1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::BlockHeader;
24 use bitcoin::blockdata::transaction::{TxOut,Transaction};
25 use bitcoin::blockdata::script::{Script, Builder};
26 use bitcoin::blockdata::opcodes;
28 use bitcoin::hashes::Hash;
29 use bitcoin::hashes::sha256::Hash as Sha256;
30 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
33 use bitcoin::secp256k1::{SecretKey, PublicKey};
34 use bitcoin::secp256k1;
36 use ln::{PaymentHash, PaymentPreimage};
37 use ln::msgs::DecodeError;
39 use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCType, ChannelTransactionParameters, HolderCommitmentTransaction};
40 use ln::channelmanager::HTLCSource;
42 use chain::{BestBlock, WatchedOutput};
43 use chain::chaininterface::{BroadcasterInterface, FeeEstimator, LowerBoundedFeeEstimator};
44 use chain::transaction::{OutPoint, TransactionData};
45 use chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, Sign, KeysInterface};
46 use chain::onchaintx::OnchainTxHandler;
47 use chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
49 use util::logger::Logger;
50 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writer, Writeable, U48, OptionDeserWrapper};
52 use util::events::Event;
56 use io::{self, Error};
60 /// An update generated by the underlying Channel itself which contains some new information the
61 /// ChannelMonitor should be made aware of.
62 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq))]
65 pub struct ChannelMonitorUpdate {
66 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
67 /// The sequence number of this update. Updates *must* be replayed in-order according to this
68 /// sequence number (and updates may panic if they are not). The update_id values are strictly
69 /// increasing and increase by one for each new update, with one exception specified below.
71 /// This sequence number is also used to track up to which points updates which returned
72 /// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
73 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
75 /// The only instance where update_id values are not strictly increasing is the case where we
76 /// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
77 /// its docs for more details.
82 /// (1) a channel has been force closed and
83 /// (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
84 /// this channel's (the backward link's) broadcasted commitment transaction
85 /// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
86 /// with the update providing said payment preimage. No other update types are allowed after
88 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
90 impl Writeable for ChannelMonitorUpdate {
91 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
92 write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
93 self.update_id.write(w)?;
94 (self.updates.len() as u64).write(w)?;
95 for update_step in self.updates.iter() {
96 update_step.write(w)?;
98 write_tlv_fields!(w, {});
102 impl Readable for ChannelMonitorUpdate {
103 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
104 let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
105 let update_id: u64 = Readable::read(r)?;
106 let len: u64 = Readable::read(r)?;
107 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
109 if let Some(upd) = MaybeReadable::read(r)? {
113 read_tlv_fields!(r, {});
114 Ok(Self { update_id, updates })
118 /// An event to be processed by the ChannelManager.
119 #[derive(Clone, PartialEq)]
120 pub enum MonitorEvent {
121 /// A monitor event containing an HTLCUpdate.
122 HTLCEvent(HTLCUpdate),
124 /// A monitor event that the Channel's commitment transaction was confirmed.
125 CommitmentTxConfirmed(OutPoint),
127 /// Indicates a [`ChannelMonitor`] update has completed. See
128 /// [`ChannelMonitorUpdateErr::TemporaryFailure`] for more information on how this is used.
130 /// [`ChannelMonitorUpdateErr::TemporaryFailure`]: super::ChannelMonitorUpdateErr::TemporaryFailure
132 /// The funding outpoint of the [`ChannelMonitor`] that was updated
133 funding_txo: OutPoint,
134 /// The Update ID from [`ChannelMonitorUpdate::update_id`] which was applied or
135 /// [`ChannelMonitor::get_latest_update_id`].
137 /// Note that this should only be set to a given update's ID if all previous updates for the
138 /// same [`ChannelMonitor`] have been applied and persisted.
139 monitor_update_id: u64,
142 /// Indicates a [`ChannelMonitor`] update has failed. See
143 /// [`ChannelMonitorUpdateErr::PermanentFailure`] for more information on how this is used.
145 /// [`ChannelMonitorUpdateErr::PermanentFailure`]: super::ChannelMonitorUpdateErr::PermanentFailure
146 UpdateFailed(OutPoint),
148 impl_writeable_tlv_based_enum_upgradable!(MonitorEvent,
149 // Note that UpdateCompleted and UpdateFailed are currently never serialized to disk as they are
150 // generated only in ChainMonitor
151 (0, UpdateCompleted) => {
152 (0, funding_txo, required),
153 (2, monitor_update_id, required),
157 (4, CommitmentTxConfirmed),
161 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
162 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
163 /// preimage claim backward will lead to loss of funds.
164 #[derive(Clone, PartialEq)]
165 pub struct HTLCUpdate {
166 pub(crate) payment_hash: PaymentHash,
167 pub(crate) payment_preimage: Option<PaymentPreimage>,
168 pub(crate) source: HTLCSource,
169 pub(crate) htlc_value_satoshis: Option<u64>,
171 impl_writeable_tlv_based!(HTLCUpdate, {
172 (0, payment_hash, required),
173 (1, htlc_value_satoshis, option),
174 (2, source, required),
175 (4, payment_preimage, option),
178 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
179 /// instead claiming it in its own individual transaction.
180 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
181 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
182 /// HTLC-Success transaction.
183 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
184 /// transaction confirmed (and we use it in a few more, equivalent, places).
185 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
186 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
187 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
188 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
189 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
190 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
191 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
192 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
193 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
194 /// accurate block height.
195 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
196 /// with at worst this delay, so we are not only using this value as a mercy for them but also
197 /// us as a safeguard to delay with enough time.
198 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
199 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding
200 /// inbound HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us
203 /// Note that this is a library-wide security assumption. If a reorg deeper than this number of
204 /// blocks occurs, counterparties may be able to steal funds or claims made by and balances exposed
205 /// by a [`ChannelMonitor`] may be incorrect.
206 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
207 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
208 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
209 // keep bumping another claim tx to solve the outpoint.
210 pub const ANTI_REORG_DELAY: u32 = 6;
211 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
212 /// refuse to accept a new HTLC.
214 /// This is used for a few separate purposes:
215 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
216 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
218 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
219 /// condition with the above), we will fail this HTLC without telling the user we received it,
221 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
222 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
224 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
225 /// in a race condition between the user connecting a block (which would fail it) and the user
226 /// providing us the preimage (which would claim it).
227 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
229 // TODO(devrandom) replace this with HolderCommitmentTransaction
230 #[derive(Clone, PartialEq)]
231 struct HolderSignedTx {
232 /// txid of the transaction in tx, just used to make comparison faster
234 revocation_key: PublicKey,
235 a_htlc_key: PublicKey,
236 b_htlc_key: PublicKey,
237 delayed_payment_key: PublicKey,
238 per_commitment_point: PublicKey,
239 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
240 to_self_value_sat: u64,
243 impl_writeable_tlv_based!(HolderSignedTx, {
245 // Note that this is filled in with data from OnchainTxHandler if it's missing.
246 // For HolderSignedTx objects serialized with 0.0.100+, this should be filled in.
247 (1, to_self_value_sat, (default_value, u64::max_value())),
248 (2, revocation_key, required),
249 (4, a_htlc_key, required),
250 (6, b_htlc_key, required),
251 (8, delayed_payment_key, required),
252 (10, per_commitment_point, required),
253 (12, feerate_per_kw, required),
254 (14, htlc_outputs, vec_type)
257 /// We use this to track static counterparty commitment transaction data and to generate any
258 /// justice or 2nd-stage preimage/timeout transactions.
260 struct CounterpartyCommitmentParameters {
261 counterparty_delayed_payment_base_key: PublicKey,
262 counterparty_htlc_base_key: PublicKey,
263 on_counterparty_tx_csv: u16,
266 impl Writeable for CounterpartyCommitmentParameters {
267 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
268 w.write_all(&byte_utils::be64_to_array(0))?;
269 write_tlv_fields!(w, {
270 (0, self.counterparty_delayed_payment_base_key, required),
271 (2, self.counterparty_htlc_base_key, required),
272 (4, self.on_counterparty_tx_csv, required),
277 impl Readable for CounterpartyCommitmentParameters {
278 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
279 let counterparty_commitment_transaction = {
280 // Versions prior to 0.0.100 had some per-HTLC state stored here, which is no longer
281 // used. Read it for compatibility.
282 let per_htlc_len: u64 = Readable::read(r)?;
283 for _ in 0..per_htlc_len {
284 let _txid: Txid = Readable::read(r)?;
285 let htlcs_count: u64 = Readable::read(r)?;
286 for _ in 0..htlcs_count {
287 let _htlc: HTLCOutputInCommitment = Readable::read(r)?;
291 let mut counterparty_delayed_payment_base_key = OptionDeserWrapper(None);
292 let mut counterparty_htlc_base_key = OptionDeserWrapper(None);
293 let mut on_counterparty_tx_csv: u16 = 0;
294 read_tlv_fields!(r, {
295 (0, counterparty_delayed_payment_base_key, required),
296 (2, counterparty_htlc_base_key, required),
297 (4, on_counterparty_tx_csv, required),
299 CounterpartyCommitmentParameters {
300 counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
301 counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
302 on_counterparty_tx_csv,
305 Ok(counterparty_commitment_transaction)
309 /// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
310 /// transaction causing it.
312 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
314 struct OnchainEventEntry {
320 impl OnchainEventEntry {
321 fn confirmation_threshold(&self) -> u32 {
322 let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
324 OnchainEvent::MaturingOutput {
325 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
327 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
328 // it's broadcastable when we see the previous block.
329 conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
331 OnchainEvent::FundingSpendConfirmation { on_local_output_csv: Some(csv), .. } |
332 OnchainEvent::HTLCSpendConfirmation { on_to_local_output_csv: Some(csv), .. } => {
333 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
334 // it's broadcastable when we see the previous block.
335 conf_threshold = cmp::max(conf_threshold, self.height + csv as u32 - 1);
342 fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
343 best_block.height() >= self.confirmation_threshold()
347 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
348 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
351 /// An outbound HTLC failing after a transaction is confirmed. Used
352 /// * when an outbound HTLC output is spent by us after the HTLC timed out
353 /// * an outbound HTLC which was not present in the commitment transaction which appeared
354 /// on-chain (either because it was not fully committed to or it was dust).
355 /// Note that this is *not* used for preimage claims, as those are passed upstream immediately,
356 /// appearing only as an `HTLCSpendConfirmation`, below.
359 payment_hash: PaymentHash,
360 htlc_value_satoshis: Option<u64>,
361 /// None in the second case, above, ie when there is no relevant output in the commitment
362 /// transaction which appeared on chain.
363 commitment_tx_output_idx: Option<u32>,
366 descriptor: SpendableOutputDescriptor,
368 /// A spend of the funding output, either a commitment transaction or a cooperative closing
370 FundingSpendConfirmation {
371 /// The CSV delay for the output of the funding spend transaction (implying it is a local
372 /// commitment transaction, and this is the delay on the to_self output).
373 on_local_output_csv: Option<u16>,
375 /// A spend of a commitment transaction HTLC output, set in the cases where *no* `HTLCUpdate`
376 /// is constructed. This is used when
377 /// * an outbound HTLC is claimed by our counterparty with a preimage, causing us to
378 /// immediately claim the HTLC on the inbound edge and track the resolution here,
379 /// * an inbound HTLC is claimed by our counterparty (with a timeout),
380 /// * an inbound HTLC is claimed by us (with a preimage).
381 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by the revocation
383 HTLCSpendConfirmation {
384 commitment_tx_output_idx: u32,
385 /// If the claim was made by either party with a preimage, this is filled in
386 preimage: Option<PaymentPreimage>,
387 /// If the claim was made by us on an inbound HTLC against a local commitment transaction,
388 /// we set this to the output CSV value which we will have to wait until to spend the
389 /// output (and generate a SpendableOutput event).
390 on_to_local_output_csv: Option<u16>,
394 impl Writeable for OnchainEventEntry {
395 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
396 write_tlv_fields!(writer, {
397 (0, self.txid, required),
398 (2, self.height, required),
399 (4, self.event, required),
405 impl MaybeReadable for OnchainEventEntry {
406 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
407 let mut txid = Default::default();
409 let mut event = None;
410 read_tlv_fields!(reader, {
412 (2, height, required),
413 (4, event, ignorable),
415 if let Some(ev) = event {
416 Ok(Some(Self { txid, height, event: ev }))
423 impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
425 (0, source, required),
426 (1, htlc_value_satoshis, option),
427 (2, payment_hash, required),
428 (3, commitment_tx_output_idx, option),
430 (1, MaturingOutput) => {
431 (0, descriptor, required),
433 (3, FundingSpendConfirmation) => {
434 (0, on_local_output_csv, option),
436 (5, HTLCSpendConfirmation) => {
437 (0, commitment_tx_output_idx, required),
438 (2, preimage, option),
439 (4, on_to_local_output_csv, option),
444 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq))]
446 pub(crate) enum ChannelMonitorUpdateStep {
447 LatestHolderCommitmentTXInfo {
448 commitment_tx: HolderCommitmentTransaction,
449 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
451 LatestCounterpartyCommitmentTXInfo {
452 commitment_txid: Txid,
453 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
454 commitment_number: u64,
455 their_per_commitment_point: PublicKey,
458 payment_preimage: PaymentPreimage,
464 /// Used to indicate that the no future updates will occur, and likely that the latest holder
465 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
467 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
468 /// think we've fallen behind!
469 should_broadcast: bool,
472 scriptpubkey: Script,
476 impl ChannelMonitorUpdateStep {
477 fn variant_name(&self) -> &'static str {
479 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { .. } => "LatestHolderCommitmentTXInfo",
480 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } => "LatestCounterpartyCommitmentTXInfo",
481 ChannelMonitorUpdateStep::PaymentPreimage { .. } => "PaymentPreimage",
482 ChannelMonitorUpdateStep::CommitmentSecret { .. } => "CommitmentSecret",
483 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => "ChannelForceClosed",
484 ChannelMonitorUpdateStep::ShutdownScript { .. } => "ShutdownScript",
489 impl_writeable_tlv_based_enum_upgradable!(ChannelMonitorUpdateStep,
490 (0, LatestHolderCommitmentTXInfo) => {
491 (0, commitment_tx, required),
492 (2, htlc_outputs, vec_type),
494 (1, LatestCounterpartyCommitmentTXInfo) => {
495 (0, commitment_txid, required),
496 (2, commitment_number, required),
497 (4, their_per_commitment_point, required),
498 (6, htlc_outputs, vec_type),
500 (2, PaymentPreimage) => {
501 (0, payment_preimage, required),
503 (3, CommitmentSecret) => {
505 (2, secret, required),
507 (4, ChannelForceClosed) => {
508 (0, should_broadcast, required),
510 (5, ShutdownScript) => {
511 (0, scriptpubkey, required),
515 /// Details about the balance(s) available for spending once the channel appears on chain.
517 /// See [`ChannelMonitor::get_claimable_balances`] for more details on when these will or will not
519 #[derive(Clone, Debug, PartialEq, Eq)]
520 #[cfg_attr(test, derive(PartialOrd, Ord))]
522 /// The channel is not yet closed (or the commitment or closing transaction has not yet
523 /// appeared in a block). The given balance is claimable (less on-chain fees) if the channel is
524 /// force-closed now.
