Add package.rs file
[rust-lightning] / lightning / src / chain / channelmonitor.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
11 //! here.
12 //!
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
16 //!
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
22
23 use bitcoin::blockdata::block::{Block, BlockHeader};
24 use bitcoin::blockdata::transaction::{TxOut,Transaction};
25 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
26 use bitcoin::blockdata::script::{Script, Builder};
27 use bitcoin::blockdata::opcodes;
28
29 use bitcoin::hashes::Hash;
30 use bitcoin::hashes::sha256::Hash as Sha256;
31 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32
33 use bitcoin::secp256k1::{Secp256k1,Signature};
34 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
35 use bitcoin::secp256k1;
36
37 use ln::{PaymentHash, PaymentPreimage};
38 use ln::msgs::DecodeError;
39 use ln::chan_utils;
40 use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCType, ChannelTransactionParameters, HolderCommitmentTransaction};
41 use ln::channelmanager::{BestBlock, HTLCSource};
42 use ln::onchaintx::OnchainTxHandler;
43 use ln::package::InputDescriptors;
44 use chain;
45 use chain::WatchedOutput;
46 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
47 use chain::transaction::{OutPoint, TransactionData};
48 use chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, Sign, KeysInterface};
49 use chain::Filter;
50 use util::logger::Logger;
51 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writer, Writeable, U48};
52 use util::byte_utils;
53 use util::events::Event;
54
55 use std::collections::{HashMap, HashSet};
56 use core::{cmp, mem};
57 use std::io::Error;
58 use core::ops::Deref;
59 use std::sync::Mutex;
60
61 /// An update generated by the underlying Channel itself which contains some new information the
62 /// ChannelMonitor should be made aware of.
63 #[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
64 #[derive(Clone)]
65 #[must_use]
66 pub struct ChannelMonitorUpdate {
67         pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
68         /// The sequence number of this update. Updates *must* be replayed in-order according to this
69         /// sequence number (and updates may panic if they are not). The update_id values are strictly
70         /// increasing and increase by one for each new update, with one exception specified below.
71         ///
72         /// This sequence number is also used to track up to which points updates which returned
73         /// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
74         /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
75         ///
76         /// The only instance where update_id values are not strictly increasing is the case where we
77         /// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
78         /// its docs for more details.
79         pub update_id: u64,
80 }
81
82 /// If:
83 ///    (1) a channel has been force closed and
84 ///    (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
85 ///        this channel's (the backward link's) broadcasted commitment transaction
86 /// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
87 /// with the update providing said payment preimage. No other update types are allowed after
88 /// force-close.
89 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
90
91 impl Writeable for ChannelMonitorUpdate {
92         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
93                 self.update_id.write(w)?;
94                 (self.updates.len() as u64).write(w)?;
95                 for update_step in self.updates.iter() {
96                         update_step.write(w)?;
97                 }
98                 Ok(())
99         }
100 }
101 impl Readable for ChannelMonitorUpdate {
102         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
103                 let update_id: u64 = Readable::read(r)?;
104                 let len: u64 = Readable::read(r)?;
105                 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
106                 for _ in 0..len {
107                         updates.push(Readable::read(r)?);
108                 }
109                 Ok(Self { update_id, updates })
110         }
111 }
112
113 /// An error enum representing a failure to persist a channel monitor update.
114 #[derive(Clone, Debug)]
115 pub enum ChannelMonitorUpdateErr {
116         /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
117         /// our state failed, but is expected to succeed at some point in the future).
118         ///
119         /// Such a failure will "freeze" a channel, preventing us from revoking old states or
120         /// submitting new commitment transactions to the counterparty. Once the update(s) which failed
121         /// have been successfully applied, ChannelManager::channel_monitor_updated can be used to
122         /// restore the channel to an operational state.
123         ///
124         /// Note that a given ChannelManager will *never* re-generate a given ChannelMonitorUpdate. If
125         /// you return a TemporaryFailure you must ensure that it is written to disk safely before
126         /// writing out the latest ChannelManager state.
127         ///
128         /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
129         /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
130         /// to claim it on this channel) and those updates must be applied wherever they can be. At
131         /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
132         /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
133         /// the channel which would invalidate previous ChannelMonitors are not made when a channel has
134         /// been "frozen".
135         ///
136         /// Note that even if updates made after TemporaryFailure succeed you must still call
137         /// channel_monitor_updated to ensure you have the latest monitor and re-enable normal channel
138         /// operation.
139         ///
140         /// Note that the update being processed here will not be replayed for you when you call
141         /// ChannelManager::channel_monitor_updated, so you must store the update itself along
142         /// with the persisted ChannelMonitor on your own local disk prior to returning a
143         /// TemporaryFailure. You may, of course, employ a journaling approach, storing only the
144         /// ChannelMonitorUpdate on disk without updating the monitor itself, replaying the journal at
145         /// reload-time.
146         ///
147         /// For deployments where a copy of ChannelMonitors and other local state are backed up in a
148         /// remote location (with local copies persisted immediately), it is anticipated that all
149         /// updates will return TemporaryFailure until the remote copies could be updated.
150         TemporaryFailure,
151         /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
152         /// different watchtower and cannot update with all watchtowers that were previously informed
153         /// of this channel).
154         ///
155         /// At reception of this error, ChannelManager will force-close the channel and return at
156         /// least a final ChannelMonitorUpdate::ChannelForceClosed which must be delivered to at
157         /// least one ChannelMonitor copy. Revocation secret MUST NOT be released and offchain channel
158         /// update must be rejected.
159         ///
160         /// This failure may also signal a failure to update the local persisted copy of one of
161         /// the channel monitor instance.
162         ///
163         /// Note that even when you fail a holder commitment transaction update, you must store the
164         /// update to ensure you can claim from it in case of a duplicate copy of this ChannelMonitor
165         /// broadcasts it (e.g distributed channel-monitor deployment)
166         ///
167         /// In case of distributed watchtowers deployment, the new version must be written to disk, as
168         /// state may have been stored but rejected due to a block forcing a commitment broadcast. This
169         /// storage is used to claim outputs of rejected state confirmed onchain by another watchtower,
170         /// lagging behind on block processing.
171         PermanentFailure,
172 }
173
174 /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
175 /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::update_monitor this
176 /// means you tried to update a monitor for a different channel or the ChannelMonitorUpdate was
177 /// corrupted.
178 /// Contains a developer-readable error message.
179 #[derive(Clone, Debug)]
180 pub struct MonitorUpdateError(pub &'static str);
181
182 /// An event to be processed by the ChannelManager.
183 #[derive(Clone, PartialEq)]
184 pub enum MonitorEvent {
185         /// A monitor event containing an HTLCUpdate.
186         HTLCEvent(HTLCUpdate),
187
188         /// A monitor event that the Channel's commitment transaction was broadcasted.
189         CommitmentTxBroadcasted(OutPoint),
190 }
191
192 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
193 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
194 /// preimage claim backward will lead to loss of funds.
195 #[derive(Clone, PartialEq)]
196 pub struct HTLCUpdate {
197         pub(crate) payment_hash: PaymentHash,
198         pub(crate) payment_preimage: Option<PaymentPreimage>,
199         pub(crate) source: HTLCSource
200 }
201 impl_writeable!(HTLCUpdate, 0, { payment_hash, payment_preimage, source });
202
203 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
204 /// instead claiming it in its own individual transaction.
205 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
206 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
207 /// HTLC-Success transaction.
208 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
209 /// transaction confirmed (and we use it in a few more, equivalent, places).
210 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
211 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
212 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
213 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
214 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
215 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
216 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
217 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
218 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
219 /// accurate block height.
220 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
221 /// with at worst this delay, so we are not only using this value as a mercy for them but also
222 /// us as a safeguard to delay with enough time.
223 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
224 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound
225 /// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money.
226 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
227 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
228 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
229 // keep bumping another claim tx to solve the outpoint.
230 pub const ANTI_REORG_DELAY: u32 = 6;
231 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
232 /// refuse to accept a new HTLC.
233 ///
234 /// This is used for a few separate purposes:
235 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
236 ///    waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
237 ///    fail this HTLC,
238 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
239 ///    condition with the above), we will fail this HTLC without telling the user we received it,
240 /// 3) if we are waiting on a connection or a channel state update to send an HTLC to a peer, and
241 ///    that HTLC expires within this many blocks, we will simply fail the HTLC instead.
242 ///
243 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
244 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
245 ///
246 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
247 /// in a race condition between the user connecting a block (which would fail it) and the user
248 /// providing us the preimage (which would claim it).
249 ///
250 /// (3) is about our counterparty - we don't want to relay an HTLC to a counterparty when they may
251 /// end up force-closing the channel on us to claim it.
252 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
253
254 // TODO(devrandom) replace this with HolderCommitmentTransaction
255 #[derive(Clone, PartialEq)]
256 struct HolderSignedTx {
257         /// txid of the transaction in tx, just used to make comparison faster
258         txid: Txid,
259         revocation_key: PublicKey,
260         a_htlc_key: PublicKey,
261         b_htlc_key: PublicKey,
262         delayed_payment_key: PublicKey,
263         per_commitment_point: PublicKey,
264         feerate_per_kw: u32,
265         htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
266 }
267
268 /// We use this to track counterparty commitment transactions and htlcs outputs and
269 /// use it to generate any justice or 2nd-stage preimage/timeout transactions.
270 #[derive(PartialEq)]
271 struct CounterpartyCommitmentTransaction {
272         counterparty_delayed_payment_base_key: PublicKey,
273         counterparty_htlc_base_key: PublicKey,
274         on_counterparty_tx_csv: u16,
275         per_htlc: HashMap<Txid, Vec<HTLCOutputInCommitment>>
276 }
277
278 impl Writeable for CounterpartyCommitmentTransaction {
279         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
280                 self.counterparty_delayed_payment_base_key.write(w)?;
281                 self.counterparty_htlc_base_key.write(w)?;
282                 w.write_all(&byte_utils::be16_to_array(self.on_counterparty_tx_csv))?;
283                 w.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?;
284                 for (ref txid, ref htlcs) in self.per_htlc.iter() {
285                         w.write_all(&txid[..])?;
286                         w.write_all(&byte_utils::be64_to_array(htlcs.len() as u64))?;
287                         for &ref htlc in htlcs.iter() {
288                                 htlc.write(w)?;
289                         }
290                 }
291                 Ok(())
292         }
293 }
294 impl Readable for CounterpartyCommitmentTransaction {
295         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
296                 let counterparty_commitment_transaction = {
297                         let counterparty_delayed_payment_base_key = Readable::read(r)?;
298                         let counterparty_htlc_base_key = Readable::read(r)?;
299                         let on_counterparty_tx_csv: u16 = Readable::read(r)?;
300                         let per_htlc_len: u64 = Readable::read(r)?;
301                         let mut per_htlc = HashMap::with_capacity(cmp::min(per_htlc_len as usize, MAX_ALLOC_SIZE / 64));
302                         for _  in 0..per_htlc_len {
303                                 let txid: Txid = Readable::read(r)?;
304                                 let htlcs_count: u64 = Readable::read(r)?;
305                                 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
306                                 for _ in 0..htlcs_count {
307                                         let htlc = Readable::read(r)?;
308                                         htlcs.push(htlc);
309                                 }
310                                 if let Some(_) = per_htlc.insert(txid, htlcs) {
311                                         return Err(DecodeError::InvalidValue);
312                                 }
313                         }
314                         CounterpartyCommitmentTransaction {
315                                 counterparty_delayed_payment_base_key,
316                                 counterparty_htlc_base_key,
317                                 on_counterparty_tx_csv,
318                                 per_htlc,
319                         }
320                 };
321                 Ok(counterparty_commitment_transaction)
322         }
323 }
324
325 /// When ChannelMonitor discovers an onchain outpoint being a step of a channel and that it needs
326 /// to generate a tx to push channel state forward, we cache outpoint-solving tx material to build
327 /// a new bumped one in case of lenghty confirmation delay
328 #[derive(Clone, PartialEq)]
329 pub(crate) enum InputMaterial {
330         Revoked {
331                 per_commitment_point: PublicKey,
332                 counterparty_delayed_payment_base_key: PublicKey,
333                 counterparty_htlc_base_key: PublicKey,
334                 per_commitment_key: SecretKey,
335                 input_descriptor: InputDescriptors,
336                 amount: u64,
337                 htlc: Option<HTLCOutputInCommitment>,
338                 on_counterparty_tx_csv: u16,
339         },
340         CounterpartyHTLC {
341                 per_commitment_point: PublicKey,
342                 counterparty_delayed_payment_base_key: PublicKey,
343                 counterparty_htlc_base_key: PublicKey,
344                 preimage: Option<PaymentPreimage>,
345                 htlc: HTLCOutputInCommitment
346         },
347         HolderHTLC {
348                 preimage: Option<PaymentPreimage>,
349                 amount: u64,
350         },
351         Funding {
352                 funding_redeemscript: Script,
353         }
354 }
355
356 impl Writeable for InputMaterial {
357         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
358                 match self {
359                         &InputMaterial::Revoked { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref per_commitment_key, ref input_descriptor, ref amount, ref htlc, ref on_counterparty_tx_csv} => {
360                                 writer.write_all(&[0; 1])?;
361                                 per_commitment_point.write(writer)?;
362                                 counterparty_delayed_payment_base_key.write(writer)?;
363                                 counterparty_htlc_base_key.write(writer)?;
364                                 writer.write_all(&per_commitment_key[..])?;
365                                 input_descriptor.write(writer)?;
366                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
367                                 htlc.write(writer)?;
368                                 on_counterparty_tx_csv.write(writer)?;
369                         },
370                         &InputMaterial::CounterpartyHTLC { ref per_commitment_point, ref counterparty_delayed_payment_base_key, ref counterparty_htlc_base_key, ref preimage, ref htlc} => {
371                                 writer.write_all(&[1; 1])?;
372                                 per_commitment_point.write(writer)?;
373                                 counterparty_delayed_payment_base_key.write(writer)?;
374                                 counterparty_htlc_base_key.write(writer)?;
375                                 preimage.write(writer)?;
376                                 htlc.write(writer)?;
377                         },
378                         &InputMaterial::HolderHTLC { ref preimage, ref amount } => {
379                                 writer.write_all(&[2; 1])?;
380                                 preimage.write(writer)?;
381                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
382                         },
383                         &InputMaterial::Funding { ref funding_redeemscript } => {
384                                 writer.write_all(&[3; 1])?;
385                                 funding_redeemscript.write(writer)?;
386                         }
387                 }
388                 Ok(())
389         }
390 }
391
392 impl Readable for InputMaterial {
393         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
394                 let input_material = match <u8 as Readable>::read(reader)? {
395                         0 => {
396                                 let per_commitment_point = Readable::read(reader)?;
397                                 let counterparty_delayed_payment_base_key = Readable::read(reader)?;
398                                 let counterparty_htlc_base_key = Readable::read(reader)?;
399                                 let per_commitment_key = Readable::read(reader)?;
400                                 let input_descriptor = Readable::read(reader)?;
401                                 let amount = Readable::read(reader)?;
402                                 let htlc = Readable::read(reader)?;
403                                 let on_counterparty_tx_csv = Readable::read(reader)?;
404                                 InputMaterial::Revoked {
405                                         per_commitment_point,
406                                         counterparty_delayed_payment_base_key,
407                                         counterparty_htlc_base_key,
408                                         per_commitment_key,
409                                         input_descriptor,
410                                         amount,
411                                         htlc,
412                                         on_counterparty_tx_csv
413                                 }
414                         },
415                         1 => {
416                                 let per_commitment_point = Readable::read(reader)?;
417                                 let counterparty_delayed_payment_base_key = Readable::read(reader)?;
418                                 let counterparty_htlc_base_key = Readable::read(reader)?;
419                                 let preimage = Readable::read(reader)?;
420                                 let htlc = Readable::read(reader)?;
421                                 InputMaterial::CounterpartyHTLC {
422                                         per_commitment_point,
423                                         counterparty_delayed_payment_base_key,
424                                         counterparty_htlc_base_key,
425                                         preimage,
426                                         htlc
427                                 }
428                         },
429                         2 => {
430                                 let preimage = Readable::read(reader)?;
431                                 let amount = Readable::read(reader)?;
432                                 InputMaterial::HolderHTLC {
433                                         preimage,
434                                         amount,
435                                 }
436                         },
437                         3 => {
438                                 InputMaterial::Funding {
439                                         funding_redeemscript: Readable::read(reader)?,
440                                 }
441                         }
442                         _ => return Err(DecodeError::InvalidValue),
443                 };
444                 Ok(input_material)
445         }
446 }
447
448 /// ClaimRequest is a descriptor structure to communicate between detection
449 /// and reaction module. They are generated by ChannelMonitor while parsing
450 /// onchain txn leaked from a channel and handed over to OnchainTxHandler which
451 /// is responsible for opportunistic aggregation, selecting and enforcing
452 /// bumping logic, building and signing transactions.
