
959 writer.write_all(&[0; 1])?;
960 broadcasted_holder_revokable_script.0.write(writer)?;
961 broadcasted_holder_revokable_script.1.write(writer)?;
962 broadcasted_holder_revokable_script.2.write(writer)?;
964 writer.write_all(&[1; 1])?;
967 self.counterparty_payment_script.write(writer)?;
968 match &self.shutdown_script {
969 Some(script) => script.write(writer)?,
970 None => ScriptBuf::new().write(writer)?,
973 self.channel_keys_id.write(writer)?;
974 self.holder_revocation_basepoint.write(writer)?;
975 writer.write_all(&self.funding_info.0.txid[..])?;
976 writer.write_all(&self.funding_info.0.index.to_be_bytes())?;
977 self.funding_info.1.write(writer)?;
978 self.current_counterparty_commitment_txid.write(writer)?;
979 self.prev_counterparty_commitment_txid.write(writer)?;
981 self.counterparty_commitment_params.write(writer)?;
982 self.funding_redeemscript.write(writer)?;
983 self.channel_value_satoshis.write(writer)?;
985 match self.their_cur_per_commitment_points {
986 Some((idx, pubkey, second_option)) => {
987 writer.write_all(&byte_utils::be48_to_array(idx))?;
988 writer.write_all(&pubkey.serialize())?;
989 match second_option {
990 Some(second_pubkey) => {
991 writer.write_all(&second_pubkey.serialize())?;
994 writer.write_all(&[0; 33])?;
999 writer.write_all(&byte_utils::be48_to_array(0))?;
1003 writer.write_all(&self.on_holder_tx_csv.to_be_bytes())?;
1005 self.commitment_secrets.write(writer)?;
1007 macro_rules! serialize_htlc_in_commitment {
1008 ($htlc_output: expr) => {
1009 writer.write_all(&[$htlc_output.offered as u8; 1])?;
1010 writer.write_all(&$htlc_output.amount_msat.to_be_bytes())?;
1011 writer.write_all(&$htlc_output.cltv_expiry.to_be_bytes())?;
1012 writer.write_all(&$htlc_output.payment_hash.0[..])?;
1013 $htlc_output.transaction_output_index.write(writer)?;
1017 writer.write_all(&(self.counterparty_claimable_outpoints.len() as u64).to_be_bytes())?;
1018 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
1019 writer.write_all(&txid[..])?;
1020 writer.write_all(&(htlc_infos.len() as u64).to_be_bytes())?;
1021 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
1022 debug_assert!(htlc_source.is_none() || Some(**txid) == self.current_counterparty_commitment_txid
1023 || Some(**txid) == self.prev_counterparty_commitment_txid,
1024 "HTLC Sources for all revoked commitment transactions should be none!");
1025 serialize_htlc_in_commitment!(htlc_output);
1026 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
1030 writer.write_all(&(self.counterparty_commitment_txn_on_chain.len() as u64).to_be_bytes())?;
1031 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
1032 writer.write_all(&txid[..])?;
1033 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
1036 writer.write_all(&(self.counterparty_hash_commitment_number.len() as u64).to_be_bytes())?;
1037 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
1038 writer.write_all(&payment_hash.0[..])?;
1039 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
1042 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
1043 writer.write_all(&[1; 1])?;
1044 prev_holder_tx.write(writer)?;
1046 writer.write_all(&[0; 1])?;
1049 self.current_holder_commitment_tx.write(writer)?;
1051 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
1052 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
1054 writer.write_all(&(self.payment_preimages.len() as u64).to_be_bytes())?;
1055 for payment_preimage in self.payment_preimages.values() {
1056 writer.write_all(&payment_preimage.0[..])?;
1059 writer.write_all(&(self.pending_monitor_events.iter().filter(|ev| match ev {
1060 MonitorEvent::HTLCEvent(_) => true,
1061 MonitorEvent::HolderForceClosed(_) => true,
1063 }).count() as u64).to_be_bytes())?;
1064 for event in self.pending_monitor_events.iter() {
1066 MonitorEvent::HTLCEvent(upd) => {
1070 MonitorEvent::HolderForceClosed(_) => 1u8.write(writer)?,
1071 _ => {}, // Covered in the TLV writes below
1075 writer.write_all(&(self.pending_events.len() as u64).to_be_bytes())?;
1076 for event in self.pending_events.iter() {
1077 event.write(writer)?;
1080 self.best_block.block_hash.write(writer)?;
1081 writer.write_all(&self.best_block.height.to_be_bytes())?;
1083 writer.write_all(&(self.onchain_events_awaiting_threshold_conf.len() as u64).to_be_bytes())?;
1084 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
1085 entry.write(writer)?;
1088 (self.outputs_to_watch.len() as u64).write(writer)?;
1089 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
1090 txid.write(writer)?;
1091 (idx_scripts.len() as u64).write(writer)?;
1092 for (idx, script) in idx_scripts.iter() {
1094 script.write(writer)?;
1097 self.onchain_tx_handler.write(writer)?;
1099 self.lockdown_from_offchain.write(writer)?;
1100 self.holder_tx_signed.write(writer)?;
1102 write_tlv_fields!(writer, {
1103 (1, self.funding_spend_confirmed, option),
1104 (3, self.htlcs_resolved_on_chain, required_vec),
1105 (5, self.pending_monitor_events, required_vec),
1106 (7, self.funding_spend_seen, required),
1107 (9, self.counterparty_node_id, option),
1108 (11, self.confirmed_commitment_tx_counterparty_output, option),
1109 (13, self.spendable_txids_confirmed, required_vec),
1110 (15, self.counterparty_fulfilled_htlcs, required),
1111 (17, self.initial_counterparty_commitment_info, option),
1112 (19, self.channel_id, required),
1119 macro_rules! _process_events_body {
1120 ($self_opt: expr, $event_to_handle: expr, $handle_event: expr) => {
1122 let (pending_events, repeated_events);
1123 if let Some(us) = $self_opt {
1124 let mut inner = us.inner.lock().unwrap();
1125 if inner.is_processing_pending_events {
1128 inner.is_processing_pending_events = true;
1130 pending_events = inner.pending_events.clone();
1131 repeated_events = inner.get_repeated_events();
1133 let num_events = pending_events.len();
1135 for event in pending_events.into_iter().chain(repeated_events.into_iter()) {
1136 $event_to_handle = event;
1140 if let Some(us) = $self_opt {
1141 let mut inner = us.inner.lock().unwrap();
1142 inner.pending_events.drain(..num_events);
1143 inner.is_processing_pending_events = false;
1144 if !inner.pending_events.is_empty() {
1145 // If there's more events to process, go ahead and do so.
1153 pub(super) use _process_events_body as process_events_body;
1155 pub(crate) struct WithChannelMonitor<'a, L: Deref> where L::Target: Logger {
1157 peer_id: Option<PublicKey>,
1158 channel_id: Option<ChannelId>,
1161 impl<'a, L: Deref> Logger for WithChannelMonitor<'a, L> where L::Target: Logger {
1162 fn log(&self, mut record: Record) {
1163 record.peer_id = self.peer_id;
1164 record.channel_id = self.channel_id;
1165 self.logger.log(record)
1169 impl<'a, L: Deref> WithChannelMonitor<'a, L> where L::Target: Logger {
1170 pub(crate) fn from<S: WriteableEcdsaChannelSigner>(logger: &'a L, monitor: &ChannelMonitor<S>) -> Self {
1171 Self::from_impl(logger, &*monitor.inner.lock().unwrap())
1174 pub(crate) fn from_impl<S: WriteableEcdsaChannelSigner>(logger: &'a L, monitor_impl: &ChannelMonitorImpl<S>) -> Self {
1175 let peer_id = monitor_impl.counterparty_node_id;
1176 let channel_id = Some(monitor_impl.channel_id());
1177 WithChannelMonitor {
1178 logger, peer_id, channel_id,
1183 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1184 /// For lockorder enforcement purposes, we need to have a single site which constructs the
1185 /// `inner` mutex, otherwise cases where we lock two monitors at the same time (eg in our
1186 /// PartialEq implementation) we may decide a lockorder violation has occurred.
1187 fn from_impl(imp: ChannelMonitorImpl<Signer>) -> Self {
1188 ChannelMonitor { inner: Mutex::new(imp) }
1191 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_script: Option<ScriptBuf>,
1192 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, ScriptBuf),
1193 channel_parameters: &ChannelTransactionParameters,
1194 funding_redeemscript: ScriptBuf, channel_value_satoshis: u64,
1195 commitment_transaction_number_obscure_factor: u64,
1196 initial_holder_commitment_tx: HolderCommitmentTransaction,
1197 best_block: BestBlock, counterparty_node_id: PublicKey, channel_id: ChannelId,
1198 ) -> ChannelMonitor<Signer> {
1200 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1201 let counterparty_payment_script = chan_utils::get_counterparty_payment_script(
1202 &channel_parameters.channel_type_features, &keys.pubkeys().payment_point
1205 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
1206 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
1207 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
1208 let counterparty_commitment_params = CounterpartyCommitmentParameters { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv };
1210 let channel_keys_id = keys.channel_keys_id();
1211 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1213 // block for Rust 1.34 compat
1214 let (holder_commitment_tx, current_holder_commitment_number) = {
1215 let trusted_tx = initial_holder_commitment_tx.trust();
1216 let txid = trusted_tx.txid();
1218 let tx_keys = trusted_tx.keys();
1219 let holder_commitment_tx = HolderSignedTx {
1221 revocation_key: tx_keys.revocation_key,
1222 a_htlc_key: tx_keys.broadcaster_htlc_key,
1223 b_htlc_key: tx_keys.countersignatory_htlc_key,
1224 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1225 per_commitment_point: tx_keys.per_commitment_point,
1226 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1227 to_self_value_sat: initial_holder_commitment_tx.to_broadcaster_value_sat(),
1228 feerate_per_kw: trusted_tx.feerate_per_kw(),
1230 (holder_commitment_tx, trusted_tx.commitment_number())
1233 let onchain_tx_handler = OnchainTxHandler::new(
1234 channel_value_satoshis, channel_keys_id, destination_script.into(), keys,
1235 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx
1238 let mut outputs_to_watch = new_hash_map();
1239 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1241 Self::from_impl(ChannelMonitorImpl {
1242 latest_update_id: 0,
1243 commitment_transaction_number_obscure_factor,
1245 destination_script: destination_script.into(),
1246 broadcasted_holder_revokable_script: None,
1247 counterparty_payment_script,
1251 holder_revocation_basepoint,
1254 current_counterparty_commitment_txid: None,
1255 prev_counterparty_commitment_txid: None,
1257 counterparty_commitment_params,
1258 funding_redeemscript,
1259 channel_value_satoshis,
1260 their_cur_per_commitment_points: None,
1262 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1264 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1265 counterparty_claimable_outpoints: new_hash_map(),
1266 counterparty_commitment_txn_on_chain: new_hash_map(),
1267 counterparty_hash_commitment_number: new_hash_map(),
1268 counterparty_fulfilled_htlcs: new_hash_map(),
1270 prev_holder_signed_commitment_tx: None,
1271 current_holder_commitment_tx: holder_commitment_tx,
1272 current_counterparty_commitment_number: 1 << 48,
1273 current_holder_commitment_number,
1275 payment_preimages: new_hash_map(),
1276 pending_monitor_events: Vec::new(),
1277 pending_events: Vec::new(),
1278 is_processing_pending_events: false,
1280 onchain_events_awaiting_threshold_conf: Vec::new(),
1285 lockdown_from_offchain: false,
1286 holder_tx_signed: false,
1287 funding_spend_seen: false,
1288 funding_spend_confirmed: None,
1289 confirmed_commitment_tx_counterparty_output: None,
1290 htlcs_resolved_on_chain: Vec::new(),
1291 spendable_txids_confirmed: Vec::new(),
1294 counterparty_node_id: Some(counterparty_node_id),
1295 initial_counterparty_commitment_info: None,
1300 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1301 self.inner.lock().unwrap().provide_secret(idx, secret)
1304 /// A variant of `Self::provide_latest_counterparty_commitment_tx` used to provide
1305 /// additional information to the monitor to store in order to recreate the initial
1306 /// counterparty commitment transaction during persistence (mainly for use in third-party
1309 /// This is used to provide the counterparty commitment information directly to the monitor
1310 /// before the initial persistence of a new channel.
1311 pub(crate) fn provide_initial_counterparty_commitment_tx<L: Deref>(
1312 &self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1313 commitment_number: u64, their_cur_per_commitment_point: PublicKey, feerate_per_kw: u32,
1314 to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, logger: &L,
1316 where L::Target: Logger
1318 let mut inner = self.inner.lock().unwrap();
1319 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1320 inner.provide_initial_counterparty_commitment_tx(txid,
1321 htlc_outputs, commitment_number, their_cur_per_commitment_point, feerate_per_kw,
1322 to_broadcaster_value_sat, to_countersignatory_value_sat, &logger);
1325 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1326 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1327 /// possibly future revocation/preimage information) to claim outputs where possible.
1328 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1330 fn provide_latest_counterparty_commitment_tx<L: Deref>(
1333 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1334 commitment_number: u64,
1335 their_per_commitment_point: PublicKey,
1337 ) where L::Target: Logger {
1338 let mut inner = self.inner.lock().unwrap();
1339 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1340 inner.provide_latest_counterparty_commitment_tx(
1341 txid, htlc_outputs, commitment_number, their_per_commitment_point, &logger)
1345 fn provide_latest_holder_commitment_tx(
1346 &self, holder_commitment_tx: HolderCommitmentTransaction,
1347 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1348 ) -> Result<(), ()> {
1349 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(holder_commitment_tx, htlc_outputs, &Vec::new(), Vec::new()).map_err(|_| ())
1352 /// This is used to provide payment preimage(s) out-of-band during startup without updating the
1353 /// off-chain state with a new commitment transaction.
1354 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1356 payment_hash: &PaymentHash,
1357 payment_preimage: &PaymentPreimage,
1359 fee_estimator: &LowerBoundedFeeEstimator<F>,
1362 B::Target: BroadcasterInterface,
1363 F::Target: FeeEstimator,
1366 let mut inner = self.inner.lock().unwrap();
1367 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1368 inner.provide_payment_preimage(
1369 payment_hash, payment_preimage, broadcaster, fee_estimator, &logger)
1372 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1375 /// panics if the given update is not the next update by update_id.
1376 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1378 updates: &ChannelMonitorUpdate,
1384 B::Target: BroadcasterInterface,
1385 F::Target: FeeEstimator,
1388 let mut inner = self.inner.lock().unwrap();
1389 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1390 inner.update_monitor(updates, broadcaster, fee_estimator, &logger)
1393 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1395 pub fn get_latest_update_id(&self) -> u64 {
1396 self.inner.lock().unwrap().get_latest_update_id()
1399 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1400 pub fn get_funding_txo(&self) -> (OutPoint, ScriptBuf) {
1401 self.inner.lock().unwrap().get_funding_txo().clone()
1404 /// Gets the channel_id of the channel this ChannelMonitor is monitoring for.
1405 pub fn channel_id(&self) -> ChannelId {
1406 self.inner.lock().unwrap().channel_id()
1409 /// Gets a list of txids, with their output scripts (in the order they appear in the
1410 /// transaction), which we must learn about spends of via block_connected().
1411 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, ScriptBuf)>)> {
1412 self.inner.lock().unwrap().get_outputs_to_watch()
1413 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1416 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1417 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1418 /// have been registered.
1419 pub fn load_outputs_to_watch<F: Deref, L: Deref>(&self, filter: &F, logger: &L)
1421 F::Target: chain::Filter, L::Target: Logger,
1423 let lock = self.inner.lock().unwrap();
1424 let logger = WithChannelMonitor::from_impl(logger, &*lock);
1425 log_trace!(&logger, "Registering funding outpoint {}", &lock.get_funding_txo().0);
1426 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1427 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1428 for (index, script_pubkey) in outputs.iter() {
1429 assert!(*index <= u16::max_value() as u32);
1430 let outpoint = OutPoint { txid: *txid, index: *index as u16 };
1431 log_trace!(logger, "Registering outpoint {} with the filter for monitoring spends", outpoint);
1432 filter.register_output(WatchedOutput {
1435 script_pubkey: script_pubkey.clone(),
1441 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1442 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1443 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1444 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1447 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
1449 /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
1450 /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
1451 /// within each channel. As the confirmation of a commitment transaction may be critical to the
1452 /// safety of funds, we recommend invoking this every 30 seconds, or lower if running in an
1453 /// environment with spotty connections, like on mobile.
1455 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
1456 /// order to handle these events.
1458 /// [`SpendableOutputs`]: crate::events::Event::SpendableOutputs
1459 /// [`BumpTransaction`]: crate::events::Event::BumpTransaction
1460 pub fn process_pending_events<H: Deref>(&self, handler: &H) where H::Target: EventHandler {
1462 process_events_body!(Some(self), ev, handler.handle_event(ev));
1465 /// Processes any events asynchronously.
1467 /// See [`Self::process_pending_events`] for more information.
1468 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
1472 process_events_body!(Some(self), ev, { handler(ev).await });
1476 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1477 let mut ret = Vec::new();
1478 let mut lck = self.inner.lock().unwrap();
1479 mem::swap(&mut ret, &mut lck.pending_events);
1480 ret.append(&mut lck.get_repeated_events());
1484 /// Gets the counterparty's initial commitment transaction. The returned commitment
1485 /// transaction is unsigned. This is intended to be called during the initial persistence of
1486 /// the monitor (inside an implementation of [`Persist::persist_new_channel`]), to allow for
1487 /// watchtowers in the persistence pipeline to have enough data to form justice transactions.
1489 /// This is similar to [`Self::counterparty_commitment_txs_from_update`], except
1490 /// that for the initial commitment transaction, we don't have a corresponding update.
1492 /// This will only return `Some` for channel monitors that have been created after upgrading
1493 /// to LDK 0.0.117+.
1495 /// [`Persist::persist_new_channel`]: crate::chain::chainmonitor::Persist::persist_new_channel
1496 pub fn initial_counterparty_commitment_tx(&self) -> Option<CommitmentTransaction> {
1497 self.inner.lock().unwrap().initial_counterparty_commitment_tx()
1500 /// Gets all of the counterparty commitment transactions provided by the given update. This
1501 /// may be empty if the update doesn't include any new counterparty commitments. Returned
1502 /// commitment transactions are unsigned.
1504 /// This is provided so that watchtower clients in the persistence pipeline are able to build
1505 /// justice transactions for each counterparty commitment upon each update. It's intended to be
1506 /// used within an implementation of [`Persist::update_persisted_channel`], which is provided
1507 /// with a monitor and an update. Once revoked, signing a justice transaction can be done using
1508 /// [`Self::sign_to_local_justice_tx`].
1510 /// It is expected that a watchtower client may use this method to retrieve the latest counterparty
1511 /// commitment transaction(s), and then hold the necessary data until a later update in which
1512 /// the monitor has been updated with the corresponding revocation data, at which point the
1513 /// monitor can sign the justice transaction.
1515 /// This will only return a non-empty list for monitor updates that have been created after
1516 /// upgrading to LDK 0.0.117+. Note that no restriction lies on the monitors themselves, which
1517 /// may have been created prior to upgrading.
1519 /// [`Persist::update_persisted_channel`]: crate::chain::chainmonitor::Persist::update_persisted_channel
1520 pub fn counterparty_commitment_txs_from_update(&self, update: &ChannelMonitorUpdate) -> Vec<CommitmentTransaction> {
1521 self.inner.lock().unwrap().counterparty_commitment_txs_from_update(update)
1524 /// Wrapper around [`EcdsaChannelSigner::sign_justice_revoked_output`] to make
1525 /// signing the justice transaction easier for implementors of
1526 /// [`chain::chainmonitor::Persist`]. On success this method returns the provided transaction
1527 /// signing the input at `input_idx`. This method will only produce a valid signature for
1528 /// a transaction spending the `to_local` output of a commitment transaction, i.e. this cannot
1529 /// be used for revoked HTLC outputs.