525 ClaimableOnChannelClose {
526 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
527 /// required to do so.
528 claimable_amount_satoshis: u64,
530 /// The channel has been closed, and the given balance is ours but awaiting confirmations until
531 /// we consider it spendable.
532 ClaimableAwaitingConfirmations {
533 /// The amount available to claim, in satoshis, possibly excluding the on-chain fees which
534 /// were spent in broadcasting the transaction.
535 claimable_amount_satoshis: u64,
536 /// The height at which an [`Event::SpendableOutputs`] event will be generated for this
538 confirmation_height: u32,
540 /// The channel has been closed, and the given balance should be ours but awaiting spending
541 /// transaction confirmation. If the spending transaction does not confirm in time, it is
542 /// possible our counterparty can take the funds by broadcasting an HTLC timeout on-chain.
544 /// Once the spending transaction confirms, before it has reached enough confirmations to be
545 /// considered safe from chain reorganizations, the balance will instead be provided via
546 /// [`Balance::ClaimableAwaitingConfirmations`].
547 ContentiousClaimable {
548 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
549 /// required to do so.
550 claimable_amount_satoshis: u64,
551 /// The height at which the counterparty may be able to claim the balance if we have not
555 /// HTLCs which we sent to our counterparty which are claimable after a timeout (less on-chain
556 /// fees) if the counterparty does not know the preimage for the HTLCs. These are somewhat
557 /// likely to be claimed by our counterparty before we do.
558 MaybeClaimableHTLCAwaitingTimeout {
559 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
560 /// required to do so.
561 claimable_amount_satoshis: u64,
562 /// The height at which we will be able to claim the balance if our counterparty has not
564 claimable_height: u32,
568 /// An HTLC which has been irrevocably resolved on-chain, and has reached ANTI_REORG_DELAY.
570 struct IrrevocablyResolvedHTLC {
571 commitment_tx_output_idx: u32,
572 /// Only set if the HTLC claim was ours using a payment preimage
573 payment_preimage: Option<PaymentPreimage>,
576 impl_writeable_tlv_based!(IrrevocablyResolvedHTLC, {
577 (0, commitment_tx_output_idx, required),
578 (2, payment_preimage, option),
581 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
582 /// on-chain transactions to ensure no loss of funds occurs.
584 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
585 /// information and are actively monitoring the chain.
587 /// Pending Events or updated HTLCs which have not yet been read out by
588 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
589 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
590 /// gotten are fully handled before re-serializing the new state.
592 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
593 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
594 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
595 /// returned block hash and the the current chain and then reconnecting blocks to get to the
596 /// best chain) upon deserializing the object!
597 pub struct ChannelMonitor<Signer: Sign> {
599 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
601 inner: Mutex<ChannelMonitorImpl<Signer>>,
604 pub(crate) struct ChannelMonitorImpl<Signer: Sign> {
605 latest_update_id: u64,
606 commitment_transaction_number_obscure_factor: u64,
608 destination_script: Script,
609 broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
610 counterparty_payment_script: Script,
611 shutdown_script: Option<Script>,
613 channel_keys_id: [u8; 32],
614 holder_revocation_basepoint: PublicKey,
615 funding_info: (OutPoint, Script),
616 current_counterparty_commitment_txid: Option<Txid>,
617 prev_counterparty_commitment_txid: Option<Txid>,
619 counterparty_commitment_params: CounterpartyCommitmentParameters,
620 funding_redeemscript: Script,
621 channel_value_satoshis: u64,
622 // first is the idx of the first of the two per-commitment points
623 their_cur_per_commitment_points: Option<(u64, PublicKey, Option<PublicKey>)>,
625 on_holder_tx_csv: u16,
627 commitment_secrets: CounterpartyCommitmentSecrets,
628 /// The set of outpoints in each counterparty commitment transaction. We always need at least
629 /// the payment hash from `HTLCOutputInCommitment` to claim even a revoked commitment
630 /// transaction broadcast as we need to be able to construct the witness script in all cases.
631 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
632 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
633 /// Nor can we figure out their commitment numbers without the commitment transaction they are
634 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
635 /// commitment transactions which we find on-chain, mapping them to the commitment number which
636 /// can be used to derive the revocation key and claim the transactions.
637 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
638 /// Cache used to make pruning of payment_preimages faster.
639 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
640 /// counterparty transactions (ie should remain pretty small).
641 /// Serialized to disk but should generally not be sent to Watchtowers.
642 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
644 // We store two holder commitment transactions to avoid any race conditions where we may update
645 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
646 // various monitors for one channel being out of sync, and us broadcasting a holder
647 // transaction for which we have deleted claim information on some watchtowers.
648 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
649 current_holder_commitment_tx: HolderSignedTx,
651 // Used just for ChannelManager to make sure it has the latest channel data during
653 current_counterparty_commitment_number: u64,
654 // Used just for ChannelManager to make sure it has the latest channel data during
656 current_holder_commitment_number: u64,
658 /// The set of payment hashes from inbound payments for which we know the preimage. Payment
659 /// preimages that are not included in any unrevoked local commitment transaction or unrevoked
660 /// remote commitment transactions are automatically removed when commitment transactions are
662 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
664 // Note that `MonitorEvent`s MUST NOT be generated during update processing, only generated
665 // during chain data processing. This prevents a race in `ChainMonitor::update_channel` (and
666 // presumably user implementations thereof as well) where we update the in-memory channel
667 // object, then before the persistence finishes (as it's all under a read-lock), we return
668 // pending events to the user or to the relevant `ChannelManager`. Then, on reload, we'll have
669 // the pre-event state here, but have processed the event in the `ChannelManager`.
670 // Note that because the `event_lock` in `ChainMonitor` is only taken in
671 // block/transaction-connected events and *not* during block/transaction-disconnected events,
672 // we further MUST NOT generate events during block/transaction-disconnection.
673 pending_monitor_events: Vec<MonitorEvent>,
675 pending_events: Vec<Event>,
677 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
678 // which to take actions once they reach enough confirmations. Each entry includes the
679 // transaction's id and the height when the transaction was confirmed on chain.
680 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
682 // If we get serialized out and re-read, we need to make sure that the chain monitoring
683 // interface knows about the TXOs that we want to be notified of spends of. We could probably
684 // be smart and derive them from the above storage fields, but its much simpler and more
685 // Obviously Correct (tm) if we just keep track of them explicitly.
686 outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
689 pub onchain_tx_handler: OnchainTxHandler<Signer>,
691 onchain_tx_handler: OnchainTxHandler<Signer>,
693 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
694 // channel has been force-closed. After this is set, no further holder commitment transaction
695 // updates may occur, and we panic!() if one is provided.
696 lockdown_from_offchain: bool,
698 // Set once we've signed a holder commitment transaction and handed it over to our
699 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
700 // may occur, and we fail any such monitor updates.
702 // In case of update rejection due to a locally already signed commitment transaction, we
703 // nevertheless store update content to track in case of concurrent broadcast by another
704 // remote monitor out-of-order with regards to the block view.
705 holder_tx_signed: bool,
707 // If a spend of the funding output is seen, we set this to true and reject any further
708 // updates. This prevents any further changes in the offchain state no matter the order
709 // of block connection between ChannelMonitors and the ChannelManager.
710 funding_spend_seen: bool,
712 funding_spend_confirmed: Option<Txid>,
713 /// The set of HTLCs which have been either claimed or failed on chain and have reached
714 /// the requisite confirmations on the claim/fail transaction (either ANTI_REORG_DELAY or the
715 /// spending CSV for revocable outputs).
716 htlcs_resolved_on_chain: Vec<IrrevocablyResolvedHTLC>,
718 // We simply modify best_block in Channel's block_connected so that serialization is
719 // consistent but hopefully the users' copy handles block_connected in a consistent way.
720 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
721 // their best_block from its state and not based on updated copies that didn't run through
722 // the full block_connected).
723 best_block: BestBlock,
725 /// The node_id of our counterparty
726 counterparty_node_id: Option<PublicKey>,
728 secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
731 /// Transaction outputs to watch for on-chain spends.
732 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
734 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
735 /// Used only in testing and fuzzing to check serialization roundtrips don't change the underlying
737 impl<Signer: Sign> PartialEq for ChannelMonitor<Signer> {
738 fn eq(&self, other: &Self) -> bool {
739 let inner = self.inner.lock().unwrap();
740 let other = other.inner.lock().unwrap();
745 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
746 /// Used only in testing and fuzzing to check serialization roundtrips don't change the underlying
748 impl<Signer: Sign> PartialEq for ChannelMonitorImpl<Signer> {
749 fn eq(&self, other: &Self) -> bool {
750 if self.latest_update_id != other.latest_update_id ||
751 self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
752 self.destination_script != other.destination_script ||
753 self.broadcasted_holder_revokable_script != other.broadcasted_holder_revokable_script ||
754 self.counterparty_payment_script != other.counterparty_payment_script ||
755 self.channel_keys_id != other.channel_keys_id ||
756 self.holder_revocation_basepoint != other.holder_revocation_basepoint ||
757 self.funding_info != other.funding_info ||
758 self.current_counterparty_commitment_txid != other.current_counterparty_commitment_txid ||
759 self.prev_counterparty_commitment_txid != other.prev_counterparty_commitment_txid ||
760 self.counterparty_commitment_params != other.counterparty_commitment_params ||
761 self.funding_redeemscript != other.funding_redeemscript ||
762 self.channel_value_satoshis != other.channel_value_satoshis ||
763 self.their_cur_per_commitment_points != other.their_cur_per_commitment_points ||
764 self.on_holder_tx_csv != other.on_holder_tx_csv ||
765 self.commitment_secrets != other.commitment_secrets ||
766 self.counterparty_claimable_outpoints != other.counterparty_claimable_outpoints ||
767 self.counterparty_commitment_txn_on_chain != other.counterparty_commitment_txn_on_chain ||
768 self.counterparty_hash_commitment_number != other.counterparty_hash_commitment_number ||
769 self.prev_holder_signed_commitment_tx != other.prev_holder_signed_commitment_tx ||
770 self.current_counterparty_commitment_number != other.current_counterparty_commitment_number ||
771 self.current_holder_commitment_number != other.current_holder_commitment_number ||
772 self.current_holder_commitment_tx != other.current_holder_commitment_tx ||
773 self.payment_preimages != other.payment_preimages ||
774 self.pending_monitor_events != other.pending_monitor_events ||
775 self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly
776 self.onchain_events_awaiting_threshold_conf != other.onchain_events_awaiting_threshold_conf ||
777 self.outputs_to_watch != other.outputs_to_watch ||
778 self.lockdown_from_offchain != other.lockdown_from_offchain ||
779 self.holder_tx_signed != other.holder_tx_signed ||
780 self.funding_spend_seen != other.funding_spend_seen ||
781 self.funding_spend_confirmed != other.funding_spend_confirmed ||
782 self.htlcs_resolved_on_chain != other.htlcs_resolved_on_chain
791 impl<Signer: Sign> Writeable for ChannelMonitor<Signer> {
792 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
793 self.inner.lock().unwrap().write(writer)
797 // These are also used for ChannelMonitorUpdate, above.
798 const SERIALIZATION_VERSION: u8 = 1;
799 const MIN_SERIALIZATION_VERSION: u8 = 1;
801 impl<Signer: Sign> Writeable for ChannelMonitorImpl<Signer> {
802 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
803 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
805 self.latest_update_id.write(writer)?;
807 // Set in initial Channel-object creation, so should always be set by now:
808 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
810 self.destination_script.write(writer)?;
811 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
812 writer.write_all(&[0; 1])?;
813 broadcasted_holder_revokable_script.0.write(writer)?;
814 broadcasted_holder_revokable_script.1.write(writer)?;
815 broadcasted_holder_revokable_script.2.write(writer)?;
817 writer.write_all(&[1; 1])?;
820 self.counterparty_payment_script.write(writer)?;
821 match &self.shutdown_script {
822 Some(script) => script.write(writer)?,
823 None => Script::new().write(writer)?,
826 self.channel_keys_id.write(writer)?;
827 self.holder_revocation_basepoint.write(writer)?;
828 writer.write_all(&self.funding_info.0.txid[..])?;
829 writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?;
830 self.funding_info.1.write(writer)?;
831 self.current_counterparty_commitment_txid.write(writer)?;
832 self.prev_counterparty_commitment_txid.write(writer)?;
834 self.counterparty_commitment_params.write(writer)?;
835 self.funding_redeemscript.write(writer)?;
836 self.channel_value_satoshis.write(writer)?;
838 match self.their_cur_per_commitment_points {
839 Some((idx, pubkey, second_option)) => {
840 writer.write_all(&byte_utils::be48_to_array(idx))?;
841 writer.write_all(&pubkey.serialize())?;
842 match second_option {
843 Some(second_pubkey) => {
844 writer.write_all(&second_pubkey.serialize())?;
847 writer.write_all(&[0; 33])?;
852 writer.write_all(&byte_utils::be48_to_array(0))?;
856 writer.write_all(&byte_utils::be16_to_array(self.on_holder_tx_csv))?;
858 self.commitment_secrets.write(writer)?;
860 macro_rules! serialize_htlc_in_commitment {
861 ($htlc_output: expr) => {
862 writer.write_all(&[$htlc_output.offered as u8; 1])?;
863 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
864 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
865 writer.write_all(&$htlc_output.payment_hash.0[..])?;
866 $htlc_output.transaction_output_index.write(writer)?;
870 writer.write_all(&byte_utils::be64_to_array(self.counterparty_claimable_outpoints.len() as u64))?;
871 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
872 writer.write_all(&txid[..])?;
873 writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
874 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
875 debug_assert!(htlc_source.is_none() || Some(**txid) == self.current_counterparty_commitment_txid
876 || Some(**txid) == self.prev_counterparty_commitment_txid,
877 "HTLC Sources for all revoked commitment transactions should be none!");
878 serialize_htlc_in_commitment!(htlc_output);
879 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
883 writer.write_all(&byte_utils::be64_to_array(self.counterparty_commitment_txn_on_chain.len() as u64))?;
884 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
885 writer.write_all(&txid[..])?;
886 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
889 writer.write_all(&byte_utils::be64_to_array(self.counterparty_hash_commitment_number.len() as u64))?;
890 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
891 writer.write_all(&payment_hash.0[..])?;
892 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
895 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
896 writer.write_all(&[1; 1])?;
897 prev_holder_tx.write(writer)?;
899 writer.write_all(&[0; 1])?;
902 self.current_holder_commitment_tx.write(writer)?;
904 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
905 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
907 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
908 for payment_preimage in self.payment_preimages.values() {
909 writer.write_all(&payment_preimage.0[..])?;
912 writer.write_all(&(self.pending_monitor_events.iter().filter(|ev| match ev {
913 MonitorEvent::HTLCEvent(_) => true,
914 MonitorEvent::CommitmentTxConfirmed(_) => true,
916 }).count() as u64).to_be_bytes())?;
917 for event in self.pending_monitor_events.iter() {
919 MonitorEvent::HTLCEvent(upd) => {
923 MonitorEvent::CommitmentTxConfirmed(_) => 1u8.write(writer)?,
924 _ => {}, // Covered in the TLV writes below
928 writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?;
929 for event in self.pending_events.iter() {
930 event.write(writer)?;
933 self.best_block.block_hash().write(writer)?;
934 writer.write_all(&byte_utils::be32_to_array(self.best_block.height()))?;
936 writer.write_all(&byte_utils::be64_to_array(self.onchain_events_awaiting_threshold_conf.len() as u64))?;
937 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
938 entry.write(writer)?;
941 (self.outputs_to_watch.len() as u64).write(writer)?;
942 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
944 (idx_scripts.len() as u64).write(writer)?;
945 for (idx, script) in idx_scripts.iter() {
947 script.write(writer)?;
950 self.onchain_tx_handler.write(writer)?;
952 self.lockdown_from_offchain.write(writer)?;
953 self.holder_tx_signed.write(writer)?;
955 write_tlv_fields!(writer, {
956 (1, self.funding_spend_confirmed, option),
957 (3, self.htlcs_resolved_on_chain, vec_type),
958 (5, self.pending_monitor_events, vec_type),
959 (7, self.funding_spend_seen, required),
960 (9, self.counterparty_node_id, option),
967 impl<Signer: Sign> ChannelMonitor<Signer> {
968 /// For lockorder enforcement purposes, we need to have a single site which constructs the
969 /// `inner` mutex, otherwise cases where we lock two monitors at the same time (eg in our
970 /// PartialEq implementation) we may decide a lockorder violation has occurred.