453 pub(crate) struct ClaimRequest {
454         // Block height before which claiming is exclusive to one party,
455         // after reaching it, claiming may be contentious.
456         pub(crate) absolute_timelock: u32,
457         // Timeout tx must have nLocktime set which means aggregating multiple
458         // ones must take the higher nLocktime among them to satisfy all of them.
459         // Sadly it has few pitfalls, a) it takes longuer to get fund back b) CLTV_DELTA
460         // of a sooner-HTLC could be swallowed by the highest nLocktime of the HTLC set.
461         // Do simplify we mark them as non-aggregable.
462         pub(crate) aggregable: bool,
463         // Basic bitcoin outpoint (txid, vout)
464         pub(crate) outpoint: BitcoinOutPoint,
465         // Following outpoint type, set of data needed to generate transaction digest
466         // and satisfy witness program.
467         pub(crate) witness_data: InputMaterial
468 }
469
470 /// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
471 /// transaction causing it.
472 ///
473 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
474 #[derive(PartialEq)]
475 struct OnchainEventEntry {
476         txid: Txid,
477         height: u32,
478         event: OnchainEvent,
479 }
480
481 impl OnchainEventEntry {
482         fn confirmation_threshold(&self) -> u32 {
483                 self.height + ANTI_REORG_DELAY - 1
484         }
485
486         fn has_reached_confirmation_threshold(&self, height: u32) -> bool {
487                 height >= self.confirmation_threshold()
488         }
489 }
490
491 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
492 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
493 #[derive(PartialEq)]
494 enum OnchainEvent {
495         /// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve
496         /// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can
497         /// only win from it, so it's never an OnchainEvent
498         HTLCUpdate {
499                 htlc_update: (HTLCSource, PaymentHash),
500         },
501         MaturingOutput {
502                 descriptor: SpendableOutputDescriptor,
503         },
504 }
505
506 #[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
507 #[derive(Clone)]
508 pub(crate) enum ChannelMonitorUpdateStep {
509         LatestHolderCommitmentTXInfo {
510                 commitment_tx: HolderCommitmentTransaction,
511                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
512         },
513         LatestCounterpartyCommitmentTXInfo {
514                 commitment_txid: Txid,
515                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
516                 commitment_number: u64,
517                 their_revocation_point: PublicKey,
518         },
519         PaymentPreimage {
520                 payment_preimage: PaymentPreimage,
521         },
522         CommitmentSecret {
523                 idx: u64,
524                 secret: [u8; 32],
525         },
526         /// Used to indicate that the no future updates will occur, and likely that the latest holder
527         /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
528         ChannelForceClosed {
529                 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
530                 /// think we've fallen behind!
531                 should_broadcast: bool,
532         },
533 }
534
535 impl Writeable for ChannelMonitorUpdateStep {
536         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
537                 match self {
538                         &ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { ref commitment_tx, ref htlc_outputs } => {
539                                 0u8.write(w)?;
540                                 commitment_tx.write(w)?;
541                                 (htlc_outputs.len() as u64).write(w)?;
542                                 for &(ref output, ref signature, ref source) in htlc_outputs.iter() {
543                                         output.write(w)?;
544                                         signature.write(w)?;
545                                         source.write(w)?;
546                                 }
547                         }
548                         &ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, ref htlc_outputs, ref commitment_number, ref their_revocation_point } => {
549                                 1u8.write(w)?;
550                                 commitment_txid.write(w)?;
551                                 commitment_number.write(w)?;
552                                 their_revocation_point.write(w)?;
553                                 (htlc_outputs.len() as u64).write(w)?;
554                                 for &(ref output, ref source) in htlc_outputs.iter() {
555                                         output.write(w)?;
556                                         source.as_ref().map(|b| b.as_ref()).write(w)?;
557                                 }
558                         },
559                         &ChannelMonitorUpdateStep::PaymentPreimage { ref payment_preimage } => {
560                                 2u8.write(w)?;
561                                 payment_preimage.write(w)?;
562                         },
563                         &ChannelMonitorUpdateStep::CommitmentSecret { ref idx, ref secret } => {
564                                 3u8.write(w)?;
565                                 idx.write(w)?;
566                                 secret.write(w)?;
567                         },
568                         &ChannelMonitorUpdateStep::ChannelForceClosed { ref should_broadcast } => {
569                                 4u8.write(w)?;
570                                 should_broadcast.write(w)?;
571                         },
572                 }
573                 Ok(())
574         }
575 }
576 impl Readable for ChannelMonitorUpdateStep {
577         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
578                 match Readable::read(r)? {
579                         0u8 => {
580                                 Ok(ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo {
581                                         commitment_tx: Readable::read(r)?,
582                                         htlc_outputs: {
583                                                 let len: u64 = Readable::read(r)?;
584                                                 let mut res = Vec::new();
585                                                 for _ in 0..len {
586                                                         res.push((Readable::read(r)?, Readable::read(r)?, Readable::read(r)?));
587                                                 }
588                                                 res
589                                         },
590                                 })
591                         },
592                         1u8 => {
593                                 Ok(ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo {
594                                         commitment_txid: Readable::read(r)?,
595                                         commitment_number: Readable::read(r)?,
596                                         their_revocation_point: Readable::read(r)?,
597                                         htlc_outputs: {
598                                                 let len: u64 = Readable::read(r)?;
599                                                 let mut res = Vec::new();
600                                                 for _ in 0..len {
601                                                         res.push((Readable::read(r)?, <Option<HTLCSource> as Readable>::read(r)?.map(|o| Box::new(o))));
602                                                 }
603                                                 res
604                                         },
605                                 })
606                         },
607                         2u8 => {
608                                 Ok(ChannelMonitorUpdateStep::PaymentPreimage {
609                                         payment_preimage: Readable::read(r)?,
610                                 })
611                         },
612                         3u8 => {
613                                 Ok(ChannelMonitorUpdateStep::CommitmentSecret {
614                                         idx: Readable::read(r)?,
615                                         secret: Readable::read(r)?,
616                                 })
617                         },
618                         4u8 => {
619                                 Ok(ChannelMonitorUpdateStep::ChannelForceClosed {
620                                         should_broadcast: Readable::read(r)?
621                                 })
622                         },
623                         _ => Err(DecodeError::InvalidValue),
624                 }
625         }
626 }
627
628 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
629 /// on-chain transactions to ensure no loss of funds occurs.
630 ///
631 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
632 /// information and are actively monitoring the chain.
633 ///
634 /// Pending Events or updated HTLCs which have not yet been read out by
635 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
636 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
637 /// gotten are fully handled before re-serializing the new state.
638 ///
639 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
640 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
641 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
642 /// returned block hash and the the current chain and then reconnecting blocks to get to the
643 /// best chain) upon deserializing the object!
644 pub struct ChannelMonitor<Signer: Sign> {
645         #[cfg(test)]
646         pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
647         #[cfg(not(test))]
648         inner: Mutex<ChannelMonitorImpl<Signer>>,
649 }
650
651 pub(crate) struct ChannelMonitorImpl<Signer: Sign> {
652         latest_update_id: u64,
653         commitment_transaction_number_obscure_factor: u64,
654
655         destination_script: Script,
656         broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
657         counterparty_payment_script: Script,
658         shutdown_script: Script,
659
660         channel_keys_id: [u8; 32],
661         holder_revocation_basepoint: PublicKey,
662         funding_info: (OutPoint, Script),
663         current_counterparty_commitment_txid: Option<Txid>,
664         prev_counterparty_commitment_txid: Option<Txid>,
665
666         counterparty_tx_cache: CounterpartyCommitmentTransaction,
667         funding_redeemscript: Script,
668         channel_value_satoshis: u64,
669         // first is the idx of the first of the two revocation points
670         their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
671
672         on_holder_tx_csv: u16,
673
674         commitment_secrets: CounterpartyCommitmentSecrets,
675         counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
676         /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
677         /// Nor can we figure out their commitment numbers without the commitment transaction they are
678         /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
679         /// commitment transactions which we find on-chain, mapping them to the commitment number which
680         /// can be used to derive the revocation key and claim the transactions.
681         counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
682         /// Cache used to make pruning of payment_preimages faster.
683         /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
684         /// counterparty transactions (ie should remain pretty small).
685         /// Serialized to disk but should generally not be sent to Watchtowers.
686         counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
687
688         // We store two holder commitment transactions to avoid any race conditions where we may update
689         // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
690         // various monitors for one channel being out of sync, and us broadcasting a holder
691         // transaction for which we have deleted claim information on some watchtowers.
692         prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
693         current_holder_commitment_tx: HolderSignedTx,
694
695         // Used just for ChannelManager to make sure it has the latest channel data during
696         // deserialization
697         current_counterparty_commitment_number: u64,
698         // Used just for ChannelManager to make sure it has the latest channel data during
699         // deserialization
700         current_holder_commitment_number: u64,
701
702         payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
703
704         pending_monitor_events: Vec<MonitorEvent>,
705         pending_events: Vec<Event>,
706
707         // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
708         // which to take actions once they reach enough confirmations. Each entry includes the
709         // transaction's id and the height when the transaction was confirmed on chain.
710         onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
711
712         // If we get serialized out and re-read, we need to make sure that the chain monitoring
713         // interface knows about the TXOs that we want to be notified of spends of. We could probably
714         // be smart and derive them from the above storage fields, but its much simpler and more
715         // Obviously Correct (tm) if we just keep track of them explicitly.
716         outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
717
718         #[cfg(test)]
719         pub onchain_tx_handler: OnchainTxHandler<Signer>,
720         #[cfg(not(test))]
721         onchain_tx_handler: OnchainTxHandler<Signer>,
722
723         // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
724         // channel has been force-closed. After this is set, no further holder commitment transaction
725         // updates may occur, and we panic!() if one is provided.
726         lockdown_from_offchain: bool,
727
728         // Set once we've signed a holder commitment transaction and handed it over to our
729         // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
730         // may occur, and we fail any such monitor updates.
731         //
732         // In case of update rejection due to a locally already signed commitment transaction, we
733         // nevertheless store update content to track in case of concurrent broadcast by another
734         // remote monitor out-of-order with regards to the block view.
735         holder_tx_signed: bool,
736
737         // We simply modify best_block in Channel's block_connected so that serialization is
738         // consistent but hopefully the users' copy handles block_connected in a consistent way.
739         // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
740         // their best_block from its state and not based on updated copies that didn't run through
741         // the full block_connected).
742         best_block: BestBlock,
743
744         secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
745 }
746
747 /// Transaction outputs to watch for on-chain spends.