1531 /// `Value` is the value of the output being spent by the input at `input_idx`, committed
1532 /// in the BIP 143 signature.
1534 /// This method will only succeed if this monitor has received the revocation secret for the
1535 /// provided `commitment_number`. If a commitment number is provided that does not correspond
1536 /// to the commitment transaction being revoked, this will return a signed transaction, but
1537 /// the signature will not be valid.
1539 /// [`EcdsaChannelSigner::sign_justice_revoked_output`]: crate::sign::ecdsa::EcdsaChannelSigner::sign_justice_revoked_output
1540 /// [`Persist`]: crate::chain::chainmonitor::Persist
1541 pub fn sign_to_local_justice_tx(&self, justice_tx: Transaction, input_idx: usize, value: u64, commitment_number: u64) -> Result<Transaction, ()> {
1542 self.inner.lock().unwrap().sign_to_local_justice_tx(justice_tx, input_idx, value, commitment_number)
1545 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1546 self.inner.lock().unwrap().get_min_seen_secret()
1549 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1550 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1553 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1554 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1557 /// Gets the `node_id` of the counterparty for this channel.
1559 /// Will be `None` for channels constructed on LDK versions prior to 0.0.110 and always `Some`
1561 pub fn get_counterparty_node_id(&self) -> Option<PublicKey> {
1562 self.inner.lock().unwrap().counterparty_node_id
1565 /// You may use this to broadcast the latest local commitment transaction, either because
1566 /// a monitor update failed or because we've fallen behind (i.e. we've received proof that our
1567 /// counterparty side knows a revocation secret we gave them that they shouldn't know).
1569 /// Broadcasting these transactions in this manner is UNSAFE, as they allow counterparty
1570 /// side to punish you. Nevertheless you may want to broadcast them if counterparty doesn't
1571 /// close channel with their commitment transaction after a substantial amount of time. Best
1572 /// may be to contact the other node operator out-of-band to coordinate other options available
1574 pub fn broadcast_latest_holder_commitment_txn<B: Deref, F: Deref, L: Deref>(
1575 &self, broadcaster: &B, fee_estimator: &F, logger: &L
1578 B::Target: BroadcasterInterface,
1579 F::Target: FeeEstimator,
1582 let mut inner = self.inner.lock().unwrap();
1583 let fee_estimator = LowerBoundedFeeEstimator::new(&**fee_estimator);
1584 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1585 inner.queue_latest_holder_commitment_txn_for_broadcast(broadcaster, &fee_estimator, &logger);
1588 /// Unsafe test-only version of `broadcast_latest_holder_commitment_txn` used by our test framework
1589 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1590 /// revoked commitment transaction.
1591 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1592 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1593 where L::Target: Logger {
1594 let mut inner = self.inner.lock().unwrap();
1595 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1596 inner.unsafe_get_latest_holder_commitment_txn(&logger)
1599 /// Processes transactions in a newly connected block, which may result in any of the following:
1600 /// - update the monitor's state against resolved HTLCs
1601 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1602 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1603 /// - detect settled outputs for later spending
1604 /// - schedule and bump any in-flight claims
1606 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1607 /// [`get_outputs_to_watch`].
1609 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1610 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1613 txdata: &TransactionData,
1618 ) -> Vec<TransactionOutputs>
1620 B::Target: BroadcasterInterface,
1621 F::Target: FeeEstimator,
1624 let mut inner = self.inner.lock().unwrap();
1625 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1626 inner.block_connected(
1627 header, txdata, height, broadcaster, fee_estimator, &logger)
1630 /// Determines if the disconnected block contained any transactions of interest and updates
1632 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1640 B::Target: BroadcasterInterface,
1641 F::Target: FeeEstimator,
1644 let mut inner = self.inner.lock().unwrap();
1645 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1646 inner.block_disconnected(
1647 header, height, broadcaster, fee_estimator, &logger)
1650 /// Processes transactions confirmed in a block with the given header and height, returning new
1651 /// outputs to watch. See [`block_connected`] for details.
1653 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1654 /// blocks. See [`chain::Confirm`] for calling expectations.
1656 /// [`block_connected`]: Self::block_connected
1657 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1660 txdata: &TransactionData,
1665 ) -> Vec<TransactionOutputs>
1667 B::Target: BroadcasterInterface,
1668 F::Target: FeeEstimator,
1671 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1672 let mut inner = self.inner.lock().unwrap();
1673 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1674 inner.transactions_confirmed(
1675 header, txdata, height, broadcaster, &bounded_fee_estimator, &logger)
1678 /// Processes a transaction that was reorganized out of the chain.
1680 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1681 /// than blocks. See [`chain::Confirm`] for calling expectations.
1683 /// [`block_disconnected`]: Self::block_disconnected
1684 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1691 B::Target: BroadcasterInterface,
1692 F::Target: FeeEstimator,
1695 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1696 let mut inner = self.inner.lock().unwrap();
1697 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1698 inner.transaction_unconfirmed(
1699 txid, broadcaster, &bounded_fee_estimator, &logger
1703 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1704 /// [`block_connected`] for details.
1706 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1707 /// blocks. See [`chain::Confirm`] for calling expectations.
1709 /// [`block_connected`]: Self::block_connected
1710 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1717 ) -> Vec<TransactionOutputs>
1719 B::Target: BroadcasterInterface,
1720 F::Target: FeeEstimator,
1723 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1724 let mut inner = self.inner.lock().unwrap();
1725 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1726 inner.best_block_updated(
1727 header, height, broadcaster, &bounded_fee_estimator, &logger
1731 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1732 pub fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
1733 let inner = self.inner.lock().unwrap();
1734 let mut txids: Vec<(Txid, u32, Option<BlockHash>)> = inner.onchain_events_awaiting_threshold_conf
1736 .map(|entry| (entry.txid, entry.height, entry.block_hash))
1737 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1739 txids.sort_unstable_by(|a, b| a.0.cmp(&b.0).then(b.1.cmp(&a.1)));
1740 txids.dedup_by_key(|(txid, _, _)| *txid);
1744 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
1745 /// [`chain::Confirm`] interfaces.
1746 pub fn current_best_block(&self) -> BestBlock {
1747 self.inner.lock().unwrap().best_block.clone()
1750 /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
1751 /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
1752 /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
1753 /// invoking this every 30 seconds, or lower if running in an environment with spotty
1754 /// connections, like on mobile.
1755 pub fn rebroadcast_pending_claims<B: Deref, F: Deref, L: Deref>(
1756 &self, broadcaster: B, fee_estimator: F, logger: &L,
1759 B::Target: BroadcasterInterface,
1760 F::Target: FeeEstimator,
1763 let fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1764 let mut inner = self.inner.lock().unwrap();
1765 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1766 let current_height = inner.best_block.height;
1767 inner.onchain_tx_handler.rebroadcast_pending_claims(
1768 current_height, FeerateStrategy::HighestOfPreviousOrNew, &broadcaster, &fee_estimator, &logger,
1772 /// Triggers rebroadcasts of pending claims from a force-closed channel after a transaction
1773 /// signature generation failure.
1774 pub fn signer_unblocked<B: Deref, F: Deref, L: Deref>(
1775 &self, broadcaster: B, fee_estimator: F, logger: &L,
1778 B::Target: BroadcasterInterface,
1779 F::Target: FeeEstimator,
1782 let fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1783 let mut inner = self.inner.lock().unwrap();
1784 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1785 let current_height = inner.best_block.height;
1786 inner.onchain_tx_handler.rebroadcast_pending_claims(
1787 current_height, FeerateStrategy::RetryPrevious, &broadcaster, &fee_estimator, &logger,
1791 /// Returns the descriptors for relevant outputs (i.e., those that we can spend) within the
1792 /// transaction if they exist and the transaction has at least [`ANTI_REORG_DELAY`]
1793 /// confirmations. For [`SpendableOutputDescriptor::DelayedPaymentOutput`] descriptors to be
1794 /// returned, the transaction must have at least `max(ANTI_REORG_DELAY, to_self_delay)`
1797 /// Descriptors returned by this method are primarily exposed via [`Event::SpendableOutputs`]
1798 /// once they are no longer under reorg risk. This method serves as a way to retrieve these
1799 /// descriptors at a later time, either for historical purposes, or to replay any
1800 /// missed/unhandled descriptors. For the purpose of gathering historical records, if the
1801 /// channel close has fully resolved (i.e., [`ChannelMonitor::get_claimable_balances`] returns
1802 /// an empty set), you can retrieve all spendable outputs by providing all descendant spending
1803 /// transactions starting from the channel's funding transaction and going down three levels.
1805 /// `tx` is a transaction we'll scan the outputs of. Any transaction can be provided. If any
1806 /// outputs which can be spent by us are found, at least one descriptor is returned.
1808 /// `confirmation_height` must be the height of the block in which `tx` was included in.
1809 pub fn get_spendable_outputs(&self, tx: &Transaction, confirmation_height: u32) -> Vec<SpendableOutputDescriptor> {
1810 let inner = self.inner.lock().unwrap();
1811 let current_height = inner.best_block.height;
1812 let mut spendable_outputs = inner.get_spendable_outputs(tx);
1813 spendable_outputs.retain(|descriptor| {
1814 let mut conf_threshold = current_height.saturating_sub(ANTI_REORG_DELAY) + 1;
1815 if let SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) = descriptor {
1816 conf_threshold = cmp::min(conf_threshold,
1817 current_height.saturating_sub(descriptor.to_self_delay as u32) + 1);
1819 conf_threshold >= confirmation_height
1825 pub fn get_counterparty_payment_script(&self) -> ScriptBuf {
1826 self.inner.lock().unwrap().counterparty_payment_script.clone()
1830 pub fn set_counterparty_payment_script(&self, script: ScriptBuf) {
1831 self.inner.lock().unwrap().counterparty_payment_script = script;
1835 pub fn do_signer_call<F: FnMut(&Signer) -> ()>(&self, mut f: F) {
1836 let inner = self.inner.lock().unwrap();
1837 f(&inner.onchain_tx_handler.signer);
1841 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
1842 /// Helper for get_claimable_balances which does the work for an individual HTLC, generating up
1843 /// to one `Balance` for the HTLC.
1844 fn get_htlc_balance(&self, htlc: &HTLCOutputInCommitment, holder_commitment: bool,
1845 counterparty_revoked_commitment: bool, confirmed_txid: Option<Txid>)
1846 -> Option<Balance> {
1847 let htlc_commitment_tx_output_idx =
1848 if let Some(v) = htlc.transaction_output_index { v } else { return None; };
1850 let mut htlc_spend_txid_opt = None;
1851 let mut htlc_spend_tx_opt = None;
1852 let mut holder_timeout_spend_pending = None;
1853 let mut htlc_spend_pending = None;
1854 let mut holder_delayed_output_pending = None;
1855 for event in self.onchain_events_awaiting_threshold_conf.iter() {
1857 OnchainEvent::HTLCUpdate { commitment_tx_output_idx, htlc_value_satoshis, .. }
1858 if commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) => {
1859 debug_assert!(htlc_spend_txid_opt.is_none());
1860 htlc_spend_txid_opt = Some(&event.txid);
1861 debug_assert!(htlc_spend_tx_opt.is_none());
1862 htlc_spend_tx_opt = event.transaction.as_ref();
1863 debug_assert!(holder_timeout_spend_pending.is_none());
1864 debug_assert_eq!(htlc_value_satoshis.unwrap(), htlc.amount_msat / 1000);
1865 holder_timeout_spend_pending = Some(event.confirmation_threshold());
1867 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. }
1868 if commitment_tx_output_idx == htlc_commitment_tx_output_idx => {
1869 debug_assert!(htlc_spend_txid_opt.is_none());
1870 htlc_spend_txid_opt = Some(&event.txid);
1871 debug_assert!(htlc_spend_tx_opt.is_none());
1872 htlc_spend_tx_opt = event.transaction.as_ref();
1873 debug_assert!(htlc_spend_pending.is_none());
1874 htlc_spend_pending = Some((event.confirmation_threshold(), preimage.is_some()));
1876 OnchainEvent::MaturingOutput {
1877 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) }
1878 if event.transaction.as_ref().map(|tx| tx.input.iter().enumerate()
1879 .any(|(input_idx, inp)|
1880 Some(inp.previous_output.txid) == confirmed_txid &&
1881 inp.previous_output.vout == htlc_commitment_tx_output_idx &&
1882 // A maturing output for an HTLC claim will always be at the same
1883 // index as the HTLC input. This is true pre-anchors, as there's
1884 // only 1 input and 1 output. This is also true post-anchors,
1885 // because we have a SIGHASH_SINGLE|ANYONECANPAY signature from our
1886 // channel counterparty.
1887 descriptor.outpoint.index as usize == input_idx
1891 debug_assert!(holder_delayed_output_pending.is_none());
1892 holder_delayed_output_pending = Some(event.confirmation_threshold());
1897 let htlc_resolved = self.htlcs_resolved_on_chain.iter()
1898 .find(|v| if v.commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) {
1899 debug_assert!(htlc_spend_txid_opt.is_none());
1900 htlc_spend_txid_opt = v.resolving_txid.as_ref();
1901 debug_assert!(htlc_spend_tx_opt.is_none());
1902 htlc_spend_tx_opt = v.resolving_tx.as_ref();
1905 debug_assert!(holder_timeout_spend_pending.is_some() as u8 + htlc_spend_pending.is_some() as u8 + htlc_resolved.is_some() as u8 <= 1);
1907 let htlc_commitment_outpoint = BitcoinOutPoint::new(confirmed_txid.unwrap(), htlc_commitment_tx_output_idx);
1908 let htlc_output_to_spend =
1909 if let Some(txid) = htlc_spend_txid_opt {
1910 // Because HTLC transactions either only have 1 input and 1 output (pre-anchors) or
1911 // are signed with SIGHASH_SINGLE|ANYONECANPAY under BIP-0143 (post-anchors), we can
1912 // locate the correct output by ensuring its adjacent input spends the HTLC output
1913 // in the commitment.
1914 if let Some(ref tx) = htlc_spend_tx_opt {
1915 let htlc_input_idx_opt = tx.input.iter().enumerate()
1916 .find(|(_, input)| input.previous_output == htlc_commitment_outpoint)
1917 .map(|(idx, _)| idx as u32);
1918 debug_assert!(htlc_input_idx_opt.is_some());
1919 BitcoinOutPoint::new(*txid, htlc_input_idx_opt.unwrap_or(0))
1921 debug_assert!(!self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx());
1922 BitcoinOutPoint::new(*txid, 0)
1925 htlc_commitment_outpoint
1927 let htlc_output_spend_pending = self.onchain_tx_handler.is_output_spend_pending(&htlc_output_to_spend);
1929 if let Some(conf_thresh) = holder_delayed_output_pending {
1930 debug_assert!(holder_commitment);
1931 return Some(Balance::ClaimableAwaitingConfirmations {
1932 amount_satoshis: htlc.amount_msat / 1000,
1933 confirmation_height: conf_thresh,
1935 } else if htlc_resolved.is_some() && !htlc_output_spend_pending {
1936 // Funding transaction spends should be fully confirmed by the time any
1937 // HTLC transactions are resolved, unless we're talking about a holder
1938 // commitment tx, whose resolution is delayed until the CSV timeout is
1939 // reached, even though HTLCs may be resolved after only
1940 // ANTI_REORG_DELAY confirmations.
1941 debug_assert!(holder_commitment || self.funding_spend_confirmed.is_some());
1942 } else if counterparty_revoked_commitment {
1943 let htlc_output_claim_pending = self.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1944 if let OnchainEvent::MaturingOutput {
1945 descriptor: SpendableOutputDescriptor::StaticOutput { .. }
1947 if event.transaction.as_ref().map(|tx| tx.input.iter().any(|inp| {
1948 if let Some(htlc_spend_txid) = htlc_spend_txid_opt {
1949 tx.txid() == *htlc_spend_txid || inp.previous_output.txid == *htlc_spend_txid
1951 Some(inp.previous_output.txid) == confirmed_txid &&
1952 inp.previous_output.vout == htlc_commitment_tx_output_idx
1954 })).unwrap_or(false) {
1959 if htlc_output_claim_pending.is_some() {
1960 // We already push `Balance`s onto the `res` list for every
1961 // `StaticOutput` in a `MaturingOutput` in the revoked
1962 // counterparty commitment transaction case generally, so don't
1963 // need to do so again here.
1965 debug_assert!(holder_timeout_spend_pending.is_none(),
1966 "HTLCUpdate OnchainEvents should never appear for preimage claims");
1967 debug_assert!(!htlc.offered || htlc_spend_pending.is_none() || !htlc_spend_pending.unwrap().1,
1968 "We don't (currently) generate preimage claims against revoked outputs, where did you get one?!");
1969 return Some(Balance::CounterpartyRevokedOutputClaimable {
1970 amount_satoshis: htlc.amount_msat / 1000,
1973 } else if htlc.offered == holder_commitment {
1974 // If the payment was outbound, check if there's an HTLCUpdate
1975 // indicating we have spent this HTLC with a timeout, claiming it back
1976 // and awaiting confirmations on it.
1977 if let Some(conf_thresh) = holder_timeout_spend_pending {
1978 return Some(Balance::ClaimableAwaitingConfirmations {
1979 amount_satoshis: htlc.amount_msat / 1000,
1980 confirmation_height: conf_thresh,
1983 return Some(Balance::MaybeTimeoutClaimableHTLC {
1984 amount_satoshis: htlc.amount_msat / 1000,
1985 claimable_height: htlc.cltv_expiry,
1986 payment_hash: htlc.payment_hash,
1989 } else if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1990 // Otherwise (the payment was inbound), only expose it as claimable if
1991 // we know the preimage.
1992 // Note that if there is a pending claim, but it did not use the
1993 // preimage, we lost funds to our counterparty! We will then continue
1994 // to show it as ContentiousClaimable until ANTI_REORG_DELAY.
1995 debug_assert!(holder_timeout_spend_pending.is_none());
1996 if let Some((conf_thresh, true)) = htlc_spend_pending {
1997 return Some(Balance::ClaimableAwaitingConfirmations {
1998 amount_satoshis: htlc.amount_msat / 1000,
1999 confirmation_height: conf_thresh,
2002 return Some(Balance::ContentiousClaimable {
2003 amount_satoshis: htlc.amount_msat / 1000,
2004 timeout_height: htlc.cltv_expiry,
2005 payment_hash: htlc.payment_hash,
2006 payment_preimage: *payment_preimage,
2009 } else if htlc_resolved.is_none() {
2010 return Some(Balance::MaybePreimageClaimableHTLC {
2011 amount_satoshis: htlc.amount_msat / 1000,
2012 expiry_height: htlc.cltv_expiry,
2013 payment_hash: htlc.payment_hash,
2020 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
2021 /// Gets the balances in this channel which are either claimable by us if we were to
2022 /// force-close the channel now or which are claimable on-chain (possibly awaiting
2025 /// Any balances in the channel which are available on-chain (excluding on-chain fees) are
2026 /// included here until an [`Event::SpendableOutputs`] event has been generated for the
2027 /// balance, or until our counterparty has claimed the balance and accrued several
2028 /// confirmations on the claim transaction.
2030 /// Note that for `ChannelMonitors` which track a channel which went on-chain with versions of
2031 /// LDK prior to 0.0.111, not all or excess balances may be included.
2033 /// See [`Balance`] for additional details on the types of claimable balances which
2034 /// may be returned here and their meanings.