971 fn from_impl(imp: ChannelMonitorImpl<Signer>) -> Self {
972 ChannelMonitor { inner: Mutex::new(imp) }
975 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_script: Option<Script>,
976 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
977 channel_parameters: &ChannelTransactionParameters,
978 funding_redeemscript: Script, channel_value_satoshis: u64,
979 commitment_transaction_number_obscure_factor: u64,
980 initial_holder_commitment_tx: HolderCommitmentTransaction,
981 best_block: BestBlock, counterparty_node_id: PublicKey) -> ChannelMonitor<Signer> {
983 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
984 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
985 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
987 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
988 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
989 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
990 let counterparty_commitment_params = CounterpartyCommitmentParameters { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv };
992 let channel_keys_id = keys.channel_keys_id();
993 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
995 // block for Rust 1.34 compat
996 let (holder_commitment_tx, current_holder_commitment_number) = {
997 let trusted_tx = initial_holder_commitment_tx.trust();
998 let txid = trusted_tx.txid();
1000 let tx_keys = trusted_tx.keys();
1001 let holder_commitment_tx = HolderSignedTx {
1003 revocation_key: tx_keys.revocation_key,
1004 a_htlc_key: tx_keys.broadcaster_htlc_key,
1005 b_htlc_key: tx_keys.countersignatory_htlc_key,
1006 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1007 per_commitment_point: tx_keys.per_commitment_point,
1008 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1009 to_self_value_sat: initial_holder_commitment_tx.to_broadcaster_value_sat(),
1010 feerate_per_kw: trusted_tx.feerate_per_kw(),
1012 (holder_commitment_tx, trusted_tx.commitment_number())
1015 let onchain_tx_handler =
1016 OnchainTxHandler::new(destination_script.clone(), keys,
1017 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx.clone());
1019 let mut outputs_to_watch = HashMap::new();
1020 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1022 Self::from_impl(ChannelMonitorImpl {
1023 latest_update_id: 0,
1024 commitment_transaction_number_obscure_factor,
1026 destination_script: destination_script.clone(),
1027 broadcasted_holder_revokable_script: None,
1028 counterparty_payment_script,
1032 holder_revocation_basepoint,
1034 current_counterparty_commitment_txid: None,
1035 prev_counterparty_commitment_txid: None,
1037 counterparty_commitment_params,
1038 funding_redeemscript,
1039 channel_value_satoshis,
1040 their_cur_per_commitment_points: None,
1042 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1044 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1045 counterparty_claimable_outpoints: HashMap::new(),
1046 counterparty_commitment_txn_on_chain: HashMap::new(),
1047 counterparty_hash_commitment_number: HashMap::new(),
1049 prev_holder_signed_commitment_tx: None,
1050 current_holder_commitment_tx: holder_commitment_tx,
1051 current_counterparty_commitment_number: 1 << 48,
1052 current_holder_commitment_number,
1054 payment_preimages: HashMap::new(),
1055 pending_monitor_events: Vec::new(),
1056 pending_events: Vec::new(),
1058 onchain_events_awaiting_threshold_conf: Vec::new(),
1063 lockdown_from_offchain: false,
1064 holder_tx_signed: false,
1065 funding_spend_seen: false,
1066 funding_spend_confirmed: None,
1067 htlcs_resolved_on_chain: Vec::new(),
1070 counterparty_node_id: Some(counterparty_node_id),
1077 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1078 self.inner.lock().unwrap().provide_secret(idx, secret)
1081 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1082 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1083 /// possibly future revocation/preimage information) to claim outputs where possible.
1084 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1085 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
1088 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1089 commitment_number: u64,
1090 their_per_commitment_point: PublicKey,
1092 ) where L::Target: Logger {
1093 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1094 txid, htlc_outputs, commitment_number, their_per_commitment_point, logger)
1098 fn provide_latest_holder_commitment_tx(
1099 &self, holder_commitment_tx: HolderCommitmentTransaction,
1100 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1101 ) -> Result<(), ()> {
1102 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(holder_commitment_tx, htlc_outputs).map_err(|_| ())
1105 /// This is used to provide payment preimage(s) out-of-band during startup without updating the
1106 /// off-chain state with a new commitment transaction.
1107 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1109 payment_hash: &PaymentHash,
1110 payment_preimage: &PaymentPreimage,
1112 fee_estimator: &LowerBoundedFeeEstimator<F>,
1115 B::Target: BroadcasterInterface,
1116 F::Target: FeeEstimator,
1119 self.inner.lock().unwrap().provide_payment_preimage(
1120 payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1123 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1128 B::Target: BroadcasterInterface,
1131 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger)
1134 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1137 /// panics if the given update is not the next update by update_id.
1138 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1140 updates: &ChannelMonitorUpdate,
1146 B::Target: BroadcasterInterface,
1147 F::Target: FeeEstimator,
1150 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1153 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1155 pub fn get_latest_update_id(&self) -> u64 {
1156 self.inner.lock().unwrap().get_latest_update_id()
1159 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1160 pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1161 self.inner.lock().unwrap().get_funding_txo().clone()
1164 /// Gets a list of txids, with their output scripts (in the order they appear in the
1165 /// transaction), which we must learn about spends of via block_connected().
1166 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1167 self.inner.lock().unwrap().get_outputs_to_watch()
1168 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1171 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1172 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1173 /// have been registered.
1174 pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1175 let lock = self.inner.lock().unwrap();
1176 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1177 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1178 for (index, script_pubkey) in outputs.iter() {
1179 assert!(*index <= u16::max_value() as u32);
1180 filter.register_output(WatchedOutput {
1182 outpoint: OutPoint { txid: *txid, index: *index as u16 },
1183 script_pubkey: script_pubkey.clone(),
1189 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1190 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1191 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1192 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1195 /// Gets the list of pending events which were generated by previous actions, clearing the list
1198 /// This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to
1199 /// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
1200 /// no internal locking in ChannelMonitors.
1201 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1202 self.inner.lock().unwrap().get_and_clear_pending_events()
1205 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1206 self.inner.lock().unwrap().get_min_seen_secret()
1209 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1210 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1213 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1214 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1217 /// Gets the `node_id` of the counterparty for this channel.
1219 /// Will be `None` for channels constructed on LDK versions prior to 0.0.110 and always `Some`
1221 pub fn get_counterparty_node_id(&self) -> Option<PublicKey> {
1222 self.inner.lock().unwrap().counterparty_node_id
1225 /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1226 /// the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of
1227 /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows
1228 /// a higher revocation secret than the holder commitment number we are aware of. Broadcasting these
1229 /// transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to
1230 /// broadcast them if counterparty don't close channel with his higher commitment transaction after a
1231 /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
1232 /// out-of-band the other node operator to coordinate with him if option is available to you.
1233 /// In any-case, choice is up to the user.
1234 pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1235 where L::Target: Logger {
1236 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1239 /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1240 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1241 /// revoked commitment transaction.
1242 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1243 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1244 where L::Target: Logger {
1245 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1248 /// Processes transactions in a newly connected block, which may result in any of the following:
1249 /// - update the monitor's state against resolved HTLCs
1250 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1251 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1252 /// - detect settled outputs for later spending
1253 /// - schedule and bump any in-flight claims
1255 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1256 /// [`get_outputs_to_watch`].
1258 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1259 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1261 header: &BlockHeader,
1262 txdata: &TransactionData,
1267 ) -> Vec<TransactionOutputs>
1269 B::Target: BroadcasterInterface,
1270 F::Target: FeeEstimator,
1273 self.inner.lock().unwrap().block_connected(
1274 header, txdata, height, broadcaster, fee_estimator, logger)
1277 /// Determines if the disconnected block contained any transactions of interest and updates
1279 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1281 header: &BlockHeader,
1287 B::Target: BroadcasterInterface,
1288 F::Target: FeeEstimator,
1291 self.inner.lock().unwrap().block_disconnected(
1292 header, height, broadcaster, fee_estimator, logger)
1295 /// Processes transactions confirmed in a block with the given header and height, returning new
1296 /// outputs to watch. See [`block_connected`] for details.
1298 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1299 /// blocks. See [`chain::Confirm`] for calling expectations.
1301 /// [`block_connected`]: Self::block_connected
1302 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1304 header: &BlockHeader,
1305 txdata: &TransactionData,
1310 ) -> Vec<TransactionOutputs>
1312 B::Target: BroadcasterInterface,
1313 F::Target: FeeEstimator,
1316 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1317 self.inner.lock().unwrap().transactions_confirmed(
1318 header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
1321 /// Processes a transaction that was reorganized out of the chain.
1323 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1324 /// than blocks. See [`chain::Confirm`] for calling expectations.
1326 /// [`block_disconnected`]: Self::block_disconnected
1327 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1334 B::Target: BroadcasterInterface,
1335 F::Target: FeeEstimator,
1338 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1339 self.inner.lock().unwrap().transaction_unconfirmed(
1340 txid, broadcaster, &bounded_fee_estimator, logger);
1343 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1344 /// [`block_connected`] for details.
1346 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1347 /// blocks. See [`chain::Confirm`] for calling expectations.
1349 /// [`block_connected`]: Self::block_connected
1350 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1352 header: &BlockHeader,
1357 ) -> Vec<TransactionOutputs>
1359 B::Target: BroadcasterInterface,
1360 F::Target: FeeEstimator,
1363 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1364 self.inner.lock().unwrap().best_block_updated(
1365 header, height, broadcaster, &bounded_fee_estimator, logger)
1368 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1369 pub fn get_relevant_txids(&self) -> Vec<Txid> {
1370 let inner = self.inner.lock().unwrap();
1371 let mut txids: Vec<Txid> = inner.onchain_events_awaiting_threshold_conf
1373 .map(|entry| entry.txid)
1374 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1376 txids.sort_unstable();
1381 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
1382 /// [`chain::Confirm`] interfaces.
1383 pub fn current_best_block(&self) -> BestBlock {
1384 self.inner.lock().unwrap().best_block.clone()
1387 /// Gets the balances in this channel which are either claimable by us if we were to
1388 /// force-close the channel now or which are claimable on-chain (possibly awaiting
1391 /// Any balances in the channel which are available on-chain (excluding on-chain fees) are
1392 /// included here until an [`Event::SpendableOutputs`] event has been generated for the
1393 /// balance, or until our counterparty has claimed the balance and accrued several
1394 /// confirmations on the claim transaction.
1396 /// Note that the balances available when you or your counterparty have broadcasted revoked
1397 /// state(s) may not be fully captured here.
1400 /// See [`Balance`] for additional details on the types of claimable balances which
1401 /// may be returned here and their meanings.
1402 pub fn get_claimable_balances(&self) -> Vec<Balance> {
1403 let mut res = Vec::new();
1404 let us = self.inner.lock().unwrap();
1406 let mut confirmed_txid = us.funding_spend_confirmed;
1407 let mut pending_commitment_tx_conf_thresh = None;
1408 let funding_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1409 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
1410 Some((event.txid, event.confirmation_threshold()))
1413 if let Some((txid, conf_thresh)) = funding_spend_pending {
1414 debug_assert!(us.funding_spend_confirmed.is_none(),
1415 "We have a pending funding spend awaiting anti-reorg confirmation, we can't have confirmed it already!");
1416 confirmed_txid = Some(txid);
1417 pending_commitment_tx_conf_thresh = Some(conf_thresh);
1420 macro_rules! walk_htlcs {
1421 ($holder_commitment: expr, $htlc_iter: expr) => {
1422 for htlc in $htlc_iter {
1423 if let Some(htlc_commitment_tx_output_idx) = htlc.transaction_output_index {
1424 if let Some(conf_thresh) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1425 if let OnchainEvent::MaturingOutput { descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) } = &event.event {
1426 if descriptor.outpoint.index as u32 == htlc_commitment_tx_output_idx { Some(event.confirmation_threshold()) } else { None }
1429 debug_assert!($holder_commitment);
1430 res.push(Balance::ClaimableAwaitingConfirmations {
1431 claimable_amount_satoshis: htlc.amount_msat / 1000,
1432 confirmation_height: conf_thresh,
1434 } else if us.htlcs_resolved_on_chain.iter().any(|v| v.commitment_tx_output_idx == htlc_commitment_tx_output_idx) {
1435 // Funding transaction spends should be fully confirmed by the time any
1436 // HTLC transactions are resolved, unless we're talking about a holder
1437 // commitment tx, whose resolution is delayed until the CSV timeout is
1438 // reached, even though HTLCs may be resolved after only
1439 // ANTI_REORG_DELAY confirmations.
1440 debug_assert!($holder_commitment || us.funding_spend_confirmed.is_some());
1441 } else if htlc.offered == $holder_commitment {
1442 // If the payment was outbound, check if there's an HTLCUpdate
1443 // indicating we have spent this HTLC with a timeout, claiming it back
1444 // and awaiting confirmations on it.
1445 let htlc_update_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1446 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
1447 if commitment_tx_output_idx == htlc_commitment_tx_output_idx {
1448 Some(event.confirmation_threshold()) } else { None }
1451 if let Some(conf_thresh) = htlc_update_pending {
1452 res.push(Balance::ClaimableAwaitingConfirmations {
1453 claimable_amount_satoshis: htlc.amount_msat / 1000,
1454 confirmation_height: conf_thresh,
1457 res.push(Balance::MaybeClaimableHTLCAwaitingTimeout {
1458 claimable_amount_satoshis: htlc.amount_msat / 1000,
1459 claimable_height: htlc.cltv_expiry,
1462 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
1463 // Otherwise (the payment was inbound), only expose it as claimable if
1464 // we know the preimage.
