1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::Header;
24 use bitcoin::blockdata::transaction::{OutPoint as BitcoinOutPoint, TxOut, Transaction};
25 use bitcoin::blockdata::script::{Script, ScriptBuf};
27 use bitcoin::hashes::Hash;
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hash_types::{Txid, BlockHash};
31 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
32 use bitcoin::secp256k1::{SecretKey, PublicKey};
33 use bitcoin::secp256k1;
34 use bitcoin::sighash::EcdsaSighashType;
36 use crate::ln::channel::INITIAL_COMMITMENT_NUMBER;
37 use crate::ln::{PaymentHash, PaymentPreimage, ChannelId};
38 use crate::ln::msgs::DecodeError;
39 use crate::ln::channel_keys::{DelayedPaymentKey, DelayedPaymentBasepoint, HtlcBasepoint, HtlcKey, RevocationKey, RevocationBasepoint};
40 use crate::ln::chan_utils::{self,CommitmentTransaction, CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCClaim, ChannelTransactionParameters, HolderCommitmentTransaction, TxCreationKeys};
41 use crate::ln::channelmanager::{HTLCSource, SentHTLCId};
43 use crate::chain::{BestBlock, WatchedOutput};
44 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator, LowerBoundedFeeEstimator};
45 use crate::chain::transaction::{OutPoint, TransactionData};
46 use crate::sign::{ChannelDerivationParameters, HTLCDescriptor, SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, ecdsa::WriteableEcdsaChannelSigner, SignerProvider, EntropySource};
47 use crate::chain::onchaintx::{ClaimEvent, FeerateStrategy, OnchainTxHandler};
48 use crate::chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
49 use crate::chain::Filter;
50 use crate::util::logger::{Logger, Record};
51 use crate::util::ser::{Readable, ReadableArgs, RequiredWrapper, MaybeReadable, UpgradableRequired, Writer, Writeable, U48};
52 use crate::util::byte_utils;
53 use crate::events::{ClosureReason, Event, EventHandler};
54 use crate::events::bump_transaction::{AnchorDescriptor, BumpTransactionEvent};
56 #[allow(unused_imports)]
57 use crate::prelude::*;
60 use crate::io::{self, Error};
62 use crate::sync::{Mutex, LockTestExt};
64 /// An update generated by the underlying channel itself which contains some new information the
65 /// [`ChannelMonitor`] should be made aware of.
67 /// Because this represents only a small number of updates to the underlying state, it is generally
68 /// much smaller than a full [`ChannelMonitor`]. However, for large single commitment transaction
69 /// updates (e.g. ones during which there are hundreds of HTLCs pending on the commitment
70 /// transaction), a single update may reach upwards of 1 MiB in serialized size.
71 #[derive(Clone, Debug, PartialEq, Eq)]
73 pub struct ChannelMonitorUpdate {
74 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
75 /// Historically, [`ChannelMonitor`]s didn't know their counterparty node id. However,
76 /// `ChannelManager` really wants to know it so that it can easily look up the corresponding
77 /// channel. For now, this results in a temporary map in `ChannelManager` to look up channels
78 /// by only the funding outpoint.
80 /// To eventually remove that, we repeat the counterparty node id here so that we can upgrade
81 /// `ChannelMonitor`s to become aware of the counterparty node id if they were generated prior
82 /// to when it was stored directly in them.
83 pub(crate) counterparty_node_id: Option<PublicKey>,
84 /// The sequence number of this update. Updates *must* be replayed in-order according to this
85 /// sequence number (and updates may panic if they are not). The update_id values are strictly
86 /// increasing and increase by one for each new update, with two exceptions specified below.
88 /// This sequence number is also used to track up to which points updates which returned
89 /// [`ChannelMonitorUpdateStatus::InProgress`] have been applied to all copies of a given
90 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
92 /// The only instances we allow where update_id values are not strictly increasing have a
93 /// special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. This update ID is used for updates that
94 /// will force close the channel by broadcasting the latest commitment transaction or
95 /// special post-force-close updates, like providing preimages necessary to claim outputs on the
96 /// broadcast commitment transaction. See its docs for more details.
98 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
100 /// The channel ID associated with these updates.
102 /// Will be `None` for `ChannelMonitorUpdate`s constructed on LDK versions prior to 0.0.121 and
103 /// always `Some` otherwise.
104 pub channel_id: Option<ChannelId>,
107 /// The update ID used for a [`ChannelMonitorUpdate`] that is either:
109 /// (1) attempting to force close the channel by broadcasting our latest commitment transaction or
110 /// (2) providing a preimage (after the channel has been force closed) from a forward link that
111 /// allows us to spend an HTLC output on this channel's (the backward link's) broadcasted
112 /// commitment transaction.
114 /// No other [`ChannelMonitorUpdate`]s are allowed after force-close.
115 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
117 impl Writeable for ChannelMonitorUpdate {
118 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
119 write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
120 self.update_id.write(w)?;
121 (self.updates.len() as u64).write(w)?;
122 for update_step in self.updates.iter() {
123 update_step.write(w)?;
125 write_tlv_fields!(w, {
126 (1, self.counterparty_node_id, option),
127 (3, self.channel_id, option),
132 impl Readable for ChannelMonitorUpdate {
133 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
134 let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
135 let update_id: u64 = Readable::read(r)?;
136 let len: u64 = Readable::read(r)?;
137 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
139 if let Some(upd) = MaybeReadable::read(r)? {
143 let mut counterparty_node_id = None;
144 let mut channel_id = None;
145 read_tlv_fields!(r, {
146 (1, counterparty_node_id, option),
147 (3, channel_id, option),
149 Ok(Self { update_id, counterparty_node_id, updates, channel_id })
153 /// An event to be processed by the ChannelManager.
154 #[derive(Clone, PartialEq, Eq)]
155 pub enum MonitorEvent {
156 /// A monitor event containing an HTLCUpdate.
157 HTLCEvent(HTLCUpdate),
159 /// Indicates we broadcasted the channel's latest commitment transaction and thus closed the
160 /// channel. Holds information about the channel and why it was closed.
161 HolderForceClosedWithInfo {
162 /// The reason the channel was closed.
163 reason: ClosureReason,
164 /// The funding outpoint of the channel.
166 /// The channel ID of the channel.