2035 pub fn get_claimable_balances(&self) -> Vec<Balance> {
2036 let mut res = Vec::new();
2037 let us = self.inner.lock().unwrap();
2039 let mut confirmed_txid = us.funding_spend_confirmed;
2040 let mut confirmed_counterparty_output = us.confirmed_commitment_tx_counterparty_output;
2041 let mut pending_commitment_tx_conf_thresh = None;
2042 let funding_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
2043 if let OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } =
2046 confirmed_counterparty_output = commitment_tx_to_counterparty_output;
2047 Some((event.txid, event.confirmation_threshold()))
2050 if let Some((txid, conf_thresh)) = funding_spend_pending {
2051 debug_assert!(us.funding_spend_confirmed.is_none(),
2052 "We have a pending funding spend awaiting anti-reorg confirmation, we can't have confirmed it already!");
2053 confirmed_txid = Some(txid);
2054 pending_commitment_tx_conf_thresh = Some(conf_thresh);
2057 macro_rules! walk_htlcs {
2058 ($holder_commitment: expr, $counterparty_revoked_commitment: expr, $htlc_iter: expr) => {
2059 for htlc in $htlc_iter {
2060 if htlc.transaction_output_index.is_some() {
2062 if let Some(bal) = us.get_htlc_balance(htlc, $holder_commitment, $counterparty_revoked_commitment, confirmed_txid) {
2070 if let Some(txid) = confirmed_txid {
2071 let mut found_commitment_tx = false;
2072 if let Some(counterparty_tx_htlcs) = us.counterparty_claimable_outpoints.get(&txid) {
2073 // First look for the to_remote output back to us.
2074 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
2075 if let Some(value) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
2076 if let OnchainEvent::MaturingOutput {
2077 descriptor: SpendableOutputDescriptor::StaticPaymentOutput(descriptor)
2079 Some(descriptor.output.value)
2082 res.push(Balance::ClaimableAwaitingConfirmations {
2083 amount_satoshis: value,
2084 confirmation_height: conf_thresh,
2087 // If a counterparty commitment transaction is awaiting confirmation, we
2088 // should either have a StaticPaymentOutput MaturingOutput event awaiting
2089 // confirmation with the same height or have never met our dust amount.
2092 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
2093 walk_htlcs!(false, false, counterparty_tx_htlcs.iter().map(|(a, _)| a));
2095 walk_htlcs!(false, true, counterparty_tx_htlcs.iter().map(|(a, _)| a));
2096 // The counterparty broadcasted a revoked state!
2097 // Look for any StaticOutputs first, generating claimable balances for those.
2098 // If any match the confirmed counterparty revoked to_self output, skip
2099 // generating a CounterpartyRevokedOutputClaimable.
2100 let mut spent_counterparty_output = false;
2101 for event in us.onchain_events_awaiting_threshold_conf.iter() {
2102 if let OnchainEvent::MaturingOutput {
2103 descriptor: SpendableOutputDescriptor::StaticOutput { output, .. }
2105 res.push(Balance::ClaimableAwaitingConfirmations {
2106 amount_satoshis: output.value,
2107 confirmation_height: event.confirmation_threshold(),
2109 if let Some(confirmed_to_self_idx) = confirmed_counterparty_output.map(|(idx, _)| idx) {
2110 if event.transaction.as_ref().map(|tx|
2111 tx.input.iter().any(|inp| inp.previous_output.vout == confirmed_to_self_idx)
2112 ).unwrap_or(false) {
2113 spent_counterparty_output = true;
2119 if spent_counterparty_output {
2120 } else if let Some((confirmed_to_self_idx, amt)) = confirmed_counterparty_output {
2121 let output_spendable = us.onchain_tx_handler
2122 .is_output_spend_pending(&BitcoinOutPoint::new(txid, confirmed_to_self_idx));
2123 if output_spendable {
2124 res.push(Balance::CounterpartyRevokedOutputClaimable {
2125 amount_satoshis: amt,
2129 // Counterparty output is missing, either it was broadcasted on a
2130 // previous version of LDK or the counterparty hadn't met dust.
2133 found_commitment_tx = true;
2134 } else if txid == us.current_holder_commitment_tx.txid {
2135 walk_htlcs!(true, false, us.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, _)| a));
2136 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
2137 res.push(Balance::ClaimableAwaitingConfirmations {
2138 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
2139 confirmation_height: conf_thresh,
2142 found_commitment_tx = true;
2143 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
2144 if txid == prev_commitment.txid {
2145 walk_htlcs!(true, false, prev_commitment.htlc_outputs.iter().map(|(a, _, _)| a));
2146 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
2147 res.push(Balance::ClaimableAwaitingConfirmations {
2148 amount_satoshis: prev_commitment.to_self_value_sat,
2149 confirmation_height: conf_thresh,
2152 found_commitment_tx = true;
2155 if !found_commitment_tx {
2156 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
2157 // We blindly assume this is a cooperative close transaction here, and that
2158 // neither us nor our counterparty misbehaved. At worst we've under-estimated
2159 // the amount we can claim as we'll punish a misbehaving counterparty.
2160 res.push(Balance::ClaimableAwaitingConfirmations {
2161 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
2162 confirmation_height: conf_thresh,
2167 let mut claimable_inbound_htlc_value_sat = 0;
2168 for (htlc, _, _) in us.current_holder_commitment_tx.htlc_outputs.iter() {
2169 if htlc.transaction_output_index.is_none() { continue; }
2171 res.push(Balance::MaybeTimeoutClaimableHTLC {
2172 amount_satoshis: htlc.amount_msat / 1000,
2173 claimable_height: htlc.cltv_expiry,
2174 payment_hash: htlc.payment_hash,
2176 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
2177 claimable_inbound_htlc_value_sat += htlc.amount_msat / 1000;
2179 // As long as the HTLC is still in our latest commitment state, treat
2180 // it as potentially claimable, even if it has long-since expired.
2181 res.push(Balance::MaybePreimageClaimableHTLC {
2182 amount_satoshis: htlc.amount_msat / 1000,
2183 expiry_height: htlc.cltv_expiry,
2184 payment_hash: htlc.payment_hash,
2188 res.push(Balance::ClaimableOnChannelClose {
2189 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat + claimable_inbound_htlc_value_sat,
2196 /// Gets the set of outbound HTLCs which can be (or have been) resolved by this
2197 /// `ChannelMonitor`. This is used to determine if an HTLC was removed from the channel prior
2198 /// to the `ChannelManager` having been persisted.
2200 /// This is similar to [`Self::get_pending_or_resolved_outbound_htlcs`] except it includes
2201 /// HTLCs which were resolved on-chain (i.e. where the final HTLC resolution was done by an
2202 /// event from this `ChannelMonitor`).
2203 pub(crate) fn get_all_current_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
2204 let mut res = new_hash_map();
2205 // Just examine the available counterparty commitment transactions. See docs on
2206 // `fail_unbroadcast_htlcs`, below, for justification.
2207 let us = self.inner.lock().unwrap();
2208 macro_rules! walk_counterparty_commitment {
2210 if let Some(ref latest_outpoints) = us.counterparty_claimable_outpoints.get($txid) {
2211 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
2212 if let &Some(ref source) = source_option {
2213 res.insert((**source).clone(), (htlc.clone(),
2214 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned()));
2220 if let Some(ref txid) = us.current_counterparty_commitment_txid {
2221 walk_counterparty_commitment!(txid);
2223 if let Some(ref txid) = us.prev_counterparty_commitment_txid {
2224 walk_counterparty_commitment!(txid);
2229 /// Gets the set of outbound HTLCs which are pending resolution in this channel or which were
2230 /// resolved with a preimage from our counterparty.
2232 /// This is used to reconstruct pending outbound payments on restart in the ChannelManager.
2234 /// Currently, the preimage is unused, however if it is present in the relevant internal state
2235 /// an HTLC is always included even if it has been resolved.
2236 pub(crate) fn get_pending_or_resolved_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
2237 let us = self.inner.lock().unwrap();
2238 // We're only concerned with the confirmation count of HTLC transactions, and don't
2239 // actually care how many confirmations a commitment transaction may or may not have. Thus,
2240 // we look for either a FundingSpendConfirmation event or a funding_spend_confirmed.
2241 let confirmed_txid = us.funding_spend_confirmed.or_else(|| {
2242 us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
2243 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
2249 if confirmed_txid.is_none() {
2250 // If we have not seen a commitment transaction on-chain (ie the channel is not yet
2251 // closed), just get the full set.
2253 return self.get_all_current_outbound_htlcs();
2256 let mut res = new_hash_map();
2257 macro_rules! walk_htlcs {
2258 ($holder_commitment: expr, $htlc_iter: expr) => {
2259 for (htlc, source) in $htlc_iter {
2260 if us.htlcs_resolved_on_chain.iter().any(|v| v.commitment_tx_output_idx == htlc.transaction_output_index) {
2261 // We should assert that funding_spend_confirmed is_some() here, but we
2262 // have some unit tests which violate HTLC transaction CSVs entirely and
2264 // TODO: Once tests all connect transactions at consensus-valid times, we
2265 // should assert here like we do in `get_claimable_balances`.
2266 } else if htlc.offered == $holder_commitment {
2267 // If the payment was outbound, check if there's an HTLCUpdate
2268 // indicating we have spent this HTLC with a timeout, claiming it back
2269 // and awaiting confirmations on it.
2270 let htlc_update_confd = us.onchain_events_awaiting_threshold_conf.iter().any(|event| {
2271 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
2272 // If the HTLC was timed out, we wait for ANTI_REORG_DELAY blocks
2273 // before considering it "no longer pending" - this matches when we
2274 // provide the ChannelManager an HTLC failure event.
2275 Some(commitment_tx_output_idx) == htlc.transaction_output_index &&
2276 us.best_block.height >= event.height + ANTI_REORG_DELAY - 1
2277 } else if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, .. } = event.event {
2278 // If the HTLC was fulfilled with a preimage, we consider the HTLC
2279 // immediately non-pending, matching when we provide ChannelManager
2281 Some(commitment_tx_output_idx) == htlc.transaction_output_index
2284 let counterparty_resolved_preimage_opt =
2285 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned();
2286 if !htlc_update_confd || counterparty_resolved_preimage_opt.is_some() {
2287 res.insert(source.clone(), (htlc.clone(), counterparty_resolved_preimage_opt));
2294 let txid = confirmed_txid.unwrap();
2295 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
2296 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().filter_map(|(a, b)| {
2297 if let &Some(ref source) = b {
2298 Some((a, &**source))
2301 } else if txid == us.current_holder_commitment_tx.txid {
2302 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().filter_map(|(a, _, c)| {
2303 if let Some(source) = c { Some((a, source)) } else { None }
2305 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
2306 if txid == prev_commitment.txid {
2307 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().filter_map(|(a, _, c)| {
2308 if let Some(source) = c { Some((a, source)) } else { None }
2316 pub(crate) fn get_stored_preimages(&self) -> HashMap<PaymentHash, PaymentPreimage> {
2317 self.inner.lock().unwrap().payment_preimages.clone()
2321 /// Compares a broadcasted commitment transaction's HTLCs with those in the latest state,
2322 /// failing any HTLCs which didn't make it into the broadcasted commitment transaction back
2323 /// after ANTI_REORG_DELAY blocks.
2325 /// We always compare against the set of HTLCs in counterparty commitment transactions, as those
2326 /// are the commitment transactions which are generated by us. The off-chain state machine in
2327 /// `Channel` will automatically resolve any HTLCs which were never included in a commitment
2328 /// transaction when it detects channel closure, but it is up to us to ensure any HTLCs which were
2329 /// included in a remote commitment transaction are failed back if they are not present in the
2330 /// broadcasted commitment transaction.
2332 /// Specifically, the removal process for HTLCs in `Channel` is always based on the counterparty
2333 /// sending a `revoke_and_ack`, which causes us to clear `prev_counterparty_commitment_txid`. Thus,
2334 /// as long as we examine both the current counterparty commitment transaction and, if it hasn't
2335 /// been revoked yet, the previous one, we we will never "forget" to resolve an HTLC.
2336 macro_rules! fail_unbroadcast_htlcs {
2337 ($self: expr, $commitment_tx_type: expr, $commitment_txid_confirmed: expr, $commitment_tx_confirmed: expr,
2338 $commitment_tx_conf_height: expr, $commitment_tx_conf_hash: expr, $confirmed_htlcs_list: expr, $logger: expr) => { {
2339 debug_assert_eq!($commitment_tx_confirmed.txid(), $commitment_txid_confirmed);
2341 macro_rules! check_htlc_fails {
2342 ($txid: expr, $commitment_tx: expr) => {
2343 if let Some(ref latest_outpoints) = $self.counterparty_claimable_outpoints.get($txid) {
2344 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
2345 if let &Some(ref source) = source_option {
2346 // Check if the HTLC is present in the commitment transaction that was
2347 // broadcast, but not if it was below the dust limit, which we should
2348 // fail backwards immediately as there is no way for us to learn the
2349 // payment_preimage.
2350 // Note that if the dust limit were allowed to change between
2351 // commitment transactions we'd want to be check whether *any*
2352 // broadcastable commitment transaction has the HTLC in it, but it
2353 // cannot currently change after channel initialization, so we don't
2355 let confirmed_htlcs_iter: &mut dyn Iterator<Item = (&HTLCOutputInCommitment, Option<&HTLCSource>)> = &mut $confirmed_htlcs_list;
2357 let mut matched_htlc = false;
2358 for (ref broadcast_htlc, ref broadcast_source) in confirmed_htlcs_iter {
2359 if broadcast_htlc.transaction_output_index.is_some() &&
2360 (Some(&**source) == *broadcast_source ||
2361 (broadcast_source.is_none() &&
2362 broadcast_htlc.payment_hash == htlc.payment_hash &&
2363 broadcast_htlc.amount_msat == htlc.amount_msat)) {
2364 matched_htlc = true;
2368 if matched_htlc { continue; }
2369 if $self.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).is_some() {
2372 $self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
2373 if entry.height != $commitment_tx_conf_height { return true; }
2375 OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
2376 *update_source != **source
2381 let entry = OnchainEventEntry {
2382 txid: $commitment_txid_confirmed,
2383 transaction: Some($commitment_tx_confirmed.clone()),
2384 height: $commitment_tx_conf_height,
2385 block_hash: Some(*$commitment_tx_conf_hash),
2386 event: OnchainEvent::HTLCUpdate {
2387 source: (**source).clone(),
2388 payment_hash: htlc.payment_hash.clone(),
2389 htlc_value_satoshis: Some(htlc.amount_msat / 1000),
2390 commitment_tx_output_idx: None,
2393 log_trace!($logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of {} commitment transaction {}, waiting for confirmation (at height {})",
2394 &htlc.payment_hash, $commitment_tx, $commitment_tx_type,
2395 $commitment_txid_confirmed, entry.confirmation_threshold());
2396 $self.onchain_events_awaiting_threshold_conf.push(entry);
2402 if let Some(ref txid) = $self.current_counterparty_commitment_txid {
2403 check_htlc_fails!(txid, "current");
2405 if let Some(ref txid) = $self.prev_counterparty_commitment_txid {
2406 check_htlc_fails!(txid, "previous");
2411 // In the `test_invalid_funding_tx` test, we need a bogus script which matches the HTLC-Accepted
2412 // witness length match (ie is 136 bytes long). We generate one here which we also use in some
2413 // in-line tests later.
2416 pub fn deliberately_bogus_accepted_htlc_witness_program() -> Vec<u8> {
2417 use bitcoin::blockdata::opcodes;
2418 let mut ret = [opcodes::all::OP_NOP.to_u8(); 136];
2419 ret[131] = opcodes::all::OP_DROP.to_u8();
2420 ret[132] = opcodes::all::OP_DROP.to_u8();
2421 ret[133] = opcodes::all::OP_DROP.to_u8();
2422 ret[134] = opcodes::all::OP_DROP.to_u8();
2423 ret[135] = opcodes::OP_TRUE.to_u8();
2428 pub fn deliberately_bogus_accepted_htlc_witness() -> Vec<Vec<u8>> {
2429 vec![Vec::new(), Vec::new(), Vec::new(), Vec::new(), deliberately_bogus_accepted_htlc_witness_program().into()].into()
2432 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
2433 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
2434 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
2435 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
2436 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
2437 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
2438 return Err("Previous secret did not match new one");
2441 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
2442 // events for now-revoked/fulfilled HTLCs.
2443 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
2444 if self.current_counterparty_commitment_txid.unwrap() != txid {
2445 let cur_claimables = self.counterparty_claimable_outpoints.get(
2446 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2447 for (_, ref source_opt) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2448 if let Some(source) = source_opt {
2449 if !cur_claimables.iter()
2450 .any(|(_, cur_source_opt)| cur_source_opt == source_opt)
2452 self.counterparty_fulfilled_htlcs.remove(&SentHTLCId::from_source(source));
2456 for &mut (_, ref mut source_opt) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
2460 assert!(cfg!(fuzzing), "Commitment txids are unique outside of fuzzing, where hashes can collide");
2464 if !self.payment_preimages.is_empty() {
2465 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
2466 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
2467 let min_idx = self.get_min_seen_secret();
2468 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
2470 self.payment_preimages.retain(|&k, _| {
2471 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
2472 if k == htlc.payment_hash {
2476 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
2477 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
2478 if k == htlc.payment_hash {
2483 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
2490 counterparty_hash_commitment_number.remove(&k);
2499 fn provide_initial_counterparty_commitment_tx<L: Deref>(
2500 &mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
2501 commitment_number: u64, their_per_commitment_point: PublicKey, feerate_per_kw: u32,
2502 to_broadcaster_value: u64, to_countersignatory_value: u64, logger: &WithChannelMonitor<L>,
2503 ) where L::Target: Logger {
2504 self.initial_counterparty_commitment_info = Some((their_per_commitment_point.clone(),
2505 feerate_per_kw, to_broadcaster_value, to_countersignatory_value));
2507 #[cfg(debug_assertions)] {
2508 let rebuilt_commitment_tx = self.initial_counterparty_commitment_tx().unwrap();
2509 debug_assert_eq!(rebuilt_commitment_tx.trust().txid(), txid);
2512 self.provide_latest_counterparty_commitment_tx(txid, htlc_outputs, commitment_number,
2513 their_per_commitment_point, logger);
2516 fn provide_latest_counterparty_commitment_tx<L: Deref>(
2517 &mut self, txid: Txid,
2518 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
2519 commitment_number: u64, their_per_commitment_point: PublicKey, logger: &WithChannelMonitor<L>,
2520 ) where L::Target: Logger {
2521 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
2522 // so that a remote monitor doesn't learn anything unless there is a malicious close.
2523 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
2525 for &(ref htlc, _) in &htlc_outputs {
2526 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
2529 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
2530 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
2531 self.current_counterparty_commitment_txid = Some(txid);
2532 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
2533 self.current_counterparty_commitment_number = commitment_number;
2534 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
2535 match self.their_cur_per_commitment_points {
2536 Some(old_points) => {
2537 if old_points.0 == commitment_number + 1 {
2538 self.their_cur_per_commitment_points = Some((old_points.0, old_points.1, Some(their_per_commitment_point)));
2539 } else if old_points.0 == commitment_number + 2 {
2540 if let Some(old_second_point) = old_points.2 {
2541 self.their_cur_per_commitment_points = Some((old_points.0 - 1, old_second_point, Some(their_per_commitment_point)));
2543 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2546 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2550 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2553 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
2554 for htlc in htlc_outputs {
2555 if htlc.0.transaction_output_index.is_some() {
2561 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
2562 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
2563 /// is important that any clones of this channel monitor (including remote clones) by kept
2564 /// up-to-date as our holder commitment transaction is updated.
2565 /// Panics if set_on_holder_tx_csv has never been called.