1465 // Note that if there is a pending claim, but it did not use the
1466 // preimage, we lost funds to our counterparty! We will then continue
1467 // to show it as ContentiousClaimable until ANTI_REORG_DELAY.
1468 let htlc_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1469 if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } = event.event {
1470 if commitment_tx_output_idx == htlc_commitment_tx_output_idx {
1471 Some((event.confirmation_threshold(), preimage.is_some()))
1475 if let Some((conf_thresh, true)) = htlc_spend_pending {
1476 res.push(Balance::ClaimableAwaitingConfirmations {
1477 claimable_amount_satoshis: htlc.amount_msat / 1000,
1478 confirmation_height: conf_thresh,
1481 res.push(Balance::ContentiousClaimable {
1482 claimable_amount_satoshis: htlc.amount_msat / 1000,
1483 timeout_height: htlc.cltv_expiry,
1492 if let Some(txid) = confirmed_txid {
1493 let mut found_commitment_tx = false;
1494 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1495 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().map(|(a, _)| a));
1496 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1497 if let Some(value) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1498 if let OnchainEvent::MaturingOutput {
1499 descriptor: SpendableOutputDescriptor::StaticPaymentOutput(descriptor)
1501 Some(descriptor.output.value)
1504 res.push(Balance::ClaimableAwaitingConfirmations {
1505 claimable_amount_satoshis: value,
1506 confirmation_height: conf_thresh,
1509 // If a counterparty commitment transaction is awaiting confirmation, we
1510 // should either have a StaticPaymentOutput MaturingOutput event awaiting
1511 // confirmation with the same height or have never met our dust amount.
1514 found_commitment_tx = true;
1515 } else if txid == us.current_holder_commitment_tx.txid {
1516 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, _)| a));
1517 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1518 res.push(Balance::ClaimableAwaitingConfirmations {
1519 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1520 confirmation_height: conf_thresh,
1523 found_commitment_tx = true;
1524 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1525 if txid == prev_commitment.txid {
1526 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().map(|(a, _, _)| a));
1527 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1528 res.push(Balance::ClaimableAwaitingConfirmations {
1529 claimable_amount_satoshis: prev_commitment.to_self_value_sat,
1530 confirmation_height: conf_thresh,
1533 found_commitment_tx = true;
1536 if !found_commitment_tx {
1537 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1538 // We blindly assume this is a cooperative close transaction here, and that
1539 // neither us nor our counterparty misbehaved. At worst we've under-estimated
1540 // the amount we can claim as we'll punish a misbehaving counterparty.
1541 res.push(Balance::ClaimableAwaitingConfirmations {
1542 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1543 confirmation_height: conf_thresh,
1547 // TODO: Add logic to provide claimable balances for counterparty broadcasting revoked
1550 let mut claimable_inbound_htlc_value_sat = 0;
1551 for (htlc, _, _) in us.current_holder_commitment_tx.htlc_outputs.iter() {
1552 if htlc.transaction_output_index.is_none() { continue; }
1554 res.push(Balance::MaybeClaimableHTLCAwaitingTimeout {
1555 claimable_amount_satoshis: htlc.amount_msat / 1000,
1556 claimable_height: htlc.cltv_expiry,
1558 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
1559 claimable_inbound_htlc_value_sat += htlc.amount_msat / 1000;
1562 res.push(Balance::ClaimableOnChannelClose {
1563 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat + claimable_inbound_htlc_value_sat,
1570 /// Gets the set of outbound HTLCs which are pending resolution in this channel.
1571 /// This is used to reconstruct pending outbound payments on restart in the ChannelManager.
1572 pub(crate) fn get_pending_outbound_htlcs(&self) -> HashMap<HTLCSource, HTLCOutputInCommitment> {
1573 let mut res = HashMap::new();
1574 let us = self.inner.lock().unwrap();
1576 macro_rules! walk_htlcs {
1577 ($holder_commitment: expr, $htlc_iter: expr) => {
1578 for (htlc, source) in $htlc_iter {
1579 if us.htlcs_resolved_on_chain.iter().any(|v| Some(v.commitment_tx_output_idx) == htlc.transaction_output_index) {
1580 // We should assert that funding_spend_confirmed is_some() here, but we
1581 // have some unit tests which violate HTLC transaction CSVs entirely and
1583 // TODO: Once tests all connect transactions at consensus-valid times, we
1584 // should assert here like we do in `get_claimable_balances`.
1585 } else if htlc.offered == $holder_commitment {
1586 // If the payment was outbound, check if there's an HTLCUpdate
1587 // indicating we have spent this HTLC with a timeout, claiming it back
1588 // and awaiting confirmations on it.
1589 let htlc_update_confd = us.onchain_events_awaiting_threshold_conf.iter().any(|event| {
1590 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
1591 // If the HTLC was timed out, we wait for ANTI_REORG_DELAY blocks
1592 // before considering it "no longer pending" - this matches when we
1593 // provide the ChannelManager an HTLC failure event.
1594 Some(commitment_tx_output_idx) == htlc.transaction_output_index &&
1595 us.best_block.height() >= event.height + ANTI_REORG_DELAY - 1
1596 } else if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, .. } = event.event {
1597 // If the HTLC was fulfilled with a preimage, we consider the HTLC
1598 // immediately non-pending, matching when we provide ChannelManager
1600 Some(commitment_tx_output_idx) == htlc.transaction_output_index
1603 if !htlc_update_confd {
1604 res.insert(source.clone(), htlc.clone());
1611 // We're only concerned with the confirmation count of HTLC transactions, and don't
1612 // actually care how many confirmations a commitment transaction may or may not have. Thus,
1613 // we look for either a FundingSpendConfirmation event or a funding_spend_confirmed.
1614 let confirmed_txid = us.funding_spend_confirmed.or_else(|| {
1615 us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1616 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
1621 if let Some(txid) = confirmed_txid {
1622 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1623 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().filter_map(|(a, b)| {
1624 if let &Some(ref source) = b {
1625 Some((a, &**source))
1628 } else if txid == us.current_holder_commitment_tx.txid {
1629 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().filter_map(|(a, _, c)| {
1630 if let Some(source) = c { Some((a, source)) } else { None }
1632 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1633 if txid == prev_commitment.txid {
1634 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().filter_map(|(a, _, c)| {
1635 if let Some(source) = c { Some((a, source)) } else { None }
1640 // If we have not seen a commitment transaction on-chain (ie the channel is not yet
1641 // closed), just examine the available counterparty commitment transactions. See docs
1642 // on `fail_unbroadcast_htlcs`, below, for justification.
1643 macro_rules! walk_counterparty_commitment {
1645 if let Some(ref latest_outpoints) = us.counterparty_claimable_outpoints.get($txid) {
1646 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1647 if let &Some(ref source) = source_option {
1648 res.insert((**source).clone(), htlc.clone());
1654 if let Some(ref txid) = us.current_counterparty_commitment_txid {
1655 walk_counterparty_commitment!(txid);
1657 if let Some(ref txid) = us.prev_counterparty_commitment_txid {
1658 walk_counterparty_commitment!(txid);
1665 pub(crate) fn get_stored_preimages(&self) -> HashMap<PaymentHash, PaymentPreimage> {
1666 self.inner.lock().unwrap().payment_preimages.clone()
1670 /// Compares a broadcasted commitment transaction's HTLCs with those in the latest state,
1671 /// failing any HTLCs which didn't make it into the broadcasted commitment transaction back
1672 /// after ANTI_REORG_DELAY blocks.
1674 /// We always compare against the set of HTLCs in counterparty commitment transactions, as those
1675 /// are the commitment transactions which are generated by us. The off-chain state machine in
1676 /// `Channel` will automatically resolve any HTLCs which were never included in a commitment
1677 /// transaction when it detects channel closure, but it is up to us to ensure any HTLCs which were
1678 /// included in a remote commitment transaction are failed back if they are not present in the
1679 /// broadcasted commitment transaction.
1681 /// Specifically, the removal process for HTLCs in `Channel` is always based on the counterparty
1682 /// sending a `revoke_and_ack`, which causes us to clear `prev_counterparty_commitment_txid`. Thus,
1683 /// as long as we examine both the current counterparty commitment transaction and, if it hasn't
1684 /// been revoked yet, the previous one, we we will never "forget" to resolve an HTLC.
1685 macro_rules! fail_unbroadcast_htlcs {
1686 ($self: expr, $commitment_tx_type: expr, $commitment_txid_confirmed: expr,
1687 $commitment_tx_conf_height: expr, $confirmed_htlcs_list: expr, $logger: expr) => { {
1688 macro_rules! check_htlc_fails {
1689 ($txid: expr, $commitment_tx: expr) => {
1690 if let Some(ref latest_outpoints) = $self.counterparty_claimable_outpoints.get($txid) {
1691 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1692 if let &Some(ref source) = source_option {
1693 // Check if the HTLC is present in the commitment transaction that was
1694 // broadcast, but not if it was below the dust limit, which we should
1695 // fail backwards immediately as there is no way for us to learn the
1696 // payment_preimage.
1697 // Note that if the dust limit were allowed to change between
1698 // commitment transactions we'd want to be check whether *any*
1699 // broadcastable commitment transaction has the HTLC in it, but it
1700 // cannot currently change after channel initialization, so we don't
1702 let confirmed_htlcs_iter: &mut Iterator<Item = (&HTLCOutputInCommitment, Option<&HTLCSource>)> = &mut $confirmed_htlcs_list;
1704 let mut matched_htlc = false;
1705 for (ref broadcast_htlc, ref broadcast_source) in confirmed_htlcs_iter {
1706 if broadcast_htlc.transaction_output_index.is_some() &&
1707 (Some(&**source) == *broadcast_source ||
1708 (broadcast_source.is_none() &&
1709 broadcast_htlc.payment_hash == htlc.payment_hash &&
1710 broadcast_htlc.amount_msat == htlc.amount_msat)) {
1711 matched_htlc = true;
1715 if matched_htlc { continue; }
1716 $self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1717 if entry.height != $commitment_tx_conf_height { return true; }
1719 OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
1720 *update_source != **source
1725 let entry = OnchainEventEntry {
1726 txid: $commitment_txid_confirmed,
1727 height: $commitment_tx_conf_height,
1728 event: OnchainEvent::HTLCUpdate {
1729 source: (**source).clone(),
1730 payment_hash: htlc.payment_hash.clone(),
1731 htlc_value_satoshis: Some(htlc.amount_msat / 1000),
1732 commitment_tx_output_idx: None,
1735 log_trace!($logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of {} commitment transaction {}, waiting for confirmation (at height {})",
1736 log_bytes!(htlc.payment_hash.0), $commitment_tx, $commitment_tx_type,
1737 $commitment_txid_confirmed, entry.confirmation_threshold());
1738 $self.onchain_events_awaiting_threshold_conf.push(entry);
1744 if let Some(ref txid) = $self.current_counterparty_commitment_txid {
1745 check_htlc_fails!(txid, "current");
1747 if let Some(ref txid) = $self.prev_counterparty_commitment_txid {
1748 check_htlc_fails!(txid, "previous");
1753 // In the `test_invalid_funding_tx` test, we need a bogus script which matches the HTLC-Accepted
1754 // witness length match (ie is 136 bytes long). We generate one here which we also use in some
1755 // in-line tests later.
1758 pub fn deliberately_bogus_accepted_htlc_witness_program() -> Vec<u8> {
1759 let mut ret = [opcodes::all::OP_NOP.into_u8(); 136];
1760 ret[131] = opcodes::all::OP_DROP.into_u8();
1761 ret[132] = opcodes::all::OP_DROP.into_u8();
1762 ret[133] = opcodes::all::OP_DROP.into_u8();
1763 ret[134] = opcodes::all::OP_DROP.into_u8();
1764 ret[135] = opcodes::OP_TRUE.into_u8();
1769 pub fn deliberately_bogus_accepted_htlc_witness() -> Vec<Vec<u8>> {
1770 vec![Vec::new(), Vec::new(), Vec::new(), Vec::new(), deliberately_bogus_accepted_htlc_witness_program().into()].into()
1773 impl<Signer: Sign> ChannelMonitorImpl<Signer> {
1774 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
1775 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
1776 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
1777 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1778 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
1779 return Err("Previous secret did not match new one");
1782 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
1783 // events for now-revoked/fulfilled HTLCs.
1784 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
1785 for &mut (_, ref mut source) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
1790 if !self.payment_preimages.is_empty() {
1791 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
1792 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
1793 let min_idx = self.get_min_seen_secret();
1794 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
1796 self.payment_preimages.retain(|&k, _| {
1797 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
1798 if k == htlc.payment_hash {
1802 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
1803 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
1804 if k == htlc.payment_hash {
1809 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
1816 counterparty_hash_commitment_number.remove(&k);
1825 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_per_commitment_point: PublicKey, logger: &L) where L::Target: Logger {
1826 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
1827 // so that a remote monitor doesn't learn anything unless there is a malicious close.
1828 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
1830 for &(ref htlc, _) in &htlc_outputs {
1831 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
1834 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
1835 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
1836 self.current_counterparty_commitment_txid = Some(txid);
1837 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
1838 self.current_counterparty_commitment_number = commitment_number;
1839 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
1840 match self.their_cur_per_commitment_points {
1841 Some(old_points) => {
1842 if old_points.0 == commitment_number + 1 {
1843 self.their_cur_per_commitment_points = Some((old_points.0, old_points.1, Some(their_per_commitment_point)));
1844 } else if old_points.0 == commitment_number + 2 {
1845 if let Some(old_second_point) = old_points.2 {
1846 self.their_cur_per_commitment_points = Some((old_points.0 - 1, old_second_point, Some(their_per_commitment_point)));
1848 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
1851 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
1855 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
1858 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
1859 for htlc in htlc_outputs {
1860 if htlc.0.transaction_output_index.is_some() {
1866 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
1867 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
1868 /// is important that any clones of this channel monitor (including remote clones) by kept
1869 /// up-to-date as our holder commitment transaction is updated.
1870 /// Panics if set_on_holder_tx_csv has never been called.
1871 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>) -> Result<(), &'static str> {
1872 // block for Rust 1.34 compat
1873 let mut new_holder_commitment_tx = {
1874 let trusted_tx = holder_commitment_tx.trust();
1875 let txid = trusted_tx.txid();
1876 let tx_keys = trusted_tx.keys();
1877 self.current_holder_commitment_number = trusted_tx.commitment_number();
1880 revocation_key: tx_keys.revocation_key,
1881 a_htlc_key: tx_keys.broadcaster_htlc_key,
1882 b_htlc_key: tx_keys.countersignatory_htlc_key,
1883 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1884 per_commitment_point: tx_keys.per_commitment_point,
1886 to_self_value_sat: holder_commitment_tx.to_broadcaster_value_sat(),
1887 feerate_per_kw: trusted_tx.feerate_per_kw(),
1890 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
1891 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
1892 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
1893 if self.holder_tx_signed {
1894 return Err("Latest holder commitment signed has already been signed, update is rejected");
1899 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
1900 /// commitment_tx_infos which contain the payment hash have been revoked.
1901 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1902 &mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B,
1903 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L)
1904 where B::Target: BroadcasterInterface,
1905 F::Target: FeeEstimator,
1908 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
1910 // If the channel is force closed, try to claim the output from this preimage.