167 channel_id: ChannelId,
170 /// Indicates we broadcasted the channel's latest commitment transaction and thus closed the
172 HolderForceClosed(OutPoint),
174 /// Indicates a [`ChannelMonitor`] update has completed. See
175 /// [`ChannelMonitorUpdateStatus::InProgress`] for more information on how this is used.
177 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
179 /// The funding outpoint of the [`ChannelMonitor`] that was updated
180 funding_txo: OutPoint,
181 /// The channel ID of the channel associated with the [`ChannelMonitor`]
182 channel_id: ChannelId,
183 /// The Update ID from [`ChannelMonitorUpdate::update_id`] which was applied or
184 /// [`ChannelMonitor::get_latest_update_id`].
186 /// Note that this should only be set to a given update's ID if all previous updates for the
187 /// same [`ChannelMonitor`] have been applied and persisted.
188 monitor_update_id: u64,
191 impl_writeable_tlv_based_enum_upgradable!(MonitorEvent,
192 // Note that Completed is currently never serialized to disk as it is generated only in
195 (0, funding_txo, required),
196 (2, monitor_update_id, required),
197 (4, channel_id, required),
199 (5, HolderForceClosedWithInfo) => {
200 (0, reason, upgradable_required),
201 (2, outpoint, required),
202 (4, channel_id, required),
206 (4, HolderForceClosed),
207 // 6 was `UpdateFailed` until LDK 0.0.117
210 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
211 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
212 /// preimage claim backward will lead to loss of funds.
213 #[derive(Clone, PartialEq, Eq)]
214 pub struct HTLCUpdate {
215 pub(crate) payment_hash: PaymentHash,
216 pub(crate) payment_preimage: Option<PaymentPreimage>,
217 pub(crate) source: HTLCSource,
218 pub(crate) htlc_value_satoshis: Option<u64>,
220 impl_writeable_tlv_based!(HTLCUpdate, {
221 (0, payment_hash, required),
222 (1, htlc_value_satoshis, option),
223 (2, source, required),
224 (4, payment_preimage, option),
227 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
228 /// instead claiming it in its own individual transaction.
229 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
230 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
231 /// HTLC-Success transaction.
232 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
233 /// transaction confirmed (and we use it in a few more, equivalent, places).
234 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
235 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
236 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
237 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
238 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
239 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
240 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
241 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
242 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
243 /// accurate block height.
244 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
245 /// with at worst this delay, so we are not only using this value as a mercy for them but also
246 /// us as a safeguard to delay with enough time.
247 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
248 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding
249 /// inbound HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us
252 /// Note that this is a library-wide security assumption. If a reorg deeper than this number of
253 /// blocks occurs, counterparties may be able to steal funds or claims made by and balances exposed
254 /// by a [`ChannelMonitor`] may be incorrect.
255 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
256 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
257 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
258 // keep bumping another claim tx to solve the outpoint.
259 pub const ANTI_REORG_DELAY: u32 = 6;
260 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
261 /// refuse to accept a new HTLC.
263 /// This is used for a few separate purposes:
264 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
265 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
267 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
268 /// condition with the above), we will fail this HTLC without telling the user we received it,
270 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
271 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
273 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
274 /// in a race condition between the user connecting a block (which would fail it) and the user
275 /// providing us the preimage (which would claim it).
276 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
278 // TODO(devrandom) replace this with HolderCommitmentTransaction
279 #[derive(Clone, PartialEq, Eq)]
280 struct HolderSignedTx {
281 /// txid of the transaction in tx, just used to make comparison faster
283 revocation_key: RevocationKey,
286 delayed_payment_key: DelayedPaymentKey,
287 per_commitment_point: PublicKey,
288 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
289 to_self_value_sat: u64,
292 impl_writeable_tlv_based!(HolderSignedTx, {
294 // Note that this is filled in with data from OnchainTxHandler if it's missing.
295 // For HolderSignedTx objects serialized with 0.0.100+, this should be filled in.
296 (1, to_self_value_sat, (default_value, u64::max_value())),
297 (2, revocation_key, required),
298 (4, a_htlc_key, required),
299 (6, b_htlc_key, required),
300 (8, delayed_payment_key, required),
301 (10, per_commitment_point, required),
302 (12, feerate_per_kw, required),
303 (14, htlc_outputs, required_vec)
306 impl HolderSignedTx {
307 fn non_dust_htlcs(&self) -> Vec<HTLCOutputInCommitment> {
308 self.htlc_outputs.iter().filter_map(|(htlc, _, _)| {
309 if let Some(_) = htlc.transaction_output_index {
319 /// We use this to track static counterparty commitment transaction data and to generate any
320 /// justice or 2nd-stage preimage/timeout transactions.
321 #[derive(Clone, PartialEq, Eq)]
322 struct CounterpartyCommitmentParameters {
323 counterparty_delayed_payment_base_key: DelayedPaymentBasepoint,
324 counterparty_htlc_base_key: HtlcBasepoint,
325 on_counterparty_tx_csv: u16,
328 impl Writeable for CounterpartyCommitmentParameters {
329 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
330 w.write_all(&(0 as u64).to_be_bytes())?;
331 write_tlv_fields!(w, {
332 (0, self.counterparty_delayed_payment_base_key, required),
333 (2, self.counterparty_htlc_base_key, required),
334 (4, self.on_counterparty_tx_csv, required),
339 impl Readable for CounterpartyCommitmentParameters {
340 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
341 let counterparty_commitment_transaction = {
342 // Versions prior to 0.0.100 had some per-HTLC state stored here, which is no longer
343 // used. Read it for compatibility.
344 let per_htlc_len: u64 = Readable::read(r)?;
345 for _ in 0..per_htlc_len {
346 let _txid: Txid = Readable::read(r)?;
347 let htlcs_count: u64 = Readable::read(r)?;
348 for _ in 0..htlcs_count {
349 let _htlc: HTLCOutputInCommitment = Readable::read(r)?;
353 let mut counterparty_delayed_payment_base_key = RequiredWrapper(None);
354 let mut counterparty_htlc_base_key = RequiredWrapper(None);
355 let mut on_counterparty_tx_csv: u16 = 0;
356 read_tlv_fields!(r, {
357 (0, counterparty_delayed_payment_base_key, required),
358 (2, counterparty_htlc_base_key, required),
359 (4, on_counterparty_tx_csv, required),
361 CounterpartyCommitmentParameters {
362 counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
363 counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
364 on_counterparty_tx_csv,
367 Ok(counterparty_commitment_transaction)
371 /// An entry for an [`OnchainEvent`], stating the block height and hash when the event was
372 /// observed, as well as the transaction causing it.