748 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
749
750 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
751 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
752 /// underlying object
753 impl<Signer: Sign> PartialEq for ChannelMonitor<Signer> {
754         fn eq(&self, other: &Self) -> bool {
755                 let inner = self.inner.lock().unwrap();
756                 let other = other.inner.lock().unwrap();
757                 inner.eq(&other)
758         }
759 }
760
761 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
762 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
763 /// underlying object
764 impl<Signer: Sign> PartialEq for ChannelMonitorImpl<Signer> {
765         fn eq(&self, other: &Self) -> bool {
766                 if self.latest_update_id != other.latest_update_id ||
767                         self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
768                         self.destination_script != other.destination_script ||
769                         self.broadcasted_holder_revokable_script != other.broadcasted_holder_revokable_script ||
770                         self.counterparty_payment_script != other.counterparty_payment_script ||
771                         self.channel_keys_id != other.channel_keys_id ||
772                         self.holder_revocation_basepoint != other.holder_revocation_basepoint ||
773                         self.funding_info != other.funding_info ||
774                         self.current_counterparty_commitment_txid != other.current_counterparty_commitment_txid ||
775                         self.prev_counterparty_commitment_txid != other.prev_counterparty_commitment_txid ||
776                         self.counterparty_tx_cache != other.counterparty_tx_cache ||
777                         self.funding_redeemscript != other.funding_redeemscript ||
778                         self.channel_value_satoshis != other.channel_value_satoshis ||
779                         self.their_cur_revocation_points != other.their_cur_revocation_points ||
780                         self.on_holder_tx_csv != other.on_holder_tx_csv ||
781                         self.commitment_secrets != other.commitment_secrets ||
782                         self.counterparty_claimable_outpoints != other.counterparty_claimable_outpoints ||
783                         self.counterparty_commitment_txn_on_chain != other.counterparty_commitment_txn_on_chain ||
784                         self.counterparty_hash_commitment_number != other.counterparty_hash_commitment_number ||
785                         self.prev_holder_signed_commitment_tx != other.prev_holder_signed_commitment_tx ||
786                         self.current_counterparty_commitment_number != other.current_counterparty_commitment_number ||
787                         self.current_holder_commitment_number != other.current_holder_commitment_number ||
788                         self.current_holder_commitment_tx != other.current_holder_commitment_tx ||
789                         self.payment_preimages != other.payment_preimages ||
790                         self.pending_monitor_events != other.pending_monitor_events ||
791                         self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly
792                         self.onchain_events_awaiting_threshold_conf != other.onchain_events_awaiting_threshold_conf ||
793                         self.outputs_to_watch != other.outputs_to_watch ||
794                         self.lockdown_from_offchain != other.lockdown_from_offchain ||
795                         self.holder_tx_signed != other.holder_tx_signed
796                 {
797                         false
798                 } else {
799                         true
800                 }
801         }
802 }
803
804 impl<Signer: Sign> Writeable for ChannelMonitor<Signer> {
805         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
806                 self.inner.lock().unwrap().write(writer)
807         }
808 }
809
810 const SERIALIZATION_VERSION: u8 = 1;
811 const MIN_SERIALIZATION_VERSION: u8 = 1;
812
813 impl<Signer: Sign> Writeable for ChannelMonitorImpl<Signer> {
814         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
815                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
816
817                 self.latest_update_id.write(writer)?;
818
819                 // Set in initial Channel-object creation, so should always be set by now:
820                 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
821
822                 self.destination_script.write(writer)?;
823                 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
824                         writer.write_all(&[0; 1])?;
825                         broadcasted_holder_revokable_script.0.write(writer)?;
826                         broadcasted_holder_revokable_script.1.write(writer)?;
827                         broadcasted_holder_revokable_script.2.write(writer)?;
828                 } else {
829                         writer.write_all(&[1; 1])?;
830                 }
831
832                 self.counterparty_payment_script.write(writer)?;
833                 self.shutdown_script.write(writer)?;
834
835                 self.channel_keys_id.write(writer)?;
836                 self.holder_revocation_basepoint.write(writer)?;
837                 writer.write_all(&self.funding_info.0.txid[..])?;
838                 writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?;
839                 self.funding_info.1.write(writer)?;
840                 self.current_counterparty_commitment_txid.write(writer)?;
841                 self.prev_counterparty_commitment_txid.write(writer)?;
842
843                 self.counterparty_tx_cache.write(writer)?;
844                 self.funding_redeemscript.write(writer)?;
845                 self.channel_value_satoshis.write(writer)?;
846
847                 match self.their_cur_revocation_points {
848                         Some((idx, pubkey, second_option)) => {
849                                 writer.write_all(&byte_utils::be48_to_array(idx))?;
850                                 writer.write_all(&pubkey.serialize())?;
851                                 match second_option {
852                                         Some(second_pubkey) => {
853                                                 writer.write_all(&second_pubkey.serialize())?;
854                                         },
855                                         None => {
856                                                 writer.write_all(&[0; 33])?;
857                                         },
858                                 }
859                         },
860                         None => {
861                                 writer.write_all(&byte_utils::be48_to_array(0))?;
862                         },
863                 }
864
865                 writer.write_all(&byte_utils::be16_to_array(self.on_holder_tx_csv))?;
866
867                 self.commitment_secrets.write(writer)?;
868
869                 macro_rules! serialize_htlc_in_commitment {
870                         ($htlc_output: expr) => {
871                                 writer.write_all(&[$htlc_output.offered as u8; 1])?;
872                                 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
873                                 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
874                                 writer.write_all(&$htlc_output.payment_hash.0[..])?;
875                                 $htlc_output.transaction_output_index.write(writer)?;
876                         }
877                 }
878
879                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_claimable_outpoints.len() as u64))?;
880                 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
881                         writer.write_all(&txid[..])?;
882                         writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
883                         for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
884                                 serialize_htlc_in_commitment!(htlc_output);
885                                 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
886                         }
887                 }
888
889                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_commitment_txn_on_chain.len() as u64))?;
890                 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
891                         writer.write_all(&txid[..])?;
892                         writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
893                 }
894
895                 writer.write_all(&byte_utils::be64_to_array(self.counterparty_hash_commitment_number.len() as u64))?;
896                 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
897                         writer.write_all(&payment_hash.0[..])?;
898                         writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
899                 }
900
901                 macro_rules! serialize_holder_tx {
902                         ($holder_tx: expr) => {
903                                 $holder_tx.txid.write(writer)?;
904                                 writer.write_all(&$holder_tx.revocation_key.serialize())?;
905                                 writer.write_all(&$holder_tx.a_htlc_key.serialize())?;
906                                 writer.write_all(&$holder_tx.b_htlc_key.serialize())?;
907                                 writer.write_all(&$holder_tx.delayed_payment_key.serialize())?;
908                                 writer.write_all(&$holder_tx.per_commitment_point.serialize())?;
909
910                                 writer.write_all(&byte_utils::be32_to_array($holder_tx.feerate_per_kw))?;
911                                 writer.write_all(&byte_utils::be64_to_array($holder_tx.htlc_outputs.len() as u64))?;
912                                 for &(ref htlc_output, ref sig, ref htlc_source) in $holder_tx.htlc_outputs.iter() {
913                                         serialize_htlc_in_commitment!(htlc_output);
914                                         if let &Some(ref their_sig) = sig {
915                                                 1u8.write(writer)?;
916                                                 writer.write_all(&their_sig.serialize_compact())?;
917                                         } else {
918                                                 0u8.write(writer)?;
919                                         }
920                                         htlc_source.write(writer)?;
921                                 }
922                         }
923                 }
924
925                 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
926                         writer.write_all(&[1; 1])?;
927                         serialize_holder_tx!(prev_holder_tx);
928                 } else {
929                         writer.write_all(&[0; 1])?;
930                 }
931
932                 serialize_holder_tx!(self.current_holder_commitment_tx);
933
934                 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
935                 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
936
937                 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
938                 for payment_preimage in self.payment_preimages.values() {
939                         writer.write_all(&payment_preimage.0[..])?;
940                 }
941
942                 writer.write_all(&byte_utils::be64_to_array(self.pending_monitor_events.len() as u64))?;
943                 for event in self.pending_monitor_events.iter() {
944                         match event {
945                                 MonitorEvent::HTLCEvent(upd) => {
946                                         0u8.write(writer)?;
947                                         upd.write(writer)?;
948                                 },
949                                 MonitorEvent::CommitmentTxBroadcasted(_) => 1u8.write(writer)?
950                         }
951                 }
952
953                 writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?;
954                 for event in self.pending_events.iter() {
955                         event.write(writer)?;
956                 }
957
958                 self.best_block.block_hash().write(writer)?;
959                 writer.write_all(&byte_utils::be32_to_array(self.best_block.height()))?;
960
961                 writer.write_all(&byte_utils::be64_to_array(self.onchain_events_awaiting_threshold_conf.len() as u64))?;
962                 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
963                         entry.txid.write(writer)?;
964                         writer.write_all(&byte_utils::be32_to_array(entry.height))?;
965                         match entry.event {
966                                 OnchainEvent::HTLCUpdate { ref htlc_update } => {
967                                         0u8.write(writer)?;
968                                         htlc_update.0.write(writer)?;
969                                         htlc_update.1.write(writer)?;
970                                 },
971                                 OnchainEvent::MaturingOutput { ref descriptor } => {
972                                         1u8.write(writer)?;
973                                         descriptor.write(writer)?;
974                                 },
975                         }
976                 }
977
978                 (self.outputs_to_watch.len() as u64).write(writer)?;
979                 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
980                         txid.write(writer)?;
981                         (idx_scripts.len() as u64).write(writer)?;
982                         for (idx, script) in idx_scripts.iter() {
983                                 idx.write(writer)?;
984                                 script.write(writer)?;
985                         }
986                 }
987                 self.onchain_tx_handler.write(writer)?;
988
989                 self.lockdown_from_offchain.write(writer)?;
990                 self.holder_tx_signed.write(writer)?;
991
992                 write_tlv_fields!(writer, {}, {});
993
994                 Ok(())
995         }
996 }
997
998 impl<Signer: Sign> ChannelMonitor<Signer> {
999         pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_pubkey: &PublicKey,
1000                           on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
1001                           channel_parameters: &ChannelTransactionParameters,
1002                           funding_redeemscript: Script, channel_value_satoshis: u64,
1003                           commitment_transaction_number_obscure_factor: u64,
1004                           initial_holder_commitment_tx: HolderCommitmentTransaction,
1005                           best_block: BestBlock) -> ChannelMonitor<Signer> {
1006
1007                 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1008                 let our_channel_close_key_hash = WPubkeyHash::hash(&shutdown_pubkey.serialize());
1009                 let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
1010                 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
1011                 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
1012
1013                 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
1014                 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
1015                 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
1016                 let counterparty_tx_cache = CounterpartyCommitmentTransaction { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv, per_htlc: HashMap::new() };
1017
1018                 let channel_keys_id = keys.channel_keys_id();
1019                 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1020
1021                 // block for Rust 1.34 compat
1022                 let (holder_commitment_tx, current_holder_commitment_number) = {
1023                         let trusted_tx = initial_holder_commitment_tx.trust();
1024                         let txid = trusted_tx.txid();
1025
1026                         let tx_keys = trusted_tx.keys();
1027                         let holder_commitment_tx = HolderSignedTx {
1028                                 txid,
1029                                 revocation_key: tx_keys.revocation_key,
1030                                 a_htlc_key: tx_keys.broadcaster_htlc_key,
1031                                 b_htlc_key: tx_keys.countersignatory_htlc_key,
1032                                 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1033                                 per_commitment_point: tx_keys.per_commitment_point,
1034                                 feerate_per_kw: trusted_tx.feerate_per_kw(),
1035                                 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1036                         };
1037                         (holder_commitment_tx, trusted_tx.commitment_number())
1038                 };
1039
1040                 let onchain_tx_handler =
1041                         OnchainTxHandler::new(destination_script.clone(), keys,
1042                         channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx.clone());
1043
1044                 let mut outputs_to_watch = HashMap::new();
1045                 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1046
1047                 ChannelMonitor {
1048                         inner: Mutex::new(ChannelMonitorImpl {
1049                                 latest_update_id: 0,
1050                                 commitment_transaction_number_obscure_factor,
1051
1052                                 destination_script: destination_script.clone(),
1053                                 broadcasted_holder_revokable_script: None,
1054                                 counterparty_payment_script,
1055                                 shutdown_script,
1056
1057                                 channel_keys_id,
1058                                 holder_revocation_basepoint,
1059                                 funding_info,
1060                                 current_counterparty_commitment_txid: None,
1061                                 prev_counterparty_commitment_txid: None,
1062
1063                                 counterparty_tx_cache,
1064                                 funding_redeemscript,
1065                                 channel_value_satoshis,
1066                                 their_cur_revocation_points: None,
1067
1068                                 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1069
1070                                 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1071                                 counterparty_claimable_outpoints: HashMap::new(),
1072                                 counterparty_commitment_txn_on_chain: HashMap::new(),
1073                                 counterparty_hash_commitment_number: HashMap::new(),
1074
1075                                 prev_holder_signed_commitment_tx: None,
1076                                 current_holder_commitment_tx: holder_commitment_tx,
1077                                 current_counterparty_commitment_number: 1 << 48,
1078                                 current_holder_commitment_number,
1079
1080                                 payment_preimages: HashMap::new(),
1081                                 pending_monitor_events: Vec::new(),
1082                                 pending_events: Vec::new(),
1083
1084                                 onchain_events_awaiting_threshold_conf: Vec::new(),
1085                                 outputs_to_watch,
1086
1087                                 onchain_tx_handler,
1088
1089                                 lockdown_from_offchain: false,
1090                                 holder_tx_signed: false,
1091
1092                                 best_block,
1093
1094                                 secp_ctx,
1095                         }),
1096                 }
1097         }
1098
1099         #[cfg(test)]
1100         fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
1101                 self.inner.lock().unwrap().provide_secret(idx, secret)
1102         }
1103
1104         /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1105         /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1106         /// possibly future revocation/preimage information) to claim outputs where possible.
1107         /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1108         pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
1109                 &self,
1110                 txid: Txid,
1111                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1112                 commitment_number: u64,
1113                 their_revocation_point: PublicKey,
1114                 logger: &L,
1115         ) where L::Target: Logger {
1116                 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1117                         txid, htlc_outputs, commitment_number, their_revocation_point, logger)
1118         }
1119
1120         #[cfg(test)]
1121         fn provide_latest_holder_commitment_tx(
1122                 &self,
1123                 holder_commitment_tx: HolderCommitmentTransaction,
1124                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1125         ) -> Result<(), MonitorUpdateError> {
1126                 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(
1127                         holder_commitment_tx, htlc_outputs)
1128         }
1129
1130         #[cfg(test)]
1131         pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1132                 &self,
1133                 payment_hash: &PaymentHash,
1134                 payment_preimage: &PaymentPreimage,
1135                 broadcaster: &B,
1136                 fee_estimator: &F,
1137                 logger: &L,
1138         ) where
1139                 B::Target: BroadcasterInterface,
1140                 F::Target: FeeEstimator,
1141                 L::Target: Logger,
1142         {
1143                 self.inner.lock().unwrap().provide_payment_preimage(
1144                         payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1145         }
1146
1147         pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1148                 &self,
1149                 broadcaster: &B,
1150                 logger: &L,
1151         ) where
1152                 B::Target: BroadcasterInterface,
1153                 L::Target: Logger,
1154         {
1155                 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger)
1156         }
1157
1158         /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1159         /// itself.
1160         ///
1161         /// panics if the given update is not the next update by update_id.
1162         pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1163                 &self,
1164                 updates: &ChannelMonitorUpdate,
1165                 broadcaster: &B,
1166                 fee_estimator: &F,
1167                 logger: &L,
1168         ) -> Result<(), MonitorUpdateError>
1169         where
1170                 B::Target: BroadcasterInterface,
1171                 F::Target: FeeEstimator,
1172                 L::Target: Logger,
1173         {
1174                 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1175         }
1176
1177         /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1178         /// ChannelMonitor.
1179         pub fn get_latest_update_id(&self) -> u64 {
1180                 self.inner.lock().unwrap().get_latest_update_id()
1181         }
1182
1183         /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1184         pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1185                 self.inner.lock().unwrap().get_funding_txo().clone()
1186         }
1187
1188         /// Gets a list of txids, with their output scripts (in the order they appear in the
1189         /// transaction), which we must learn about spends of via block_connected().
1190         pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1191                 self.inner.lock().unwrap().get_outputs_to_watch()
1192                         .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1193         }
1194
1195         /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1196         /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1197         /// have been registered.
1198         pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1199                 let lock = self.inner.lock().unwrap();
1200                 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1201                 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1202                         for (index, script_pubkey) in outputs.iter() {
1203                                 assert!(*index <= u16::max_value() as u32);
1204                                 filter.register_output(WatchedOutput {
1205                                         block_hash: None,
1206                                         outpoint: OutPoint { txid: *txid, index: *index as u16 },
1207                                         script_pubkey: script_pubkey.clone(),
1208                                 });
1209                         }
1210                 }
1211         }
1212
1213         /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1214         /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1215         pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1216                 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1217         }
1218
1219         /// Gets the list of pending events which were generated by previous actions, clearing the list
1220         /// in the process.
1221         ///
1222         /// This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to
1223         /// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
1224         /// no internal locking in ChannelMonitors.
1225         pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1226                 self.inner.lock().unwrap().get_and_clear_pending_events()
1227         }
1228
1229         pub(crate) fn get_min_seen_secret(&self) -> u64 {
1230                 self.inner.lock().unwrap().get_min_seen_secret()
1231         }
1232
1233         pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1234                 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1235         }
1236
1237         pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1238                 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1239         }
1240
1241         /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1242         /// the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of
1243         /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows
1244         /// a higher revocation secret than the holder commitment number we are aware of. Broadcasting these
1245         /// transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to
1246         /// broadcast them if counterparty don't close channel with his higher commitment transaction after a
1247         /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
1248         /// out-of-band the other node operator to coordinate with him if option is available to you.
1249         /// In any-case, choice is up to the user.
1250         pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1251         where L::Target: Logger {
1252                 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1253         }
1254
1255         /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1256         /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1257         /// revoked commitment transaction.
1258         #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1259         pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1260         where L::Target: Logger {
1261                 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1262         }
1263
1264         /// Processes transactions in a newly connected block, which may result in any of the following:
1265         /// - update the monitor's state against resolved HTLCs
1266         /// - punish the counterparty in the case of seeing a revoked commitment transaction
1267         /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1268         /// - detect settled outputs for later spending
1269         /// - schedule and bump any in-flight claims
1270         ///
1271         /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1272         /// [`get_outputs_to_watch`].