2566 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, mut htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>, claimed_htlcs: &[(SentHTLCId, PaymentPreimage)], nondust_htlc_sources: Vec<HTLCSource>) -> Result<(), &'static str> {
2567 if htlc_outputs.iter().any(|(_, s, _)| s.is_some()) {
2568 // If we have non-dust HTLCs in htlc_outputs, ensure they match the HTLCs in the
2569 // `holder_commitment_tx`. In the future, we'll no longer provide the redundant data
2570 // and just pass in source data via `nondust_htlc_sources`.
2571 debug_assert_eq!(htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).count(), holder_commitment_tx.trust().htlcs().len());
2572 for (a, b) in htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).map(|(h, _, _)| h).zip(holder_commitment_tx.trust().htlcs().iter()) {
2573 debug_assert_eq!(a, b);
2575 debug_assert_eq!(htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).count(), holder_commitment_tx.counterparty_htlc_sigs.len());
2576 for (a, b) in htlc_outputs.iter().filter_map(|(_, s, _)| s.as_ref()).zip(holder_commitment_tx.counterparty_htlc_sigs.iter()) {
2577 debug_assert_eq!(a, b);
2579 debug_assert!(nondust_htlc_sources.is_empty());
2581 // If we don't have any non-dust HTLCs in htlc_outputs, assume they were all passed via
2582 // `nondust_htlc_sources`, building up the final htlc_outputs by combining
2583 // `nondust_htlc_sources` and the `holder_commitment_tx`
2584 #[cfg(debug_assertions)] {
2586 for htlc in holder_commitment_tx.trust().htlcs().iter() {
2587 assert!(htlc.transaction_output_index.unwrap() as i32 > prev);
2588 prev = htlc.transaction_output_index.unwrap() as i32;
2591 debug_assert!(htlc_outputs.iter().all(|(htlc, _, _)| htlc.transaction_output_index.is_none()));
2592 debug_assert!(htlc_outputs.iter().all(|(_, sig_opt, _)| sig_opt.is_none()));
2593 debug_assert_eq!(holder_commitment_tx.trust().htlcs().len(), holder_commitment_tx.counterparty_htlc_sigs.len());
2595 let mut sources_iter = nondust_htlc_sources.into_iter();
2597 for (htlc, counterparty_sig) in holder_commitment_tx.trust().htlcs().iter()
2598 .zip(holder_commitment_tx.counterparty_htlc_sigs.iter())
2601 let source = sources_iter.next().expect("Non-dust HTLC sources didn't match commitment tx");
2602 #[cfg(debug_assertions)] {
2603 assert!(source.possibly_matches_output(htlc));
2605 htlc_outputs.push((htlc.clone(), Some(counterparty_sig.clone()), Some(source)));
2607 htlc_outputs.push((htlc.clone(), Some(counterparty_sig.clone()), None));
2610 debug_assert!(sources_iter.next().is_none());
2613 let trusted_tx = holder_commitment_tx.trust();
2614 let txid = trusted_tx.txid();
2615 let tx_keys = trusted_tx.keys();
2616 self.current_holder_commitment_number = trusted_tx.commitment_number();
2617 let mut new_holder_commitment_tx = HolderSignedTx {
2619 revocation_key: tx_keys.revocation_key,
2620 a_htlc_key: tx_keys.broadcaster_htlc_key,
2621 b_htlc_key: tx_keys.countersignatory_htlc_key,
2622 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
2623 per_commitment_point: tx_keys.per_commitment_point,
2625 to_self_value_sat: holder_commitment_tx.to_broadcaster_value_sat(),
2626 feerate_per_kw: trusted_tx.feerate_per_kw(),
2628 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
2629 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
2630 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
2631 for (claimed_htlc_id, claimed_preimage) in claimed_htlcs {
2632 #[cfg(debug_assertions)] {
2633 let cur_counterparty_htlcs = self.counterparty_claimable_outpoints.get(
2634 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2635 assert!(cur_counterparty_htlcs.iter().any(|(_, source_opt)| {
2636 if let Some(source) = source_opt {
2637 SentHTLCId::from_source(source) == *claimed_htlc_id
2641 self.counterparty_fulfilled_htlcs.insert(*claimed_htlc_id, *claimed_preimage);
2643 if self.holder_tx_signed {
2644 return Err("Latest holder commitment signed has already been signed, update is rejected");
2649 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
2650 /// commitment_tx_infos which contain the payment hash have been revoked.
2651 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
2652 &mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B,
2653 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &WithChannelMonitor<L>)
2654 where B::Target: BroadcasterInterface,
2655 F::Target: FeeEstimator,
2658 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
2660 let confirmed_spend_txid = self.funding_spend_confirmed.or_else(|| {
2661 self.onchain_events_awaiting_threshold_conf.iter().find_map(|event| match event.event {
2662 OnchainEvent::FundingSpendConfirmation { .. } => Some(event.txid),
2666 let confirmed_spend_txid = if let Some(txid) = confirmed_spend_txid {
2672 // If the channel is force closed, try to claim the output from this preimage.
2673 // First check if a counterparty commitment transaction has been broadcasted:
2674 macro_rules! claim_htlcs {
2675 ($commitment_number: expr, $txid: expr) => {
2676 let (htlc_claim_reqs, _) = self.get_counterparty_output_claim_info($commitment_number, $txid, None);
2677 self.onchain_tx_handler.update_claims_view_from_requests(htlc_claim_reqs, self.best_block.height, self.best_block.height, broadcaster, fee_estimator, logger);
2680 if let Some(txid) = self.current_counterparty_commitment_txid {
2681 if txid == confirmed_spend_txid {
2682 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2683 claim_htlcs!(*commitment_number, txid);
2685 debug_assert!(false);
2686 log_error!(logger, "Detected counterparty commitment tx on-chain without tracking commitment number");
2691 if let Some(txid) = self.prev_counterparty_commitment_txid {
2692 if txid == confirmed_spend_txid {
2693 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2694 claim_htlcs!(*commitment_number, txid);
2696 debug_assert!(false);
2697 log_error!(logger, "Detected counterparty commitment tx on-chain without tracking commitment number");
2703 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
2704 // claiming the HTLC output from each of the holder commitment transactions.
2705 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
2706 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
2707 // holder commitment transactions.
2708 if self.broadcasted_holder_revokable_script.is_some() {
2709 let holder_commitment_tx = if self.current_holder_commitment_tx.txid == confirmed_spend_txid {
2710 Some(&self.current_holder_commitment_tx)
2711 } else if let Some(prev_holder_commitment_tx) = &self.prev_holder_signed_commitment_tx {
2712 if prev_holder_commitment_tx.txid == confirmed_spend_txid {
2713 Some(prev_holder_commitment_tx)
2720 if let Some(holder_commitment_tx) = holder_commitment_tx {
2721 // Assume that the broadcasted commitment transaction confirmed in the current best
2722 // block. Even if not, its a reasonable metric for the bump criteria on the HTLC
2724 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&holder_commitment_tx, self.best_block.height);
2725 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height, self.best_block.height, broadcaster, fee_estimator, logger);
2730 fn generate_claimable_outpoints_and_watch_outputs(&mut self) -> (Vec<PackageTemplate>, Vec<TransactionOutputs>) {
2731 let funding_outp = HolderFundingOutput::build(
2732 self.funding_redeemscript.clone(),
2733 self.channel_value_satoshis,
2734 self.onchain_tx_handler.channel_type_features().clone()
2736 let commitment_package = PackageTemplate::build_package(
2737 self.funding_info.0.txid.clone(), self.funding_info.0.index as u32,
2738 PackageSolvingData::HolderFundingOutput(funding_outp),
2739 self.best_block.height, self.best_block.height
2741 let mut claimable_outpoints = vec![commitment_package];
2742 self.pending_monitor_events.push(MonitorEvent::HolderForceClosed(self.funding_info.0));
2743 // Although we aren't signing the transaction directly here, the transaction will be signed
2744 // in the claim that is queued to OnchainTxHandler. We set holder_tx_signed here to reject
2745 // new channel updates.
2746 self.holder_tx_signed = true;
2747 let mut watch_outputs = Vec::new();
2748 // We can't broadcast our HTLC transactions while the commitment transaction is
2749 // unconfirmed. We'll delay doing so until we detect the confirmed commitment in
2750 // `transactions_confirmed`.
2751 if !self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
2752 // Because we're broadcasting a commitment transaction, we should construct the package
2753 // assuming it gets confirmed in the next block. Sadly, we have code which considers
2754 // "not yet confirmed" things as discardable, so we cannot do that here.
2755 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(
2756 &self.current_holder_commitment_tx, self.best_block.height
2758 let unsigned_commitment_tx = self.onchain_tx_handler.get_unsigned_holder_commitment_tx();
2759 let new_outputs = self.get_broadcasted_holder_watch_outputs(
2760 &self.current_holder_commitment_tx, &unsigned_commitment_tx
2762 if !new_outputs.is_empty() {
2763 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
2765 claimable_outpoints.append(&mut new_outpoints);
2767 (claimable_outpoints, watch_outputs)
2770 pub(crate) fn queue_latest_holder_commitment_txn_for_broadcast<B: Deref, F: Deref, L: Deref>(
2771 &mut self, broadcaster: &B, fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &WithChannelMonitor<L>
2774 B::Target: BroadcasterInterface,
2775 F::Target: FeeEstimator,
2778 let (claimable_outpoints, _) = self.generate_claimable_outpoints_and_watch_outputs();
2779 self.onchain_tx_handler.update_claims_view_from_requests(
2780 claimable_outpoints, self.best_block.height, self.best_block.height, broadcaster,
2781 fee_estimator, logger
2785 fn update_monitor<B: Deref, F: Deref, L: Deref>(
2786 &mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: &F, logger: &WithChannelMonitor<L>
2788 where B::Target: BroadcasterInterface,
2789 F::Target: FeeEstimator,
2792 if self.latest_update_id == CLOSED_CHANNEL_UPDATE_ID && updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2793 log_info!(logger, "Applying post-force-closed update to monitor {} with {} change(s).",
2794 log_funding_info!(self), updates.updates.len());
2795 } else if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2796 log_info!(logger, "Applying force close update to monitor {} with {} change(s).",
2797 log_funding_info!(self), updates.updates.len());
2799 log_info!(logger, "Applying update to monitor {}, bringing update_id from {} to {} with {} change(s).",
2800 log_funding_info!(self), self.latest_update_id, updates.update_id, updates.updates.len());
2803 if updates.counterparty_node_id.is_some() {
2804 if self.counterparty_node_id.is_none() {
2805 self.counterparty_node_id = updates.counterparty_node_id;
2807 debug_assert_eq!(self.counterparty_node_id, updates.counterparty_node_id);
2811 // ChannelMonitor updates may be applied after force close if we receive a preimage for a
2812 // broadcasted commitment transaction HTLC output that we'd like to claim on-chain. If this
2813 // is the case, we no longer have guaranteed access to the monitor's update ID, so we use a
2814 // sentinel value instead.
2816 // The `ChannelManager` may also queue redundant `ChannelForceClosed` updates if it still
2817 // thinks the channel needs to have its commitment transaction broadcast, so we'll allow
2819 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2820 assert_eq!(updates.updates.len(), 1);
2821 match updates.updates[0] {
2822 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => {},
2823 // We should have already seen a `ChannelForceClosed` update if we're trying to
2824 // provide a preimage at this point.
2825 ChannelMonitorUpdateStep::PaymentPreimage { .. } =>
2826 debug_assert_eq!(self.latest_update_id, CLOSED_CHANNEL_UPDATE_ID),
2828 log_error!(logger, "Attempted to apply post-force-close ChannelMonitorUpdate of type {}", updates.updates[0].variant_name());
2829 panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage");
2832 } else if self.latest_update_id + 1 != updates.update_id {
2833 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
2835 let mut ret = Ok(());
2836 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&**fee_estimator);
2837 for update in updates.updates.iter() {
2839 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs, claimed_htlcs, nondust_htlc_sources } => {
2840 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
2841 if self.lockdown_from_offchain { panic!(); }
2842 if let Err(e) = self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone(), &claimed_htlcs, nondust_htlc_sources.clone()) {
2843 log_error!(logger, "Providing latest holder commitment transaction failed/was refused:");
2844 log_error!(logger, " {}", e);
2848 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_per_commitment_point, .. } => {
2849 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
2850 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_per_commitment_point, logger)
2852 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
2853 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
2854 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array()), &payment_preimage, broadcaster, &bounded_fee_estimator, logger)
2856 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
2857 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
2858 if let Err(e) = self.provide_secret(*idx, *secret) {
2859 debug_assert!(false, "Latest counterparty commitment secret was invalid");
2860 log_error!(logger, "Providing latest counterparty commitment secret failed/was refused:");
2861 log_error!(logger, " {}", e);
2865 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
2866 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
2867 self.lockdown_from_offchain = true;
2868 if *should_broadcast {
2869 // There's no need to broadcast our commitment transaction if we've seen one
2870 // confirmed (even with 1 confirmation) as it'll be rejected as
2871 // duplicate/conflicting.
2872 let detected_funding_spend = self.funding_spend_confirmed.is_some() ||
2873 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
2874 OnchainEvent::FundingSpendConfirmation { .. } => true,
2877 if detected_funding_spend {
2878 log_trace!(logger, "Avoiding commitment broadcast, already detected confirmed spend onchain");
2881 self.queue_latest_holder_commitment_txn_for_broadcast(broadcaster, &bounded_fee_estimator, logger);
2882 } else if !self.holder_tx_signed {
2883 log_error!(logger, "WARNING: You have a potentially-unsafe holder commitment transaction available to broadcast");
2884 log_error!(logger, " in channel monitor for channel {}!", &self.channel_id());
2885 log_error!(logger, " Read the docs for ChannelMonitor::broadcast_latest_holder_commitment_txn to take manual action!");
2887 // If we generated a MonitorEvent::HolderForceClosed, the ChannelManager
2888 // will still give us a ChannelForceClosed event with !should_broadcast, but we
2889 // shouldn't print the scary warning above.
2890 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
2893 ChannelMonitorUpdateStep::ShutdownScript { scriptpubkey } => {
2894 log_trace!(logger, "Updating ChannelMonitor with shutdown script");
2895 if let Some(shutdown_script) = self.shutdown_script.replace(scriptpubkey.clone()) {
2896 panic!("Attempted to replace shutdown script {} with {}", shutdown_script, scriptpubkey);
2902 #[cfg(debug_assertions)] {
2903 self.counterparty_commitment_txs_from_update(updates);
2906 // If the updates succeeded and we were in an already closed channel state, then there's no
2907 // need to refuse any updates we expect to receive afer seeing a confirmed commitment.
2908 if ret.is_ok() && updates.update_id == CLOSED_CHANNEL_UPDATE_ID && self.latest_update_id == updates.update_id {
2912 self.latest_update_id = updates.update_id;
2914 // Refuse updates after we've detected a spend onchain, but only if we haven't processed a
2915 // force closed monitor update yet.
2916 if ret.is_ok() && self.funding_spend_seen && self.latest_update_id != CLOSED_CHANNEL_UPDATE_ID {
2917 log_error!(logger, "Refusing Channel Monitor Update as counterparty attempted to update commitment after funding was spent");
2922 fn get_latest_update_id(&self) -> u64 {
2923 self.latest_update_id
2926 fn get_funding_txo(&self) -> &(OutPoint, ScriptBuf) {
2930 pub fn channel_id(&self) -> ChannelId {
2934 fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, ScriptBuf)>> {
2935 // If we've detected a counterparty commitment tx on chain, we must include it in the set
2936 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
2937 // its trivial to do, double-check that here.
2938 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
2939 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
2941 &self.outputs_to_watch
2944 fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
2945 let mut ret = Vec::new();
2946 mem::swap(&mut ret, &mut self.pending_monitor_events);
2950 /// Gets the set of events that are repeated regularly (e.g. those which RBF bump
2951 /// transactions). We're okay if we lose these on restart as they'll be regenerated for us at
2952 /// some regular interval via [`ChannelMonitor::rebroadcast_pending_claims`].