374 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
375 #[derive(Clone, PartialEq, Eq)]
376 struct OnchainEventEntry {
379 block_hash: Option<BlockHash>, // Added as optional, will be filled in for any entry generated on 0.0.113 or after
381 transaction: Option<Transaction>, // Added as optional, but always filled in, in LDK 0.0.110
384 impl OnchainEventEntry {
385 fn confirmation_threshold(&self) -> u32 {
386 let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
388 OnchainEvent::MaturingOutput {
389 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
391 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
392 // it's broadcastable when we see the previous block.
393 conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
395 OnchainEvent::FundingSpendConfirmation { on_local_output_csv: Some(csv), .. } |
396 OnchainEvent::HTLCSpendConfirmation { on_to_local_output_csv: Some(csv), .. } => {
397 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
398 // it's broadcastable when we see the previous block.
399 conf_threshold = cmp::max(conf_threshold, self.height + csv as u32 - 1);
406 fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
407 best_block.height >= self.confirmation_threshold()
411 /// The (output index, sats value) for the counterparty's output in a commitment transaction.
413 /// This was added as an `Option` in 0.0.110.
414 type CommitmentTxCounterpartyOutputInfo = Option<(u32, u64)>;
416 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
417 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
418 #[derive(Clone, PartialEq, Eq)]
420 /// An outbound HTLC failing after a transaction is confirmed. Used
421 /// * when an outbound HTLC output is spent by us after the HTLC timed out
422 /// * an outbound HTLC which was not present in the commitment transaction which appeared
423 /// on-chain (either because it was not fully committed to or it was dust).
424 /// Note that this is *not* used for preimage claims, as those are passed upstream immediately,
425 /// appearing only as an `HTLCSpendConfirmation`, below.
428 payment_hash: PaymentHash,
429 htlc_value_satoshis: Option<u64>,
430 /// None in the second case, above, ie when there is no relevant output in the commitment
431 /// transaction which appeared on chain.
432 commitment_tx_output_idx: Option<u32>,
434 /// An output waiting on [`ANTI_REORG_DELAY`] confirmations before we hand the user the
435 /// [`SpendableOutputDescriptor`].
437 descriptor: SpendableOutputDescriptor,
439 /// A spend of the funding output, either a commitment transaction or a cooperative closing
441 FundingSpendConfirmation {
442 /// The CSV delay for the output of the funding spend transaction (implying it is a local
443 /// commitment transaction, and this is the delay on the to_self output).
444 on_local_output_csv: Option<u16>,
445 /// If the funding spend transaction was a known remote commitment transaction, we track
446 /// the output index and amount of the counterparty's `to_self` output here.
448 /// This allows us to generate a [`Balance::CounterpartyRevokedOutputClaimable`] for the
449 /// counterparty output.
450 commitment_tx_to_counterparty_output: CommitmentTxCounterpartyOutputInfo,
452 /// A spend of a commitment transaction HTLC output, set in the cases where *no* `HTLCUpdate`
453 /// is constructed. This is used when
454 /// * an outbound HTLC is claimed by our counterparty with a preimage, causing us to
455 /// immediately claim the HTLC on the inbound edge and track the resolution here,
456 /// * an inbound HTLC is claimed by our counterparty (with a timeout),
457 /// * an inbound HTLC is claimed by us (with a preimage).
458 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by the revocation
460 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by an
461 /// HTLC-Success/HTLC-Failure transaction (and is still claimable with a revocation
463 HTLCSpendConfirmation {
464 commitment_tx_output_idx: u32,
465 /// If the claim was made by either party with a preimage, this is filled in
466 preimage: Option<PaymentPreimage>,
467 /// If the claim was made by us on an inbound HTLC against a local commitment transaction,
468 /// we set this to the output CSV value which we will have to wait until to spend the
469 /// output (and generate a SpendableOutput event).
470 on_to_local_output_csv: Option<u16>,
474 impl Writeable for OnchainEventEntry {
475 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
476 write_tlv_fields!(writer, {
477 (0, self.txid, required),
478 (1, self.transaction, option),
479 (2, self.height, required),
480 (3, self.block_hash, option),
481 (4, self.event, required),
487 impl MaybeReadable for OnchainEventEntry {
488 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
489 let mut txid = Txid::all_zeros();
490 let mut transaction = None;
491 let mut block_hash = None;
493 let mut event = UpgradableRequired(None);
494 read_tlv_fields!(reader, {
496 (1, transaction, option),
497 (2, height, required),
498 (3, block_hash, option),
499 (4, event, upgradable_required),
501 Ok(Some(Self { txid, transaction, height, block_hash, event: _init_tlv_based_struct_field!(event, upgradable_required) }))
505 impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
507 (0, source, required),
508 (1, htlc_value_satoshis, option),
509 (2, payment_hash, required),
510 (3, commitment_tx_output_idx, option),
512 (1, MaturingOutput) => {
513 (0, descriptor, required),
515 (3, FundingSpendConfirmation) => {
516 (0, on_local_output_csv, option),
517 (1, commitment_tx_to_counterparty_output, option),
519 (5, HTLCSpendConfirmation) => {
520 (0, commitment_tx_output_idx, required),
521 (2, preimage, option),
522 (4, on_to_local_output_csv, option),
527 #[derive(Clone, Debug, PartialEq, Eq)]
528 pub(crate) enum ChannelMonitorUpdateStep {
529 LatestHolderCommitmentTXInfo {
530 commitment_tx: HolderCommitmentTransaction,
531 /// Note that LDK after 0.0.115 supports this only containing dust HTLCs (implying the
532 /// `Signature` field is never filled in). At that point, non-dust HTLCs are implied by the
533 /// HTLC fields in `commitment_tx` and the sources passed via `nondust_htlc_sources`.
534 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
535 claimed_htlcs: Vec<(SentHTLCId, PaymentPreimage)>,
536 nondust_htlc_sources: Vec<HTLCSource>,
538 LatestCounterpartyCommitmentTXInfo {
539 commitment_txid: Txid,
540 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
541 commitment_number: u64,
542 their_per_commitment_point: PublicKey,
543 feerate_per_kw: Option<u32>,
544 to_broadcaster_value_sat: Option<u64>,
545 to_countersignatory_value_sat: Option<u64>,
548 payment_preimage: PaymentPreimage,
554 /// Used to indicate that the no future updates will occur, and likely that the latest holder
555 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
557 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
558 /// think we've fallen behind!