1273         ///
1274         /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1275         pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1276                 &self,
1277                 header: &BlockHeader,
1278                 txdata: &TransactionData,
1279                 height: u32,
1280                 broadcaster: B,
1281                 fee_estimator: F,
1282                 logger: L,
1283         ) -> Vec<TransactionOutputs>
1284         where
1285                 B::Target: BroadcasterInterface,
1286                 F::Target: FeeEstimator,
1287                 L::Target: Logger,
1288         {
1289                 self.inner.lock().unwrap().block_connected(
1290                         header, txdata, height, broadcaster, fee_estimator, logger)
1291         }
1292
1293         /// Determines if the disconnected block contained any transactions of interest and updates
1294         /// appropriately.
1295         pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1296                 &self,
1297                 header: &BlockHeader,
1298                 height: u32,
1299                 broadcaster: B,
1300                 fee_estimator: F,
1301                 logger: L,
1302         ) where
1303                 B::Target: BroadcasterInterface,
1304                 F::Target: FeeEstimator,
1305                 L::Target: Logger,
1306         {
1307                 self.inner.lock().unwrap().block_disconnected(
1308                         header, height, broadcaster, fee_estimator, logger)
1309         }
1310
1311         /// Processes transactions confirmed in a block with the given header and height, returning new
1312         /// outputs to watch. See [`block_connected`] for details.
1313         ///
1314         /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1315         /// blocks. See [`chain::Confirm`] for calling expectations.
1316         ///
1317         /// [`block_connected`]: Self::block_connected
1318         pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1319                 &self,
1320                 header: &BlockHeader,
1321                 txdata: &TransactionData,
1322                 height: u32,
1323                 broadcaster: B,
1324                 fee_estimator: F,
1325                 logger: L,
1326         ) -> Vec<TransactionOutputs>
1327         where
1328                 B::Target: BroadcasterInterface,
1329                 F::Target: FeeEstimator,
1330                 L::Target: Logger,
1331         {
1332                 self.inner.lock().unwrap().transactions_confirmed(
1333                         header, txdata, height, broadcaster, fee_estimator, logger)
1334         }
1335
1336         /// Processes a transaction that was reorganized out of the chain.
1337         ///
1338         /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1339         /// than blocks. See [`chain::Confirm`] for calling expectations.
1340         ///
1341         /// [`block_disconnected`]: Self::block_disconnected
1342         pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1343                 &self,
1344                 txid: &Txid,
1345                 broadcaster: B,
1346                 fee_estimator: F,
1347                 logger: L,
1348         ) where
1349                 B::Target: BroadcasterInterface,
1350                 F::Target: FeeEstimator,
1351                 L::Target: Logger,
1352         {
1353                 self.inner.lock().unwrap().transaction_unconfirmed(
1354                         txid, broadcaster, fee_estimator, logger);
1355         }
1356
1357         /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1358         /// [`block_connected`] for details.
1359         ///
1360         /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1361         /// blocks. See [`chain::Confirm`] for calling expectations.
1362         ///
1363         /// [`block_connected`]: Self::block_connected
1364         pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1365                 &self,
1366                 header: &BlockHeader,
1367                 height: u32,
1368                 broadcaster: B,
1369                 fee_estimator: F,
1370                 logger: L,
1371         ) -> Vec<TransactionOutputs>
1372         where
1373                 B::Target: BroadcasterInterface,
1374                 F::Target: FeeEstimator,
1375                 L::Target: Logger,
1376         {
1377                 self.inner.lock().unwrap().best_block_updated(
1378                         header, height, broadcaster, fee_estimator, logger)
1379         }
1380
1381         /// Returns the set of txids that should be monitored for re-organization out of the chain.
1382         pub fn get_relevant_txids(&self) -> Vec<Txid> {
1383                 let inner = self.inner.lock().unwrap();
1384                 let mut txids: Vec<Txid> = inner.onchain_events_awaiting_threshold_conf
1385                         .iter()
1386                         .map(|entry| entry.txid)
1387                         .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1388                         .collect();
1389                 txids.sort_unstable();
1390                 txids.dedup();
1391                 txids
1392         }
1393 }
1394
1395 impl<Signer: Sign> ChannelMonitorImpl<Signer> {
1396         /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
1397         /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
1398         /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
1399         fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
1400                 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
1401                         return Err(MonitorUpdateError("Previous secret did not match new one"));
1402                 }
1403
1404                 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
1405                 // events for now-revoked/fulfilled HTLCs.
1406                 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
1407                         for &mut (_, ref mut source) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
1408                                 *source = None;
1409                         }
1410                 }
1411
1412                 if !self.payment_preimages.is_empty() {
1413                         let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
1414                         let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
1415                         let min_idx = self.get_min_seen_secret();
1416                         let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
1417
1418                         self.payment_preimages.retain(|&k, _| {
1419                                 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
1420                                         if k == htlc.payment_hash {
1421                                                 return true
1422                                         }
1423                                 }
1424                                 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
1425                                         for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
1426                                                 if k == htlc.payment_hash {
1427                                                         return true
1428                                                 }
1429                                         }
1430                                 }
1431                                 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
1432                                         if *cn < min_idx {
1433                                                 return true
1434                                         }
1435                                         true
1436                                 } else { false };
1437                                 if contains {
1438                                         counterparty_hash_commitment_number.remove(&k);
1439                                 }
1440                                 false
1441                         });
1442                 }
1443
1444                 Ok(())
1445         }
1446
1447         pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey, logger: &L) where L::Target: Logger {
1448                 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
1449                 // so that a remote monitor doesn't learn anything unless there is a malicious close.
1450                 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
1451                 // timeouts)
1452                 for &(ref htlc, _) in &htlc_outputs {
1453                         self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
1454                 }
1455
1456                 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
1457                 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
1458                 self.current_counterparty_commitment_txid = Some(txid);
1459                 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
1460                 self.current_counterparty_commitment_number = commitment_number;
1461                 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
1462                 match self.their_cur_revocation_points {
1463                         Some(old_points) => {
1464                                 if old_points.0 == commitment_number + 1 {
1465                                         self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
1466                                 } else if old_points.0 == commitment_number + 2 {
1467                                         if let Some(old_second_point) = old_points.2 {
1468                                                 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
1469                                         } else {
1470                                                 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1471                                         }
1472                                 } else {
1473                                         self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1474                                 }
1475                         },
1476                         None => {
1477                                 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1478                         }
1479                 }
1480                 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
1481                 for htlc in htlc_outputs {
1482                         if htlc.0.transaction_output_index.is_some() {
1483                                 htlcs.push(htlc.0);
1484                         }
1485                 }
1486                 self.counterparty_tx_cache.per_htlc.insert(txid, htlcs);
1487         }
1488
1489         /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
1490         /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
1491         /// is important that any clones of this channel monitor (including remote clones) by kept
1492         /// up-to-date as our holder commitment transaction is updated.
1493         /// Panics if set_on_holder_tx_csv has never been called.
1494         fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>) -> Result<(), MonitorUpdateError> {
1495                 // block for Rust 1.34 compat
1496                 let mut new_holder_commitment_tx = {
1497                         let trusted_tx = holder_commitment_tx.trust();
1498                         let txid = trusted_tx.txid();
1499                         let tx_keys = trusted_tx.keys();
1500                         self.current_holder_commitment_number = trusted_tx.commitment_number();
1501                         HolderSignedTx {
1502                                 txid,
1503                                 revocation_key: tx_keys.revocation_key,
1504                                 a_htlc_key: tx_keys.broadcaster_htlc_key,
1505                                 b_htlc_key: tx_keys.countersignatory_htlc_key,
1506                                 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1507                                 per_commitment_point: tx_keys.per_commitment_point,
1508                                 feerate_per_kw: trusted_tx.feerate_per_kw(),
1509                                 htlc_outputs,
1510                         }
1511                 };
1512                 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
1513                 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
1514                 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
1515                 if self.holder_tx_signed {
1516                         return Err(MonitorUpdateError("Latest holder commitment signed has already been signed, update is rejected"));
1517                 }
1518                 Ok(())
1519         }
1520
1521         /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
1522         /// commitment_tx_infos which contain the payment hash have been revoked.
1523         fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B, fee_estimator: &F, logger: &L)
1524         where B::Target: BroadcasterInterface,
1525                     F::Target: FeeEstimator,
1526                     L::Target: Logger,
1527         {
1528                 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
1529
1530                 // If the channel is force closed, try to claim the output from this preimage.
1531                 // First check if a counterparty commitment transaction has been broadcasted:
1532                 macro_rules! claim_htlcs {
1533                         ($commitment_number: expr, $txid: expr) => {
1534                                 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs($commitment_number, $txid, None);
1535                                 self.onchain_tx_handler.update_claims_view(&Vec::new(), htlc_claim_reqs, None, broadcaster, fee_estimator, logger);
1536                         }
1537                 }
1538                 if let Some(txid) = self.current_counterparty_commitment_txid {
1539                         if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1540                                 claim_htlcs!(*commitment_number, txid);
1541                                 return;
1542                         }
1543                 }
1544                 if let Some(txid) = self.prev_counterparty_commitment_txid {
1545                         if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1546                                 claim_htlcs!(*commitment_number, txid);
1547                                 return;
1548                         }
1549                 }
1550
1551                 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
1552                 // claiming the HTLC output from each of the holder commitment transactions.
1553                 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
1554                 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
1555                 // holder commitment transactions.
1556                 if self.broadcasted_holder_revokable_script.is_some() {
1557                         let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
1558                         self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, None, broadcaster, fee_estimator, logger);
1559                         if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
1560                                 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx);
1561                                 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, None, broadcaster, fee_estimator, logger);
1562                         }
1563                 }
1564         }
1565
1566         pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
1567                 where B::Target: BroadcasterInterface,
1568                                         L::Target: Logger,
1569         {
1570                 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
1571                         log_info!(logger, "Broadcasting local {}", log_tx!(tx));
1572                         broadcaster.broadcast_transaction(tx);
1573                 }
1574                 self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
1575         }
1576
1577         pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: &F, logger: &L) -> Result<(), MonitorUpdateError>
1578         where B::Target: BroadcasterInterface,
1579                     F::Target: FeeEstimator,
1580                     L::Target: Logger,
1581         {
1582                 // ChannelMonitor updates may be applied after force close if we receive a
1583                 // preimage for a broadcasted commitment transaction HTLC output that we'd
1584                 // like to claim on-chain. If this is the case, we no longer have guaranteed
1585                 // access to the monitor's update ID, so we use a sentinel value instead.
1586                 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
1587                         match updates.updates[0] {
1588                                 ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
1589                                 _ => panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage"),
1590                         }
1591                         assert_eq!(updates.updates.len(), 1);
1592                 } else if self.latest_update_id + 1 != updates.update_id {
1593                         panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
1594                 }
1595                 for update in updates.updates.iter() {
1596                         match update {
1597                                 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs } => {
1598                                         log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
1599                                         if self.lockdown_from_offchain { panic!(); }
1600                                         self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone())?
1601                                 }
1602                                 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_revocation_point } => {
1603                                         log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
1604                                         self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_revocation_point, logger)
1605                                 },
1606                                 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
1607                                         log_trace!(logger, "Updating ChannelMonitor with payment preimage");
1608                                         self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, fee_estimator, logger)
1609                                 },
1610                                 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
1611                                         log_trace!(logger, "Updating ChannelMonitor with commitment secret");
1612                                         self.provide_secret(*idx, *secret)?
1613                                 },
1614                                 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
1615                                         log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
1616                                         self.lockdown_from_offchain = true;
1617                                         if *should_broadcast {
1618                                                 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
1619                                         } else if !self.holder_tx_signed {
1620                                                 log_error!(logger, "You have a toxic holder commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_holder_commitment_txn to be informed of manual action to take");
1621                                         } else {
1622                                                 // If we generated a MonitorEvent::CommitmentTxBroadcasted, the ChannelManager
1623                                                 // will still give us a ChannelForceClosed event with !should_broadcast, but we
1624                                                 // shouldn't print the scary warning above.
1625                                                 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
1626                                         }
1627                                 }
1628                         }
1629                 }
1630                 self.latest_update_id = updates.update_id;
1631                 Ok(())
1632         }
1633
1634         pub fn get_latest_update_id(&self) -> u64 {
1635                 self.latest_update_id
1636         }
1637
1638         pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
1639                 &self.funding_info
1640         }
1641
1642         pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
1643                 // If we've detected a counterparty commitment tx on chain, we must include it in the set
1644                 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
1645                 // its trivial to do, double-check that here.
1646                 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
1647                         self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
1648                 }
1649                 &self.outputs_to_watch
1650         }
1651
1652         pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
1653                 let mut ret = Vec::new();
1654                 mem::swap(&mut ret, &mut self.pending_monitor_events);
1655                 ret
1656         }
1657
1658         pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
1659                 let mut ret = Vec::new();
1660                 mem::swap(&mut ret, &mut self.pending_events);
1661                 ret
1662         }
1663
1664         /// Can only fail if idx is < get_min_seen_secret
1665         fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
1666                 self.commitment_secrets.get_secret(idx)
1667         }
1668
1669         pub(crate) fn get_min_seen_secret(&self) -> u64 {
1670                 self.commitment_secrets.get_min_seen_secret()
1671         }
1672
1673         pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1674                 self.current_counterparty_commitment_number
1675         }
1676
1677         pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1678                 self.current_holder_commitment_number
1679         }
1680
1681         /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
1682         /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
1683         /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
1684         /// HTLC-Success/HTLC-Timeout transactions.
1685         /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
1686         /// revoked counterparty commitment tx
1687         fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<ClaimRequest>, TransactionOutputs) where L::Target: Logger {
1688                 // Most secp and related errors trying to create keys means we have no hope of constructing
1689                 // a spend transaction...so we return no transactions to broadcast
1690                 let mut claimable_outpoints = Vec::new();
1691                 let mut watch_outputs = Vec::new();
1692
1693                 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1694                 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
1695
1696                 macro_rules! ignore_error {
1697                         ( $thing : expr ) => {
1698                                 match $thing {
1699                                         Ok(a) => a,
1700                                         Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs))
1701                                 }
1702                         };
1703                 }
1704
1705                 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1706                 if commitment_number >= self.get_min_seen_secret() {
1707                         let secret = self.get_secret(commitment_number).unwrap();
1708                         let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1709                         let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1710                         let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint));
1711                         let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.counterparty_tx_cache.counterparty_delayed_payment_base_key));
1712
1713                         let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_tx_cache.on_counterparty_tx_csv, &delayed_key);
1714                         let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
1715
1716                         // First, process non-htlc outputs (to_holder & to_counterparty)
1717                         for (idx, outp) in tx.output.iter().enumerate() {
1718                                 if outp.script_pubkey == revokeable_p2wsh {
1719                                         let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: outp.value, htlc: None, on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv};
1720                                         claimable_outpoints.push(ClaimRequest { absolute_timelock: height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 }, witness_data});
1721                                 }
1722                         }
1723
1724                         // Then, try to find revoked htlc outputs
1725                         if let Some(ref per_commitment_data) = per_commitment_option {
1726                                 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1727                                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1728                                                 if transaction_output_index as usize >= tx.output.len() ||
1729                                                                 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1730                                                         return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
1731                                                 }
1732                                                 let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, input_descriptor: if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }, amount: tx.output[transaction_output_index as usize].value, htlc: Some(htlc.clone()), on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv};
1733                                                 claimable_outpoints.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data });
1734                                         }
1735                                 }
1736                         }
1737
1738                         // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
1739                         if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
1740                                 // We're definitely a counterparty commitment transaction!