2953 pub(super) fn get_repeated_events(&mut self) -> Vec<Event> {
2954 let pending_claim_events = self.onchain_tx_handler.get_and_clear_pending_claim_events();
2955 let mut ret = Vec::with_capacity(pending_claim_events.len());
2956 for (claim_id, claim_event) in pending_claim_events {
2958 ClaimEvent::BumpCommitment {
2959 package_target_feerate_sat_per_1000_weight, commitment_tx, anchor_output_idx,
2961 let channel_id = self.channel_id;
2962 // unwrap safety: `ClaimEvent`s are only available for Anchor channels,
2963 // introduced with v0.0.116. counterparty_node_id is guaranteed to be `Some`
2965 let counterparty_node_id = self.counterparty_node_id.unwrap();
2966 let commitment_txid = commitment_tx.txid();
2967 debug_assert_eq!(self.current_holder_commitment_tx.txid, commitment_txid);
2968 let pending_htlcs = self.current_holder_commitment_tx.non_dust_htlcs();
2969 let commitment_tx_fee_satoshis = self.channel_value_satoshis -
2970 commitment_tx.output.iter().fold(0u64, |sum, output| sum + output.value);
2971 ret.push(Event::BumpTransaction(BumpTransactionEvent::ChannelClose {
2973 counterparty_node_id,
2975 package_target_feerate_sat_per_1000_weight,
2977 commitment_tx_fee_satoshis,
2978 anchor_descriptor: AnchorDescriptor {
2979 channel_derivation_parameters: ChannelDerivationParameters {
2980 keys_id: self.channel_keys_id,
2981 value_satoshis: self.channel_value_satoshis,
2982 transaction_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
2984 outpoint: BitcoinOutPoint {
2985 txid: commitment_txid,
2986 vout: anchor_output_idx,
2992 ClaimEvent::BumpHTLC {
2993 target_feerate_sat_per_1000_weight, htlcs, tx_lock_time,
2995 let channel_id = self.channel_id;
2996 // unwrap safety: `ClaimEvent`s are only available for Anchor channels,
2997 // introduced with v0.0.116. counterparty_node_id is guaranteed to be `Some`
2999 let counterparty_node_id = self.counterparty_node_id.unwrap();
3000 let mut htlc_descriptors = Vec::with_capacity(htlcs.len());
3002 htlc_descriptors.push(HTLCDescriptor {
3003 channel_derivation_parameters: ChannelDerivationParameters {
3004 keys_id: self.channel_keys_id,
3005 value_satoshis: self.channel_value_satoshis,
3006 transaction_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
3008 commitment_txid: htlc.commitment_txid,
3009 per_commitment_number: htlc.per_commitment_number,
3010 per_commitment_point: self.onchain_tx_handler.signer.get_per_commitment_point(
3011 htlc.per_commitment_number, &self.onchain_tx_handler.secp_ctx,
3015 preimage: htlc.preimage,
3016 counterparty_sig: htlc.counterparty_sig,
3019 ret.push(Event::BumpTransaction(BumpTransactionEvent::HTLCResolution {
3021 counterparty_node_id,
3023 target_feerate_sat_per_1000_weight,
3033 fn initial_counterparty_commitment_tx(&mut self) -> Option<CommitmentTransaction> {
3034 let (their_per_commitment_point, feerate_per_kw, to_broadcaster_value,
3035 to_countersignatory_value) = self.initial_counterparty_commitment_info?;
3036 let htlc_outputs = vec![];
3038 let commitment_tx = self.build_counterparty_commitment_tx(INITIAL_COMMITMENT_NUMBER,
3039 &their_per_commitment_point, to_broadcaster_value, to_countersignatory_value,
3040 feerate_per_kw, htlc_outputs);
3044 fn build_counterparty_commitment_tx(
3045 &self, commitment_number: u64, their_per_commitment_point: &PublicKey,
3046 to_broadcaster_value: u64, to_countersignatory_value: u64, feerate_per_kw: u32,
3047 mut nondust_htlcs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>
3048 ) -> CommitmentTransaction {
3049 let broadcaster_keys = &self.onchain_tx_handler.channel_transaction_parameters
3050 .counterparty_parameters.as_ref().unwrap().pubkeys;
3051 let countersignatory_keys =
3052 &self.onchain_tx_handler.channel_transaction_parameters.holder_pubkeys;
3054 let broadcaster_funding_key = broadcaster_keys.funding_pubkey;
3055 let countersignatory_funding_key = countersignatory_keys.funding_pubkey;
3056 let keys = TxCreationKeys::from_channel_static_keys(&their_per_commitment_point,
3057 &broadcaster_keys, &countersignatory_keys, &self.onchain_tx_handler.secp_ctx);
3058 let channel_parameters =
3059 &self.onchain_tx_handler.channel_transaction_parameters.as_counterparty_broadcastable();
3061 CommitmentTransaction::new_with_auxiliary_htlc_data(commitment_number,
3062 to_broadcaster_value, to_countersignatory_value, broadcaster_funding_key,
3063 countersignatory_funding_key, keys, feerate_per_kw, &mut nondust_htlcs,
3067 fn counterparty_commitment_txs_from_update(&self, update: &ChannelMonitorUpdate) -> Vec<CommitmentTransaction> {
3068 update.updates.iter().filter_map(|update| {
3070 &ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid,
3071 ref htlc_outputs, commitment_number, their_per_commitment_point,
3072 feerate_per_kw: Some(feerate_per_kw),
3073 to_broadcaster_value_sat: Some(to_broadcaster_value),
3074 to_countersignatory_value_sat: Some(to_countersignatory_value) } => {
3076 let nondust_htlcs = htlc_outputs.iter().filter_map(|(htlc, _)| {
3077 htlc.transaction_output_index.map(|_| (htlc.clone(), None))
3078 }).collect::<Vec<_>>();
3080 let commitment_tx = self.build_counterparty_commitment_tx(commitment_number,
3081 &their_per_commitment_point, to_broadcaster_value,
3082 to_countersignatory_value, feerate_per_kw, nondust_htlcs);
3084 debug_assert_eq!(commitment_tx.trust().txid(), commitment_txid);
3093 fn sign_to_local_justice_tx(
3094 &self, mut justice_tx: Transaction, input_idx: usize, value: u64, commitment_number: u64
3095 ) -> Result<Transaction, ()> {
3096 let secret = self.get_secret(commitment_number).ok_or(())?;
3097 let per_commitment_key = SecretKey::from_slice(&secret).map_err(|_| ())?;
3098 let their_per_commitment_point = PublicKey::from_secret_key(
3099 &self.onchain_tx_handler.secp_ctx, &per_commitment_key);
3101 let revocation_pubkey = RevocationKey::from_basepoint(&self.onchain_tx_handler.secp_ctx,
3102 &self.holder_revocation_basepoint, &their_per_commitment_point);
3103 let delayed_key = DelayedPaymentKey::from_basepoint(&self.onchain_tx_handler.secp_ctx,
3104 &self.counterparty_commitment_params.counterparty_delayed_payment_base_key, &their_per_commitment_point);
3105 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
3106 self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
3108 let sig = self.onchain_tx_handler.signer.sign_justice_revoked_output(
3109 &justice_tx, input_idx, value, &per_commitment_key, &self.onchain_tx_handler.secp_ctx)?;
3110 justice_tx.input[input_idx].witness.push_bitcoin_signature(&sig.serialize_der(), EcdsaSighashType::All);
3111 justice_tx.input[input_idx].witness.push(&[1u8]);
3112 justice_tx.input[input_idx].witness.push(revokeable_redeemscript.as_bytes());
3116 /// Can only fail if idx is < get_min_seen_secret
3117 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
3118 self.commitment_secrets.get_secret(idx)
3121 fn get_min_seen_secret(&self) -> u64 {
3122 self.commitment_secrets.get_min_seen_secret()
3125 fn get_cur_counterparty_commitment_number(&self) -> u64 {
3126 self.current_counterparty_commitment_number
3129 fn get_cur_holder_commitment_number(&self) -> u64 {
3130 self.current_holder_commitment_number
3133 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
3134 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
3135 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
3136 /// HTLC-Success/HTLC-Timeout transactions.
3138 /// Returns packages to claim the revoked output(s), as well as additional outputs to watch and
3139 /// general information about the output that is to the counterparty in the commitment
3141 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L)
3142 -> (Vec<PackageTemplate>, TransactionOutputs, CommitmentTxCounterpartyOutputInfo)
3143 where L::Target: Logger {
3144 // Most secp and related errors trying to create keys means we have no hope of constructing
3145 // a spend transaction...so we return no transactions to broadcast
3146 let mut claimable_outpoints = Vec::new();
3147 let mut watch_outputs = Vec::new();
3148 let mut to_counterparty_output_info = None;
3150 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
3151 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
3153 macro_rules! ignore_error {
3154 ( $thing : expr ) => {
3157 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
3162 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence.0 as u64 & 0xffffff) << 3*8) | (tx.lock_time.to_consensus_u32() as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
3163 if commitment_number >= self.get_min_seen_secret() {
3164 let secret = self.get_secret(commitment_number).unwrap();
3165 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
3166 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
3167 let revocation_pubkey = RevocationKey::from_basepoint(&self.onchain_tx_handler.secp_ctx, &self.holder_revocation_basepoint, &per_commitment_point,);
3168 let delayed_key = DelayedPaymentKey::from_basepoint(&self.onchain_tx_handler.secp_ctx, &self.counterparty_commitment_params.counterparty_delayed_payment_base_key, &PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key));
3170 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
3171 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
3173 // First, process non-htlc outputs (to_holder & to_counterparty)
3174 for (idx, outp) in tx.output.iter().enumerate() {
3175 if outp.script_pubkey == revokeable_p2wsh {
3176 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_commitment_params.on_counterparty_tx_csv, self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx());
3177 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, height);
3178 claimable_outpoints.push(justice_package);
3179 to_counterparty_output_info =
3180 Some((idx.try_into().expect("Txn can't have more than 2^32 outputs"), outp.value));
3184 // Then, try to find revoked htlc outputs
3185 if let Some(ref per_commitment_data) = per_commitment_option {
3186 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
3187 if let Some(transaction_output_index) = htlc.transaction_output_index {
3188 if transaction_output_index as usize >= tx.output.len() ||
3189 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
3190 // per_commitment_data is corrupt or our commitment signing key leaked!
3191 return (claimable_outpoints, (commitment_txid, watch_outputs),
3192 to_counterparty_output_info);
3194 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone(), &self.onchain_tx_handler.channel_transaction_parameters.channel_type_features);
3195 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, height);
3196 claimable_outpoints.push(justice_package);
3201 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
3202 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
3203 // We're definitely a counterparty commitment transaction!
3204 log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
3205 for (idx, outp) in tx.output.iter().enumerate() {
3206 watch_outputs.push((idx as u32, outp.clone()));
3208 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
3210 if let Some(per_commitment_data) = per_commitment_option {
3211 fail_unbroadcast_htlcs!(self, "revoked_counterparty", commitment_txid, tx, height,
3212 block_hash, per_commitment_data.iter().map(|(htlc, htlc_source)|
3213 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
3216 // Our fuzzers aren't constrained by pesky things like valid signatures, so can
3217 // spend our funding output with a transaction which doesn't match our past
3218 // commitment transactions. Thus, we can only debug-assert here when not
3220 debug_assert!(cfg!(fuzzing), "We should have per-commitment option for any recognized old commitment txn");
3221 fail_unbroadcast_htlcs!(self, "revoked counterparty", commitment_txid, tx, height,
3222 block_hash, [].iter().map(|reference| *reference), logger);
3225 } else if let Some(per_commitment_data) = per_commitment_option {
3226 // While this isn't useful yet, there is a potential race where if a counterparty
3227 // revokes a state at the same time as the commitment transaction for that state is
3228 // confirmed, and the watchtower receives the block before the user, the user could
3229 // upload a new ChannelMonitor with the revocation secret but the watchtower has
3230 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
3231 // not being generated by the above conditional. Thus, to be safe, we go ahead and
3233 for (idx, outp) in tx.output.iter().enumerate() {
3234 watch_outputs.push((idx as u32, outp.clone()));
3236 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
3238 log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
3239 fail_unbroadcast_htlcs!(self, "counterparty", commitment_txid, tx, height, block_hash,
3240 per_commitment_data.iter().map(|(htlc, htlc_source)|
3241 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
3244 let (htlc_claim_reqs, counterparty_output_info) =
3245 self.get_counterparty_output_claim_info(commitment_number, commitment_txid, Some(tx));
3246 to_counterparty_output_info = counterparty_output_info;
3247 for req in htlc_claim_reqs {
3248 claimable_outpoints.push(req);
3252 (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
3255 /// Returns the HTLC claim package templates and the counterparty output info
3256 fn get_counterparty_output_claim_info(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>)
3257 -> (Vec<PackageTemplate>, CommitmentTxCounterpartyOutputInfo) {
3258 let mut claimable_outpoints = Vec::new();
3259 let mut to_counterparty_output_info: CommitmentTxCounterpartyOutputInfo = None;
3261 let htlc_outputs = match self.counterparty_claimable_outpoints.get(&commitment_txid) {
3262 Some(outputs) => outputs,
3263 None => return (claimable_outpoints, to_counterparty_output_info),
3265 let per_commitment_points = match self.their_cur_per_commitment_points {
3266 Some(points) => points,
3267 None => return (claimable_outpoints, to_counterparty_output_info),
3270 let per_commitment_point =
3271 // If the counterparty commitment tx is the latest valid state, use their latest
3272 // per-commitment point
3273 if per_commitment_points.0 == commitment_number { &per_commitment_points.1 }
3274 else if let Some(point) = per_commitment_points.2.as_ref() {
3275 // If counterparty commitment tx is the state previous to the latest valid state, use
3276 // their previous per-commitment point (non-atomicity of revocation means it's valid for
3277 // them to temporarily have two valid commitment txns from our viewpoint)
3278 if per_commitment_points.0 == commitment_number + 1 {
3280 } else { return (claimable_outpoints, to_counterparty_output_info); }
3281 } else { return (claimable_outpoints, to_counterparty_output_info); };
3283 if let Some(transaction) = tx {
3284 let revocation_pubkey = RevocationKey::from_basepoint(
3285 &self.onchain_tx_handler.secp_ctx, &self.holder_revocation_basepoint, &per_commitment_point);
3287 let delayed_key = DelayedPaymentKey::from_basepoint(&self.onchain_tx_handler.secp_ctx, &self.counterparty_commitment_params.counterparty_delayed_payment_base_key, &per_commitment_point);
3289 let revokeable_p2wsh = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
3290 self.counterparty_commitment_params.on_counterparty_tx_csv,
3291 &delayed_key).to_v0_p2wsh();
3292 for (idx, outp) in transaction.output.iter().enumerate() {
3293 if outp.script_pubkey == revokeable_p2wsh {
3294 to_counterparty_output_info =
3295 Some((idx.try_into().expect("Can't have > 2^32 outputs"), outp.value));
3300 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
3301 if let Some(transaction_output_index) = htlc.transaction_output_index {
3302 if let Some(transaction) = tx {
3303 if transaction_output_index as usize >= transaction.output.len() ||
3304 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
3305 // per_commitment_data is corrupt or our commitment signing key leaked!
3306 return (claimable_outpoints, to_counterparty_output_info);
3309 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
3310 if preimage.is_some() || !htlc.offered {
3311 let counterparty_htlc_outp = if htlc.offered {
3312 PackageSolvingData::CounterpartyOfferedHTLCOutput(
3313 CounterpartyOfferedHTLCOutput::build(*per_commitment_point,
3314 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3315 self.counterparty_commitment_params.counterparty_htlc_base_key,
3316 preimage.unwrap(), htlc.clone(), self.onchain_tx_handler.channel_type_features().clone()))
3318 PackageSolvingData::CounterpartyReceivedHTLCOutput(
3319 CounterpartyReceivedHTLCOutput::build(*per_commitment_point,
3320 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3321 self.counterparty_commitment_params.counterparty_htlc_base_key,
3322 htlc.clone(), self.onchain_tx_handler.channel_type_features().clone()))
3324 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry, 0);
3325 claimable_outpoints.push(counterparty_package);
3330 (claimable_outpoints, to_counterparty_output_info)
3333 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
3334 fn check_spend_counterparty_htlc<L: Deref>(
3335 &mut self, tx: &Transaction, commitment_number: u64, commitment_txid: &Txid, height: u32, logger: &L
3336 ) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
3337 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
3338 let per_commitment_key = match SecretKey::from_slice(&secret) {
3340 Err(_) => return (Vec::new(), None)
3342 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
3344 let htlc_txid = tx.txid();
3345 let mut claimable_outpoints = vec![];
3346 let mut outputs_to_watch = None;
3347 // Previously, we would only claim HTLCs from revoked HTLC transactions if they had 1 input
3348 // with a witness of 5 elements and 1 output. This wasn't enough for anchor outputs, as the
3349 // counterparty can now aggregate multiple HTLCs into a single transaction thanks to
3350 // `SIGHASH_SINGLE` remote signatures, leading us to not claim any HTLCs upon seeing a
3351 // confirmed revoked HTLC transaction (for more details, see
3352 // https://lists.linuxfoundation.org/pipermail/lightning-dev/2022-April/003561.html).
3354 // We make sure we're not vulnerable to this case by checking all inputs of the transaction,
3355 // and claim those which spend the commitment transaction, have a witness of 5 elements, and
3356 // have a corresponding output at the same index within the transaction.
3357 for (idx, input) in tx.input.iter().enumerate() {
3358 if input.previous_output.txid == *commitment_txid && input.witness.len() == 5 && tx.output.get(idx).is_some() {
3359 log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, idx);
3360 let revk_outp = RevokedOutput::build(
3361 per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3362 self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key,
3363 tx.output[idx].value, self.counterparty_commitment_params.on_counterparty_tx_csv,
3366 let justice_package = PackageTemplate::build_package(
3367 htlc_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp),
3368 height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, height
3370 claimable_outpoints.push(justice_package);
3371 if outputs_to_watch.is_none() {
3372 outputs_to_watch = Some((htlc_txid, vec![]));
3374 outputs_to_watch.as_mut().unwrap().1.push((idx as u32, tx.output[idx].clone()));
3377 (claimable_outpoints, outputs_to_watch)
3380 // Returns (1) `PackageTemplate`s that can be given to the OnchainTxHandler, so that the handler can
3381 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
3382 // script so we can detect whether a holder transaction has been seen on-chain.
3383 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(ScriptBuf, PublicKey, RevocationKey)>) {
3384 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
3386 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
3387 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
3389 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
3390 if let Some(transaction_output_index) = htlc.transaction_output_index {
3391 let htlc_output = if htlc.offered {
3392 let htlc_output = HolderHTLCOutput::build_offered(
3393 htlc.amount_msat, htlc.cltv_expiry, self.onchain_tx_handler.channel_type_features().clone()
3397 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
3400 // We can't build an HTLC-Success transaction without the preimage
3403 let htlc_output = HolderHTLCOutput::build_accepted(
3404 payment_preimage, htlc.amount_msat, self.onchain_tx_handler.channel_type_features().clone()
3408 let htlc_package = PackageTemplate::build_package(
3409 holder_tx.txid, transaction_output_index,
3410 PackageSolvingData::HolderHTLCOutput(htlc_output),
3411 htlc.cltv_expiry, conf_height
3413 claim_requests.push(htlc_package);
3417 (claim_requests, broadcasted_holder_revokable_script)
3420 // Returns holder HTLC outputs to watch and react to in case of spending.
3421 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
3422 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
3423 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
3424 if let Some(transaction_output_index) = htlc.transaction_output_index {
3425 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
3431 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
3432 /// revoked using data in holder_claimable_outpoints.
3433 /// Should not be used if check_spend_revoked_transaction succeeds.
3434 /// Returns None unless the transaction is definitely one of our commitment transactions.
3435 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) -> Option<(Vec<PackageTemplate>, TransactionOutputs)> where L::Target: Logger {
3436 let commitment_txid = tx.txid();
3437 let mut claim_requests = Vec::new();
3438 let mut watch_outputs = Vec::new();
3440 macro_rules! append_onchain_update {
3441 ($updates: expr, $to_watch: expr) => {
3442 claim_requests = $updates.0;
3443 self.broadcasted_holder_revokable_script = $updates.1;
3444 watch_outputs.append(&mut $to_watch);
3448 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
3449 let mut is_holder_tx = false;
3451 if self.current_holder_commitment_tx.txid == commitment_txid {
3452 is_holder_tx = true;
3453 log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
3454 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
3455 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
3456 append_onchain_update!(res, to_watch);
3457 fail_unbroadcast_htlcs!(self, "latest holder", commitment_txid, tx, height,
3458 block_hash, self.current_holder_commitment_tx.htlc_outputs.iter()
3459 .map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())), logger);
3460 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
3461 if holder_tx.txid == commitment_txid {
3462 is_holder_tx = true;
3463 log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
3464 let res = self.get_broadcasted_holder_claims(holder_tx, height);
3465 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
3466 append_onchain_update!(res, to_watch);
3467 fail_unbroadcast_htlcs!(self, "previous holder", commitment_txid, tx, height, block_hash,
3468 holder_tx.htlc_outputs.iter().map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())),
3474 Some((claim_requests, (commitment_txid, watch_outputs)))
3480 /// Cancels any existing pending claims for a commitment that previously confirmed and has now
3481 /// been replaced by another.
3482 pub fn cancel_prev_commitment_claims<L: Deref>(
3483 &mut self, logger: &L, confirmed_commitment_txid: &Txid
3484 ) where L::Target: Logger {
3485 for (counterparty_commitment_txid, _) in &self.counterparty_commitment_txn_on_chain {
3486 // Cancel any pending claims for counterparty commitments we've seen confirm.
3487 if counterparty_commitment_txid == confirmed_commitment_txid {
3490 for (htlc, _) in self.counterparty_claimable_outpoints.get(counterparty_commitment_txid).unwrap_or(&vec![]) {
3491 log_trace!(logger, "Canceling claims for previously confirmed counterparty commitment {}",
3492 counterparty_commitment_txid);
3493 let mut outpoint = BitcoinOutPoint { txid: *counterparty_commitment_txid, vout: 0 };
3494 if let Some(vout) = htlc.transaction_output_index {
3495 outpoint.vout = vout;
3496 self.onchain_tx_handler.abandon_claim(&outpoint);
3500 if self.holder_tx_signed {
3501 // If we've signed, we may have broadcast either commitment (prev or current), and
3502 // attempted to claim from it immediately without waiting for a confirmation.
3503 if self.current_holder_commitment_tx.txid != *confirmed_commitment_txid {
3504 log_trace!(logger, "Canceling claims for previously broadcast holder commitment {}",
3505 self.current_holder_commitment_tx.txid);
3506 let mut outpoint = BitcoinOutPoint { txid: self.current_holder_commitment_tx.txid, vout: 0 };
3507 for (htlc, _, _) in &self.current_holder_commitment_tx.htlc_outputs {
3508 if let Some(vout) = htlc.transaction_output_index {
3509 outpoint.vout = vout;
3510 self.onchain_tx_handler.abandon_claim(&outpoint);
3514 if let Some(prev_holder_commitment_tx) = &self.prev_holder_signed_commitment_tx {
3515 if prev_holder_commitment_tx.txid != *confirmed_commitment_txid {
3516 log_trace!(logger, "Canceling claims for previously broadcast holder commitment {}",
3517 prev_holder_commitment_tx.txid);
3518 let mut outpoint = BitcoinOutPoint { txid: prev_holder_commitment_tx.txid, vout: 0 };
3519 for (htlc, _, _) in &prev_holder_commitment_tx.htlc_outputs {
3520 if let Some(vout) = htlc.transaction_output_index {
3521 outpoint.vout = vout;
3522 self.onchain_tx_handler.abandon_claim(&outpoint);
3528 // No previous claim.