559 should_broadcast: bool,
562 scriptpubkey: ScriptBuf,
566 impl ChannelMonitorUpdateStep {
567 fn variant_name(&self) -> &'static str {
569 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { .. } => "LatestHolderCommitmentTXInfo",
570 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } => "LatestCounterpartyCommitmentTXInfo",
571 ChannelMonitorUpdateStep::PaymentPreimage { .. } => "PaymentPreimage",
572 ChannelMonitorUpdateStep::CommitmentSecret { .. } => "CommitmentSecret",
573 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => "ChannelForceClosed",
574 ChannelMonitorUpdateStep::ShutdownScript { .. } => "ShutdownScript",
579 impl_writeable_tlv_based_enum_upgradable!(ChannelMonitorUpdateStep,
580 (0, LatestHolderCommitmentTXInfo) => {
581 (0, commitment_tx, required),
582 (1, claimed_htlcs, optional_vec),
583 (2, htlc_outputs, required_vec),
584 (4, nondust_htlc_sources, optional_vec),
586 (1, LatestCounterpartyCommitmentTXInfo) => {
587 (0, commitment_txid, required),
588 (1, feerate_per_kw, option),
589 (2, commitment_number, required),
590 (3, to_broadcaster_value_sat, option),
591 (4, their_per_commitment_point, required),
592 (5, to_countersignatory_value_sat, option),
593 (6, htlc_outputs, required_vec),
595 (2, PaymentPreimage) => {
596 (0, payment_preimage, required),
598 (3, CommitmentSecret) => {
600 (2, secret, required),
602 (4, ChannelForceClosed) => {
603 (0, should_broadcast, required),
605 (5, ShutdownScript) => {
606 (0, scriptpubkey, required),
610 /// Details about the balance(s) available for spending once the channel appears on chain.
612 /// See [`ChannelMonitor::get_claimable_balances`] for more details on when these will or will not
614 #[derive(Clone, Debug, PartialEq, Eq)]
615 #[cfg_attr(test, derive(PartialOrd, Ord))]
617 /// The channel is not yet closed (or the commitment or closing transaction has not yet
618 /// appeared in a block). The given balance is claimable (less on-chain fees) if the channel is
619 /// force-closed now.
620 ClaimableOnChannelClose {
621 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
622 /// required to do so.
623 amount_satoshis: u64,
625 /// The channel has been closed, and the given balance is ours but awaiting confirmations until
626 /// we consider it spendable.
627 ClaimableAwaitingConfirmations {
628 /// The amount available to claim, in satoshis, possibly excluding the on-chain fees which
629 /// were spent in broadcasting the transaction.
630 amount_satoshis: u64,
631 /// The height at which an [`Event::SpendableOutputs`] event will be generated for this
633 confirmation_height: u32,
635 /// The channel has been closed, and the given balance should be ours but awaiting spending
636 /// transaction confirmation. If the spending transaction does not confirm in time, it is
637 /// possible our counterparty can take the funds by broadcasting an HTLC timeout on-chain.
639 /// Once the spending transaction confirms, before it has reached enough confirmations to be
640 /// considered safe from chain reorganizations, the balance will instead be provided via
641 /// [`Balance::ClaimableAwaitingConfirmations`].
642 ContentiousClaimable {
643 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
644 /// required to do so.
645 amount_satoshis: u64,
646 /// The height at which the counterparty may be able to claim the balance if we have not
649 /// The payment hash that locks this HTLC.
650 payment_hash: PaymentHash,
651 /// The preimage that can be used to claim this HTLC.
652 payment_preimage: PaymentPreimage,
654 /// HTLCs which we sent to our counterparty which are claimable after a timeout (less on-chain
655 /// fees) if the counterparty does not know the preimage for the HTLCs. These are somewhat
656 /// likely to be claimed by our counterparty before we do.
657 MaybeTimeoutClaimableHTLC {
658 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
659 /// which will be required to do so.
660 amount_satoshis: u64,
661 /// The height at which we will be able to claim the balance if our counterparty has not
663 claimable_height: u32,
664 /// The payment hash whose preimage our counterparty needs to claim this HTLC.
665 payment_hash: PaymentHash,
667 /// HTLCs which we received from our counterparty which are claimable with a preimage which we
668 /// do not currently have. This will only be claimable if we receive the preimage from the node
669 /// to which we forwarded this HTLC before the timeout.
670 MaybePreimageClaimableHTLC {
671 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
672 /// which will be required to do so.
673 amount_satoshis: u64,
674 /// The height at which our counterparty will be able to claim the balance if we have not
675 /// yet received the preimage and claimed it ourselves.
677 /// The payment hash whose preimage we need to claim this HTLC.
678 payment_hash: PaymentHash,
680 /// The channel has been closed, and our counterparty broadcasted a revoked commitment
683 /// Thus, we're able to claim all outputs in the commitment transaction, one of which has the
684 /// following amount.
685 CounterpartyRevokedOutputClaimable {
686 /// The amount, in satoshis, of the output which we can claim.
688 /// Note that for outputs from HTLC balances this may be excluding some on-chain fees that
689 /// were already spent.
690 amount_satoshis: u64,
695 /// The amount claimable, in satoshis. This excludes balances that we are unsure if we are able
696 /// to claim, this is because we are waiting for a preimage or for a timeout to expire. For more
697 /// information on these balances see [`Balance::MaybeTimeoutClaimableHTLC`] and
698 /// [`Balance::MaybePreimageClaimableHTLC`].
700 /// On-chain fees required to claim the balance are not included in this amount.
701 pub fn claimable_amount_satoshis(&self) -> u64 {
703 Balance::ClaimableOnChannelClose { amount_satoshis, .. }|
704 Balance::ClaimableAwaitingConfirmations { amount_satoshis, .. }|
705 Balance::ContentiousClaimable { amount_satoshis, .. }|
706 Balance::CounterpartyRevokedOutputClaimable { amount_satoshis, .. }
708 Balance::MaybeTimeoutClaimableHTLC { .. }|
709 Balance::MaybePreimageClaimableHTLC { .. }
715 /// An HTLC which has been irrevocably resolved on-chain, and has reached ANTI_REORG_DELAY.