1741                                 log_trace!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
1742                                 for (idx, outp) in tx.output.iter().enumerate() {
1743                                         watch_outputs.push((idx as u32, outp.clone()));
1744                                 }
1745                                 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
1746
1747                                 macro_rules! check_htlc_fails {
1748                                         ($txid: expr, $commitment_tx: expr) => {
1749                                                 if let Some(ref outpoints) = self.counterparty_claimable_outpoints.get($txid) {
1750                                                         for &(ref htlc, ref source_option) in outpoints.iter() {
1751                                                                 if let &Some(ref source) = source_option {
1752                                                                         self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1753                                                                                 if entry.height != height { return true; }
1754                                                                                 match entry.event {
1755                                                                                          OnchainEvent::HTLCUpdate { ref htlc_update } => {
1756                                                                                                  htlc_update.0 != **source
1757                                                                                          },
1758                                                                                          _ => true,
1759                                                                                 }
1760                                                                         });
1761                                                                         let entry = OnchainEventEntry {
1762                                                                                 txid: *$txid,
1763                                                                                 height,
1764                                                                                 event: OnchainEvent::HTLCUpdate {
1765                                                                                         htlc_update: ((**source).clone(), htlc.payment_hash.clone())
1766                                                                                 },
1767                                                                         };
1768                                                                         log_info!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of revoked counterparty commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, entry.confirmation_threshold());
1769                                                                         self.onchain_events_awaiting_threshold_conf.push(entry);
1770                                                                 }
1771                                                         }
1772                                                 }
1773                                         }
1774                                 }
1775                                 if let Some(ref txid) = self.current_counterparty_commitment_txid {
1776                                         check_htlc_fails!(txid, "current");
1777                                 }
1778                                 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
1779                                         check_htlc_fails!(txid, "counterparty");
1780                                 }
1781                                 // No need to check holder commitment txn, symmetric HTLCSource must be present as per-htlc data on counterparty commitment tx
1782                         }
1783                 } else if let Some(per_commitment_data) = per_commitment_option {
1784                         // While this isn't useful yet, there is a potential race where if a counterparty
1785                         // revokes a state at the same time as the commitment transaction for that state is
1786                         // confirmed, and the watchtower receives the block before the user, the user could
1787                         // upload a new ChannelMonitor with the revocation secret but the watchtower has
1788                         // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
1789                         // not being generated by the above conditional. Thus, to be safe, we go ahead and
1790                         // insert it here.
1791                         for (idx, outp) in tx.output.iter().enumerate() {
1792                                 watch_outputs.push((idx as u32, outp.clone()));
1793                         }
1794                         self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
1795
1796                         log_trace!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
1797
1798                         macro_rules! check_htlc_fails {
1799                                 ($txid: expr, $commitment_tx: expr, $id: tt) => {
1800                                         if let Some(ref latest_outpoints) = self.counterparty_claimable_outpoints.get($txid) {
1801                                                 $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1802                                                         if let &Some(ref source) = source_option {
1803                                                                 // Check if the HTLC is present in the commitment transaction that was
1804                                                                 // broadcast, but not if it was below the dust limit, which we should
1805                                                                 // fail backwards immediately as there is no way for us to learn the
1806                                                                 // payment_preimage.
1807                                                                 // Note that if the dust limit were allowed to change between
1808                                                                 // commitment transactions we'd want to be check whether *any*
1809                                                                 // broadcastable commitment transaction has the HTLC in it, but it
1810                                                                 // cannot currently change after channel initialization, so we don't
1811                                                                 // need to here.
1812                                                                 for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
1813                                                                         if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
1814                                                                                 continue $id;
1815                                                                         }
1816                                                                 }
1817                                                                 log_trace!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of counterparty commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1818                                                                 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1819                                                                         if entry.height != height { return true; }
1820                                                                         match entry.event {
1821                                                                                  OnchainEvent::HTLCUpdate { ref htlc_update } => {
1822                                                                                          htlc_update.0 != **source
1823                                                                                  },
1824                                                                                  _ => true,
1825                                                                         }
1826                                                                 });
1827                                                                 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
1828                                                                         txid: *$txid,
1829                                                                         height,
1830                                                                         event: OnchainEvent::HTLCUpdate {
1831                                                                                 htlc_update: ((**source).clone(), htlc.payment_hash.clone())
1832                                                                         },
1833                                                                 });
1834                                                         }
1835                                                 }
1836                                         }
1837                                 }
1838                         }
1839                         if let Some(ref txid) = self.current_counterparty_commitment_txid {
1840                                 check_htlc_fails!(txid, "current", 'current_loop);
1841                         }
1842                         if let Some(ref txid) = self.prev_counterparty_commitment_txid {
1843                                 check_htlc_fails!(txid, "previous", 'prev_loop);
1844                         }
1845
1846                         let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs(commitment_number, commitment_txid, Some(tx));
1847                         for req in htlc_claim_reqs {
1848                                 claimable_outpoints.push(req);
1849                         }
1850
1851                 }
1852                 (claimable_outpoints, (commitment_txid, watch_outputs))
1853         }
1854
1855         fn get_counterparty_htlc_output_claim_reqs(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>) -> Vec<ClaimRequest> {
1856                 let mut claims = Vec::new();
1857                 if let Some(htlc_outputs) = self.counterparty_claimable_outpoints.get(&commitment_txid) {
1858                         if let Some(revocation_points) = self.their_cur_revocation_points {
1859                                 let revocation_point_option =
1860                                         // If the counterparty commitment tx is the latest valid state, use their latest
1861                                         // per-commitment point
1862                                         if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
1863                                         else if let Some(point) = revocation_points.2.as_ref() {
1864                                                 // If counterparty commitment tx is the state previous to the latest valid state, use
1865                                                 // their previous per-commitment point (non-atomicity of revocation means it's valid for
1866                                                 // them to temporarily have two valid commitment txns from our viewpoint)
1867                                                 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
1868                                         } else { None };
1869                                 if let Some(revocation_point) = revocation_point_option {
1870                                         for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
1871                                                 if let Some(transaction_output_index) = htlc.transaction_output_index {
1872                                                         if let Some(transaction) = tx {
1873                                                                 if transaction_output_index as usize >= transaction.output.len() ||
1874                                                                         transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1875                                                                                 return claims; // Corrupted per_commitment_data, fuck this user
1876                                                                         }
1877                                                         }
1878                                                         let preimage =
1879                                                                 if htlc.offered {
1880                                                                         if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) {
1881                                                                                 Some(*p)
1882                                                                         } else { None }
1883                                                                 } else { None };
1884                                                         let aggregable = if !htlc.offered { false } else { true };
1885                                                         if preimage.is_some() || !htlc.offered {
1886                                                                 let witness_data = InputMaterial::CounterpartyHTLC { per_commitment_point: *revocation_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key, preimage, htlc: htlc.clone() };
1887                                                                 claims.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data });
1888                                                         }
1889                                                 }
1890                                         }
1891                                 }
1892                         }
1893                 }
1894                 claims
1895         }
1896
1897         /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
1898         fn check_spend_counterparty_htlc<L: Deref>(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec<ClaimRequest>, Option<TransactionOutputs>) where L::Target: Logger {
1899                 let htlc_txid = tx.txid();
1900                 if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 {
1901                         return (Vec::new(), None)
1902                 }
1903
1904                 macro_rules! ignore_error {
1905                         ( $thing : expr ) => {
1906                                 match $thing {
1907                                         Ok(a) => a,
1908                                         Err(_) => return (Vec::new(), None)
1909                                 }
1910                         };
1911                 }
1912
1913                 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
1914                 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1915                 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1916
1917                 log_trace!(logger, "Counterparty HTLC broadcast {}:{}", htlc_txid, 0);
1918                 let witness_data = InputMaterial::Revoked { per_commitment_point, counterparty_delayed_payment_base_key: self.counterparty_tx_cache.counterparty_delayed_payment_base_key, counterparty_htlc_base_key: self.counterparty_tx_cache.counterparty_htlc_base_key,  per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: tx.output[0].value, htlc: None, on_counterparty_tx_csv: self.counterparty_tx_cache.on_counterparty_tx_csv };
1919                 let claimable_outpoints = vec!(ClaimRequest { absolute_timelock: height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: htlc_txid, vout: 0}, witness_data });
1920                 let outputs = vec![(0, tx.output[0].clone())];
1921                 (claimable_outpoints, Some((htlc_txid, outputs)))
1922         }
1923
1924         // Returns (1) `ClaimRequest`s that can be given to the OnChainTxHandler, so that the handler can
1925         // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
1926         // script so we can detect whether a holder transaction has been seen on-chain.
1927         fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx) -> (Vec<ClaimRequest>, Option<(Script, PublicKey, PublicKey)>) {
1928                 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
1929
1930                 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
1931                 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
1932
1933                 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
1934                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1935                                 claim_requests.push(ClaimRequest { absolute_timelock: ::core::u32::MAX, aggregable: false, outpoint: BitcoinOutPoint { txid: holder_tx.txid, vout: transaction_output_index as u32 },
1936                                         witness_data: InputMaterial::HolderHTLC {
1937                                                 preimage: if !htlc.offered {
1938                                                                 if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1939                                                                         Some(preimage.clone())
1940                                                                 } else {
1941                                                                         // We can't build an HTLC-Success transaction without the preimage
1942                                                                         continue;
1943                                                                 }
1944                                                         } else { None },
1945                                                 amount: htlc.amount_msat,
1946                                 }});
1947                         }
1948                 }
1949
1950                 (claim_requests, broadcasted_holder_revokable_script)
1951         }
1952
1953         // Returns holder HTLC outputs to watch and react to in case of spending.
1954         fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
1955                 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
1956                 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
1957                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1958                                 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
1959                         }
1960                 }
1961                 watch_outputs
1962         }
1963
1964         /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
1965         /// revoked using data in holder_claimable_outpoints.
1966         /// Should not be used if check_spend_revoked_transaction succeeds.
1967         fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<ClaimRequest>, TransactionOutputs) where L::Target: Logger {
1968                 let commitment_txid = tx.txid();
1969                 let mut claim_requests = Vec::new();
1970                 let mut watch_outputs = Vec::new();
1971
1972                 macro_rules! wait_threshold_conf {
1973                         ($source: expr, $commitment_tx: expr, $payment_hash: expr) => {
1974                                 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1975                                         if entry.height != height { return true; }
1976                                         match entry.event {
1977                                                  OnchainEvent::HTLCUpdate { ref htlc_update } => {
1978                                                          htlc_update.0 != $source
1979                                                  },
1980                                                  _ => true,
1981                                         }
1982                                 });
1983                                 let entry = OnchainEventEntry {
1984                                         txid: commitment_txid,
1985                                         height,
1986                                         event: OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash) },
1987                                 };
1988                                 log_trace!(logger, "Failing HTLC with payment_hash {} from {} holder commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, entry.confirmation_threshold());
1989                                 self.onchain_events_awaiting_threshold_conf.push(entry);
1990                         }
1991                 }
1992
1993                 macro_rules! append_onchain_update {
1994                         ($updates: expr, $to_watch: expr) => {
1995                                 claim_requests = $updates.0;
1996                                 self.broadcasted_holder_revokable_script = $updates.1;
1997                                 watch_outputs.append(&mut $to_watch);
1998                         }
1999                 }
2000
2001                 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
2002                 let mut is_holder_tx = false;
2003
2004                 if self.current_holder_commitment_tx.txid == commitment_txid {
2005                         is_holder_tx = true;
2006                         log_trace!(logger, "Got latest holder commitment tx broadcast, searching for available HTLCs to claim");
2007                         let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
2008                         let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
2009                         append_onchain_update!(res, to_watch);
2010                 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
2011                         if holder_tx.txid == commitment_txid {
2012                                 is_holder_tx = true;
2013                                 log_trace!(logger, "Got previous holder commitment tx broadcast, searching for available HTLCs to claim");
2014                                 let res = self.get_broadcasted_holder_claims(holder_tx);
2015                                 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
2016                                 append_onchain_update!(res, to_watch);
2017                         }
2018                 }
2019
2020                 macro_rules! fail_dust_htlcs_after_threshold_conf {
2021                         ($holder_tx: expr) => {
2022                                 for &(ref htlc, _, ref source) in &$holder_tx.htlc_outputs {
2023                                         if htlc.transaction_output_index.is_none() {
2024                                                 if let &Some(ref source) = source {
2025                                                         wait_threshold_conf!(source.clone(), "lastest", htlc.payment_hash.clone());
2026                                                 }
2027                                         }
2028                                 }
2029                         }
2030                 }
2031
2032                 if is_holder_tx {
2033                         fail_dust_htlcs_after_threshold_conf!(self.current_holder_commitment_tx);
2034                         if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
2035                                 fail_dust_htlcs_after_threshold_conf!(holder_tx);
2036                         }
2037                 }
2038
2039                 (claim_requests, (commitment_txid, watch_outputs))
2040         }
2041
2042         pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2043                 log_trace!(logger, "Getting signed latest holder commitment transaction!");
2044                 self.holder_tx_signed = true;
2045                 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2046                 let txid = commitment_tx.txid();
2047                 let mut res = vec![commitment_tx];
2048                 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2049                         if let Some(vout) = htlc.0.transaction_output_index {
2050                                 let preimage = if !htlc.0.offered {
2051                                         if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2052                                                 // We can't build an HTLC-Success transaction without the preimage
2053                                                 continue;
2054                                         }
2055                                 } else { None };
2056                                 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
2057                                         &::bitcoin::OutPoint { txid, vout }, &preimage) {
2058                                         res.push(htlc_tx);
2059                                 }
2060                         }
2061                 }
2062                 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
2063                 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
2064                 return res;
2065         }
2066
2067         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
2068         fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2069                 log_trace!(logger, "Getting signed copy of latest holder commitment transaction!");
2070                 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
2071                 let txid = commitment_tx.txid();
2072                 let mut res = vec![commitment_tx];
2073                 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2074                         if let Some(vout) = htlc.0.transaction_output_index {
2075                                 let preimage = if !htlc.0.offered {
2076                                         if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2077                                                 // We can't build an HTLC-Success transaction without the preimage
2078                                                 continue;
2079                                         }
2080                                 } else { None };
2081                                 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
2082                                         &::bitcoin::OutPoint { txid, vout }, &preimage) {
2083                                         res.push(htlc_tx);
2084                                 }
2085                         }
2086                 }
2087                 return res
2088         }
2089
2090         pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
2091                 where B::Target: BroadcasterInterface,
2092                       F::Target: FeeEstimator,
2093                                         L::Target: Logger,
2094         {
2095                 let block_hash = header.block_hash();
2096                 log_trace!(logger, "New best block {} at height {}", block_hash, height);
2097                 self.best_block = BestBlock::new(block_hash, height);
2098
2099                 self.transactions_confirmed(header, txdata, height, broadcaster, fee_estimator, logger)
2100         }
2101
2102         fn best_block_updated<B: Deref, F: Deref, L: Deref>(
2103                 &mut self,
2104                 header: &BlockHeader,
2105                 height: u32,
2106                 broadcaster: B,
2107                 fee_estimator: F,
2108                 logger: L,
2109         ) -> Vec<TransactionOutputs>
2110         where
2111                 B::Target: BroadcasterInterface,
2112                 F::Target: FeeEstimator,
2113                 L::Target: Logger,
2114         {
2115                 let block_hash = header.block_hash();
2116                 log_trace!(logger, "New best block {} at height {}", block_hash, height);
2117
2118                 if height > self.best_block.height() {
2119                         self.best_block = BestBlock::new(block_hash, height);
2120                         self.block_confirmed(height, vec![], vec![], vec![], broadcaster, fee_estimator, logger)
2121                 } else {
2122                         self.best_block = BestBlock::new(block_hash, height);
2123                         self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
2124                         self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
2125                         Vec::new()
2126                 }
2127         }
2128
2129         fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
2130                 &mut self,
2131                 header: &BlockHeader,
2132                 txdata: &TransactionData,
2133                 height: u32,
2134                 broadcaster: B,
2135                 fee_estimator: F,
2136                 logger: L,
2137         ) -> Vec<TransactionOutputs>
2138         where
2139                 B::Target: BroadcasterInterface,
2140                 F::Target: FeeEstimator,
2141                 L::Target: Logger,
2142         {
2143                 let txn_matched = self.filter_block(txdata);
2144                 for tx in &txn_matched {
2145                         let mut output_val = 0;
2146                         for out in tx.output.iter() {
2147                                 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2148                                 output_val += out.value;
2149                                 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2150                         }
2151                 }
2152
2153                 let block_hash = header.block_hash();
2154                 log_trace!(logger, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len());
2155
2156                 let mut watch_outputs = Vec::new();
2157                 let mut claimable_outpoints = Vec::new();
2158                 for tx in &txn_matched {
2159                         if tx.input.len() == 1 {
2160                                 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2161                                 // commitment transactions and HTLC transactions will all only ever have one input,
2162                                 // which is an easy way to filter out any potential non-matching txn for lazy
2163                                 // filters.