3532 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
3533 /// Note that this includes possibly-locktimed-in-the-future transactions!
3534 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(
3535 &mut self, logger: &WithChannelMonitor<L>
3536 ) -> Vec<Transaction> where L::Target: Logger {
3537 log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
3538 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
3539 let txid = commitment_tx.txid();
3540 let mut holder_transactions = vec![commitment_tx];
3541 // When anchor outputs are present, the HTLC transactions are only final once the commitment
3542 // transaction confirms due to the CSV 1 encumberance.
3543 if self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
3544 return holder_transactions;
3546 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
3547 if let Some(vout) = htlc.0.transaction_output_index {
3548 let preimage = if !htlc.0.offered {
3549 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
3550 // We can't build an HTLC-Success transaction without the preimage
3554 if let Some(htlc_tx) = self.onchain_tx_handler.get_maybe_signed_htlc_tx(
3555 &::bitcoin::OutPoint { txid, vout }, &preimage
3557 if htlc_tx.is_fully_signed() {
3558 holder_transactions.push(htlc_tx.0);
3566 fn block_connected<B: Deref, F: Deref, L: Deref>(
3567 &mut self, header: &Header, txdata: &TransactionData, height: u32, broadcaster: B,
3568 fee_estimator: F, logger: &WithChannelMonitor<L>,
3569 ) -> Vec<TransactionOutputs>
3570 where B::Target: BroadcasterInterface,
3571 F::Target: FeeEstimator,
3574 let block_hash = header.block_hash();
3575 self.best_block = BestBlock::new(block_hash, height);
3577 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
3578 self.transactions_confirmed(header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
3581 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
3586 fee_estimator: &LowerBoundedFeeEstimator<F>,
3587 logger: &WithChannelMonitor<L>,
3588 ) -> Vec<TransactionOutputs>
3590 B::Target: BroadcasterInterface,
3591 F::Target: FeeEstimator,
3594 let block_hash = header.block_hash();
3596 if height > self.best_block.height {
3597 self.best_block = BestBlock::new(block_hash, height);
3598 log_trace!(logger, "Connecting new block {} at height {}", block_hash, height);
3599 self.block_confirmed(height, block_hash, vec![], vec![], vec![], &broadcaster, &fee_estimator, logger)
3600 } else if block_hash != self.best_block.block_hash {
3601 self.best_block = BestBlock::new(block_hash, height);
3602 log_trace!(logger, "Best block re-orged, replaced with new block {} at height {}", block_hash, height);
3603 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
3604 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
3606 } else { Vec::new() }
3609 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
3612 txdata: &TransactionData,
3615 fee_estimator: &LowerBoundedFeeEstimator<F>,
3616 logger: &WithChannelMonitor<L>,
3617 ) -> Vec<TransactionOutputs>
3619 B::Target: BroadcasterInterface,
3620 F::Target: FeeEstimator,
3623 let txn_matched = self.filter_block(txdata);
3624 for tx in &txn_matched {
3625 let mut output_val = 0;
3626 for out in tx.output.iter() {
3627 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
3628 output_val += out.value;
3629 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
3633 let block_hash = header.block_hash();
3635 let mut watch_outputs = Vec::new();
3636 let mut claimable_outpoints = Vec::new();
3637 'tx_iter: for tx in &txn_matched {
3638 let txid = tx.txid();
3639 log_trace!(logger, "Transaction {} confirmed in block {}", txid , block_hash);
3640 // If a transaction has already been confirmed, ensure we don't bother processing it duplicatively.
3641 if Some(txid) == self.funding_spend_confirmed {
3642 log_debug!(logger, "Skipping redundant processing of funding-spend tx {} as it was previously confirmed", txid);
3645 for ev in self.onchain_events_awaiting_threshold_conf.iter() {
3646 if ev.txid == txid {
3647 if let Some(conf_hash) = ev.block_hash {
3648 assert_eq!(header.block_hash(), conf_hash,
3649 "Transaction {} was already confirmed and is being re-confirmed in a different block.\n\
3650 This indicates a severe bug in the transaction connection logic - a reorg should have been processed first!", ev.txid);
3652 log_debug!(logger, "Skipping redundant processing of confirming tx {} as it was previously confirmed", txid);
3656 for htlc in self.htlcs_resolved_on_chain.iter() {
3657 if Some(txid) == htlc.resolving_txid {
3658 log_debug!(logger, "Skipping redundant processing of HTLC resolution tx {} as it was previously confirmed", txid);
3662 for spendable_txid in self.spendable_txids_confirmed.iter() {
3663 if txid == *spendable_txid {
3664 log_debug!(logger, "Skipping redundant processing of spendable tx {} as it was previously confirmed", txid);
3669 if tx.input.len() == 1 {
3670 // Assuming our keys were not leaked (in which case we're screwed no matter what),
3671 // commitment transactions and HTLC transactions will all only ever have one input
3672 // (except for HTLC transactions for channels with anchor outputs), which is an easy
3673 // way to filter out any potential non-matching txn for lazy filters.
3674 let prevout = &tx.input[0].previous_output;
3675 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
3676 let mut balance_spendable_csv = None;
3677 log_info!(logger, "Channel {} closed by funding output spend in txid {}.",
3678 &self.channel_id(), txid);
3679 self.funding_spend_seen = true;
3680 let mut commitment_tx_to_counterparty_output = None;
3681 if (tx.input[0].sequence.0 >> 8*3) as u8 == 0x80 && (tx.lock_time.to_consensus_u32() >> 8*3) as u8 == 0x20 {
3682 let (mut new_outpoints, new_outputs, counterparty_output_idx_sats) =
3683 self.check_spend_counterparty_transaction(&tx, height, &block_hash, &logger);
3684 commitment_tx_to_counterparty_output = counterparty_output_idx_sats;
3685 if !new_outputs.1.is_empty() {
3686 watch_outputs.push(new_outputs);
3688 claimable_outpoints.append(&mut new_outpoints);
3689 if new_outpoints.is_empty() {
3690 if let Some((mut new_outpoints, new_outputs)) = self.check_spend_holder_transaction(&tx, height, &block_hash, &logger) {
3691 #[cfg(not(fuzzing))]
3692 debug_assert!(commitment_tx_to_counterparty_output.is_none(),
3693 "A commitment transaction matched as both a counterparty and local commitment tx?");
3694 if !new_outputs.1.is_empty() {
3695 watch_outputs.push(new_outputs);
3697 claimable_outpoints.append(&mut new_outpoints);
3698 balance_spendable_csv = Some(self.on_holder_tx_csv);
3702 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3704 transaction: Some((*tx).clone()),
3706 block_hash: Some(block_hash),
3707 event: OnchainEvent::FundingSpendConfirmation {
3708 on_local_output_csv: balance_spendable_csv,
3709 commitment_tx_to_counterparty_output,
3712 // Now that we've detected a confirmed commitment transaction, attempt to cancel
3713 // pending claims for any commitments that were previously confirmed such that
3714 // we don't continue claiming inputs that no longer exist.
3715 self.cancel_prev_commitment_claims(&logger, &txid);
3718 if tx.input.len() >= 1 {
3719 // While all commitment transactions have one input, HTLC transactions may have more
3720 // if the HTLC was present in an anchor channel. HTLCs can also be resolved in a few
3721 // other ways which can have more than one output.
3722 for tx_input in &tx.input {
3723 let commitment_txid = tx_input.previous_output.txid;
3724 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&commitment_txid) {
3725 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(
3726 &tx, commitment_number, &commitment_txid, height, &logger
3728 claimable_outpoints.append(&mut new_outpoints);
3729 if let Some(new_outputs) = new_outputs_option {
3730 watch_outputs.push(new_outputs);
3732 // Since there may be multiple HTLCs for this channel (all spending the
3733 // same commitment tx) being claimed by the counterparty within the same
3734 // transaction, and `check_spend_counterparty_htlc` already checks all the
3735 // ones relevant to this channel, we can safely break from our loop.
3739 self.is_resolving_htlc_output(&tx, height, &block_hash, logger);
3741 self.check_tx_and_push_spendable_outputs(&tx, height, &block_hash, logger);
3745 if height > self.best_block.height {
3746 self.best_block = BestBlock::new(block_hash, height);
3749 self.block_confirmed(height, block_hash, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, logger)
3752 /// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
3753 /// `self.best_block` before calling if a new best blockchain tip is available. More
3754 /// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
3755 /// complexity especially in
3756 /// `OnchainTx::update_claims_view_from_requests`/`OnchainTx::update_claims_view_from_matched_txn`.
3758 /// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
3759 /// confirmed at, even if it is not the current best height.
3760 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
3763 conf_hash: BlockHash,
3764 txn_matched: Vec<&Transaction>,
3765 mut watch_outputs: Vec<TransactionOutputs>,
3766 mut claimable_outpoints: Vec<PackageTemplate>,
3768 fee_estimator: &LowerBoundedFeeEstimator<F>,
3769 logger: &WithChannelMonitor<L>,
3770 ) -> Vec<TransactionOutputs>
3772 B::Target: BroadcasterInterface,
3773 F::Target: FeeEstimator,
3776 log_trace!(logger, "Processing {} matched transactions for block at height {}.", txn_matched.len(), conf_height);
3777 debug_assert!(self.best_block.height >= conf_height);
3779 let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
3780 if should_broadcast {
3781 let (mut new_outpoints, mut new_outputs) = self.generate_claimable_outpoints_and_watch_outputs();
3782 claimable_outpoints.append(&mut new_outpoints);
3783 watch_outputs.append(&mut new_outputs);
3786 // Find which on-chain events have reached their confirmation threshold.
3787 let onchain_events_awaiting_threshold_conf =
3788 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
3789 let mut onchain_events_reaching_threshold_conf = Vec::new();
3790 for entry in onchain_events_awaiting_threshold_conf {
3791 if entry.has_reached_confirmation_threshold(&self.best_block) {
3792 onchain_events_reaching_threshold_conf.push(entry);
3794 self.onchain_events_awaiting_threshold_conf.push(entry);
3798 // Used to check for duplicate HTLC resolutions.
3799 #[cfg(debug_assertions)]
3800 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
3802 .filter_map(|entry| match &entry.event {
3803 OnchainEvent::HTLCUpdate { source, .. } => Some(source),
3807 #[cfg(debug_assertions)]
3808 let mut matured_htlcs = Vec::new();
3810 // Produce actionable events from on-chain events having reached their threshold.
3811 for entry in onchain_events_reaching_threshold_conf.drain(..) {
3813 OnchainEvent::HTLCUpdate { ref source, payment_hash, htlc_value_satoshis, commitment_tx_output_idx } => {
3814 // Check for duplicate HTLC resolutions.
3815 #[cfg(debug_assertions)]
3818 unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
3819 "An unmature HTLC transaction conflicts with a maturing one; failed to \
3820 call either transaction_unconfirmed for the conflicting transaction \
3821 or block_disconnected for a block containing it.");
3823 matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
3824 "A matured HTLC transaction conflicts with a maturing one; failed to \
3825 call either transaction_unconfirmed for the conflicting transaction \
3826 or block_disconnected for a block containing it.");
3827 matured_htlcs.push(source.clone());
3830 log_debug!(logger, "HTLC {} failure update in {} has got enough confirmations to be passed upstream",
3831 &payment_hash, entry.txid);
3832 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3834 payment_preimage: None,
3835 source: source.clone(),
3836 htlc_value_satoshis,
3838 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3839 commitment_tx_output_idx,
3840 resolving_txid: Some(entry.txid),
3841 resolving_tx: entry.transaction,
3842 payment_preimage: None,
3845 OnchainEvent::MaturingOutput { descriptor } => {
3846 log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
3847 self.pending_events.push(Event::SpendableOutputs {
3848 outputs: vec![descriptor],
3849 channel_id: Some(self.channel_id()),
3851 self.spendable_txids_confirmed.push(entry.txid);
3853 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } => {
3854 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3855 commitment_tx_output_idx: Some(commitment_tx_output_idx),
3856 resolving_txid: Some(entry.txid),
3857 resolving_tx: entry.transaction,
3858 payment_preimage: preimage,
3861 OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } => {
3862 self.funding_spend_confirmed = Some(entry.txid);
3863 self.confirmed_commitment_tx_counterparty_output = commitment_tx_to_counterparty_output;
3868 self.onchain_tx_handler.update_claims_view_from_requests(claimable_outpoints, conf_height, self.best_block.height, broadcaster, fee_estimator, logger);
3869 self.onchain_tx_handler.update_claims_view_from_matched_txn(&txn_matched, conf_height, conf_hash, self.best_block.height, broadcaster, fee_estimator, logger);
3871 // Determine new outputs to watch by comparing against previously known outputs to watch,
3872 // updating the latter in the process.
3873 watch_outputs.retain(|&(ref txid, ref txouts)| {
3874 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
3875 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
3879 // If we see a transaction for which we registered outputs previously,
3880 // make sure the registered scriptpubkey at the expected index match
3881 // the actual transaction output one. We failed this case before #653.
3882 for tx in &txn_matched {
3883 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
3884 for idx_and_script in outputs.iter() {
3885 assert!((idx_and_script.0 as usize) < tx.output.len());
3886 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
3894 fn block_disconnected<B: Deref, F: Deref, L: Deref>(
3895 &mut self, header: &Header, height: u32, broadcaster: B, fee_estimator: F, logger: &WithChannelMonitor<L>
3896 ) where B::Target: BroadcasterInterface,
3897 F::Target: FeeEstimator,
3900 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
3903 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
3904 //- maturing spendable output has transaction paying us has been disconnected
3905 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
3907 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
3908 self.onchain_tx_handler.block_disconnected(height, broadcaster, &bounded_fee_estimator, logger);
3910 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
3913 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
3917 fee_estimator: &LowerBoundedFeeEstimator<F>,
3918 logger: &WithChannelMonitor<L>,
3920 B::Target: BroadcasterInterface,
3921 F::Target: FeeEstimator,
3924 let mut removed_height = None;
3925 for entry in self.onchain_events_awaiting_threshold_conf.iter() {
3926 if entry.txid == *txid {
3927 removed_height = Some(entry.height);
3932 if let Some(removed_height) = removed_height {
3933 log_info!(logger, "transaction_unconfirmed of txid {} implies height {} was reorg'd out", txid, removed_height);
3934 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| if entry.height >= removed_height {
3935 log_info!(logger, "Transaction {} reorg'd out", entry.txid);
3940 debug_assert!(!self.onchain_events_awaiting_threshold_conf.iter().any(|ref entry| entry.txid == *txid));
3942 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
3945 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
3946 /// transactions thereof.
3947 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
3948 let mut matched_txn = new_hash_set();
3949 txdata.iter().filter(|&&(_, tx)| {
3950 let mut matches = self.spends_watched_output(tx);
3951 for input in tx.input.iter() {
3952 if matches { break; }
3953 if matched_txn.contains(&input.previous_output.txid) {
3958 matched_txn.insert(tx.txid());
3961 }).map(|(_, tx)| *tx).collect()
3964 /// Checks if a given transaction spends any watched outputs.
3965 fn spends_watched_output(&self, tx: &Transaction) -> bool {
3966 for input in tx.input.iter() {
3967 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
3968 for (idx, _script_pubkey) in outputs.iter() {
3969 if *idx == input.previous_output.vout {
3972 // If the expected script is a known type, check that the witness
3973 // appears to be spending the correct type (ie that the match would
3974 // actually succeed in BIP 158/159-style filters).
3975 if _script_pubkey.is_v0_p2wsh() {
3976 if input.witness.last().unwrap().to_vec() == deliberately_bogus_accepted_htlc_witness_program() {
3977 // In at least one test we use a deliberately bogus witness
3978 // script which hit an old panic. Thus, we check for that here
3979 // and avoid the assert if its the expected bogus script.
3983 assert_eq!(&bitcoin::Address::p2wsh(&ScriptBuf::from(input.witness.last().unwrap().to_vec()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
3984 } else if _script_pubkey.is_v0_p2wpkh() {
3985 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
3986 } else { panic!(); }
3997 fn should_broadcast_holder_commitment_txn<L: Deref>(
3998 &self, logger: &WithChannelMonitor<L>
3999 ) -> bool where L::Target: Logger {
4000 // There's no need to broadcast our commitment transaction if we've seen one confirmed (even
4001 // with 1 confirmation) as it'll be rejected as duplicate/conflicting.
4002 if self.funding_spend_confirmed.is_some() ||
4003 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
4004 OnchainEvent::FundingSpendConfirmation { .. } => true,
4010 // We need to consider all HTLCs which are:
4011 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
4012 // transactions and we'd end up in a race, or
4013 // * are in our latest holder commitment transaction, as this is the thing we will
4014 // broadcast if we go on-chain.
4015 // Note that we consider HTLCs which were below dust threshold here - while they don't
4016 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
4017 // to the source, and if we don't fail the channel we will have to ensure that the next
4018 // updates that peer sends us are update_fails, failing the channel if not. It's probably
4019 // easier to just fail the channel as this case should be rare enough anyway.
4020 let height = self.best_block.height;
4021 macro_rules! scan_commitment {
4022 ($htlcs: expr, $holder_tx: expr) => {
4023 for ref htlc in $htlcs {
4024 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
4025 // chain with enough room to claim the HTLC without our counterparty being able to
4026 // time out the HTLC first.
4027 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
4028 // concern is being able to claim the corresponding inbound HTLC (on another
4029 // channel) before it expires. In fact, we don't even really care if our
4030 // counterparty here claims such an outbound HTLC after it expired as long as we
4031 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
4032 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
4033 // we give ourselves a few blocks of headroom after expiration before going
4034 // on-chain for an expired HTLC.
4035 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
4036 // from us until we've reached the point where we go on-chain with the
4037 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
4038 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
4039 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
4040 // inbound_cltv == height + CLTV_CLAIM_BUFFER
4041 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
4042 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
4043 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
4044 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
4045 // The final, above, condition is checked for statically in channelmanager
4046 // with CHECK_CLTV_EXPIRY_SANITY_2.