716 #[derive(Clone, PartialEq, Eq)]
717 struct IrrevocablyResolvedHTLC {
718 commitment_tx_output_idx: Option<u32>,
719 /// The txid of the transaction which resolved the HTLC, this may be a commitment (if the HTLC
720 /// was not present in the confirmed commitment transaction), HTLC-Success, or HTLC-Timeout
722 resolving_txid: Option<Txid>, // Added as optional, but always filled in, in 0.0.110
723 resolving_tx: Option<Transaction>,
724 /// Only set if the HTLC claim was ours using a payment preimage
725 payment_preimage: Option<PaymentPreimage>,
728 // In LDK versions prior to 0.0.111 commitment_tx_output_idx was not Option-al and
729 // IrrevocablyResolvedHTLC objects only existed for non-dust HTLCs. This was a bug, but to maintain
730 // backwards compatibility we must ensure we always write out a commitment_tx_output_idx field,
731 // using `u32::max_value()` as a sentinal to indicate the HTLC was dust.
732 impl Writeable for IrrevocablyResolvedHTLC {
733 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
734 let mapped_commitment_tx_output_idx = self.commitment_tx_output_idx.unwrap_or(u32::max_value());
735 write_tlv_fields!(writer, {
736 (0, mapped_commitment_tx_output_idx, required),
737 (1, self.resolving_txid, option),
738 (2, self.payment_preimage, option),
739 (3, self.resolving_tx, option),
745 impl Readable for IrrevocablyResolvedHTLC {
746 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
747 let mut mapped_commitment_tx_output_idx = 0;
748 let mut resolving_txid = None;
749 let mut payment_preimage = None;
750 let mut resolving_tx = None;
751 read_tlv_fields!(reader, {
752 (0, mapped_commitment_tx_output_idx, required),
753 (1, resolving_txid, option),
754 (2, payment_preimage, option),
755 (3, resolving_tx, option),
758 commitment_tx_output_idx: if mapped_commitment_tx_output_idx == u32::max_value() { None } else { Some(mapped_commitment_tx_output_idx) },
766 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
767 /// on-chain transactions to ensure no loss of funds occurs.
769 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
770 /// information and are actively monitoring the chain.
772 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
773 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
774 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
775 /// returned block hash and the the current chain and then reconnecting blocks to get to the
776 /// best chain) upon deserializing the object!
777 pub struct ChannelMonitor<Signer: WriteableEcdsaChannelSigner> {
779 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
781 pub(super) inner: Mutex<ChannelMonitorImpl<Signer>>,
784 impl<Signer: WriteableEcdsaChannelSigner> Clone for ChannelMonitor<Signer> where Signer: Clone {
785 fn clone(&self) -> Self {
786 let inner = self.inner.lock().unwrap().clone();
787 ChannelMonitor::from_impl(inner)
791 #[derive(Clone, PartialEq)]
792 pub(crate) struct ChannelMonitorImpl<Signer: WriteableEcdsaChannelSigner> {
793 latest_update_id: u64,
794 commitment_transaction_number_obscure_factor: u64,
796 destination_script: ScriptBuf,
797 broadcasted_holder_revokable_script: Option<(ScriptBuf, PublicKey, RevocationKey)>,
798 counterparty_payment_script: ScriptBuf,
799 shutdown_script: Option<ScriptBuf>,
801 channel_keys_id: [u8; 32],
802 holder_revocation_basepoint: RevocationBasepoint,
803 channel_id: ChannelId,
804 funding_info: (OutPoint, ScriptBuf),
805 current_counterparty_commitment_txid: Option<Txid>,
806 prev_counterparty_commitment_txid: Option<Txid>,
808 counterparty_commitment_params: CounterpartyCommitmentParameters,
809 funding_redeemscript: ScriptBuf,
810 channel_value_satoshis: u64,
811 // first is the idx of the first of the two per-commitment points
812 their_cur_per_commitment_points: Option<(u64, PublicKey, Option<PublicKey>)>,
814 on_holder_tx_csv: u16,
816 commitment_secrets: CounterpartyCommitmentSecrets,
817 /// The set of outpoints in each counterparty commitment transaction. We always need at least
818 /// the payment hash from `HTLCOutputInCommitment` to claim even a revoked commitment
819 /// transaction broadcast as we need to be able to construct the witness script in all cases.
820 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
821 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
822 /// Nor can we figure out their commitment numbers without the commitment transaction they are
823 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
824 /// commitment transactions which we find on-chain, mapping them to the commitment number which
825 /// can be used to derive the revocation key and claim the transactions.
826 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
827 /// Cache used to make pruning of payment_preimages faster.
828 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
829 /// counterparty transactions (ie should remain pretty small).
830 /// Serialized to disk but should generally not be sent to Watchtowers.
831 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
833 counterparty_fulfilled_htlcs: HashMap<SentHTLCId, PaymentPreimage>,
835 // We store two holder commitment transactions to avoid any race conditions where we may update
836 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
837 // various monitors for one channel being out of sync, and us broadcasting a holder
838 // transaction for which we have deleted claim information on some watchtowers.
839 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
840 current_holder_commitment_tx: HolderSignedTx,
842 // Used just for ChannelManager to make sure it has the latest channel data during
844 current_counterparty_commitment_number: u64,
845 // Used just for ChannelManager to make sure it has the latest channel data during
847 current_holder_commitment_number: u64,
849 /// The set of payment hashes from inbound payments for which we know the preimage. Payment
850 /// preimages that are not included in any unrevoked local commitment transaction or unrevoked
851 /// remote commitment transactions are automatically removed when commitment transactions are
853 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
855 // Note that `MonitorEvent`s MUST NOT be generated during update processing, only generated
856 // during chain data processing. This prevents a race in `ChainMonitor::update_channel` (and
857 // presumably user implementations thereof as well) where we update the in-memory channel
858 // object, then before the persistence finishes (as it's all under a read-lock), we return
859 // pending events to the user or to the relevant `ChannelManager`. Then, on reload, we'll have
860 // the pre-event state here, but have processed the event in the `ChannelManager`.
861 // Note that because the `event_lock` in `ChainMonitor` is only taken in
862 // block/transaction-connected events and *not* during block/transaction-disconnected events,
863 // we further MUST NOT generate events during block/transaction-disconnection.