1911 // First check if a counterparty commitment transaction has been broadcasted:
1912 macro_rules! claim_htlcs {
1913 ($commitment_number: expr, $txid: expr) => {
1914 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs($commitment_number, $txid, None);
1915 self.onchain_tx_handler.update_claims_view(&Vec::new(), htlc_claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
1918 if let Some(txid) = self.current_counterparty_commitment_txid {
1919 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1920 claim_htlcs!(*commitment_number, txid);
1924 if let Some(txid) = self.prev_counterparty_commitment_txid {
1925 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1926 claim_htlcs!(*commitment_number, txid);
1931 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
1932 // claiming the HTLC output from each of the holder commitment transactions.
1933 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
1934 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
1935 // holder commitment transactions.
1936 if self.broadcasted_holder_revokable_script.is_some() {
1937 // Assume that the broadcasted commitment transaction confirmed in the current best
1938 // block. Even if not, its a reasonable metric for the bump criteria on the HTLC
1940 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
1941 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
1942 if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
1943 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx, self.best_block.height());
1944 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
1949 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
1950 where B::Target: BroadcasterInterface,
1953 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
1954 log_info!(logger, "Broadcasting local {}", log_tx!(tx));
1955 broadcaster.broadcast_transaction(tx);
1957 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
1960 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: F, logger: &L) -> Result<(), ()>
1961 where B::Target: BroadcasterInterface,
1962 F::Target: FeeEstimator,
1965 log_info!(logger, "Applying update to monitor {}, bringing update_id from {} to {} with {} changes.",
1966 log_funding_info!(self), self.latest_update_id, updates.update_id, updates.updates.len());
1967 // ChannelMonitor updates may be applied after force close if we receive a
1968 // preimage for a broadcasted commitment transaction HTLC output that we'd
1969 // like to claim on-chain. If this is the case, we no longer have guaranteed
1970 // access to the monitor's update ID, so we use a sentinel value instead.
1971 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
1972 assert_eq!(updates.updates.len(), 1);
1973 match updates.updates[0] {
1974 ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
1976 log_error!(logger, "Attempted to apply post-force-close ChannelMonitorUpdate of type {}", updates.updates[0].variant_name());
1977 panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage");
1980 } else if self.latest_update_id + 1 != updates.update_id {
1981 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
1983 let mut ret = Ok(());
1984 for update in updates.updates.iter() {
1986 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs } => {
1987 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
1988 if self.lockdown_from_offchain { panic!(); }
1989 if let Err(e) = self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone()) {
1990 log_error!(logger, "Providing latest holder commitment transaction failed/was refused:");
1991 log_error!(logger, " {}", e);
1995 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_per_commitment_point } => {
1996 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
1997 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_per_commitment_point, logger)
1999 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
2000 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
2001 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&*fee_estimator);
2002 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, &bounded_fee_estimator, logger)
2004 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
2005 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
2006 if let Err(e) = self.provide_secret(*idx, *secret) {
2007 log_error!(logger, "Providing latest counterparty commitment secret failed/was refused:");
2008 log_error!(logger, " {}", e);
2012 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
2013 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
2014 self.lockdown_from_offchain = true;
2015 if *should_broadcast {
2016 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
2017 } else if !self.holder_tx_signed {
2018 log_error!(logger, "You have a toxic holder commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_holder_commitment_txn to be informed of manual action to take");
2020 // If we generated a MonitorEvent::CommitmentTxConfirmed, the ChannelManager
2021 // will still give us a ChannelForceClosed event with !should_broadcast, but we
2022 // shouldn't print the scary warning above.
2023 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
2026 ChannelMonitorUpdateStep::ShutdownScript { scriptpubkey } => {
2027 log_trace!(logger, "Updating ChannelMonitor with shutdown script");
2028 if let Some(shutdown_script) = self.shutdown_script.replace(scriptpubkey.clone()) {
2029 panic!("Attempted to replace shutdown script {} with {}", shutdown_script, scriptpubkey);
2034 self.latest_update_id = updates.update_id;
2036 if ret.is_ok() && self.funding_spend_seen {
2037 log_error!(logger, "Refusing Channel Monitor Update as counterparty attempted to update commitment after funding was spent");
2042 pub fn get_latest_update_id(&self) -> u64 {
2043 self.latest_update_id
2046 pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
2050 pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
2051 // If we've detected a counterparty commitment tx on chain, we must include it in the set
2052 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
2053 // its trivial to do, double-check that here.
2054 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
2055 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
2057 &self.outputs_to_watch
2060 pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
2061 let mut ret = Vec::new();
2062 mem::swap(&mut ret, &mut self.pending_monitor_events);
2066 pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
2067 let mut ret = Vec::new();
2068 mem::swap(&mut ret, &mut self.pending_events);
2072 /// Can only fail if idx is < get_min_seen_secret
2073 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
2074 self.commitment_secrets.get_secret(idx)
2077 pub(crate) fn get_min_seen_secret(&self) -> u64 {
2078 self.commitment_secrets.get_min_seen_secret()
2081 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
2082 self.current_counterparty_commitment_number
2085 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
2086 self.current_holder_commitment_number
2089 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
2090 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
2091 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
2092 /// HTLC-Success/HTLC-Timeout transactions.
2093 /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
2094 /// revoked counterparty commitment tx
2095 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<PackageTemplate>, TransactionOutputs) where L::Target: Logger {
2096 // Most secp and related errors trying to create keys means we have no hope of constructing
2097 // a spend transaction...so we return no transactions to broadcast
2098 let mut claimable_outpoints = Vec::new();
2099 let mut watch_outputs = Vec::new();
2101 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
2102 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
2104 macro_rules! ignore_error {
2105 ( $thing : expr ) => {
2108 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs))
2113 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
2114 if commitment_number >= self.get_min_seen_secret() {
2115 let secret = self.get_secret(commitment_number).unwrap();
2116 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2117 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
2118 let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint));
2119 let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.counterparty_commitment_params.counterparty_delayed_payment_base_key));
2121 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
2122 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
2124 // First, process non-htlc outputs (to_holder & to_counterparty)
2125 for (idx, outp) in tx.output.iter().enumerate() {
2126 if outp.script_pubkey == revokeable_p2wsh {
2127 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_commitment_params.on_counterparty_tx_csv);
2128 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height);
2129 claimable_outpoints.push(justice_package);
2133 // Then, try to find revoked htlc outputs
2134 if let Some(ref per_commitment_data) = per_commitment_option {
2135 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
2136 if let Some(transaction_output_index) = htlc.transaction_output_index {
2137 if transaction_output_index as usize >= tx.output.len() ||
2138 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2139 return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
2141 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone(), self.onchain_tx_handler.channel_transaction_parameters.opt_anchors.is_some());
2142 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, true, height);
2143 claimable_outpoints.push(justice_package);
2148 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
2149 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
2150 // We're definitely a counterparty commitment transaction!
2151 log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
2152 for (idx, outp) in tx.output.iter().enumerate() {
2153 watch_outputs.push((idx as u32, outp.clone()));
2155 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2157 if let Some(per_commitment_data) = per_commitment_option {
2158 fail_unbroadcast_htlcs!(self, "revoked_counterparty", commitment_txid, height,
2159 per_commitment_data.iter().map(|(htlc, htlc_source)|
2160 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2163 debug_assert!(false, "We should have per-commitment option for any recognized old commitment txn");
2164 fail_unbroadcast_htlcs!(self, "revoked counterparty", commitment_txid, height,
2165 [].iter().map(|reference| *reference), logger);
2168 } else if let Some(per_commitment_data) = per_commitment_option {
2169 // While this isn't useful yet, there is a potential race where if a counterparty
2170 // revokes a state at the same time as the commitment transaction for that state is
2171 // confirmed, and the watchtower receives the block before the user, the user could
2172 // upload a new ChannelMonitor with the revocation secret but the watchtower has
2173 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
2174 // not being generated by the above conditional. Thus, to be safe, we go ahead and
2176 for (idx, outp) in tx.output.iter().enumerate() {
2177 watch_outputs.push((idx as u32, outp.clone()));
2179 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2181 log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
2182 fail_unbroadcast_htlcs!(self, "counterparty", commitment_txid, height,
2183 per_commitment_data.iter().map(|(htlc, htlc_source)|
2184 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2187 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs(commitment_number, commitment_txid, Some(tx));
2188 for req in htlc_claim_reqs {
2189 claimable_outpoints.push(req);
2193 (claimable_outpoints, (commitment_txid, watch_outputs))
2196 fn get_counterparty_htlc_output_claim_reqs(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>) -> Vec<PackageTemplate> {
2197 let mut claimable_outpoints = Vec::new();
2198 if let Some(htlc_outputs) = self.counterparty_claimable_outpoints.get(&commitment_txid) {
2199 if let Some(per_commitment_points) = self.their_cur_per_commitment_points {
2200 let per_commitment_point_option =
2201 // If the counterparty commitment tx is the latest valid state, use their latest
2202 // per-commitment point
2203 if per_commitment_points.0 == commitment_number { Some(&per_commitment_points.1) }
2204 else if let Some(point) = per_commitment_points.2.as_ref() {
2205 // If counterparty commitment tx is the state previous to the latest valid state, use
2206 // their previous per-commitment point (non-atomicity of revocation means it's valid for
2207 // them to temporarily have two valid commitment txns from our viewpoint)
2208 if per_commitment_points.0 == commitment_number + 1 { Some(point) } else { None }
2210 if let Some(per_commitment_point) = per_commitment_point_option {
2211 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
2212 if let Some(transaction_output_index) = htlc.transaction_output_index {
2213 if let Some(transaction) = tx {
2214 if transaction_output_index as usize >= transaction.output.len() ||
2215 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2216 return claimable_outpoints; // Corrupted per_commitment_data, fuck this user
2219 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
2220 if preimage.is_some() || !htlc.offered {
2221 let counterparty_htlc_outp = if htlc.offered {
2222 PackageSolvingData::CounterpartyOfferedHTLCOutput(
2223 CounterpartyOfferedHTLCOutput::build(*per_commitment_point,
2224 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2225 self.counterparty_commitment_params.counterparty_htlc_base_key,
2226 preimage.unwrap(), htlc.clone()))
2228 PackageSolvingData::CounterpartyReceivedHTLCOutput(
2229 CounterpartyReceivedHTLCOutput::build(*per_commitment_point,
2230 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2231 self.counterparty_commitment_params.counterparty_htlc_base_key,
2234 let aggregation = if !htlc.offered { false } else { true };
2235 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry,aggregation, 0);
2236 claimable_outpoints.push(counterparty_package);
2246 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
2247 fn check_spend_counterparty_htlc<L: Deref>(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
2248 let htlc_txid = tx.txid();
2249 if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 {
2250 return (Vec::new(), None)
2253 macro_rules! ignore_error {
2254 ( $thing : expr ) => {
2257 Err(_) => return (Vec::new(), None)
2262 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
2263 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2264 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
2266 log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, 0);
2267 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, tx.output[0].value, self.counterparty_commitment_params.on_counterparty_tx_csv);
2268 let justice_package = PackageTemplate::build_package(htlc_txid, 0, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height);
2269 let claimable_outpoints = vec!(justice_package);
2270 let outputs = vec![(0, tx.output[0].clone())];
2271 (claimable_outpoints, Some((htlc_txid, outputs)))
2274 // Returns (1) `PackageTemplate`s that can be given to the OnChainTxHandler, so that the handler can
2275 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
2276 // script so we can detect whether a holder transaction has been seen on-chain.
2277 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(Script, PublicKey, PublicKey)>) {
2278 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
2280 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
2281 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
2283 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2284 if let Some(transaction_output_index) = htlc.transaction_output_index {
2285 let htlc_output = if htlc.offered {
2286 HolderHTLCOutput::build_offered(htlc.amount_msat, htlc.cltv_expiry)
2288 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
2291 // We can't build an HTLC-Success transaction without the preimage
2294 HolderHTLCOutput::build_accepted(payment_preimage, htlc.amount_msat)
2296 let htlc_package = PackageTemplate::build_package(holder_tx.txid, transaction_output_index, PackageSolvingData::HolderHTLCOutput(htlc_output), htlc.cltv_expiry, false, conf_height);
2297 claim_requests.push(htlc_package);
2301 (claim_requests, broadcasted_holder_revokable_script)
2304 // Returns holder HTLC outputs to watch and react to in case of spending.
2305 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
2306 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
2307 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2308 if let Some(transaction_output_index) = htlc.transaction_output_index {
2309 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
2315 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
2316 /// revoked using data in holder_claimable_outpoints.
2317 /// Should not be used if check_spend_revoked_transaction succeeds.
2318 /// Returns None unless the transaction is definitely one of our commitment transactions.
2319 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> Option<(Vec<PackageTemplate>, TransactionOutputs)> where L::Target: Logger {
2320 let commitment_txid = tx.txid();
2321 let mut claim_requests = Vec::new();
2322 let mut watch_outputs = Vec::new();
2324 macro_rules! append_onchain_update {
2325 ($updates: expr, $to_watch: expr) => {
2326 claim_requests = $updates.0;
2327 self.broadcasted_holder_revokable_script = $updates.1;
2328 watch_outputs.append(&mut $to_watch);
2332 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
2333 let mut is_holder_tx = false;
2335 if self.current_holder_commitment_tx.txid == commitment_txid {
2336 is_holder_tx = true;
2337 log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2338 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
2339 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
2340 append_onchain_update!(res, to_watch);
2341 fail_unbroadcast_htlcs!(self, "latest holder", commitment_txid, height,
2342 self.current_holder_commitment_tx.htlc_outputs.iter()
2343 .map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())), logger);
2344 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
2345 if holder_tx.txid == commitment_txid {
2346 is_holder_tx = true;
2347 log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2348 let res = self.get_broadcasted_holder_claims(holder_tx, height);
2349 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
2350 append_onchain_update!(res, to_watch);
2351 fail_unbroadcast_htlcs!(self, "previous holder", commitment_txid, height,
2352 holder_tx.htlc_outputs.iter().map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())),
2358 Some((claim_requests, (commitment_txid, watch_outputs)))
2364 pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2365 log_debug!(logger, "Getting signed latest holder commitment transaction!");
2366 self.holder_tx_signed = true;
2367 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2368 let txid = commitment_tx.txid();
2369 let mut holder_transactions = vec![commitment_tx];
2370 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2371 if let Some(vout) = htlc.0.transaction_output_index {
2372 let preimage = if !htlc.0.offered {
2373 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2374 // We can't build an HTLC-Success transaction without the preimage
2377 } else if htlc.0.cltv_expiry > self.best_block.height() + 1 {
2378 // Don't broadcast HTLC-Timeout transactions immediately as they don't meet the
2379 // current locktime requirements on-chain. We will broadcast them in
2380 // `block_confirmed` when `should_broadcast_holder_commitment_txn` returns true.
2381 // Note that we add + 1 as transactions are broadcastable when they can be
2382 // confirmed in the next block.
2385 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
2386 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2387 holder_transactions.push(htlc_tx);
2391 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
2392 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
2396 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
2397 /// Note that this includes possibly-locktimed-in-the-future transactions!