4047 let htlc_outbound = $holder_tx == htlc.offered;
4048 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
4049 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
4050 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
4057 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
4059 if let Some(ref txid) = self.current_counterparty_commitment_txid {
4060 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
4061 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
4064 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
4065 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
4066 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
4073 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
4074 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
4075 fn is_resolving_htlc_output<L: Deref>(
4076 &mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &WithChannelMonitor<L>,
4077 ) where L::Target: Logger {
4078 'outer_loop: for input in &tx.input {
4079 let mut payment_data = None;
4080 let htlc_claim = HTLCClaim::from_witness(&input.witness);
4081 let revocation_sig_claim = htlc_claim == Some(HTLCClaim::Revocation);
4082 let accepted_preimage_claim = htlc_claim == Some(HTLCClaim::AcceptedPreimage);
4083 #[cfg(not(fuzzing))]
4084 let accepted_timeout_claim = htlc_claim == Some(HTLCClaim::AcceptedTimeout);
4085 let offered_preimage_claim = htlc_claim == Some(HTLCClaim::OfferedPreimage);
4086 #[cfg(not(fuzzing))]
4087 let offered_timeout_claim = htlc_claim == Some(HTLCClaim::OfferedTimeout);
4089 let mut payment_preimage = PaymentPreimage([0; 32]);
4090 if offered_preimage_claim || accepted_preimage_claim {
4091 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
4094 macro_rules! log_claim {
4095 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
4096 let outbound_htlc = $holder_tx == $htlc.offered;
4097 // HTLCs must either be claimed by a matching script type or through the
4099 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
4100 debug_assert!(!$htlc.offered || offered_preimage_claim || offered_timeout_claim || revocation_sig_claim);
4101 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
4102 debug_assert!($htlc.offered || accepted_preimage_claim || accepted_timeout_claim || revocation_sig_claim);
4103 // Further, only exactly one of the possible spend paths should have been
4104 // matched by any HTLC spend:
4105 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
4106 debug_assert_eq!(accepted_preimage_claim as u8 + accepted_timeout_claim as u8 +
4107 offered_preimage_claim as u8 + offered_timeout_claim as u8 +
4108 revocation_sig_claim as u8, 1);
4109 if ($holder_tx && revocation_sig_claim) ||
4110 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
4111 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
4112 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
4113 if outbound_htlc { "outbound" } else { "inbound" }, &$htlc.payment_hash,
4114 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back. We can likely claim the HTLC output with a revocation claim" });
4116 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
4117 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
4118 if outbound_htlc { "outbound" } else { "inbound" }, &$htlc.payment_hash,
4119 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
4124 macro_rules! check_htlc_valid_counterparty {
4125 ($counterparty_txid: expr, $htlc_output: expr) => {
4126 if let Some(txid) = $counterparty_txid {
4127 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
4128 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
4129 if let &Some(ref source) = pending_source {
4130 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
4131 payment_data = Some(((**source).clone(), $htlc_output.payment_hash, $htlc_output.amount_msat));
4140 macro_rules! scan_commitment {
4141 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
4142 for (ref htlc_output, source_option) in $htlcs {
4143 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
4144 if let Some(ref source) = source_option {
4145 log_claim!($tx_info, $holder_tx, htlc_output, true);
4146 // We have a resolution of an HTLC either from one of our latest
4147 // holder commitment transactions or an unrevoked counterparty commitment
4148 // transaction. This implies we either learned a preimage, the HTLC
4149 // has timed out, or we screwed up. In any case, we should now
4150 // resolve the source HTLC with the original sender.
4151 payment_data = Some(((*source).clone(), htlc_output.payment_hash, htlc_output.amount_msat));
4152 } else if !$holder_tx {
4153 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
4154 if payment_data.is_none() {
4155 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
4158 if payment_data.is_none() {
4159 log_claim!($tx_info, $holder_tx, htlc_output, false);
4160 let outbound_htlc = $holder_tx == htlc_output.offered;
4161 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
4162 txid: tx.txid(), height, block_hash: Some(*block_hash), transaction: Some(tx.clone()),
4163 event: OnchainEvent::HTLCSpendConfirmation {
4164 commitment_tx_output_idx: input.previous_output.vout,
4165 preimage: if accepted_preimage_claim || offered_preimage_claim {
4166 Some(payment_preimage) } else { None },
4167 // If this is a payment to us (ie !outbound_htlc), wait for
4168 // the CSV delay before dropping the HTLC from claimable
4169 // balance if the claim was an HTLC-Success transaction (ie
4170 // accepted_preimage_claim).
4171 on_to_local_output_csv: if accepted_preimage_claim && !outbound_htlc {
4172 Some(self.on_holder_tx_csv) } else { None },
4175 continue 'outer_loop;
4182 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
4183 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
4184 "our latest holder commitment tx", true);
4186 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
4187 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
4188 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
4189 "our previous holder commitment tx", true);
4192 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
4193 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
4194 "counterparty commitment tx", false);
4197 // Check that scan_commitment, above, decided there is some source worth relaying an
4198 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
4199 if let Some((source, payment_hash, amount_msat)) = payment_data {
4200 if accepted_preimage_claim {
4201 if !self.pending_monitor_events.iter().any(
4202 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
4203 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
4206 block_hash: Some(*block_hash),
4207 transaction: Some(tx.clone()),
4208 event: OnchainEvent::HTLCSpendConfirmation {
4209 commitment_tx_output_idx: input.previous_output.vout,
4210 preimage: Some(payment_preimage),
4211 on_to_local_output_csv: None,
4214 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
4216 payment_preimage: Some(payment_preimage),
4218 htlc_value_satoshis: Some(amount_msat / 1000),
4221 } else if offered_preimage_claim {
4222 if !self.pending_monitor_events.iter().any(
4223 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
4224 upd.source == source
4226 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
4228 transaction: Some(tx.clone()),
4230 block_hash: Some(*block_hash),
4231 event: OnchainEvent::HTLCSpendConfirmation {
4232 commitment_tx_output_idx: input.previous_output.vout,
4233 preimage: Some(payment_preimage),
4234 on_to_local_output_csv: None,
4237 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
4239 payment_preimage: Some(payment_preimage),
4241 htlc_value_satoshis: Some(amount_msat / 1000),
4245 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
4246 if entry.height != height { return true; }
4248 OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
4249 *htlc_source != source
4254 let entry = OnchainEventEntry {
4256 transaction: Some(tx.clone()),
4258 block_hash: Some(*block_hash),
4259 event: OnchainEvent::HTLCUpdate {
4260 source, payment_hash,
4261 htlc_value_satoshis: Some(amount_msat / 1000),
4262 commitment_tx_output_idx: Some(input.previous_output.vout),
4265 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", &payment_hash, entry.confirmation_threshold());
4266 self.onchain_events_awaiting_threshold_conf.push(entry);
4272 fn get_spendable_outputs(&self, tx: &Transaction) -> Vec<SpendableOutputDescriptor> {
4273 let mut spendable_outputs = Vec::new();
4274 for (i, outp) in tx.output.iter().enumerate() {
4275 if outp.script_pubkey == self.destination_script {
4276 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
4277 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4278 output: outp.clone(),
4279 channel_keys_id: Some(self.channel_keys_id),
4282 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
4283 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
4284 spendable_outputs.push(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
4285 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4286 per_commitment_point: broadcasted_holder_revokable_script.1,
4287 to_self_delay: self.on_holder_tx_csv,
4288 output: outp.clone(),
4289 revocation_pubkey: broadcasted_holder_revokable_script.2,
4290 channel_keys_id: self.channel_keys_id,
4291 channel_value_satoshis: self.channel_value_satoshis,
4295 if self.counterparty_payment_script == outp.script_pubkey {
4296 spendable_outputs.push(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
4297 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4298 output: outp.clone(),
4299 channel_keys_id: self.channel_keys_id,
4300 channel_value_satoshis: self.channel_value_satoshis,
4301 channel_transaction_parameters: Some(self.onchain_tx_handler.channel_transaction_parameters.clone()),
4304 if self.shutdown_script.as_ref() == Some(&outp.script_pubkey) {
4305 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
4306 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4307 output: outp.clone(),
4308 channel_keys_id: Some(self.channel_keys_id),
4315 /// Checks if the confirmed transaction is paying funds back to some address we can assume to
4317 fn check_tx_and_push_spendable_outputs<L: Deref>(
4318 &mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &WithChannelMonitor<L>,
4319 ) where L::Target: Logger {
4320 for spendable_output in self.get_spendable_outputs(tx) {
4321 let entry = OnchainEventEntry {
4323 transaction: Some(tx.clone()),
4325 block_hash: Some(*block_hash),
4326 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
4328 log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
4329 self.onchain_events_awaiting_threshold_conf.push(entry);
4334 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
4336 T::Target: BroadcasterInterface,
4337 F::Target: FeeEstimator,
4340 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
4341 self.0.block_connected(header, txdata, height, &*self.1, &*self.2, &self.3);
4344 fn block_disconnected(&self, header: &Header, height: u32) {
4345 self.0.block_disconnected(header, height, &*self.1, &*self.2, &self.3);
4349 impl<Signer: WriteableEcdsaChannelSigner, M, T: Deref, F: Deref, L: Deref> chain::Confirm for (M, T, F, L)
4351 M: Deref<Target = ChannelMonitor<Signer>>,
4352 T::Target: BroadcasterInterface,
4353 F::Target: FeeEstimator,
4356 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
4357 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &self.3);
4360 fn transaction_unconfirmed(&self, txid: &Txid) {
4361 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &self.3);
4364 fn best_block_updated(&self, header: &Header, height: u32) {
4365 self.0.best_block_updated(header, height, &*self.1, &*self.2, &self.3);
4368 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
4369 self.0.get_relevant_txids()
4373 const MAX_ALLOC_SIZE: usize = 64*1024;
4375 impl<'a, 'b, ES: EntropySource, SP: SignerProvider> ReadableArgs<(&'a ES, &'b SP)>
4376 for (BlockHash, ChannelMonitor<SP::EcdsaSigner>) {
4377 fn read<R: io::Read>(reader: &mut R, args: (&'a ES, &'b SP)) -> Result<Self, DecodeError> {
4378 macro_rules! unwrap_obj {
4382 Err(_) => return Err(DecodeError::InvalidValue),
4387 let (entropy_source, signer_provider) = args;
4389 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
4391 let latest_update_id: u64 = Readable::read(reader)?;
4392 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
4394 let destination_script = Readable::read(reader)?;
4395 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
4397 let revokable_address = Readable::read(reader)?;
4398 let per_commitment_point = Readable::read(reader)?;
4399 let revokable_script = Readable::read(reader)?;
4400 Some((revokable_address, per_commitment_point, revokable_script))
4403 _ => return Err(DecodeError::InvalidValue),
4405 let mut counterparty_payment_script: ScriptBuf = Readable::read(reader)?;
4406 let shutdown_script = {
4407 let script = <ScriptBuf as Readable>::read(reader)?;
4408 if script.is_empty() { None } else { Some(script) }
4411 let channel_keys_id = Readable::read(reader)?;
4412 let holder_revocation_basepoint = Readable::read(reader)?;
4413 // Technically this can fail and serialize fail a round-trip, but only for serialization of
4414 // barely-init'd ChannelMonitors that we can't do anything with.
4415 let outpoint = OutPoint {
4416 txid: Readable::read(reader)?,
4417 index: Readable::read(reader)?,
4419 let funding_info = (outpoint, Readable::read(reader)?);
4420 let current_counterparty_commitment_txid = Readable::read(reader)?;
4421 let prev_counterparty_commitment_txid = Readable::read(reader)?;
4423 let counterparty_commitment_params = Readable::read(reader)?;
4424 let funding_redeemscript = Readable::read(reader)?;
4425 let channel_value_satoshis = Readable::read(reader)?;
4427 let their_cur_per_commitment_points = {
4428 let first_idx = <U48 as Readable>::read(reader)?.0;
4432 let first_point = Readable::read(reader)?;
4433 let second_point_slice: [u8; 33] = Readable::read(reader)?;
4434 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
4435 Some((first_idx, first_point, None))
4437 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
4442 let on_holder_tx_csv: u16 = Readable::read(reader)?;
4444 let commitment_secrets = Readable::read(reader)?;
4446 macro_rules! read_htlc_in_commitment {
4449 let offered: bool = Readable::read(reader)?;
4450 let amount_msat: u64 = Readable::read(reader)?;
4451 let cltv_expiry: u32 = Readable::read(reader)?;
4452 let payment_hash: PaymentHash = Readable::read(reader)?;
4453 let transaction_output_index: Option<u32> = Readable::read(reader)?;
4455 HTLCOutputInCommitment {
4456 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
4462 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
4463 let mut counterparty_claimable_outpoints = hash_map_with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
4464 for _ in 0..counterparty_claimable_outpoints_len {
4465 let txid: Txid = Readable::read(reader)?;
4466 let htlcs_count: u64 = Readable::read(reader)?;
4467 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
4468 for _ in 0..htlcs_count {
4469 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
4471 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
4472 return Err(DecodeError::InvalidValue);
4476 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
4477 let mut counterparty_commitment_txn_on_chain = hash_map_with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
4478 for _ in 0..counterparty_commitment_txn_on_chain_len {
4479 let txid: Txid = Readable::read(reader)?;
4480 let commitment_number = <U48 as Readable>::read(reader)?.0;
4481 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
4482 return Err(DecodeError::InvalidValue);
4486 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
4487 let mut counterparty_hash_commitment_number = hash_map_with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
4488 for _ in 0..counterparty_hash_commitment_number_len {
4489 let payment_hash: PaymentHash = Readable::read(reader)?;
4490 let commitment_number = <U48 as Readable>::read(reader)?.0;
4491 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
4492 return Err(DecodeError::InvalidValue);
4496 let mut prev_holder_signed_commitment_tx: Option<HolderSignedTx> =
4497 match <u8 as Readable>::read(reader)? {
4500 Some(Readable::read(reader)?)
4502 _ => return Err(DecodeError::InvalidValue),
4504 let mut current_holder_commitment_tx: HolderSignedTx = Readable::read(reader)?;
4506 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
4507 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
4509 let payment_preimages_len: u64 = Readable::read(reader)?;
4510 let mut payment_preimages = hash_map_with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
4511 for _ in 0..payment_preimages_len {
4512 let preimage: PaymentPreimage = Readable::read(reader)?;
4513 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).to_byte_array());
4514 if let Some(_) = payment_preimages.insert(hash, preimage) {
4515 return Err(DecodeError::InvalidValue);
4519 let pending_monitor_events_len: u64 = Readable::read(reader)?;
4520 let mut pending_monitor_events = Some(
4521 Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))));
4522 for _ in 0..pending_monitor_events_len {
4523 let ev = match <u8 as Readable>::read(reader)? {
4524 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
4525 1 => MonitorEvent::HolderForceClosed(funding_info.0),
4526 _ => return Err(DecodeError::InvalidValue)
4528 pending_monitor_events.as_mut().unwrap().push(ev);
4531 let pending_events_len: u64 = Readable::read(reader)?;
4532 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
4533 for _ in 0..pending_events_len {
4534 if let Some(event) = MaybeReadable::read(reader)? {
4535 pending_events.push(event);
4539 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
4541 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
4542 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
4543 for _ in 0..waiting_threshold_conf_len {
4544 if let Some(val) = MaybeReadable::read(reader)? {
4545 onchain_events_awaiting_threshold_conf.push(val);
4549 let outputs_to_watch_len: u64 = Readable::read(reader)?;
4550 let mut outputs_to_watch = hash_map_with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<ScriptBuf>>())));
4551 for _ in 0..outputs_to_watch_len {
4552 let txid = Readable::read(reader)?;
4553 let outputs_len: u64 = Readable::read(reader)?;
4554 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<ScriptBuf>())));
4555 for _ in 0..outputs_len {
4556 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
4558 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
4559 return Err(DecodeError::InvalidValue);
4562 let onchain_tx_handler: OnchainTxHandler<SP::EcdsaSigner> = ReadableArgs::read(
4563 reader, (entropy_source, signer_provider, channel_value_satoshis, channel_keys_id)
4566 let lockdown_from_offchain = Readable::read(reader)?;
4567 let holder_tx_signed = Readable::read(reader)?;
4569 if let Some(prev_commitment_tx) = prev_holder_signed_commitment_tx.as_mut() {
4570 let prev_holder_value = onchain_tx_handler.get_prev_holder_commitment_to_self_value();
4571 if prev_holder_value.is_none() { return Err(DecodeError::InvalidValue); }
4572 if prev_commitment_tx.to_self_value_sat == u64::max_value() {
4573 prev_commitment_tx.to_self_value_sat = prev_holder_value.unwrap();
4574 } else if prev_commitment_tx.to_self_value_sat != prev_holder_value.unwrap() {
4575 return Err(DecodeError::InvalidValue);
4579 let cur_holder_value = onchain_tx_handler.get_cur_holder_commitment_to_self_value();
4580 if current_holder_commitment_tx.to_self_value_sat == u64::max_value() {
4581 current_holder_commitment_tx.to_self_value_sat = cur_holder_value;
4582 } else if current_holder_commitment_tx.to_self_value_sat != cur_holder_value {
4583 return Err(DecodeError::InvalidValue);
4586 let mut funding_spend_confirmed = None;
4587 let mut htlcs_resolved_on_chain = Some(Vec::new());
4588 let mut funding_spend_seen = Some(false);
4589 let mut counterparty_node_id = None;
4590 let mut confirmed_commitment_tx_counterparty_output = None;
4591 let mut spendable_txids_confirmed = Some(Vec::new());
4592 let mut counterparty_fulfilled_htlcs = Some(new_hash_map());
4593 let mut initial_counterparty_commitment_info = None;
4594 let mut channel_id = None;
4595 read_tlv_fields!(reader, {
4596 (1, funding_spend_confirmed, option),
4597 (3, htlcs_resolved_on_chain, optional_vec),
4598 (5, pending_monitor_events, optional_vec),
4599 (7, funding_spend_seen, option),
4600 (9, counterparty_node_id, option),
4601 (11, confirmed_commitment_tx_counterparty_output, option),
4602 (13, spendable_txids_confirmed, optional_vec),
4603 (15, counterparty_fulfilled_htlcs, option),
4604 (17, initial_counterparty_commitment_info, option),
4605 (19, channel_id, option),
4608 // Monitors for anchor outputs channels opened in v0.0.116 suffered from a bug in which the
4609 // wrong `counterparty_payment_script` was being tracked. Fix it now on deserialization to
4610 // give them a chance to recognize the spendable output.
4611 if onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() &&
4612 counterparty_payment_script.is_v0_p2wpkh()
4614 let payment_point = onchain_tx_handler.channel_transaction_parameters.holder_pubkeys.payment_point;
4615 counterparty_payment_script =
4616 chan_utils::get_to_countersignatory_with_anchors_redeemscript(&payment_point).to_v0_p2wsh();
4619 Ok((best_block.block_hash, ChannelMonitor::from_impl(ChannelMonitorImpl {
4621 commitment_transaction_number_obscure_factor,
4624 broadcasted_holder_revokable_script,
4625 counterparty_payment_script,
4629 holder_revocation_basepoint,
4630 channel_id: channel_id.unwrap_or(ChannelId::v1_from_funding_outpoint(outpoint)),
4632 current_counterparty_commitment_txid,
4633 prev_counterparty_commitment_txid,
4635 counterparty_commitment_params,
4636 funding_redeemscript,
4637 channel_value_satoshis,
4638 their_cur_per_commitment_points,
4643 counterparty_claimable_outpoints,
4644 counterparty_commitment_txn_on_chain,
4645 counterparty_hash_commitment_number,
4646 counterparty_fulfilled_htlcs: counterparty_fulfilled_htlcs.unwrap(),
4648 prev_holder_signed_commitment_tx,
4649 current_holder_commitment_tx,
4650 current_counterparty_commitment_number,
4651 current_holder_commitment_number,
4654 pending_monitor_events: pending_monitor_events.unwrap(),
4656 is_processing_pending_events: false,
4658 onchain_events_awaiting_threshold_conf,
4663 lockdown_from_offchain,
4665 funding_spend_seen: funding_spend_seen.unwrap(),
4666 funding_spend_confirmed,
4667 confirmed_commitment_tx_counterparty_output,
4668 htlcs_resolved_on_chain: htlcs_resolved_on_chain.unwrap(),
4669 spendable_txids_confirmed: spendable_txids_confirmed.unwrap(),
4672 counterparty_node_id,
4673 initial_counterparty_commitment_info,
4680 use bitcoin::blockdata::locktime::absolute::LockTime;
4681 use bitcoin::blockdata::script::{ScriptBuf, Builder};
4682 use bitcoin::blockdata::opcodes;
4683 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut};
4684 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
4685 use bitcoin::sighash;
4686 use bitcoin::sighash::EcdsaSighashType;
4687 use bitcoin::hashes::Hash;
4688 use bitcoin::hashes::sha256::Hash as Sha256;
4689 use bitcoin::hashes::hex::FromHex;
4690 use bitcoin::hash_types::{BlockHash, Txid};
4691 use bitcoin::network::constants::Network;
4692 use bitcoin::secp256k1::{SecretKey,PublicKey};
4693 use bitcoin::secp256k1::Secp256k1;
4694 use bitcoin::{Sequence, Witness};
4696 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
4698 use super::ChannelMonitorUpdateStep;
4699 use crate::{check_added_monitors, check_spends, get_local_commitment_txn, get_monitor, get_route_and_payment_hash, unwrap_send_err};
4700 use crate::chain::{BestBlock, Confirm};
4701 use crate::chain::channelmonitor::{ChannelMonitor, WithChannelMonitor};
4702 use crate::chain::package::{weight_offered_htlc, weight_received_htlc, weight_revoked_offered_htlc, weight_revoked_received_htlc, WEIGHT_REVOKED_OUTPUT};
4703 use crate::chain::transaction::OutPoint;
4704 use crate::sign::InMemorySigner;
4705 use crate::ln::{PaymentPreimage, PaymentHash, ChannelId};
4706 use crate::ln::channel_keys::{DelayedPaymentBasepoint, DelayedPaymentKey, HtlcBasepoint, RevocationBasepoint, RevocationKey};
4707 use crate::ln::chan_utils::{self,HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
4708 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId, RecipientOnionFields};
4709 use crate::ln::functional_test_utils::*;
4710 use crate::ln::script::ShutdownScript;
4711 use crate::util::errors::APIError;
4712 use crate::util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
4713 use crate::util::ser::{ReadableArgs, Writeable};
4714 use crate::util::logger::Logger;
4715 use crate::sync::{Arc, Mutex};
4717 use crate::ln::features::ChannelTypeFeatures;
4718 use crate::prelude::*;
4720 use std::str::FromStr;
4722 fn do_test_funding_spend_refuses_updates(use_local_txn: bool) {
4723 // Previously, monitor updates were allowed freely even after a funding-spend transaction
4724 // confirmed. This would allow a race condition where we could receive a payment (including
4725 // the counterparty revoking their broadcasted state!) and accept it without recourse as
4726 // long as the ChannelMonitor receives the block first, the full commitment update dance
4727 // occurs after the block is connected, and before the ChannelManager receives the block.