864 pending_monitor_events: Vec<MonitorEvent>,
866 pub(super) pending_events: Vec<Event>,
867 pub(super) is_processing_pending_events: bool,
869 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
870 // which to take actions once they reach enough confirmations. Each entry includes the
871 // transaction's id and the height when the transaction was confirmed on chain.
872 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
874 // If we get serialized out and re-read, we need to make sure that the chain monitoring
875 // interface knows about the TXOs that we want to be notified of spends of. We could probably
876 // be smart and derive them from the above storage fields, but its much simpler and more
877 // Obviously Correct (tm) if we just keep track of them explicitly.
878 outputs_to_watch: HashMap<Txid, Vec<(u32, ScriptBuf)>>,
881 pub onchain_tx_handler: OnchainTxHandler<Signer>,
883 onchain_tx_handler: OnchainTxHandler<Signer>,
885 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
886 // channel has been force-closed. After this is set, no further holder commitment transaction
887 // updates may occur, and we panic!() if one is provided.
888 lockdown_from_offchain: bool,
890 // Set once we've signed a holder commitment transaction and handed it over to our
891 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
892 // may occur, and we fail any such monitor updates.
894 // In case of update rejection due to a locally already signed commitment transaction, we
895 // nevertheless store update content to track in case of concurrent broadcast by another
896 // remote monitor out-of-order with regards to the block view.
897 holder_tx_signed: bool,
899 // If a spend of the funding output is seen, we set this to true and reject any further
900 // updates. This prevents any further changes in the offchain state no matter the order
901 // of block connection between ChannelMonitors and the ChannelManager.
902 funding_spend_seen: bool,
904 /// Set to `Some` of the confirmed transaction spending the funding input of the channel after
905 /// reaching `ANTI_REORG_DELAY` confirmations.
906 funding_spend_confirmed: Option<Txid>,
908 confirmed_commitment_tx_counterparty_output: CommitmentTxCounterpartyOutputInfo,
909 /// The set of HTLCs which have been either claimed or failed on chain and have reached
910 /// the requisite confirmations on the claim/fail transaction (either ANTI_REORG_DELAY or the
911 /// spending CSV for revocable outputs).
912 htlcs_resolved_on_chain: Vec<IrrevocablyResolvedHTLC>,
914 /// The set of `SpendableOutput` events which we have already passed upstream to be claimed.
915 /// These are tracked explicitly to ensure that we don't generate the same events redundantly
916 /// if users duplicatively confirm old transactions. Specifically for transactions claiming a
917 /// revoked remote outpoint we otherwise have no tracking at all once they've reached
918 /// [`ANTI_REORG_DELAY`], so we have to track them here.
919 spendable_txids_confirmed: Vec<Txid>,
921 // We simply modify best_block in Channel's block_connected so that serialization is
922 // consistent but hopefully the users' copy handles block_connected in a consistent way.
923 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
924 // their best_block from its state and not based on updated copies that didn't run through
925 // the full block_connected).
926 best_block: BestBlock,
928 /// The node_id of our counterparty
929 counterparty_node_id: Option<PublicKey>,
931 /// Initial counterparty commmitment data needed to recreate the commitment tx
932 /// in the persistence pipeline for third-party watchtowers. This will only be present on
933 /// monitors created after 0.0.117.
935 /// Ordering of tuple data: (their_per_commitment_point, feerate_per_kw, to_broadcaster_sats,
936 /// to_countersignatory_sats)
937 initial_counterparty_commitment_info: Option<(PublicKey, u32, u64, u64)>,
939 /// The first block height at which we had no remaining claimable balances.
940 balances_empty_height: Option<u32>,
943 /// Transaction outputs to watch for on-chain spends.
944 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
946 impl<Signer: WriteableEcdsaChannelSigner> PartialEq for ChannelMonitor<Signer> where Signer: PartialEq {
947 fn eq(&self, other: &Self) -> bool {
948 // We need some kind of total lockorder. Absent a better idea, we sort by position in
949 // memory and take locks in that order (assuming that we can't move within memory while a
951 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
952 let a = if ord { self.inner.unsafe_well_ordered_double_lock_self() } else { other.inner.unsafe_well_ordered_double_lock_self() };
953 let b = if ord { other.inner.unsafe_well_ordered_double_lock_self() } else { self.inner.unsafe_well_ordered_double_lock_self() };
958 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitor<Signer> {
959 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
960 self.inner.lock().unwrap().write(writer)
964 // These are also used for ChannelMonitorUpdate, above.
965 const SERIALIZATION_VERSION: u8 = 1;
966 const MIN_SERIALIZATION_VERSION: u8 = 1;
968 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitorImpl<Signer> {
969 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
970 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
972 self.latest_update_id.write(writer)?;
974 // Set in initial Channel-object creation, so should always be set by now:
975 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
977 self.destination_script.write(writer)?;
978 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
979 writer.write_all(&[0; 1])?;
980 broadcasted_holder_revokable_script.0.write(writer)?;
981 broadcasted_holder_revokable_script.1.write(writer)?;
982 broadcasted_holder_revokable_script.2.write(writer)?;
984 writer.write_all(&[1; 1])?;
987 self.counterparty_payment_script.write(writer)?;
988 match &self.shutdown_script {
989 Some(script) => script.write(writer)?,
990 None => ScriptBuf::new().write(writer)?,
993 self.channel_keys_id.write(writer)?;
994 self.holder_revocation_basepoint.write(writer)?;
995 writer.write_all(&self.funding_info.0.txid[..])?;
996 writer.write_all(&self.funding_info.0.index.to_be_bytes())?;
997 self.funding_info.1.write(writer)?;
998 self.current_counterparty_commitment_txid.write(writer)?;
999 self.prev_counterparty_commitment_txid.write(writer)?;