2164                                 let prevout = &tx.input[0].previous_output;
2165                                 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
2166                                         if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
2167                                                 let (mut new_outpoints, new_outputs) = self.check_spend_counterparty_transaction(&tx, height, &logger);
2168                                                 if !new_outputs.1.is_empty() {
2169                                                         watch_outputs.push(new_outputs);
2170                                                 }
2171                                                 if new_outpoints.is_empty() {
2172                                                         let (mut new_outpoints, new_outputs) = self.check_spend_holder_transaction(&tx, height, &logger);
2173                                                         if !new_outputs.1.is_empty() {
2174                                                                 watch_outputs.push(new_outputs);
2175                                                         }
2176                                                         claimable_outpoints.append(&mut new_outpoints);
2177                                                 }
2178                                                 claimable_outpoints.append(&mut new_outpoints);
2179                                         }
2180                                 } else {
2181                                         if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&prevout.txid) {
2182                                                 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(&tx, commitment_number, height, &logger);
2183                                                 claimable_outpoints.append(&mut new_outpoints);
2184                                                 if let Some(new_outputs) = new_outputs_option {
2185                                                         watch_outputs.push(new_outputs);
2186                                                 }
2187                                         }
2188                                 }
2189                         }
2190                         // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
2191                         // can also be resolved in a few other ways which can have more than one output. Thus,
2192                         // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
2193                         self.is_resolving_htlc_output(&tx, height, &logger);
2194
2195                         self.is_paying_spendable_output(&tx, height, &logger);
2196                 }
2197
2198                 self.block_confirmed(height, txn_matched, watch_outputs, claimable_outpoints, broadcaster, fee_estimator, logger)
2199         }
2200
2201         fn block_confirmed<B: Deref, F: Deref, L: Deref>(
2202                 &mut self,
2203                 height: u32,
2204                 txn_matched: Vec<&Transaction>,
2205                 mut watch_outputs: Vec<TransactionOutputs>,
2206                 mut claimable_outpoints: Vec<ClaimRequest>,
2207                 broadcaster: B,
2208                 fee_estimator: F,
2209                 logger: L,
2210         ) -> Vec<TransactionOutputs>
2211         where
2212                 B::Target: BroadcasterInterface,
2213                 F::Target: FeeEstimator,
2214                 L::Target: Logger,
2215         {
2216                 let should_broadcast = self.would_broadcast_at_height(height, &logger);
2217                 if should_broadcast {
2218                         claimable_outpoints.push(ClaimRequest { absolute_timelock: height, aggregable: false, outpoint: BitcoinOutPoint { txid: self.funding_info.0.txid.clone(), vout: self.funding_info.0.index as u32 }, witness_data: InputMaterial::Funding { funding_redeemscript: self.funding_redeemscript.clone() }});
2219                         self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
2220                         let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2221                         self.holder_tx_signed = true;
2222                         let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx);
2223                         let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
2224                         if !new_outputs.is_empty() {
2225                                 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
2226                         }
2227                         claimable_outpoints.append(&mut new_outpoints);
2228                 }
2229
2230                 // Find which on-chain events have reached their confirmation threshold.
2231                 let onchain_events_awaiting_threshold_conf =
2232                         self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
2233                 let mut onchain_events_reaching_threshold_conf = Vec::new();
2234                 for entry in onchain_events_awaiting_threshold_conf {
2235                         if entry.has_reached_confirmation_threshold(height) {
2236                                 onchain_events_reaching_threshold_conf.push(entry);
2237                         } else {
2238                                 self.onchain_events_awaiting_threshold_conf.push(entry);
2239                         }
2240                 }
2241
2242                 // Used to check for duplicate HTLC resolutions.
2243                 #[cfg(debug_assertions)]
2244                 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
2245                         .iter()
2246                         .filter_map(|entry| match &entry.event {
2247                                 OnchainEvent::HTLCUpdate { htlc_update } => Some(htlc_update.0.clone()),
2248                                 OnchainEvent::MaturingOutput { .. } => None,
2249                         })
2250                         .collect();
2251                 #[cfg(debug_assertions)]
2252                 let mut matured_htlcs = Vec::new();
2253
2254                 // Produce actionable events from on-chain events having reached their threshold.
2255                 for entry in onchain_events_reaching_threshold_conf.drain(..) {
2256                         match entry.event {
2257                                 OnchainEvent::HTLCUpdate { htlc_update } => {
2258                                         // Check for duplicate HTLC resolutions.
2259                                         #[cfg(debug_assertions)]
2260                                         {
2261                                                 debug_assert!(
2262                                                         unmatured_htlcs.iter().find(|&htlc| htlc == &htlc_update.0).is_none(),
2263                                                         "An unmature HTLC transaction conflicts with a maturing one; failed to \
2264                                                          call either transaction_unconfirmed for the conflicting transaction \
2265                                                          or block_disconnected for a block containing it.");
2266                                                 debug_assert!(
2267                                                         matured_htlcs.iter().find(|&htlc| htlc == &htlc_update.0).is_none(),
2268                                                         "A matured HTLC transaction conflicts with a maturing one; failed to \
2269                                                          call either transaction_unconfirmed for the conflicting transaction \
2270                                                          or block_disconnected for a block containing it.");
2271                                                 matured_htlcs.push(htlc_update.0.clone());
2272                                         }
2273
2274                                         log_trace!(logger, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!((htlc_update.1).0));
2275                                         self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2276                                                 payment_hash: htlc_update.1,
2277                                                 payment_preimage: None,
2278                                                 source: htlc_update.0,
2279                                         }));
2280                                 },
2281                                 OnchainEvent::MaturingOutput { descriptor } => {
2282                                         log_trace!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
2283                                         self.pending_events.push(Event::SpendableOutputs {
2284                                                 outputs: vec![descriptor]
2285                                         });
2286                                 }
2287                         }
2288                 }
2289
2290                 self.onchain_tx_handler.update_claims_view(&txn_matched, claimable_outpoints, Some(height), &&*broadcaster, &&*fee_estimator, &&*logger);
2291
2292                 // Determine new outputs to watch by comparing against previously known outputs to watch,
2293                 // updating the latter in the process.
2294                 watch_outputs.retain(|&(ref txid, ref txouts)| {
2295                         let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
2296                         self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
2297                 });
2298                 #[cfg(test)]
2299                 {
2300                         // If we see a transaction for which we registered outputs previously,
2301                         // make sure the registered scriptpubkey at the expected index match
2302                         // the actual transaction output one. We failed this case before #653.
2303                         for tx in &txn_matched {
2304                                 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
2305                                         for idx_and_script in outputs.iter() {
2306                                                 assert!((idx_and_script.0 as usize) < tx.output.len());
2307                                                 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
2308                                         }
2309                                 }
2310                         }
2311                 }
2312                 watch_outputs
2313         }
2314
2315         pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
2316                 where B::Target: BroadcasterInterface,
2317                       F::Target: FeeEstimator,
2318                       L::Target: Logger,
2319         {
2320                 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
2321
2322                 //We may discard:
2323                 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
2324                 //- maturing spendable output has transaction paying us has been disconnected
2325                 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
2326
2327                 self.onchain_tx_handler.block_disconnected(height, broadcaster, fee_estimator, logger);
2328
2329                 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
2330         }
2331
2332         fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
2333                 &mut self,
2334                 txid: &Txid,
2335                 broadcaster: B,
2336                 fee_estimator: F,
2337                 logger: L,
2338         ) where
2339                 B::Target: BroadcasterInterface,
2340                 F::Target: FeeEstimator,
2341                 L::Target: Logger,
2342         {
2343                 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.txid != *txid);
2344                 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
2345         }
2346
2347         /// Filters a block's `txdata` for transactions spending watched outputs or for any child
2348         /// transactions thereof.
2349         fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
2350                 let mut matched_txn = HashSet::new();
2351                 txdata.iter().filter(|&&(_, tx)| {
2352                         let mut matches = self.spends_watched_output(tx);
2353                         for input in tx.input.iter() {
2354                                 if matches { break; }
2355                                 if matched_txn.contains(&input.previous_output.txid) {
2356                                         matches = true;
2357                                 }
2358                         }
2359                         if matches {
2360                                 matched_txn.insert(tx.txid());
2361                         }
2362                         matches
2363                 }).map(|(_, tx)| *tx).collect()
2364         }
2365
2366         /// Checks if a given transaction spends any watched outputs.
2367         fn spends_watched_output(&self, tx: &Transaction) -> bool {
2368                 for input in tx.input.iter() {
2369                         if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
2370                                 for (idx, _script_pubkey) in outputs.iter() {
2371                                         if *idx == input.previous_output.vout {
2372                                                 #[cfg(test)]
2373                                                 {
2374                                                         // If the expected script is a known type, check that the witness
2375                                                         // appears to be spending the correct type (ie that the match would
2376                                                         // actually succeed in BIP 158/159-style filters).
2377                                                         if _script_pubkey.is_v0_p2wsh() {
2378                                                                 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().clone()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
2379                                                         } else if _script_pubkey.is_v0_p2wpkh() {
2380                                                                 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
2381                                                         } else { panic!(); }
2382                                                 }
2383                                                 return true;
2384                                         }
2385                                 }
2386                         }
2387                 }
2388
2389                 false
2390         }
2391
2392         fn would_broadcast_at_height<L: Deref>(&self, height: u32, logger: &L) -> bool where L::Target: Logger {
2393                 // We need to consider all HTLCs which are:
2394                 //  * in any unrevoked counterparty commitment transaction, as they could broadcast said
2395                 //    transactions and we'd end up in a race, or
2396                 //  * are in our latest holder commitment transaction, as this is the thing we will
2397                 //    broadcast if we go on-chain.
2398                 // Note that we consider HTLCs which were below dust threshold here - while they don't
2399                 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
2400                 // to the source, and if we don't fail the channel we will have to ensure that the next
2401                 // updates that peer sends us are update_fails, failing the channel if not. It's probably
2402                 // easier to just fail the channel as this case should be rare enough anyway.
2403                 macro_rules! scan_commitment {
2404                         ($htlcs: expr, $holder_tx: expr) => {
2405                                 for ref htlc in $htlcs {
2406                                         // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
2407                                         // chain with enough room to claim the HTLC without our counterparty being able to
2408                                         // time out the HTLC first.
2409                                         // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
2410                                         // concern is being able to claim the corresponding inbound HTLC (on another
2411                                         // channel) before it expires. In fact, we don't even really care if our
2412                                         // counterparty here claims such an outbound HTLC after it expired as long as we
2413                                         // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
2414                                         // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
2415                                         // we give ourselves a few blocks of headroom after expiration before going
2416                                         // on-chain for an expired HTLC.
2417                                         // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
2418                                         // from us until we've reached the point where we go on-chain with the
2419                                         // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
2420                                         // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
2421                                         //  aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
2422                                         //      inbound_cltv == height + CLTV_CLAIM_BUFFER
2423                                         //      outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
2424                                         //      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
2425                                         //      CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
2426                                         //      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
2427                                         //  The final, above, condition is checked for statically in channelmanager
2428                                         //  with CHECK_CLTV_EXPIRY_SANITY_2.
2429                                         let htlc_outbound = $holder_tx == htlc.offered;
2430                                         if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
2431                                            (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
2432                                                 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
2433                                                 return true;
2434                                         }
2435                                 }
2436                         }
2437                 }
2438
2439                 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
2440
2441                 if let Some(ref txid) = self.current_counterparty_commitment_txid {
2442                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2443                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2444                         }
2445                 }
2446                 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
2447                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2448                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2449                         }
2450                 }
2451
2452                 false
2453         }
2454
2455         /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
2456         /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
2457         fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2458                 'outer_loop: for input in &tx.input {
2459                         let mut payment_data = None;
2460                         let revocation_sig_claim = (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC) && input.witness[1].len() == 33)
2461                                 || (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::AcceptedHTLC) && input.witness[1].len() == 33);
2462                         let accepted_preimage_claim = input.witness.len() == 5 && HTLCType::scriptlen_to_htlctype(input.witness[4].len()) == Some(HTLCType::AcceptedHTLC);
2463                         let offered_preimage_claim = input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC);
2464
2465                         macro_rules! log_claim {
2466                                 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
2467                                         // We found the output in question, but aren't failing it backwards
2468                                         // as we have no corresponding source and no valid counterparty commitment txid
2469                                         // to try a weak source binding with same-hash, same-value still-valid offered HTLC.
2470                                         // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction.
2471                                         let outbound_htlc = $holder_tx == $htlc.offered;
2472                                         if ($holder_tx && revocation_sig_claim) ||
2473                                                         (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
2474                                                 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
2475                                                         $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2476                                                         if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2477                                                         if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
2478                                         } else {
2479                                                 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
2480                                                         $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2481                                                         if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2482                                                         if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2483                                         }
2484                                 }
2485                         }
2486
2487                         macro_rules! check_htlc_valid_counterparty {
2488                                 ($counterparty_txid: expr, $htlc_output: expr) => {
2489                                         if let Some(txid) = $counterparty_txid {
2490                                                 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2491                                                         if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2492                                                                 if let &Some(ref source) = pending_source {
2493                                                                         log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
2494                                                                         payment_data = Some(((**source).clone(), $htlc_output.payment_hash));
2495                                                                         break;
2496                                                                 }
2497                                                         }
2498                                                 }
2499                                         }
2500                                 }
2501                         }
2502
2503                         macro_rules! scan_commitment {
2504                                 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
2505                                         for (ref htlc_output, source_option) in $htlcs {
2506                                                 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2507                                                         if let Some(ref source) = source_option {
2508                                                                 log_claim!($tx_info, $holder_tx, htlc_output, true);
2509                                                                 // We have a resolution of an HTLC either from one of our latest
2510                                                                 // holder commitment transactions or an unrevoked counterparty commitment
2511                                                                 // transaction. This implies we either learned a preimage, the HTLC
2512                                                                 // has timed out, or we screwed up. In any case, we should now
2513                                                                 // resolve the source HTLC with the original sender.