4728 // Obviously this is an incredibly contrived race given the counterparty would be risking
4729 // their full channel balance for it, but its worth fixing nonetheless as it makes the
4730 // potential ChannelMonitor states simpler to reason about.
4732 // This test checks said behavior, as well as ensuring a ChannelMonitorUpdate with multiple
4733 // updates is handled correctly in such conditions.
4734 let chanmon_cfgs = create_chanmon_cfgs(3);
4735 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
4736 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
4737 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
4738 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
4739 create_announced_chan_between_nodes(&nodes, 1, 2);
4741 // Rebalance somewhat
4742 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
4744 // First route two payments for testing at the end
4745 let payment_preimage_1 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4746 let payment_preimage_2 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4748 let local_txn = get_local_commitment_txn!(nodes[1], channel.2);
4749 assert_eq!(local_txn.len(), 1);
4750 let remote_txn = get_local_commitment_txn!(nodes[0], channel.2);
4751 assert_eq!(remote_txn.len(), 3); // Commitment and two HTLC-Timeouts
4752 check_spends!(remote_txn[1], remote_txn[0]);
4753 check_spends!(remote_txn[2], remote_txn[0]);
4754 let broadcast_tx = if use_local_txn { &local_txn[0] } else { &remote_txn[0] };
4756 // Connect a commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
4757 // channel is now closed, but the ChannelManager doesn't know that yet.
4758 let new_header = create_dummy_header(nodes[0].best_block_info().0, 0);
4759 let conf_height = nodes[0].best_block_info().1 + 1;
4760 nodes[1].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
4761 &[(0, broadcast_tx)], conf_height);
4763 let (_, pre_update_monitor) = <(BlockHash, ChannelMonitor<InMemorySigner>)>::read(
4764 &mut io::Cursor::new(&get_monitor!(nodes[1], channel.2).encode()),
4765 (&nodes[1].keys_manager.backing, &nodes[1].keys_manager.backing)).unwrap();
4767 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
4768 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
4769 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 100_000);
4770 unwrap_send_err!(nodes[1].node.send_payment_with_route(&route, payment_hash,
4771 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)
4772 ), false, APIError::MonitorUpdateInProgress, {});
4773 check_added_monitors!(nodes[1], 1);
4775 // Build a new ChannelMonitorUpdate which contains both the failing commitment tx update
4776 // and provides the claim preimages for the two pending HTLCs. The first update generates
4777 // an error, but the point of this test is to ensure the later updates are still applied.
4778 let monitor_updates = nodes[1].chain_monitor.monitor_updates.lock().unwrap();
4779 let mut replay_update = monitor_updates.get(&channel.2).unwrap().iter().rev().next().unwrap().clone();
4780 assert_eq!(replay_update.updates.len(), 1);
4781 if let ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } = replay_update.updates[0] {
4782 } else { panic!(); }
4783 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_1 });
4784 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_2 });
4786 let broadcaster = TestBroadcaster::with_blocks(Arc::clone(&nodes[1].blocks));
4788 pre_update_monitor.update_monitor(&replay_update, &&broadcaster, &&chanmon_cfgs[1].fee_estimator, &nodes[1].logger)
4790 // Even though we error'd on the first update, we should still have generated an HTLC claim
4792 let txn_broadcasted = broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
4793 assert!(txn_broadcasted.len() >= 2);
4794 let htlc_txn = txn_broadcasted.iter().filter(|tx| {
4795 assert_eq!(tx.input.len(), 1);
4796 tx.input[0].previous_output.txid == broadcast_tx.txid()
4797 }).collect::<Vec<_>>();
4798 assert_eq!(htlc_txn.len(), 2);
4799 check_spends!(htlc_txn[0], broadcast_tx);
4800 check_spends!(htlc_txn[1], broadcast_tx);
4803 fn test_funding_spend_refuses_updates() {
4804 do_test_funding_spend_refuses_updates(true);
4805 do_test_funding_spend_refuses_updates(false);
4809 fn test_prune_preimages() {
4810 let secp_ctx = Secp256k1::new();
4811 let logger = Arc::new(TestLogger::new());
4812 let broadcaster = Arc::new(TestBroadcaster::new(Network::Testnet));
4813 let fee_estimator = TestFeeEstimator { sat_per_kw: Mutex::new(253) };
4815 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4817 let mut preimages = Vec::new();
4820 let preimage = PaymentPreimage([i; 32]);
4821 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).to_byte_array());
4822 preimages.push((preimage, hash));
4826 macro_rules! preimages_slice_to_htlcs {
4827 ($preimages_slice: expr) => {
4829 let mut res = Vec::new();
4830 for (idx, preimage) in $preimages_slice.iter().enumerate() {
4831 res.push((HTLCOutputInCommitment {
4835 payment_hash: preimage.1.clone(),
4836 transaction_output_index: Some(idx as u32),
4843 macro_rules! preimages_slice_to_htlc_outputs {
4844 ($preimages_slice: expr) => {
4845 preimages_slice_to_htlcs!($preimages_slice).into_iter().map(|(htlc, _)| (htlc, None)).collect()
4848 let dummy_sig = crate::crypto::utils::sign(&secp_ctx,
4849 &bitcoin::secp256k1::Message::from_slice(&[42; 32]).unwrap(),
4850 &SecretKey::from_slice(&[42; 32]).unwrap());
4852 macro_rules! test_preimages_exist {
4853 ($preimages_slice: expr, $monitor: expr) => {
4854 for preimage in $preimages_slice {
4855 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
4860 let keys = InMemorySigner::new(
4862 SecretKey::from_slice(&[41; 32]).unwrap(),
4863 SecretKey::from_slice(&[41; 32]).unwrap(),
4864 SecretKey::from_slice(&[41; 32]).unwrap(),
4865 SecretKey::from_slice(&[41; 32]).unwrap(),
4866 SecretKey::from_slice(&[41; 32]).unwrap(),
4873 let counterparty_pubkeys = ChannelPublicKeys {
4874 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
4875 revocation_basepoint: RevocationBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap())),
4876 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
4877 delayed_payment_basepoint: DelayedPaymentBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap())),
4878 htlc_basepoint: HtlcBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap()))
4880 let funding_outpoint = OutPoint { txid: Txid::all_zeros(), index: u16::max_value() };
4881 let channel_id = ChannelId::v1_from_funding_outpoint(funding_outpoint);
4882 let channel_parameters = ChannelTransactionParameters {
4883 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
4884 holder_selected_contest_delay: 66,
4885 is_outbound_from_holder: true,
4886 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
4887 pubkeys: counterparty_pubkeys,
4888 selected_contest_delay: 67,
4890 funding_outpoint: Some(funding_outpoint),
4891 channel_type_features: ChannelTypeFeatures::only_static_remote_key()
4893 // Prune with one old state and a holder commitment tx holding a few overlaps with the
4895 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4896 let best_block = BestBlock::from_network(Network::Testnet);
4897 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
4898 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &ScriptBuf::new(),
4899 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, ScriptBuf::new()),
4900 &channel_parameters, ScriptBuf::new(), 46, 0, HolderCommitmentTransaction::dummy(&mut Vec::new()),
4901 best_block, dummy_key, channel_id);
4903 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..10]);
4904 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4906 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx.clone(),
4907 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4908 monitor.provide_latest_counterparty_commitment_tx(Txid::from_byte_array(Sha256::hash(b"1").to_byte_array()),
4909 preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
4910 monitor.provide_latest_counterparty_commitment_tx(Txid::from_byte_array(Sha256::hash(b"2").to_byte_array()),
4911 preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
4912 for &(ref preimage, ref hash) in preimages.iter() {
4913 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&fee_estimator);
4914 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &bounded_fee_estimator, &logger);
4917 // Now provide a secret, pruning preimages 10-15
4918 let mut secret = [0; 32];
4919 secret[0..32].clone_from_slice(&<Vec<u8>>::from_hex("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
4920 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
4921 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
4922 test_preimages_exist!(&preimages[0..10], monitor);
4923 test_preimages_exist!(&preimages[15..20], monitor);
4925 monitor.provide_latest_counterparty_commitment_tx(Txid::from_byte_array(Sha256::hash(b"3").to_byte_array()),
4926 preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
4928 // Now provide a further secret, pruning preimages 15-17
4929 secret[0..32].clone_from_slice(&<Vec<u8>>::from_hex("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
4930 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
4931 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
4932 test_preimages_exist!(&preimages[0..10], monitor);
4933 test_preimages_exist!(&preimages[17..20], monitor);
4935 monitor.provide_latest_counterparty_commitment_tx(Txid::from_byte_array(Sha256::hash(b"4").to_byte_array()),
4936 preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
4938 // Now update holder commitment tx info, pruning only element 18 as we still care about the
4939 // previous commitment tx's preimages too
4940 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..5]);
4941 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4942 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx.clone(),
4943 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4944 secret[0..32].clone_from_slice(&<Vec<u8>>::from_hex("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
4945 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
4946 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
4947 test_preimages_exist!(&preimages[0..10], monitor);
4948 test_preimages_exist!(&preimages[18..20], monitor);
4950 // But if we do it again, we'll prune 5-10
4951 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..3]);
4952 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4953 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx,
4954 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4955 secret[0..32].clone_from_slice(&<Vec<u8>>::from_hex("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
4956 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
4957 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
4958 test_preimages_exist!(&preimages[0..5], monitor);
4962 fn test_claim_txn_weight_computation() {
4963 // We test Claim txn weight, knowing that we want expected weigth and
4964 // not actual case to avoid sigs and time-lock delays hell variances.
4966 let secp_ctx = Secp256k1::new();
4967 let privkey = SecretKey::from_slice(&<Vec<u8>>::from_hex("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
4968 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
4970 use crate::ln::channel_keys::{HtlcKey, HtlcBasepoint};
4971 macro_rules! sign_input {
4972 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr, $opt_anchors: expr) => {
4973 let htlc = HTLCOutputInCommitment {
4974 offered: if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_offered_htlc($opt_anchors) { true } else { false },
4976 cltv_expiry: 2 << 16,
4977 payment_hash: PaymentHash([1; 32]),
4978 transaction_output_index: Some($idx as u32),
4980 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&RevocationKey::from_basepoint(&secp_ctx, &RevocationBasepoint::from(pubkey), &pubkey), 256, &DelayedPaymentKey::from_basepoint(&secp_ctx, &DelayedPaymentBasepoint::from(pubkey), &pubkey)) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, $opt_anchors, &HtlcKey::from_basepoint(&secp_ctx, &HtlcBasepoint::from(pubkey), &pubkey), &HtlcKey::from_basepoint(&secp_ctx, &HtlcBasepoint::from(pubkey), &pubkey), &RevocationKey::from_basepoint(&secp_ctx, &RevocationBasepoint::from(pubkey), &pubkey)) };
4981 let sighash = hash_to_message!(&$sighash_parts.segwit_signature_hash($idx, &redeem_script, $amount, EcdsaSighashType::All).unwrap()[..]);
4982 let sig = secp_ctx.sign_ecdsa(&sighash, &privkey);
4983 let mut ser_sig = sig.serialize_der().to_vec();
4984 ser_sig.push(EcdsaSighashType::All as u8);
4985 $sum_actual_sigs += ser_sig.len() as u64;
4986 let witness = $sighash_parts.witness_mut($idx).unwrap();
4987 witness.push(ser_sig);
4988 if *$weight == WEIGHT_REVOKED_OUTPUT {
4989 witness.push(vec!(1));
4990 } else if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_revoked_received_htlc($opt_anchors) {
4991 witness.push(pubkey.clone().serialize().to_vec());
4992 } else if *$weight == weight_received_htlc($opt_anchors) {
4993 witness.push(vec![0]);
4995 witness.push(PaymentPreimage([1; 32]).0.to_vec());
4997 witness.push(redeem_script.into_bytes());
4998 let witness = witness.to_vec();
4999 println!("witness[0] {}", witness[0].len());
5000 println!("witness[1] {}", witness[1].len());
5001 println!("witness[2] {}", witness[2].len());
5005 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
5006 let txid = Txid::from_str("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
5008 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
5009 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
5010 let mut claim_tx = Transaction { version: 0, lock_time: LockTime::ZERO, input: Vec::new(), output: Vec::new() };
5011 let mut sum_actual_sigs = 0;
5013 claim_tx.input.push(TxIn {
5014 previous_output: BitcoinOutPoint {
5018 script_sig: ScriptBuf::new(),
5019 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
5020 witness: Witness::new(),
5023 claim_tx.output.push(TxOut {
5024 script_pubkey: script_pubkey.clone(),
5027 let base_weight = claim_tx.weight().to_wu();
5028 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, weight_revoked_offered_htlc(channel_type_features), weight_revoked_offered_htlc(channel_type_features), weight_revoked_received_htlc(channel_type_features)];
5029 let mut inputs_total_weight = 2; // count segwit flags
5031 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
5032 for (idx, inp) in inputs_weight.iter().enumerate() {
5033 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
5034 inputs_total_weight += inp;
5037 assert_eq!(base_weight + inputs_total_weight, claim_tx.weight().to_wu() + /* max_length_sig */ (73 * inputs_weight.len() as u64 - sum_actual_sigs));
5040 // Claim tx with 1 offered HTLCs, 3 received HTLCs
5041 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
5042 let mut claim_tx = Transaction { version: 0, lock_time: LockTime::ZERO, input: Vec::new(), output: Vec::new() };
5043 let mut sum_actual_sigs = 0;
5045 claim_tx.input.push(TxIn {
5046 previous_output: BitcoinOutPoint {
5050 script_sig: ScriptBuf::new(),
5051 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
5052 witness: Witness::new(),
5055 claim_tx.output.push(TxOut {
5056 script_pubkey: script_pubkey.clone(),
5059 let base_weight = claim_tx.weight().to_wu();
5060 let inputs_weight = vec![weight_offered_htlc(channel_type_features), weight_received_htlc(channel_type_features), weight_received_htlc(channel_type_features), weight_received_htlc(channel_type_features)];
5061 let mut inputs_total_weight = 2; // count segwit flags
5063 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
5064 for (idx, inp) in inputs_weight.iter().enumerate() {
5065 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
5066 inputs_total_weight += inp;
5069 assert_eq!(base_weight + inputs_total_weight, claim_tx.weight().to_wu() + /* max_length_sig */ (73 * inputs_weight.len() as u64 - sum_actual_sigs));
5072 // Justice tx with 1 revoked HTLC-Success tx output
5073 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
5074 let mut claim_tx = Transaction { version: 0, lock_time: LockTime::ZERO, input: Vec::new(), output: Vec::new() };
5075 let mut sum_actual_sigs = 0;
5076 claim_tx.input.push(TxIn {
5077 previous_output: BitcoinOutPoint {
5081 script_sig: ScriptBuf::new(),
5082 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
5083 witness: Witness::new(),
5085 claim_tx.output.push(TxOut {
5086 script_pubkey: script_pubkey.clone(),
5089 let base_weight = claim_tx.weight().to_wu();
5090 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
5091 let mut inputs_total_weight = 2; // count segwit flags
5093 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
5094 for (idx, inp) in inputs_weight.iter().enumerate() {
5095 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
5096 inputs_total_weight += inp;
5099 assert_eq!(base_weight + inputs_total_weight, claim_tx.weight().to_wu() + /* max_length_isg */ (73 * inputs_weight.len() as u64 - sum_actual_sigs));
5104 fn test_with_channel_monitor_impl_logger() {
5105 let secp_ctx = Secp256k1::new();
5106 let logger = Arc::new(TestLogger::new());
5108 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
5110 let keys = InMemorySigner::new(
5112 SecretKey::from_slice(&[41; 32]).unwrap(),
5113 SecretKey::from_slice(&[41; 32]).unwrap(),
5114 SecretKey::from_slice(&[41; 32]).unwrap(),
5115 SecretKey::from_slice(&[41; 32]).unwrap(),
5116 SecretKey::from_slice(&[41; 32]).unwrap(),
5123 let counterparty_pubkeys = ChannelPublicKeys {
5124 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
5125 revocation_basepoint: RevocationBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap())),
5126 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
5127 delayed_payment_basepoint: DelayedPaymentBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap())),
5128 htlc_basepoint: HtlcBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())),
5130 let funding_outpoint = OutPoint { txid: Txid::all_zeros(), index: u16::max_value() };
5131 let channel_id = ChannelId::v1_from_funding_outpoint(funding_outpoint);
5132 let channel_parameters = ChannelTransactionParameters {
5133 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
5134 holder_selected_contest_delay: 66,
5135 is_outbound_from_holder: true,
5136 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
5137 pubkeys: counterparty_pubkeys,
5138 selected_contest_delay: 67,
5140 funding_outpoint: Some(funding_outpoint),
5141 channel_type_features: ChannelTypeFeatures::only_static_remote_key()
5143 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
5144 let best_block = BestBlock::from_network(Network::Testnet);
5145 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
5146 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &ScriptBuf::new(),
5147 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, ScriptBuf::new()),
5148 &channel_parameters, ScriptBuf::new(), 46, 0, HolderCommitmentTransaction::dummy(&mut Vec::new()),
5149 best_block, dummy_key, channel_id);
5151 let chan_id = monitor.inner.lock().unwrap().channel_id();
5152 let context_logger = WithChannelMonitor::from(&logger, &monitor);
5153 log_error!(context_logger, "This is an error");
5154 log_warn!(context_logger, "This is an error");
5155 log_debug!(context_logger, "This is an error");
5156 log_trace!(context_logger, "This is an error");
5157 log_gossip!(context_logger, "This is an error");
5158 log_info!(context_logger, "This is an error");
5159 logger.assert_log_context_contains("lightning::chain::channelmonitor::tests", Some(dummy_key), Some(chan_id), 6);
5161 // Further testing is done in the ChannelManager integration tests.