1001 self.counterparty_commitment_params.write(writer)?;
1002 self.funding_redeemscript.write(writer)?;
1003 self.channel_value_satoshis.write(writer)?;
1005 match self.their_cur_per_commitment_points {
1006 Some((idx, pubkey, second_option)) => {
1007 writer.write_all(&byte_utils::be48_to_array(idx))?;
1008 writer.write_all(&pubkey.serialize())?;
1009 match second_option {
1010 Some(second_pubkey) => {
1011 writer.write_all(&second_pubkey.serialize())?;
1014 writer.write_all(&[0; 33])?;
1019 writer.write_all(&byte_utils::be48_to_array(0))?;
1023 writer.write_all(&self.on_holder_tx_csv.to_be_bytes())?;
1025 self.commitment_secrets.write(writer)?;
1027 macro_rules! serialize_htlc_in_commitment {
1028 ($htlc_output: expr) => {
1029 writer.write_all(&[$htlc_output.offered as u8; 1])?;
1030 writer.write_all(&$htlc_output.amount_msat.to_be_bytes())?;
1031 writer.write_all(&$htlc_output.cltv_expiry.to_be_bytes())?;
1032 writer.write_all(&$htlc_output.payment_hash.0[..])?;
1033 $htlc_output.transaction_output_index.write(writer)?;
1037 writer.write_all(&(self.counterparty_claimable_outpoints.len() as u64).to_be_bytes())?;
1038 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
1039 writer.write_all(&txid[..])?;
1040 writer.write_all(&(htlc_infos.len() as u64).to_be_bytes())?;
1041 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
1042 debug_assert!(htlc_source.is_none() || Some(**txid) == self.current_counterparty_commitment_txid
1043 || Some(**txid) == self.prev_counterparty_commitment_txid,
1044 "HTLC Sources for all revoked commitment transactions should be none!");
1045 serialize_htlc_in_commitment!(htlc_output);
1046 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
1050 writer.write_all(&(self.counterparty_commitment_txn_on_chain.len() as u64).to_be_bytes())?;
1051 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
1052 writer.write_all(&txid[..])?;
1053 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
1056 writer.write_all(&(self.counterparty_hash_commitment_number.len() as u64).to_be_bytes())?;
1057 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
1058 writer.write_all(&payment_hash.0[..])?;
1059 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
1062 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
1063 writer.write_all(&[1; 1])?;
1064 prev_holder_tx.write(writer)?;
1066 writer.write_all(&[0; 1])?;
1069 self.current_holder_commitment_tx.write(writer)?;
1071 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
1072 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
1074 writer.write_all(&(self.payment_preimages.len() as u64).to_be_bytes())?;
1075 for payment_preimage in self.payment_preimages.values() {
1076 writer.write_all(&payment_preimage.0[..])?;
1079 writer.write_all(&(self.pending_monitor_events.iter().filter(|ev| match ev {
1080 MonitorEvent::HTLCEvent(_) => true,
1081 MonitorEvent::HolderForceClosed(_) => true,
1082 MonitorEvent::HolderForceClosedWithInfo { .. } => true,
1084 }).count() as u64).to_be_bytes())?;
1085 for event in self.pending_monitor_events.iter() {
1087 MonitorEvent::HTLCEvent(upd) => {
1091 MonitorEvent::HolderForceClosed(_) => 1u8.write(writer)?,
1092 // `HolderForceClosedWithInfo` replaced `HolderForceClosed` in v0.0.122. To keep
1093 // backwards compatibility, we write a `HolderForceClosed` event along with the
1094 // `HolderForceClosedWithInfo` event. This is deduplicated in the reader.
1095 MonitorEvent::HolderForceClosedWithInfo { .. } => 1u8.write(writer)?,
1096 _ => {}, // Covered in the TLV writes below
1100 writer.write_all(&(self.pending_events.len() as u64).to_be_bytes())?;
1101 for event in self.pending_events.iter() {
1102 event.write(writer)?;
1105 self.best_block.block_hash.write(writer)?;
1106 writer.write_all(&self.best_block.height.to_be_bytes())?;
1108 writer.write_all(&(self.onchain_events_awaiting_threshold_conf.len() as u64).to_be_bytes())?;
1109 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
1110 entry.write(writer)?;
1113 (self.outputs_to_watch.len() as u64).write(writer)?;
1114 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
1115 txid.write(writer)?;
1116 (idx_scripts.len() as u64).write(writer)?;
1117 for (idx, script) in idx_scripts.iter() {
1119 script.write(writer)?;
1122 self.onchain_tx_handler.write(writer)?;
1124 self.lockdown_from_offchain.write(writer)?;
1125 self.holder_tx_signed.write(writer)?;
1127 // If we have a `HolderForceClosedWithInfo` event, we need to write the `HolderForceClosed` for backwards compatibility.
1128 let pending_monitor_events = match self.pending_monitor_events.iter().find(|ev| match ev {
1129 MonitorEvent::HolderForceClosedWithInfo { .. } => true,
1132 Some(MonitorEvent::HolderForceClosedWithInfo { outpoint, .. }) => {
1133 let mut pending_monitor_events = self.pending_monitor_events.clone();
1134 pending_monitor_events.push(MonitorEvent::HolderForceClosed(*outpoint));
1135 pending_monitor_events
1137 _ => self.pending_monitor_events.clone(),
1140 write_tlv_fields!(writer, {
1141 (1, self.funding_spend_confirmed, option),
1142 (3, self.htlcs_resolved_on_chain, required_vec),
1143 (5, pending_monitor_events, required_vec),
1144 (7, self.funding_spend_seen, required),
1145 (9, self.counterparty_node_id, option),
1146 (11, self.confirmed_commitment_tx_counterparty_output, option),
1147 (13, self.spendable_txids_confirmed, required_vec),
1148 (15, self.counterparty_fulfilled_htlcs, required),
1149 (17, self.initial_counterparty_commitment_info, option),
1150 (19, self.channel_id, required),
1151 (21, self.balances_empty_height, option),
1158 macro_rules! _process_events_body {
1159 ($self_opt: expr, $event_to_handle: expr, $handle_event: expr) => {
1161 let (pending_events, repeated_events);
1162 if let Some(us) = $self_opt {
1163 let mut inner = us.inner.lock().unwrap();
1164 if inner.is_processing_pending_events {
1167 inner.is_processing_pending_events = true;
1169 pending_events = inner.pending_events.clone();
1170 repeated_events = inner.get_repeated_events();
1172 let num_events = pending_events.len();
1174 for event in pending_events.into_iter().chain(repeated_events.into_iter()) {
1175 $event_to_handle = event;
1179 if let Some(us) = $self_opt {
1180 let mut inner = us.inner.lock().unwrap();
1181 inner.pending_events.drain(..num_events);
1182 inner.is_processing_pending_events = false;
1183 if !inner.pending_events.is_empty() {
1184 // If there's more events to process, go ahead and do so.