2398 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2399 log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
2400 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
2401 let txid = commitment_tx.txid();
2402 let mut holder_transactions = vec![commitment_tx];
2403 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2404 if let Some(vout) = htlc.0.transaction_output_index {
2405 let preimage = if !htlc.0.offered {
2406 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2407 // We can't build an HTLC-Success transaction without the preimage
2411 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
2412 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2413 holder_transactions.push(htlc_tx);
2420 pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
2421 where B::Target: BroadcasterInterface,
2422 F::Target: FeeEstimator,
2425 let block_hash = header.block_hash();
2426 self.best_block = BestBlock::new(block_hash, height);
2428 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
2429 self.transactions_confirmed(header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
2432 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
2434 header: &BlockHeader,
2437 fee_estimator: &LowerBoundedFeeEstimator<F>,
2439 ) -> Vec<TransactionOutputs>
2441 B::Target: BroadcasterInterface,
2442 F::Target: FeeEstimator,
2445 let block_hash = header.block_hash();
2447 if height > self.best_block.height() {
2448 self.best_block = BestBlock::new(block_hash, height);
2449 self.block_confirmed(height, vec![], vec![], vec![], &broadcaster, &fee_estimator, &logger)
2450 } else if block_hash != self.best_block.block_hash() {
2451 self.best_block = BestBlock::new(block_hash, height);
2452 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
2453 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
2455 } else { Vec::new() }
2458 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
2460 header: &BlockHeader,
2461 txdata: &TransactionData,
2464 fee_estimator: &LowerBoundedFeeEstimator<F>,
2466 ) -> Vec<TransactionOutputs>
2468 B::Target: BroadcasterInterface,
2469 F::Target: FeeEstimator,
2472 let txn_matched = self.filter_block(txdata);
2473 for tx in &txn_matched {
2474 let mut output_val = 0;
2475 for out in tx.output.iter() {
2476 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2477 output_val += out.value;
2478 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2482 let block_hash = header.block_hash();
2484 let mut watch_outputs = Vec::new();
2485 let mut claimable_outpoints = Vec::new();
2486 for tx in &txn_matched {
2487 if tx.input.len() == 1 {
2488 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2489 // commitment transactions and HTLC transactions will all only ever have one input,
2490 // which is an easy way to filter out any potential non-matching txn for lazy
2492 let prevout = &tx.input[0].previous_output;
2493 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
2494 let mut balance_spendable_csv = None;
2495 log_info!(logger, "Channel {} closed by funding output spend in txid {}.",
2496 log_bytes!(self.funding_info.0.to_channel_id()), tx.txid());
2497 self.funding_spend_seen = true;
2498 if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
2499 let (mut new_outpoints, new_outputs) = self.check_spend_counterparty_transaction(&tx, height, &logger);
2500 if !new_outputs.1.is_empty() {
2501 watch_outputs.push(new_outputs);
2503 claimable_outpoints.append(&mut new_outpoints);
2504 if new_outpoints.is_empty() {
2505 if let Some((mut new_outpoints, new_outputs)) = self.check_spend_holder_transaction(&tx, height, &logger) {
2506 if !new_outputs.1.is_empty() {
2507 watch_outputs.push(new_outputs);
2509 claimable_outpoints.append(&mut new_outpoints);
2510 balance_spendable_csv = Some(self.on_holder_tx_csv);
2514 let txid = tx.txid();
2515 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
2518 event: OnchainEvent::FundingSpendConfirmation {
2519 on_local_output_csv: balance_spendable_csv,
2523 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&prevout.txid) {
2524 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(&tx, commitment_number, height, &logger);
2525 claimable_outpoints.append(&mut new_outpoints);
2526 if let Some(new_outputs) = new_outputs_option {
2527 watch_outputs.push(new_outputs);
2532 // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
2533 // can also be resolved in a few other ways which can have more than one output. Thus,
2534 // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
2535 self.is_resolving_htlc_output(&tx, height, &logger);
2537 self.is_paying_spendable_output(&tx, height, &logger);
2540 if height > self.best_block.height() {
2541 self.best_block = BestBlock::new(block_hash, height);
2544 self.block_confirmed(height, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, &logger)
2547 /// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
2548 /// `self.best_block` before calling if a new best blockchain tip is available. More
2549 /// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
2550 /// complexity especially in `OnchainTx::update_claims_view`.
2552 /// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
2553 /// confirmed at, even if it is not the current best height.
2554 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
2557 txn_matched: Vec<&Transaction>,
2558 mut watch_outputs: Vec<TransactionOutputs>,
2559 mut claimable_outpoints: Vec<PackageTemplate>,
2561 fee_estimator: &LowerBoundedFeeEstimator<F>,
2563 ) -> Vec<TransactionOutputs>
2565 B::Target: BroadcasterInterface,
2566 F::Target: FeeEstimator,
2569 log_trace!(logger, "Processing {} matched transactions for block at height {}.", txn_matched.len(), conf_height);
2570 debug_assert!(self.best_block.height() >= conf_height);
2572 let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
2573 if should_broadcast {
2574 let funding_outp = HolderFundingOutput::build(self.funding_redeemscript.clone());
2575 let commitment_package = PackageTemplate::build_package(self.funding_info.0.txid.clone(), self.funding_info.0.index as u32, PackageSolvingData::HolderFundingOutput(funding_outp), self.best_block.height(), false, self.best_block.height());
2576 claimable_outpoints.push(commitment_package);
2577 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
2578 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2579 self.holder_tx_signed = true;
2580 // Because we're broadcasting a commitment transaction, we should construct the package
2581 // assuming it gets confirmed in the next block. Sadly, we have code which considers
2582 // "not yet confirmed" things as discardable, so we cannot do that here.
2583 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
2584 let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
2585 if !new_outputs.is_empty() {
2586 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
2588 claimable_outpoints.append(&mut new_outpoints);
2591 // Find which on-chain events have reached their confirmation threshold.
2592 let onchain_events_awaiting_threshold_conf =
2593 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
2594 let mut onchain_events_reaching_threshold_conf = Vec::new();
2595 for entry in onchain_events_awaiting_threshold_conf {
2596 if entry.has_reached_confirmation_threshold(&self.best_block) {
2597 onchain_events_reaching_threshold_conf.push(entry);
2599 self.onchain_events_awaiting_threshold_conf.push(entry);
2603 // Used to check for duplicate HTLC resolutions.
2604 #[cfg(debug_assertions)]
2605 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
2607 .filter_map(|entry| match &entry.event {
2608 OnchainEvent::HTLCUpdate { source, .. } => Some(source),
2612 #[cfg(debug_assertions)]
2613 let mut matured_htlcs = Vec::new();
2615 // Produce actionable events from on-chain events having reached their threshold.
2616 for entry in onchain_events_reaching_threshold_conf.drain(..) {
2618 OnchainEvent::HTLCUpdate { ref source, payment_hash, htlc_value_satoshis, commitment_tx_output_idx } => {
2619 // Check for duplicate HTLC resolutions.
2620 #[cfg(debug_assertions)]
2623 unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
2624 "An unmature HTLC transaction conflicts with a maturing one; failed to \
2625 call either transaction_unconfirmed for the conflicting transaction \
2626 or block_disconnected for a block containing it.");
2628 matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
2629 "A matured HTLC transaction conflicts with a maturing one; failed to \
2630 call either transaction_unconfirmed for the conflicting transaction \
2631 or block_disconnected for a block containing it.");
2632 matured_htlcs.push(source.clone());
2635 log_debug!(logger, "HTLC {} failure update in {} has got enough confirmations to be passed upstream",
2636 log_bytes!(payment_hash.0), entry.txid);
2637 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2639 payment_preimage: None,
2640 source: source.clone(),
2641 htlc_value_satoshis,
2643 if let Some(idx) = commitment_tx_output_idx {
2644 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC { commitment_tx_output_idx: idx, payment_preimage: None });
2647 OnchainEvent::MaturingOutput { descriptor } => {
2648 log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
2649 self.pending_events.push(Event::SpendableOutputs {
2650 outputs: vec![descriptor]
2653 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } => {
2654 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC { commitment_tx_output_idx, payment_preimage: preimage });
2656 OnchainEvent::FundingSpendConfirmation { .. } => {
2657 self.funding_spend_confirmed = Some(entry.txid);
2662 self.onchain_tx_handler.update_claims_view(&txn_matched, claimable_outpoints, conf_height, self.best_block.height(), broadcaster, fee_estimator, logger);
2664 // Determine new outputs to watch by comparing against previously known outputs to watch,
2665 // updating the latter in the process.
2666 watch_outputs.retain(|&(ref txid, ref txouts)| {
2667 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
2668 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
2672 // If we see a transaction for which we registered outputs previously,
2673 // make sure the registered scriptpubkey at the expected index match
2674 // the actual transaction output one. We failed this case before #653.
2675 for tx in &txn_matched {
2676 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
2677 for idx_and_script in outputs.iter() {
2678 assert!((idx_and_script.0 as usize) < tx.output.len());
2679 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
2687 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
2688 where B::Target: BroadcasterInterface,
2689 F::Target: FeeEstimator,
2692 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
2695 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
2696 //- maturing spendable output has transaction paying us has been disconnected
2697 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
2699 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
2700 self.onchain_tx_handler.block_disconnected(height, broadcaster, &bounded_fee_estimator, logger);
2702 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
2705 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
2709 fee_estimator: &LowerBoundedFeeEstimator<F>,
2712 B::Target: BroadcasterInterface,
2713 F::Target: FeeEstimator,
2716 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| if entry.txid == *txid {
2717 log_info!(logger, "Removing onchain event with txid {}", txid);
2720 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
2723 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
2724 /// transactions thereof.
2725 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
2726 let mut matched_txn = HashSet::new();
2727 txdata.iter().filter(|&&(_, tx)| {
2728 let mut matches = self.spends_watched_output(tx);
2729 for input in tx.input.iter() {
2730 if matches { break; }
2731 if matched_txn.contains(&input.previous_output.txid) {
2736 matched_txn.insert(tx.txid());
2739 }).map(|(_, tx)| *tx).collect()
2742 /// Checks if a given transaction spends any watched outputs.
2743 fn spends_watched_output(&self, tx: &Transaction) -> bool {
2744 for input in tx.input.iter() {
2745 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
2746 for (idx, _script_pubkey) in outputs.iter() {
2747 if *idx == input.previous_output.vout {
2750 // If the expected script is a known type, check that the witness
2751 // appears to be spending the correct type (ie that the match would
2752 // actually succeed in BIP 158/159-style filters).
2753 if _script_pubkey.is_v0_p2wsh() {
2754 if input.witness.last().unwrap().to_vec() == deliberately_bogus_accepted_htlc_witness_program() {
2755 // In at least one test we use a deliberately bogus witness
2756 // script which hit an old panic. Thus, we check for that here
2757 // and avoid the assert if its the expected bogus script.
2761 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().to_vec()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
2762 } else if _script_pubkey.is_v0_p2wpkh() {
2763 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
2764 } else { panic!(); }
2775 fn should_broadcast_holder_commitment_txn<L: Deref>(&self, logger: &L) -> bool where L::Target: Logger {
2776 // We need to consider all HTLCs which are:
2777 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
2778 // transactions and we'd end up in a race, or
2779 // * are in our latest holder commitment transaction, as this is the thing we will
2780 // broadcast if we go on-chain.
2781 // Note that we consider HTLCs which were below dust threshold here - while they don't
2782 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
2783 // to the source, and if we don't fail the channel we will have to ensure that the next
2784 // updates that peer sends us are update_fails, failing the channel if not. It's probably
2785 // easier to just fail the channel as this case should be rare enough anyway.
2786 let height = self.best_block.height();
2787 macro_rules! scan_commitment {
2788 ($htlcs: expr, $holder_tx: expr) => {
2789 for ref htlc in $htlcs {
2790 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
2791 // chain with enough room to claim the HTLC without our counterparty being able to
2792 // time out the HTLC first.
2793 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
2794 // concern is being able to claim the corresponding inbound HTLC (on another
2795 // channel) before it expires. In fact, we don't even really care if our
2796 // counterparty here claims such an outbound HTLC after it expired as long as we
2797 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
2798 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
2799 // we give ourselves a few blocks of headroom after expiration before going
2800 // on-chain for an expired HTLC.
2801 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
2802 // from us until we've reached the point where we go on-chain with the
2803 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
2804 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
2805 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
2806 // inbound_cltv == height + CLTV_CLAIM_BUFFER
2807 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
2808 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
2809 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
2810 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
2811 // The final, above, condition is checked for statically in channelmanager
2812 // with CHECK_CLTV_EXPIRY_SANITY_2.
2813 let htlc_outbound = $holder_tx == htlc.offered;
2814 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
2815 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
2816 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
2823 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
2825 if let Some(ref txid) = self.current_counterparty_commitment_txid {
2826 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2827 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2830 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
2831 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2832 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2839 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
2840 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
2841 fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2842 'outer_loop: for input in &tx.input {
2843 let mut payment_data = None;
2844 let witness_items = input.witness.len();
2845 let htlctype = input.witness.last().map(|w| w.len()).and_then(HTLCType::scriptlen_to_htlctype);
2846 let prev_last_witness_len = input.witness.second_to_last().map(|w| w.len()).unwrap_or(0);
2847 let revocation_sig_claim = (witness_items == 3 && htlctype == Some(HTLCType::OfferedHTLC) && prev_last_witness_len == 33)
2848 || (witness_items == 3 && htlctype == Some(HTLCType::AcceptedHTLC) && prev_last_witness_len == 33);
2849 let accepted_preimage_claim = witness_items == 5 && htlctype == Some(HTLCType::AcceptedHTLC)
2850 && input.witness.second_to_last().unwrap().len() == 32;
2851 #[cfg(not(fuzzing))]
2852 let accepted_timeout_claim = witness_items == 3 && htlctype == Some(HTLCType::AcceptedHTLC) && !revocation_sig_claim;
2853 let offered_preimage_claim = witness_items == 3 && htlctype == Some(HTLCType::OfferedHTLC) &&
2854 !revocation_sig_claim && input.witness.second_to_last().unwrap().len() == 32;
2856 #[cfg(not(fuzzing))]
2857 let offered_timeout_claim = witness_items == 5 && htlctype == Some(HTLCType::OfferedHTLC);
2859 let mut payment_preimage = PaymentPreimage([0; 32]);
2860 if accepted_preimage_claim {
2861 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
2862 } else if offered_preimage_claim {
2863 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
2866 macro_rules! log_claim {
2867 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
2868 let outbound_htlc = $holder_tx == $htlc.offered;
2869 // HTLCs must either be claimed by a matching script type or through the
2871 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
2872 debug_assert!(!$htlc.offered || offered_preimage_claim || offered_timeout_claim || revocation_sig_claim);
2873 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
2874 debug_assert!($htlc.offered || accepted_preimage_claim || accepted_timeout_claim || revocation_sig_claim);
2875 // Further, only exactly one of the possible spend paths should have been
2876 // matched by any HTLC spend:
2877 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
2878 debug_assert_eq!(accepted_preimage_claim as u8 + accepted_timeout_claim as u8 +
2879 offered_preimage_claim as u8 + offered_timeout_claim as u8 +
2880 revocation_sig_claim as u8, 1);
2881 if ($holder_tx && revocation_sig_claim) ||
2882 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
2883 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
2884 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2885 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2886 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
2888 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
2889 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2890 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2891 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2896 macro_rules! check_htlc_valid_counterparty {
2897 ($counterparty_txid: expr, $htlc_output: expr) => {
2898 if let Some(txid) = $counterparty_txid {
2899 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2900 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2901 if let &Some(ref source) = pending_source {
2902 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
2903 payment_data = Some(((**source).clone(), $htlc_output.payment_hash, $htlc_output.amount_msat));
2912 macro_rules! scan_commitment {
2913 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
2914 for (ref htlc_output, source_option) in $htlcs {
2915 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2916 if let Some(ref source) = source_option {
2917 log_claim!($tx_info, $holder_tx, htlc_output, true);
2918 // We have a resolution of an HTLC either from one of our latest
2919 // holder commitment transactions or an unrevoked counterparty commitment
2920 // transaction. This implies we either learned a preimage, the HTLC
2921 // has timed out, or we screwed up. In any case, we should now
2922 // resolve the source HTLC with the original sender.