2514                                                                 payment_data = Some(((*source).clone(), htlc_output.payment_hash));
2515                                                         } else if !$holder_tx {
2516                                                                         check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
2517                                                                 if payment_data.is_none() {
2518                                                                         check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
2519                                                                 }
2520                                                         }
2521                                                         if payment_data.is_none() {
2522                                                                 log_claim!($tx_info, $holder_tx, htlc_output, false);
2523                                                                 continue 'outer_loop;
2524                                                         }
2525                                                 }
2526                                         }
2527                                 }
2528                         }
2529
2530                         if input.previous_output.txid == self.current_holder_commitment_tx.txid {
2531                                 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2532                                         "our latest holder commitment tx", true);
2533                         }
2534                         if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
2535                                 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
2536                                         scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2537                                                 "our previous holder commitment tx", true);
2538                                 }
2539                         }
2540                         if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
2541                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2542                                         "counterparty commitment tx", false);
2543                         }
2544
2545                         // Check that scan_commitment, above, decided there is some source worth relaying an
2546                         // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2547                         if let Some((source, payment_hash)) = payment_data {
2548                                 let mut payment_preimage = PaymentPreimage([0; 32]);
2549                                 if accepted_preimage_claim {
2550                                         if !self.pending_monitor_events.iter().any(
2551                                                 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
2552                                                 payment_preimage.0.copy_from_slice(&input.witness[3]);
2553                                                 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2554                                                         source,
2555                                                         payment_preimage: Some(payment_preimage),
2556                                                         payment_hash
2557                                                 }));
2558                                         }
2559                                 } else if offered_preimage_claim {
2560                                         if !self.pending_monitor_events.iter().any(
2561                                                 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
2562                                                         upd.source == source
2563                                                 } else { false }) {
2564                                                 payment_preimage.0.copy_from_slice(&input.witness[1]);
2565                                                 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2566                                                         source,
2567                                                         payment_preimage: Some(payment_preimage),
2568                                                         payment_hash
2569                                                 }));
2570                                         }
2571                                 } else {
2572                                         self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
2573                                                 if entry.height != height { return true; }
2574                                                 match entry.event {
2575                                                          OnchainEvent::HTLCUpdate { ref htlc_update } => {
2576                                                                  htlc_update.0 != source
2577                                                          },
2578                                                          _ => true,
2579                                                 }
2580                                         });
2581                                         let entry = OnchainEventEntry {
2582                                                 txid: tx.txid(),
2583                                                 height,
2584                                                 event: OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash) },
2585                                         };
2586                                         log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height{})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
2587                                         self.onchain_events_awaiting_threshold_conf.push(entry);
2588                                 }
2589                         }
2590                 }
2591         }
2592
2593         /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
2594         fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2595                 let mut spendable_output = None;
2596                 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
2597                         if i > ::core::u16::MAX as usize {
2598                                 // While it is possible that an output exists on chain which is greater than the
2599                                 // 2^16th output in a given transaction, this is only possible if the output is not
2600                                 // in a lightning transaction and was instead placed there by some third party who
2601                                 // wishes to give us money for no reason.
2602                                 // Namely, any lightning transactions which we pre-sign will never have anywhere
2603                                 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
2604                                 // scripts are not longer than one byte in length and because they are inherently
2605                                 // non-standard due to their size.
2606                                 // Thus, it is completely safe to ignore such outputs, and while it may result in
2607                                 // us ignoring non-lightning fund to us, that is only possible if someone fills
2608                                 // nearly a full block with garbage just to hit this case.
2609                                 continue;
2610                         }
2611                         if outp.script_pubkey == self.destination_script {
2612                                 spendable_output =  Some(SpendableOutputDescriptor::StaticOutput {
2613                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2614                                         output: outp.clone(),
2615                                 });
2616                                 break;
2617                         } else if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
2618                                 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
2619                                         spendable_output =  Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
2620                                                 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2621                                                 per_commitment_point: broadcasted_holder_revokable_script.1,
2622                                                 to_self_delay: self.on_holder_tx_csv,
2623                                                 output: outp.clone(),
2624                                                 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
2625                                                 channel_keys_id: self.channel_keys_id,
2626                                                 channel_value_satoshis: self.channel_value_satoshis,
2627                                         }));
2628                                         break;
2629                                 }
2630                         } else if self.counterparty_payment_script == outp.script_pubkey {
2631                                 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
2632                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2633                                         output: outp.clone(),
2634                                         channel_keys_id: self.channel_keys_id,
2635                                         channel_value_satoshis: self.channel_value_satoshis,
2636                                 }));
2637                                 break;
2638                         } else if outp.script_pubkey == self.shutdown_script {
2639                                 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
2640                                         outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2641                                         output: outp.clone(),
2642                                 });
2643                         }
2644                 }
2645                 if let Some(spendable_output) = spendable_output {
2646                         let entry = OnchainEventEntry {
2647                                 txid: tx.txid(),
2648                                 height: height,
2649                                 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
2650                         };
2651                         log_trace!(logger, "Maturing {} until {}", log_spendable!(spendable_output), entry.confirmation_threshold());
2652                         self.onchain_events_awaiting_threshold_conf.push(entry);
2653                 }
2654         }
2655 }
2656
2657 /// `Persist` defines behavior for persisting channel monitors: this could mean
2658 /// writing once to disk, and/or uploading to one or more backup services.
2659 ///
2660 /// Note that for every new monitor, you **must** persist the new `ChannelMonitor`
2661 /// to disk/backups. And, on every update, you **must** persist either the
2662 /// `ChannelMonitorUpdate` or the updated monitor itself. Otherwise, there is risk
2663 /// of situations such as revoking a transaction, then crashing before this
2664 /// revocation can be persisted, then unintentionally broadcasting a revoked
2665 /// transaction and losing money. This is a risk because previous channel states
2666 /// are toxic, so it's important that whatever channel state is persisted is
2667 /// kept up-to-date.
2668 pub trait Persist<ChannelSigner: Sign> {
2669         /// Persist a new channel's data. The data can be stored any way you want, but
2670         /// the identifier provided by Rust-Lightning is the channel's outpoint (and
2671         /// it is up to you to maintain a correct mapping between the outpoint and the
2672         /// stored channel data). Note that you **must** persist every new monitor to
2673         /// disk. See the `Persist` trait documentation for more details.
2674         ///
2675         /// See [`ChannelMonitor::write`] for writing out a `ChannelMonitor`,
2676         /// and [`ChannelMonitorUpdateErr`] for requirements when returning errors.
2677         fn persist_new_channel(&self, id: OutPoint, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
2678
2679         /// Update one channel's data. The provided `ChannelMonitor` has already
2680         /// applied the given update.
2681         ///
2682         /// Note that on every update, you **must** persist either the
2683         /// `ChannelMonitorUpdate` or the updated monitor itself to disk/backups. See
2684         /// the `Persist` trait documentation for more details.
2685         ///
2686         /// If an implementer chooses to persist the updates only, they need to make
2687         /// sure that all the updates are applied to the `ChannelMonitors` *before*
2688         /// the set of channel monitors is given to the `ChannelManager`
2689         /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
2690         /// applying a monitor update to a monitor. If full `ChannelMonitors` are
2691         /// persisted, then there is no need to persist individual updates.
2692         ///
2693         /// Note that there could be a performance tradeoff between persisting complete
2694         /// channel monitors on every update vs. persisting only updates and applying
2695         /// them in batches. The size of each monitor grows `O(number of state updates)`
2696         /// whereas updates are small and `O(1)`.
2697         ///
2698         /// See [`ChannelMonitor::write`] for writing out a `ChannelMonitor`,
2699         /// [`ChannelMonitorUpdate::write`] for writing out an update, and
2700         /// [`ChannelMonitorUpdateErr`] for requirements when returning errors.
2701         fn update_persisted_channel(&self, id: OutPoint, update: &ChannelMonitorUpdate, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
2702 }
2703
2704 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
2705 where
2706         T::Target: BroadcasterInterface,
2707         F::Target: FeeEstimator,
2708         L::Target: Logger,
2709 {
2710         fn block_connected(&self, block: &Block, height: u32) {
2711                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
2712                 self.0.block_connected(&block.header, &txdata, height, &*self.1, &*self.2, &*self.3);
2713         }
2714
2715         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
2716                 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
2717         }
2718 }
2719
2720 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Confirm for (ChannelMonitor<Signer>, T, F, L)
2721 where
2722         T::Target: BroadcasterInterface,
2723         F::Target: FeeEstimator,
2724         L::Target: Logger,
2725 {
2726         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
2727                 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
2728         }
2729
2730         fn transaction_unconfirmed(&self, txid: &Txid) {
2731                 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
2732         }
2733
2734         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
2735                 self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
2736         }
2737
2738         fn get_relevant_txids(&self) -> Vec<Txid> {
2739                 self.0.get_relevant_txids()
2740         }
2741 }
2742
2743 const MAX_ALLOC_SIZE: usize = 64*1024;
2744
2745 impl<'a, Signer: Sign, K: KeysInterface<Signer = Signer>> ReadableArgs<&'a K>
2746                 for (BlockHash, ChannelMonitor<Signer>) {
2747         fn read<R: ::std::io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
2748                 macro_rules! unwrap_obj {
2749                         ($key: expr) => {
2750                                 match $key {
2751                                         Ok(res) => res,
2752                                         Err(_) => return Err(DecodeError::InvalidValue),
2753                                 }
2754                         }
2755                 }
2756
2757                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
2758
2759                 let latest_update_id: u64 = Readable::read(reader)?;
2760                 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
2761
2762                 let destination_script = Readable::read(reader)?;
2763                 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
2764                         0 => {
2765                                 let revokable_address = Readable::read(reader)?;
2766                                 let per_commitment_point = Readable::read(reader)?;
2767                                 let revokable_script = Readable::read(reader)?;
2768                                 Some((revokable_address, per_commitment_point, revokable_script))
2769                         },
2770                         1 => { None },
2771                         _ => return Err(DecodeError::InvalidValue),
2772                 };
2773                 let counterparty_payment_script = Readable::read(reader)?;
2774                 let shutdown_script = Readable::read(reader)?;
2775
2776                 let channel_keys_id = Readable::read(reader)?;
2777                 let holder_revocation_basepoint = Readable::read(reader)?;
2778                 // Technically this can fail and serialize fail a round-trip, but only for serialization of
2779                 // barely-init'd ChannelMonitors that we can't do anything with.
2780                 let outpoint = OutPoint {
2781                         txid: Readable::read(reader)?,
2782                         index: Readable::read(reader)?,
2783                 };
2784                 let funding_info = (outpoint, Readable::read(reader)?);
2785                 let current_counterparty_commitment_txid = Readable::read(reader)?;
2786                 let prev_counterparty_commitment_txid = Readable::read(reader)?;
2787
2788                 let counterparty_tx_cache = Readable::read(reader)?;
2789                 let funding_redeemscript = Readable::read(reader)?;
2790                 let channel_value_satoshis = Readable::read(reader)?;
2791
2792                 let their_cur_revocation_points = {
2793                         let first_idx = <U48 as Readable>::read(reader)?.0;
2794                         if first_idx == 0 {
2795                                 None
2796                         } else {
2797                                 let first_point = Readable::read(reader)?;
2798                                 let second_point_slice: [u8; 33] = Readable::read(reader)?;
2799                                 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
2800                                         Some((first_idx, first_point, None))
2801                                 } else {
2802                                         Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
2803                                 }
2804                         }
2805                 };
2806
2807                 let on_holder_tx_csv: u16 = Readable::read(reader)?;
2808
2809                 let commitment_secrets = Readable::read(reader)?;
2810
2811                 macro_rules! read_htlc_in_commitment {
2812                         () => {
2813                                 {
2814                                         let offered: bool = Readable::read(reader)?;
2815                                         let amount_msat: u64 = Readable::read(reader)?;
2816                                         let cltv_expiry: u32 = Readable::read(reader)?;
2817                                         let payment_hash: PaymentHash = Readable::read(reader)?;
2818                                         let transaction_output_index: Option<u32> = Readable::read(reader)?;
2819
2820                                         HTLCOutputInCommitment {
2821                                                 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
2822                                         }
2823                                 }
2824                         }
2825                 }
2826
2827                 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
2828                 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
2829                 for _ in 0..counterparty_claimable_outpoints_len {
2830                         let txid: Txid = Readable::read(reader)?;
2831                         let htlcs_count: u64 = Readable::read(reader)?;
2832                         let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
2833                         for _ in 0..htlcs_count {
2834                                 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
2835                         }
2836                         if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
2837                                 return Err(DecodeError::InvalidValue);
2838                         }
2839                 }
2840
2841                 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
2842                 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
2843                 for _ in 0..counterparty_commitment_txn_on_chain_len {
2844                         let txid: Txid = Readable::read(reader)?;
2845                         let commitment_number = <U48 as Readable>::read(reader)?.0;
2846                         if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
2847                                 return Err(DecodeError::InvalidValue);
2848                         }
2849                 }
2850
2851                 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
2852                 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
2853                 for _ in 0..counterparty_hash_commitment_number_len {
2854                         let payment_hash: PaymentHash = Readable::read(reader)?;
2855                         let commitment_number = <U48 as Readable>::read(reader)?.0;
2856                         if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
2857                                 return Err(DecodeError::InvalidValue);
2858                         }
2859                 }
2860
2861                 macro_rules! read_holder_tx {
2862                         () => {
2863                                 {
2864                                         let txid = Readable::read(reader)?;
2865                                         let revocation_key = Readable::read(reader)?;
2866                                         let a_htlc_key = Readable::read(reader)?;
2867                                         let b_htlc_key = Readable::read(reader)?;
2868                                         let delayed_payment_key = Readable::read(reader)?;
2869                                         let per_commitment_point = Readable::read(reader)?;
2870                                         let feerate_per_kw: u32 = Readable::read(reader)?;
2871
2872                                         let htlcs_len: u64 = Readable::read(reader)?;
2873                                         let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128));
2874                                         for _ in 0..htlcs_len {
2875                                                 let htlc = read_htlc_in_commitment!();
2876                                                 let sigs = match <u8 as Readable>::read(reader)? {
2877                                                         0 => None,
2878                                                         1 => Some(Readable::read(reader)?),
2879                                                         _ => return Err(DecodeError::InvalidValue),
2880                                                 };
2881                                                 htlcs.push((htlc, sigs, Readable::read(reader)?));
2882                                         }
2883
2884                                         HolderSignedTx {
2885                                                 txid,
2886                                                 revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, per_commitment_point, feerate_per_kw,
2887                                                 htlc_outputs: htlcs
2888                                         }
2889                                 }
2890                         }
2891                 }
2892
2893                 let prev_holder_signed_commitment_tx = match <u8 as Readable>::read(reader)? {