2923 payment_data = Some(((*source).clone(), htlc_output.payment_hash, htlc_output.amount_msat));
2924 } else if !$holder_tx {
2925 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
2926 if payment_data.is_none() {
2927 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
2930 if payment_data.is_none() {
2931 log_claim!($tx_info, $holder_tx, htlc_output, false);
2932 let outbound_htlc = $holder_tx == htlc_output.offered;
2933 if !outbound_htlc || revocation_sig_claim {
2934 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
2935 txid: tx.txid(), height,
2936 event: OnchainEvent::HTLCSpendConfirmation {
2937 commitment_tx_output_idx: input.previous_output.vout,
2938 preimage: if accepted_preimage_claim || offered_preimage_claim {
2939 Some(payment_preimage) } else { None },
2940 // If this is a payment to us (!outbound_htlc, above),
2941 // wait for the CSV delay before dropping the HTLC from
2942 // claimable balance if the claim was an HTLC-Success
2944 on_to_local_output_csv: if accepted_preimage_claim {
2945 Some(self.on_holder_tx_csv) } else { None },
2949 // Outbound claims should always have payment_data, unless
2950 // we've already failed the HTLC as the commitment transaction
2951 // which was broadcasted was revoked. In that case, we should
2952 // spend the HTLC output here immediately, and expose that fact
2953 // as a Balance, something which we do not yet do.
2954 // TODO: Track the above as claimable!
2956 continue 'outer_loop;
2963 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
2964 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2965 "our latest holder commitment tx", true);
2967 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
2968 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
2969 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2970 "our previous holder commitment tx", true);
2973 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
2974 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2975 "counterparty commitment tx", false);
2978 // Check that scan_commitment, above, decided there is some source worth relaying an
2979 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2980 if let Some((source, payment_hash, amount_msat)) = payment_data {
2981 if accepted_preimage_claim {
2982 if !self.pending_monitor_events.iter().any(
2983 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
2984 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
2987 event: OnchainEvent::HTLCSpendConfirmation {
2988 commitment_tx_output_idx: input.previous_output.vout,
2989 preimage: Some(payment_preimage),
2990 on_to_local_output_csv: None,
2993 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2995 payment_preimage: Some(payment_preimage),
2997 htlc_value_satoshis: Some(amount_msat / 1000),
3000 } else if offered_preimage_claim {
3001 if !self.pending_monitor_events.iter().any(
3002 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
3003 upd.source == source
3005 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3008 event: OnchainEvent::HTLCSpendConfirmation {
3009 commitment_tx_output_idx: input.previous_output.vout,
3010 preimage: Some(payment_preimage),
3011 on_to_local_output_csv: None,
3014 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3016 payment_preimage: Some(payment_preimage),
3018 htlc_value_satoshis: Some(amount_msat / 1000),
3022 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
3023 if entry.height != height { return true; }
3025 OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
3026 *htlc_source != source
3031 let entry = OnchainEventEntry {
3034 event: OnchainEvent::HTLCUpdate {
3035 source, payment_hash,
3036 htlc_value_satoshis: Some(amount_msat / 1000),
3037 commitment_tx_output_idx: Some(input.previous_output.vout),
3040 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
3041 self.onchain_events_awaiting_threshold_conf.push(entry);
3047 /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
3048 fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
3049 let mut spendable_output = None;
3050 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
3051 if i > ::core::u16::MAX as usize {
3052 // While it is possible that an output exists on chain which is greater than the
3053 // 2^16th output in a given transaction, this is only possible if the output is not
3054 // in a lightning transaction and was instead placed there by some third party who
3055 // wishes to give us money for no reason.
3056 // Namely, any lightning transactions which we pre-sign will never have anywhere
3057 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
3058 // scripts are not longer than one byte in length and because they are inherently
3059 // non-standard due to their size.
3060 // Thus, it is completely safe to ignore such outputs, and while it may result in
3061 // us ignoring non-lightning fund to us, that is only possible if someone fills
3062 // nearly a full block with garbage just to hit this case.
3065 if outp.script_pubkey == self.destination_script {
3066 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3067 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3068 output: outp.clone(),
3072 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
3073 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
3074 spendable_output = Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
3075 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3076 per_commitment_point: broadcasted_holder_revokable_script.1,
3077 to_self_delay: self.on_holder_tx_csv,
3078 output: outp.clone(),
3079 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
3080 channel_keys_id: self.channel_keys_id,
3081 channel_value_satoshis: self.channel_value_satoshis,
3086 if self.counterparty_payment_script == outp.script_pubkey {
3087 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
3088 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3089 output: outp.clone(),
3090 channel_keys_id: self.channel_keys_id,
3091 channel_value_satoshis: self.channel_value_satoshis,
3095 if self.shutdown_script.as_ref() == Some(&outp.script_pubkey) {
3096 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3097 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3098 output: outp.clone(),
3103 if let Some(spendable_output) = spendable_output {
3104 let entry = OnchainEventEntry {
3107 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
3109 log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
3110 self.onchain_events_awaiting_threshold_conf.push(entry);
3115 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
3117 T::Target: BroadcasterInterface,
3118 F::Target: FeeEstimator,
3121 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3122 self.0.block_connected(header, txdata, height, &*self.1, &*self.2, &*self.3);
3125 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3126 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
3130 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Confirm for (ChannelMonitor<Signer>, T, F, L)
3132 T::Target: BroadcasterInterface,
3133 F::Target: FeeEstimator,
3136 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3137 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
3140 fn transaction_unconfirmed(&self, txid: &Txid) {
3141 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
3144 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3145 self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
3148 fn get_relevant_txids(&self) -> Vec<Txid> {
3149 self.0.get_relevant_txids()
3153 const MAX_ALLOC_SIZE: usize = 64*1024;
3155 impl<'a, Signer: Sign, K: KeysInterface<Signer = Signer>> ReadableArgs<&'a K>
3156 for (BlockHash, ChannelMonitor<Signer>) {
3157 fn read<R: io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
3158 macro_rules! unwrap_obj {
3162 Err(_) => return Err(DecodeError::InvalidValue),
3167 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
3169 let latest_update_id: u64 = Readable::read(reader)?;
3170 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
3172 let destination_script = Readable::read(reader)?;
3173 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
3175 let revokable_address = Readable::read(reader)?;
3176 let per_commitment_point = Readable::read(reader)?;
3177 let revokable_script = Readable::read(reader)?;
3178 Some((revokable_address, per_commitment_point, revokable_script))
3181 _ => return Err(DecodeError::InvalidValue),
3183 let counterparty_payment_script = Readable::read(reader)?;
3184 let shutdown_script = {
3185 let script = <Script as Readable>::read(reader)?;
3186 if script.is_empty() { None } else { Some(script) }
3189 let channel_keys_id = Readable::read(reader)?;
3190 let holder_revocation_basepoint = Readable::read(reader)?;
3191 // Technically this can fail and serialize fail a round-trip, but only for serialization of
3192 // barely-init'd ChannelMonitors that we can't do anything with.
3193 let outpoint = OutPoint {
3194 txid: Readable::read(reader)?,
3195 index: Readable::read(reader)?,
3197 let funding_info = (outpoint, Readable::read(reader)?);
3198 let current_counterparty_commitment_txid = Readable::read(reader)?;
3199 let prev_counterparty_commitment_txid = Readable::read(reader)?;
3201 let counterparty_commitment_params = Readable::read(reader)?;
3202 let funding_redeemscript = Readable::read(reader)?;
3203 let channel_value_satoshis = Readable::read(reader)?;
3205 let their_cur_per_commitment_points = {
3206 let first_idx = <U48 as Readable>::read(reader)?.0;
3210 let first_point = Readable::read(reader)?;
3211 let second_point_slice: [u8; 33] = Readable::read(reader)?;
3212 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
3213 Some((first_idx, first_point, None))
3215 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
3220 let on_holder_tx_csv: u16 = Readable::read(reader)?;
3222 let commitment_secrets = Readable::read(reader)?;
3224 macro_rules! read_htlc_in_commitment {
3227 let offered: bool = Readable::read(reader)?;
3228 let amount_msat: u64 = Readable::read(reader)?;
3229 let cltv_expiry: u32 = Readable::read(reader)?;
3230 let payment_hash: PaymentHash = Readable::read(reader)?;
3231 let transaction_output_index: Option<u32> = Readable::read(reader)?;
3233 HTLCOutputInCommitment {
3234 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
3240 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
3241 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
3242 for _ in 0..counterparty_claimable_outpoints_len {
3243 let txid: Txid = Readable::read(reader)?;
3244 let htlcs_count: u64 = Readable::read(reader)?;
3245 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
3246 for _ in 0..htlcs_count {
3247 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
3249 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
3250 return Err(DecodeError::InvalidValue);
3254 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
3255 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
3256 for _ in 0..counterparty_commitment_txn_on_chain_len {
3257 let txid: Txid = Readable::read(reader)?;
3258 let commitment_number = <U48 as Readable>::read(reader)?.0;
3259 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
3260 return Err(DecodeError::InvalidValue);
3264 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
3265 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
3266 for _ in 0..counterparty_hash_commitment_number_len {
3267 let payment_hash: PaymentHash = Readable::read(reader)?;
3268 let commitment_number = <U48 as Readable>::read(reader)?.0;
3269 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
3270 return Err(DecodeError::InvalidValue);
3274 let mut prev_holder_signed_commitment_tx: Option<HolderSignedTx> =
3275 match <u8 as Readable>::read(reader)? {
3278 Some(Readable::read(reader)?)
3280 _ => return Err(DecodeError::InvalidValue),
3282 let mut current_holder_commitment_tx: HolderSignedTx = Readable::read(reader)?;
3284 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
3285 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
3287 let payment_preimages_len: u64 = Readable::read(reader)?;
3288 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
3289 for _ in 0..payment_preimages_len {
3290 let preimage: PaymentPreimage = Readable::read(reader)?;
3291 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3292 if let Some(_) = payment_preimages.insert(hash, preimage) {
3293 return Err(DecodeError::InvalidValue);
3297 let pending_monitor_events_len: u64 = Readable::read(reader)?;
3298 let mut pending_monitor_events = Some(
3299 Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))));
3300 for _ in 0..pending_monitor_events_len {
3301 let ev = match <u8 as Readable>::read(reader)? {
3302 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
3303 1 => MonitorEvent::CommitmentTxConfirmed(funding_info.0),
3304 _ => return Err(DecodeError::InvalidValue)
3306 pending_monitor_events.as_mut().unwrap().push(ev);
3309 let pending_events_len: u64 = Readable::read(reader)?;
3310 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
3311 for _ in 0..pending_events_len {
3312 if let Some(event) = MaybeReadable::read(reader)? {
3313 pending_events.push(event);
3317 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
3319 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
3320 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
3321 for _ in 0..waiting_threshold_conf_len {
3322 if let Some(val) = MaybeReadable::read(reader)? {
3323 onchain_events_awaiting_threshold_conf.push(val);
3327 let outputs_to_watch_len: u64 = Readable::read(reader)?;
3328 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
3329 for _ in 0..outputs_to_watch_len {
3330 let txid = Readable::read(reader)?;
3331 let outputs_len: u64 = Readable::read(reader)?;
3332 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
3333 for _ in 0..outputs_len {
3334 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
3336 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
3337 return Err(DecodeError::InvalidValue);
3340 let onchain_tx_handler: OnchainTxHandler<Signer> = ReadableArgs::read(reader, keys_manager)?;
3342 let lockdown_from_offchain = Readable::read(reader)?;
3343 let holder_tx_signed = Readable::read(reader)?;
3345 if let Some(prev_commitment_tx) = prev_holder_signed_commitment_tx.as_mut() {
3346 let prev_holder_value = onchain_tx_handler.get_prev_holder_commitment_to_self_value();
3347 if prev_holder_value.is_none() { return Err(DecodeError::InvalidValue); }
3348 if prev_commitment_tx.to_self_value_sat == u64::max_value() {
3349 prev_commitment_tx.to_self_value_sat = prev_holder_value.unwrap();
3350 } else if prev_commitment_tx.to_self_value_sat != prev_holder_value.unwrap() {
3351 return Err(DecodeError::InvalidValue);
3355 let cur_holder_value = onchain_tx_handler.get_cur_holder_commitment_to_self_value();
3356 if current_holder_commitment_tx.to_self_value_sat == u64::max_value() {
3357 current_holder_commitment_tx.to_self_value_sat = cur_holder_value;
3358 } else if current_holder_commitment_tx.to_self_value_sat != cur_holder_value {
3359 return Err(DecodeError::InvalidValue);
3362 let mut funding_spend_confirmed = None;
3363 let mut htlcs_resolved_on_chain = Some(Vec::new());
3364 let mut funding_spend_seen = Some(false);
3365 let mut counterparty_node_id = None;
3366 read_tlv_fields!(reader, {
3367 (1, funding_spend_confirmed, option),
3368 (3, htlcs_resolved_on_chain, vec_type),
3369 (5, pending_monitor_events, vec_type),
3370 (7, funding_spend_seen, option),
3371 (9, counterparty_node_id, option),
3374 let mut secp_ctx = Secp256k1::new();
3375 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
3377 Ok((best_block.block_hash(), ChannelMonitor::from_impl(ChannelMonitorImpl {
3379 commitment_transaction_number_obscure_factor,
3382 broadcasted_holder_revokable_script,
3383 counterparty_payment_script,
3387 holder_revocation_basepoint,
3389 current_counterparty_commitment_txid,
3390 prev_counterparty_commitment_txid,
3392 counterparty_commitment_params,
3393 funding_redeemscript,
3394 channel_value_satoshis,
3395 their_cur_per_commitment_points,
3400 counterparty_claimable_outpoints,
3401 counterparty_commitment_txn_on_chain,
3402 counterparty_hash_commitment_number,
3404 prev_holder_signed_commitment_tx,
3405 current_holder_commitment_tx,
3406 current_counterparty_commitment_number,
3407 current_holder_commitment_number,
3410 pending_monitor_events: pending_monitor_events.unwrap(),
3413 onchain_events_awaiting_threshold_conf,
3418 lockdown_from_offchain,
3420 funding_spend_seen: funding_spend_seen.unwrap(),
3421 funding_spend_confirmed,
3422 htlcs_resolved_on_chain: htlcs_resolved_on_chain.unwrap(),
3425 counterparty_node_id,
3434 use bitcoin::blockdata::block::BlockHeader;
3435 use bitcoin::blockdata::script::{Script, Builder};
3436 use bitcoin::blockdata::opcodes;
3437 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, EcdsaSighashType};
3438 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
3439 use bitcoin::util::sighash;
3440 use bitcoin::hashes::Hash;
3441 use bitcoin::hashes::sha256::Hash as Sha256;
3442 use bitcoin::hashes::hex::FromHex;
3443 use bitcoin::hash_types::{BlockHash, Txid};
3444 use bitcoin::network::constants::Network;
3445 use bitcoin::secp256k1::{SecretKey,PublicKey};
3446 use bitcoin::secp256k1::Secp256k1;
3450 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
3452 use super::ChannelMonitorUpdateStep;
3453 use ::{check_added_monitors, check_closed_broadcast, check_closed_event, check_spends, get_local_commitment_txn, get_monitor, get_route_and_payment_hash, unwrap_send_err};
3454 use chain::{BestBlock, Confirm};
3455 use chain::channelmonitor::ChannelMonitor;
3456 use chain::package::{weight_offered_htlc, weight_received_htlc, weight_revoked_offered_htlc, weight_revoked_received_htlc, WEIGHT_REVOKED_OUTPUT};
3457 use chain::transaction::OutPoint;
3458 use chain::keysinterface::InMemorySigner;
3459 use ln::{PaymentPreimage, PaymentHash};
3461 use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
3462 use ln::channelmanager::PaymentSendFailure;
3463 use ln::features::InitFeatures;
3464 use ln::functional_test_utils::*;
3465 use ln::script::ShutdownScript;
3466 use util::errors::APIError;
3467 use util::events::{ClosureReason, MessageSendEventsProvider};
3468 use util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
3469 use util::ser::{ReadableArgs, Writeable};
3470 use sync::{Arc, Mutex};
3472 use bitcoin::Witness;
3475 fn do_test_funding_spend_refuses_updates(use_local_txn: bool) {
3476 // Previously, monitor updates were allowed freely even after a funding-spend transaction
3477 // confirmed. This would allow a race condition where we could receive a payment (including
3478 // the counterparty revoking their broadcasted state!) and accept it without recourse as
3479 // long as the ChannelMonitor receives the block first, the full commitment update dance
3480 // occurs after the block is connected, and before the ChannelManager receives the block.
3481 // Obviously this is an incredibly contrived race given the counterparty would be risking
3482 // their full channel balance for it, but its worth fixing nonetheless as it makes the
3483 // potential ChannelMonitor states simpler to reason about.
3485 // This test checks said behavior, as well as ensuring a ChannelMonitorUpdate with multiple
3486 // updates is handled correctly in such conditions.
3487 let chanmon_cfgs = create_chanmon_cfgs(3);
3488 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
3489 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
3490 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
3491 let channel = create_announced_chan_between_nodes(
3492 &nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
3493 create_announced_chan_between_nodes(
3494 &nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
3496 // Rebalance somewhat
3497 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
3499 // First route two payments for testing at the end
3500 let payment_preimage_1 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
3501 let payment_preimage_2 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
3503 let local_txn = get_local_commitment_txn!(nodes[1], channel.2);
3504 assert_eq!(local_txn.len(), 1);
3505 let remote_txn = get_local_commitment_txn!(nodes[0], channel.2);
3506 assert_eq!(remote_txn.len(), 3); // Commitment and two HTLC-Timeouts
3507 check_spends!(remote_txn[1], remote_txn[0]);
3508 check_spends!(remote_txn[2], remote_txn[0]);
3509 let broadcast_tx = if use_local_txn { &local_txn[0] } else { &remote_txn[0] };
3511 // Connect a commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
3512 // channel is now closed, but the ChannelManager doesn't know that yet.
3513 let new_header = BlockHeader {
3514 version: 2, time: 0, bits: 0, nonce: 0,
3515 prev_blockhash: nodes[0].best_block_info().0,
3516 merkle_root: Default::default() };
3517 let conf_height = nodes[0].best_block_info().1 + 1;
3518 nodes[1].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
3519 &[(0, broadcast_tx)], conf_height);
3521 let (_, pre_update_monitor) = <(BlockHash, ChannelMonitor<InMemorySigner>)>::read(
3522 &mut io::Cursor::new(&get_monitor!(nodes[1], channel.2).encode()),
3523 &nodes[1].keys_manager.backing).unwrap();
3525 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
3526 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
3527 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 100_000);
3528 unwrap_send_err!(nodes[1].node.send_payment(&route, payment_hash, &Some(payment_secret)),
3529 true, APIError::ChannelUnavailable { ref err },
3530 assert!(err.contains("ChannelMonitor storage failure")));
3531 check_added_monitors!(nodes[1], 2); // After the failure we generate a close-channel monitor update
3532 check_closed_broadcast!(nodes[1], true);
3533 check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "ChannelMonitor storage failure".to_string() });
3535 // Build a new ChannelMonitorUpdate which contains both the failing commitment tx update
3536 // and provides the claim preimages for the two pending HTLCs. The first update generates
3537 // an error, but the point of this test is to ensure the later updates are still applied.
3538 let monitor_updates = nodes[1].chain_monitor.monitor_updates.lock().unwrap();
3539 let mut replay_update = monitor_updates.get(&channel.2).unwrap().iter().rev().skip(1).next().unwrap().clone();
3540 assert_eq!(replay_update.updates.len(), 1);
3541 if let ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } = replay_update.updates[0] {
3542 } else { panic!(); }
3543 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_1 });
3544 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_2 });
3546 let broadcaster = TestBroadcaster::new(Arc::clone(&nodes[1].blocks));
3548 pre_update_monitor.update_monitor(&replay_update, &&broadcaster, &chanmon_cfgs[1].fee_estimator, &nodes[1].logger)
3550 // Even though we error'd on the first update, we should still have generated an HTLC claim
3552 let txn_broadcasted = broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
3553 assert!(txn_broadcasted.len() >= 2);
3554 let htlc_txn = txn_broadcasted.iter().filter(|tx| {
3555 assert_eq!(tx.input.len(), 1);
3556 tx.input[0].previous_output.txid == broadcast_tx.txid()
3557 }).collect::<Vec<_>>();
3558 assert_eq!(htlc_txn.len(), 2);
3559 check_spends!(htlc_txn[0], broadcast_tx);
3560 check_spends!(htlc_txn[1], broadcast_tx);
3563 fn test_funding_spend_refuses_updates() {
3564 do_test_funding_spend_refuses_updates(true);
3565 do_test_funding_spend_refuses_updates(false);
3569 fn test_prune_preimages() {
3570 let secp_ctx = Secp256k1::new();
3571 let logger = Arc::new(TestLogger::new());
3572 let broadcaster = Arc::new(TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))});
3573 let fee_estimator = TestFeeEstimator { sat_per_kw: Mutex::new(253) };
3575 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
3576 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3578 let mut preimages = Vec::new();
3581 let preimage = PaymentPreimage([i; 32]);
3582 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3583 preimages.push((preimage, hash));
3587 macro_rules! preimages_slice_to_htlc_outputs {
3588 ($preimages_slice: expr) => {
3590 let mut res = Vec::new();
3591 for (idx, preimage) in $preimages_slice.iter().enumerate() {
3592 res.push((HTLCOutputInCommitment {
3596 payment_hash: preimage.1.clone(),
3597 transaction_output_index: Some(idx as u32),
3604 macro_rules! preimages_to_holder_htlcs {
3605 ($preimages_slice: expr) => {
3607 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
3608 let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
3614 macro_rules! test_preimages_exist {
3615 ($preimages_slice: expr, $monitor: expr) => {
3616 for preimage in $preimages_slice {
3617 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
3622 let keys = InMemorySigner::new(
3624 SecretKey::from_slice(&[41; 32]).unwrap(),
3625 SecretKey::from_slice(&[41; 32]).unwrap(),
3626 SecretKey::from_slice(&[41; 32]).unwrap(),
3627 SecretKey::from_slice(&[41; 32]).unwrap(),
3628 SecretKey::from_slice(&[41; 32]).unwrap(),
3629 SecretKey::from_slice(&[41; 32]).unwrap(),
3635 let counterparty_pubkeys = ChannelPublicKeys {
3636 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
3637 revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
3638 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
3639 delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
3640 htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
3642 let funding_outpoint = OutPoint { txid: Default::default(), index: u16::max_value() };
3643 let channel_parameters = ChannelTransactionParameters {
3644 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
3645 holder_selected_contest_delay: 66,
3646 is_outbound_from_holder: true,
3647 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
3648 pubkeys: counterparty_pubkeys,
3649 selected_contest_delay: 67,
3651 funding_outpoint: Some(funding_outpoint),
3654 // Prune with one old state and a holder commitment tx holding a few overlaps with the
3656 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
3657 let best_block = BestBlock::from_genesis(Network::Testnet);
3658 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
3659 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &Script::new(),
3660 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
3661 &channel_parameters,
3662 Script::new(), 46, 0,
3663 HolderCommitmentTransaction::dummy(), best_block, dummy_key);
3665 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
3666 let dummy_txid = dummy_tx.txid();
3667 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
3668 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
3669 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
3670 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
3671 for &(ref preimage, ref hash) in preimages.iter() {
3672 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&fee_estimator);
3673 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &bounded_fee_estimator, &logger);
3676 // Now provide a secret, pruning preimages 10-15
3677 let mut secret = [0; 32];
3678 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3679 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
3680 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
3681 test_preimages_exist!(&preimages[0..10], monitor);
3682 test_preimages_exist!(&preimages[15..20], monitor);
3684 // Now provide a further secret, pruning preimages 15-17
3685 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3686 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
3687 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
3688 test_preimages_exist!(&preimages[0..10], monitor);
3689 test_preimages_exist!(&preimages[17..20], monitor);
3691 // Now update holder commitment tx info, pruning only element 18 as we still care about the
3692 // previous commitment tx's preimages too
3693 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
3694 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3695 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
3696 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
3697 test_preimages_exist!(&preimages[0..10], monitor);
3698 test_preimages_exist!(&preimages[18..20], monitor);
3700 // But if we do it again, we'll prune 5-10
3701 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
3702 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3703 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
3704 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
3705 test_preimages_exist!(&preimages[0..5], monitor);
3709 fn test_claim_txn_weight_computation() {
3710 // We test Claim txn weight, knowing that we want expected weigth and
3711 // not actual case to avoid sigs and time-lock delays hell variances.
3713 let secp_ctx = Secp256k1::new();
3714 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
3715 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
3717 macro_rules! sign_input {
3718 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr, $opt_anchors: expr) => {
3719 let htlc = HTLCOutputInCommitment {
3720 offered: if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_offered_htlc($opt_anchors) { true } else { false },
3722 cltv_expiry: 2 << 16,
3723 payment_hash: PaymentHash([1; 32]),
3724 transaction_output_index: Some($idx as u32),
3726 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, $opt_anchors, &pubkey, &pubkey, &pubkey) };
3727 let sighash = hash_to_message!(&$sighash_parts.segwit_signature_hash($idx, &redeem_script, $amount, EcdsaSighashType::All).unwrap()[..]);
3728 let sig = secp_ctx.sign_ecdsa(&sighash, &privkey);
3729 let mut ser_sig = sig.serialize_der().to_vec();
3730 ser_sig.push(EcdsaSighashType::All as u8);
3731 $sum_actual_sigs += ser_sig.len();
3732 let witness = $sighash_parts.witness_mut($idx).unwrap();
3733 witness.push(ser_sig);
3734 if *$weight == WEIGHT_REVOKED_OUTPUT {
3735 witness.push(vec!(1));
3736 } else if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_revoked_received_htlc($opt_anchors) {
3737 witness.push(pubkey.clone().serialize().to_vec());
3738 } else if *$weight == weight_received_htlc($opt_anchors) {
3739 witness.push(vec![0]);
3741 witness.push(PaymentPreimage([1; 32]).0.to_vec());
3743 witness.push(redeem_script.into_bytes());
3744 let witness = witness.to_vec();
3745 println!("witness[0] {}", witness[0].len());
3746 println!("witness[1] {}", witness[1].len());
3747 println!("witness[2] {}", witness[2].len());
3751 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
3752 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
3754 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
3755 for &opt_anchors in [false, true].iter() {
3756 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3757 let mut sum_actual_sigs = 0;
3759 claim_tx.input.push(TxIn {
3760 previous_output: BitcoinOutPoint {
3764 script_sig: Script::new(),
3765 sequence: 0xfffffffd,
3766 witness: Witness::new(),
3769 claim_tx.output.push(TxOut {
3770 script_pubkey: script_pubkey.clone(),
3773 let base_weight = claim_tx.weight();
3774 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, weight_revoked_offered_htlc(opt_anchors), weight_revoked_offered_htlc(opt_anchors), weight_revoked_received_htlc(opt_anchors)];
3775 let mut inputs_total_weight = 2; // count segwit flags
3777 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
3778 for (idx, inp) in inputs_weight.iter().enumerate() {
3779 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
3780 inputs_total_weight += inp;
3783 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
3786 // Claim tx with 1 offered HTLCs, 3 received HTLCs
3787 for &opt_anchors in [false, true].iter() {
3788 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3789 let mut sum_actual_sigs = 0;
3791 claim_tx.input.push(TxIn {
3792 previous_output: BitcoinOutPoint {
3796 script_sig: Script::new(),
3797 sequence: 0xfffffffd,
3798 witness: Witness::new(),
3801 claim_tx.output.push(TxOut {
3802 script_pubkey: script_pubkey.clone(),
3805 let base_weight = claim_tx.weight();
3806 let inputs_weight = vec![weight_offered_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors)];
3807 let mut inputs_total_weight = 2; // count segwit flags
3809 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
3810 for (idx, inp) in inputs_weight.iter().enumerate() {
3811 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
3812 inputs_total_weight += inp;
3815 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
3818 // Justice tx with 1 revoked HTLC-Success tx output
3819 for &opt_anchors in [false, true].iter() {
3820 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3821 let mut sum_actual_sigs = 0;
3822 claim_tx.input.push(TxIn {
3823 previous_output: BitcoinOutPoint {
3827 script_sig: Script::new(),
3828 sequence: 0xfffffffd,
3829 witness: Witness::new(),
3831 claim_tx.output.push(TxOut {
3832 script_pubkey: script_pubkey.clone(),
3835 let base_weight = claim_tx.weight();
3836 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
3837 let mut inputs_total_weight = 2; // count segwit flags
3839 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
3840 for (idx, inp) in inputs_weight.iter().enumerate() {
3841 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
3842 inputs_total_weight += inp;
3845 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_isg */ (73 * inputs_weight.len() - sum_actual_sigs));
3849 // Further testing is done in the ChannelManager integration tests.