2894                         0 => None,
2895                         1 => {
2896                                 Some(read_holder_tx!())
2897                         },
2898                         _ => return Err(DecodeError::InvalidValue),
2899                 };
2900                 let current_holder_commitment_tx = read_holder_tx!();
2901
2902                 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
2903                 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
2904
2905                 let payment_preimages_len: u64 = Readable::read(reader)?;
2906                 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
2907                 for _ in 0..payment_preimages_len {
2908                         let preimage: PaymentPreimage = Readable::read(reader)?;
2909                         let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2910                         if let Some(_) = payment_preimages.insert(hash, preimage) {
2911                                 return Err(DecodeError::InvalidValue);
2912                         }
2913                 }
2914
2915                 let pending_monitor_events_len: u64 = Readable::read(reader)?;
2916                 let mut pending_monitor_events = Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3)));
2917                 for _ in 0..pending_monitor_events_len {
2918                         let ev = match <u8 as Readable>::read(reader)? {
2919                                 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
2920                                 1 => MonitorEvent::CommitmentTxBroadcasted(funding_info.0),
2921                                 _ => return Err(DecodeError::InvalidValue)
2922                         };
2923                         pending_monitor_events.push(ev);
2924                 }
2925
2926                 let pending_events_len: u64 = Readable::read(reader)?;
2927                 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
2928                 for _ in 0..pending_events_len {
2929                         if let Some(event) = MaybeReadable::read(reader)? {
2930                                 pending_events.push(event);
2931                         }
2932                 }
2933
2934                 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
2935
2936                 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
2937                 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
2938                 for _ in 0..waiting_threshold_conf_len {
2939                         let txid = Readable::read(reader)?;
2940                         let height = Readable::read(reader)?;
2941                         let event = match <u8 as Readable>::read(reader)? {
2942                                 0 => {
2943                                         let htlc_source = Readable::read(reader)?;
2944                                         let hash = Readable::read(reader)?;
2945                                         OnchainEvent::HTLCUpdate {
2946                                                 htlc_update: (htlc_source, hash)
2947                                         }
2948                                 },
2949                                 1 => {
2950                                         let descriptor = Readable::read(reader)?;
2951                                         OnchainEvent::MaturingOutput {
2952                                                 descriptor
2953                                         }
2954                                 },
2955                                 _ => return Err(DecodeError::InvalidValue),
2956                         };
2957                         onchain_events_awaiting_threshold_conf.push(OnchainEventEntry { txid, height, event });
2958                 }
2959
2960                 let outputs_to_watch_len: u64 = Readable::read(reader)?;
2961                 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
2962                 for _ in 0..outputs_to_watch_len {
2963                         let txid = Readable::read(reader)?;
2964                         let outputs_len: u64 = Readable::read(reader)?;
2965                         let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
2966                         for _ in 0..outputs_len {
2967                                 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
2968                         }
2969                         if let Some(_) = outputs_to_watch.insert(txid, outputs) {
2970                                 return Err(DecodeError::InvalidValue);
2971                         }
2972                 }
2973                 let onchain_tx_handler = ReadableArgs::read(reader, keys_manager)?;
2974
2975                 let lockdown_from_offchain = Readable::read(reader)?;
2976                 let holder_tx_signed = Readable::read(reader)?;
2977
2978                 read_tlv_fields!(reader, {}, {});
2979
2980                 let mut secp_ctx = Secp256k1::new();
2981                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
2982
2983                 Ok((best_block.block_hash(), ChannelMonitor {
2984                         inner: Mutex::new(ChannelMonitorImpl {
2985                                 latest_update_id,
2986                                 commitment_transaction_number_obscure_factor,
2987
2988                                 destination_script,
2989                                 broadcasted_holder_revokable_script,
2990                                 counterparty_payment_script,
2991                                 shutdown_script,
2992
2993                                 channel_keys_id,
2994                                 holder_revocation_basepoint,
2995                                 funding_info,
2996                                 current_counterparty_commitment_txid,
2997                                 prev_counterparty_commitment_txid,
2998
2999                                 counterparty_tx_cache,
3000                                 funding_redeemscript,
3001                                 channel_value_satoshis,
3002                                 their_cur_revocation_points,
3003
3004                                 on_holder_tx_csv,
3005
3006                                 commitment_secrets,
3007                                 counterparty_claimable_outpoints,
3008                                 counterparty_commitment_txn_on_chain,
3009                                 counterparty_hash_commitment_number,
3010
3011                                 prev_holder_signed_commitment_tx,
3012                                 current_holder_commitment_tx,
3013                                 current_counterparty_commitment_number,
3014                                 current_holder_commitment_number,
3015
3016                                 payment_preimages,
3017                                 pending_monitor_events,
3018                                 pending_events,
3019
3020                                 onchain_events_awaiting_threshold_conf,
3021                                 outputs_to_watch,
3022
3023                                 onchain_tx_handler,
3024
3025                                 lockdown_from_offchain,
3026                                 holder_tx_signed,
3027
3028                                 best_block,
3029
3030                                 secp_ctx,
3031                         }),
3032                 }))
3033         }
3034 }
3035
3036 #[cfg(test)]
3037 mod tests {
3038         use bitcoin::blockdata::script::{Script, Builder};
3039         use bitcoin::blockdata::opcodes;
3040         use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
3041         use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
3042         use bitcoin::util::bip143;
3043         use bitcoin::hashes::Hash;
3044         use bitcoin::hashes::sha256::Hash as Sha256;
3045         use bitcoin::hashes::hex::FromHex;
3046         use bitcoin::hash_types::Txid;
3047         use bitcoin::network::constants::Network;
3048         use hex;
3049         use chain::channelmonitor::ChannelMonitor;
3050         use chain::transaction::OutPoint;
3051         use ln::{PaymentPreimage, PaymentHash};
3052         use ln::channelmanager::BestBlock;
3053         use ln::package;
3054         use ln::package::InputDescriptors;
3055         use ln::chan_utils;
3056         use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
3057         use util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
3058         use bitcoin::secp256k1::key::{SecretKey,PublicKey};
3059         use bitcoin::secp256k1::Secp256k1;
3060         use std::sync::{Arc, Mutex};
3061         use chain::keysinterface::InMemorySigner;
3062
3063         #[test]
3064         fn test_prune_preimages() {
3065                 let secp_ctx = Secp256k1::new();
3066                 let logger = Arc::new(TestLogger::new());
3067                 let broadcaster = Arc::new(TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())});
3068                 let fee_estimator = Arc::new(TestFeeEstimator { sat_per_kw: 253 });
3069
3070                 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
3071                 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3072
3073                 let mut preimages = Vec::new();
3074                 {
3075                         for i in 0..20 {
3076                                 let preimage = PaymentPreimage([i; 32]);
3077                                 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3078                                 preimages.push((preimage, hash));
3079                         }
3080                 }
3081
3082                 macro_rules! preimages_slice_to_htlc_outputs {
3083                         ($preimages_slice: expr) => {
3084                                 {
3085                                         let mut res = Vec::new();
3086                                         for (idx, preimage) in $preimages_slice.iter().enumerate() {
3087                                                 res.push((HTLCOutputInCommitment {
3088                                                         offered: true,
3089                                                         amount_msat: 0,
3090                                                         cltv_expiry: 0,
3091                                                         payment_hash: preimage.1.clone(),
3092                                                         transaction_output_index: Some(idx as u32),
3093                                                 }, None));
3094                                         }
3095                                         res
3096                                 }
3097                         }
3098                 }
3099                 macro_rules! preimages_to_holder_htlcs {
3100                         ($preimages_slice: expr) => {
3101                                 {
3102                                         let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
3103                                         let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
3104                                         res
3105                                 }
3106                         }
3107                 }
3108
3109                 macro_rules! test_preimages_exist {
3110                         ($preimages_slice: expr, $monitor: expr) => {
3111                                 for preimage in $preimages_slice {
3112                                         assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
3113                                 }
3114                         }
3115                 }
3116
3117                 let keys = InMemorySigner::new(
3118                         &secp_ctx,
3119                         SecretKey::from_slice(&[41; 32]).unwrap(),
3120                         SecretKey::from_slice(&[41; 32]).unwrap(),
3121                         SecretKey::from_slice(&[41; 32]).unwrap(),
3122                         SecretKey::from_slice(&[41; 32]).unwrap(),
3123                         SecretKey::from_slice(&[41; 32]).unwrap(),
3124                         [41; 32],
3125                         0,
3126                         [0; 32]
3127                 );
3128
3129                 let counterparty_pubkeys = ChannelPublicKeys {
3130                         funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
3131                         revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
3132                         payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
3133                         delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
3134                         htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
3135                 };
3136                 let funding_outpoint = OutPoint { txid: Default::default(), index: u16::max_value() };
3137                 let channel_parameters = ChannelTransactionParameters {
3138                         holder_pubkeys: keys.holder_channel_pubkeys.clone(),
3139                         holder_selected_contest_delay: 66,
3140                         is_outbound_from_holder: true,
3141                         counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
3142                                 pubkeys: counterparty_pubkeys,
3143                                 selected_contest_delay: 67,
3144                         }),
3145                         funding_outpoint: Some(funding_outpoint),
3146                 };
3147                 // Prune with one old state and a holder commitment tx holding a few overlaps with the
3148                 // old state.
3149                 let best_block = BestBlock::from_genesis(Network::Testnet);
3150                 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
3151                                                   &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()), 0, &Script::new(),
3152                                                   (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
3153                                                   &channel_parameters,
3154                                                   Script::new(), 46, 0,
3155                                                   HolderCommitmentTransaction::dummy(), best_block);
3156
3157                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
3158                 let dummy_txid = dummy_tx.txid();
3159                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
3160                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
3161                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
3162                 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
3163                 for &(ref preimage, ref hash) in preimages.iter() {
3164                         monitor.provide_payment_preimage(hash, preimage, &broadcaster, &fee_estimator, &logger);
3165                 }
3166
3167                 // Now provide a secret, pruning preimages 10-15
3168                 let mut secret = [0; 32];
3169                 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3170                 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
3171                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
3172                 test_preimages_exist!(&preimages[0..10], monitor);
3173                 test_preimages_exist!(&preimages[15..20], monitor);
3174
3175                 // Now provide a further secret, pruning preimages 15-17
3176                 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3177                 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
3178                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
3179                 test_preimages_exist!(&preimages[0..10], monitor);
3180                 test_preimages_exist!(&preimages[17..20], monitor);
3181
3182                 // Now update holder commitment tx info, pruning only element 18 as we still care about the
3183                 // previous commitment tx's preimages too
3184                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
3185                 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3186                 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
3187                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
3188                 test_preimages_exist!(&preimages[0..10], monitor);
3189                 test_preimages_exist!(&preimages[18..20], monitor);
3190
3191                 // But if we do it again, we'll prune 5-10
3192                 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
3193                 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3194                 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
3195                 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
3196                 test_preimages_exist!(&preimages[0..5], monitor);
3197         }
3198
3199         #[test]
3200         fn test_claim_txn_weight_computation() {
3201                 // We test Claim txn weight, knowing that we want expected weigth and
3202                 // not actual case to avoid sigs and time-lock delays hell variances.
3203
3204                 let secp_ctx = Secp256k1::new();
3205                 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
3206                 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
3207                 let mut sum_actual_sigs = 0;
3208
3209                 macro_rules! sign_input {
3210                         ($sighash_parts: expr, $idx: expr, $amount: expr, $input_type: expr, $sum_actual_sigs: expr) => {
3211                                 let htlc = HTLCOutputInCommitment {
3212                                         offered: if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::OfferedHTLC { true } else { false },
3213                                         amount_msat: 0,
3214                                         cltv_expiry: 2 << 16,
3215                                         payment_hash: PaymentHash([1; 32]),
3216                                         transaction_output_index: Some($idx as u32),
3217                                 };
3218                                 let redeem_script = if *$input_type == InputDescriptors::RevokedOutput { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) };
3219                                 let sighash = hash_to_message!(&$sighash_parts.signature_hash($idx, &redeem_script, $amount, SigHashType::All)[..]);
3220                                 let sig = secp_ctx.sign(&sighash, &privkey);
3221                                 $sighash_parts.access_witness($idx).push(sig.serialize_der().to_vec());
3222                                 $sighash_parts.access_witness($idx)[0].push(SigHashType::All as u8);
3223                                 sum_actual_sigs += $sighash_parts.access_witness($idx)[0].len();
3224                                 if *$input_type == InputDescriptors::RevokedOutput {
3225                                         $sighash_parts.access_witness($idx).push(vec!(1));
3226                                 } else if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::RevokedReceivedHTLC {
3227                                         $sighash_parts.access_witness($idx).push(pubkey.clone().serialize().to_vec());
3228                                 } else if *$input_type == InputDescriptors::ReceivedHTLC {
3229                                         $sighash_parts.access_witness($idx).push(vec![0]);
3230                                 } else {
3231                                         $sighash_parts.access_witness($idx).push(PaymentPreimage([1; 32]).0.to_vec());
3232                                 }
3233                                 $sighash_parts.access_witness($idx).push(redeem_script.into_bytes());
3234                                 println!("witness[0] {}", $sighash_parts.access_witness($idx)[0].len());
3235                                 println!("witness[1] {}", $sighash_parts.access_witness($idx)[1].len());
3236                                 println!("witness[2] {}", $sighash_parts.access_witness($idx)[2].len());
3237                         }
3238                 }
3239
3240                 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
3241                 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
3242
3243                 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
3244                 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3245                 for i in 0..4 {
3246                         claim_tx.input.push(TxIn {
3247                                 previous_output: BitcoinOutPoint {
3248                                         txid,
3249                                         vout: i,
3250                                 },
3251                                 script_sig: Script::new(),
3252                                 sequence: 0xfffffffd,
3253                                 witness: Vec::new(),
3254                         });
3255                 }
3256                 claim_tx.output.push(TxOut {
3257                         script_pubkey: script_pubkey.clone(),
3258                         value: 0,
3259                 });
3260                 let base_weight = claim_tx.get_weight();
3261                 let inputs_des = vec![InputDescriptors::RevokedOutput, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedReceivedHTLC];
3262                 {
3263                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3264                         for (idx, inp) in inputs_des.iter().enumerate() {
3265                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3266                         }
3267                 }
3268                 assert_eq!(base_weight + package::get_witnesses_weight(&inputs_des[..]),  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
3269
3270                 // Claim tx with 1 offered HTLCs, 3 received HTLCs
3271                 claim_tx.input.clear();
3272                 sum_actual_sigs = 0;
3273                 for i in 0..4 {
3274                         claim_tx.input.push(TxIn {
3275                                 previous_output: BitcoinOutPoint {
3276                                         txid,
3277                                         vout: i,
3278                                 },
3279                                 script_sig: Script::new(),
3280                                 sequence: 0xfffffffd,
3281                                 witness: Vec::new(),
3282                         });
3283                 }
3284                 let base_weight = claim_tx.get_weight();
3285                 let inputs_des = vec![InputDescriptors::OfferedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC];
3286                 {
3287                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3288                         for (idx, inp) in inputs_des.iter().enumerate() {
3289                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3290                         }
3291                 }
3292                 assert_eq!(base_weight + package::get_witnesses_weight(&inputs_des[..]),  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
3293
3294                 // Justice tx with 1 revoked HTLC-Success tx output
3295                 claim_tx.input.clear();
3296                 sum_actual_sigs = 0;
3297                 claim_tx.input.push(TxIn {
3298                         previous_output: BitcoinOutPoint {
3299                                 txid,
3300                                 vout: 0,
3301                         },
3302                         script_sig: Script::new(),
3303                         sequence: 0xfffffffd,
3304                         witness: Vec::new(),
3305                 });
3306                 let base_weight = claim_tx.get_weight();
3307                 let inputs_des = vec![InputDescriptors::RevokedOutput];
3308                 {
3309                         let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3310                         for (idx, inp) in inputs_des.iter().enumerate() {
3311                                 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3312                         }
3313                 }
3314                 assert_eq!(base_weight + package::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_des.len() - sum_actual_sigs));
3315         }
3316
3317         // Further testing is done in the ChannelManager integration tests.
3318 }