1192 pub(super) use _process_events_body as process_events_body;
1194 pub(crate) struct WithChannelMonitor<'a, L: Deref> where L::Target: Logger {
1196 peer_id: Option<PublicKey>,
1197 channel_id: Option<ChannelId>,
1200 impl<'a, L: Deref> Logger for WithChannelMonitor<'a, L> where L::Target: Logger {
1201 fn log(&self, mut record: Record) {
1202 record.peer_id = self.peer_id;
1203 record.channel_id = self.channel_id;
1204 self.logger.log(record)
1208 impl<'a, L: Deref> WithChannelMonitor<'a, L> where L::Target: Logger {
1209 pub(crate) fn from<S: WriteableEcdsaChannelSigner>(logger: &'a L, monitor: &ChannelMonitor<S>) -> Self {
1210 Self::from_impl(logger, &*monitor.inner.lock().unwrap())
1213 pub(crate) fn from_impl<S: WriteableEcdsaChannelSigner>(logger: &'a L, monitor_impl: &ChannelMonitorImpl<S>) -> Self {
1214 let peer_id = monitor_impl.counterparty_node_id;
1215 let channel_id = Some(monitor_impl.channel_id());
1216 WithChannelMonitor {
1217 logger, peer_id, channel_id,
1222 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1223 /// For lockorder enforcement purposes, we need to have a single site which constructs the
1224 /// `inner` mutex, otherwise cases where we lock two monitors at the same time (eg in our
1225 /// PartialEq implementation) we may decide a lockorder violation has occurred.
1226 fn from_impl(imp: ChannelMonitorImpl<Signer>) -> Self {
1227 ChannelMonitor { inner: Mutex::new(imp) }
1230 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_script: Option<ScriptBuf>,
1231 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, ScriptBuf),
1232 channel_parameters: &ChannelTransactionParameters,
1233 funding_redeemscript: ScriptBuf, channel_value_satoshis: u64,
1234 commitment_transaction_number_obscure_factor: u64,
1235 initial_holder_commitment_tx: HolderCommitmentTransaction,
1236 best_block: BestBlock, counterparty_node_id: PublicKey, channel_id: ChannelId,
1237 ) -> ChannelMonitor<Signer> {
1239 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1240 let counterparty_payment_script = chan_utils::get_counterparty_payment_script(
1241 &channel_parameters.channel_type_features, &keys.pubkeys().payment_point
1244 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
1245 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
1246 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
1247 let counterparty_commitment_params = CounterpartyCommitmentParameters { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv };
1249 let channel_keys_id = keys.channel_keys_id();
1250 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1252 // block for Rust 1.34 compat
1253 let (holder_commitment_tx, current_holder_commitment_number) = {
1254 let trusted_tx = initial_holder_commitment_tx.trust();
1255 let txid = trusted_tx.txid();
1257 let tx_keys = trusted_tx.keys();
1258 let holder_commitment_tx = HolderSignedTx {
1260 revocation_key: tx_keys.revocation_key,
1261 a_htlc_key: tx_keys.broadcaster_htlc_key,
1262 b_htlc_key: tx_keys.countersignatory_htlc_key,
1263 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1264 per_commitment_point: tx_keys.per_commitment_point,
1265 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1266 to_self_value_sat: initial_holder_commitment_tx.to_broadcaster_value_sat(),
1267 feerate_per_kw: trusted_tx.feerate_per_kw(),
1269 (holder_commitment_tx, trusted_tx.commitment_number())
1272 let onchain_tx_handler = OnchainTxHandler::new(
1273 channel_value_satoshis, channel_keys_id, destination_script.into(), keys,
1274 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx
1277 let mut outputs_to_watch = new_hash_map();
1278 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1280 Self::from_impl(ChannelMonitorImpl {
1281 latest_update_id: 0,
1282 commitment_transaction_number_obscure_factor,
1284 destination_script: destination_script.into(),
1285 broadcasted_holder_revokable_script: None,
1286 counterparty_payment_script,
1290 holder_revocation_basepoint,
1293 current_counterparty_commitment_txid: None,
1294 prev_counterparty_commitment_txid: None,
1296 counterparty_commitment_params,
1297 funding_redeemscript,
1298 channel_value_satoshis,
1299 their_cur_per_commitment_points: None,
1301 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1303 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1304 counterparty_claimable_outpoints: new_hash_map(),
1305 counterparty_commitment_txn_on_chain: new_hash_map(),
1306 counterparty_hash_commitment_number: new_hash_map(),
1307 counterparty_fulfilled_htlcs: new_hash_map(),
1309 prev_holder_signed_commitment_tx: None,
1310 current_holder_commitment_tx: holder_commitment_tx,
1311 current_counterparty_commitment_number: 1 << 48,
1312 current_holder_commitment_number,
1314 payment_preimages: new_hash_map(),
1315 pending_monitor_events: Vec::new(),
1316 pending_events: Vec::new(),
1317 is_processing_pending_events: false,
1319 onchain_events_awaiting_threshold_conf: Vec::new(),
1324 lockdown_from_offchain: false,
1325 holder_tx_signed: false,
1326 funding_spend_seen: false,
1327 funding_spend_confirmed: None,
1328 confirmed_commitment_tx_counterparty_output: None,
1329 htlcs_resolved_on_chain: Vec::new(),
1330 spendable_txids_confirmed: Vec::new(),
1333 counterparty_node_id: Some(counterparty_node_id),
1334 initial_counterparty_commitment_info: None,
1335 balances_empty_height: None,
1340 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1341 self.inner.lock().unwrap().provide_secret(idx, secret)
1344 /// A variant of `Self::provide_latest_counterparty_commitment_tx` used to provide
1345 /// additional information to the monitor to store in order to recreate the initial
1346 /// counterparty commitment transaction during persistence (mainly for use in third-party
1349 /// This is used to provide the counterparty commitment information directly to the monitor
1350 /// before the initial persistence of a new channel.
1351 pub(crate) fn provide_initial_counterparty_commitment_tx<L: Deref>(
1352 &self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1353 commitment_number: u64, their_cur_per_commitment_point: PublicKey, feerate_per_kw: u32,
1354 to_broadcaster_value_sat: u64, to_countersignatory_value_sat: u64, logger: &L,
1356 where L::Target: Logger
1358 let mut inner = self.inner.lock().unwrap();
1359 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1360 inner.provide_initial_counterparty_commitment_tx(txid,
1361 htlc_outputs, commitment_number, their_cur_per_commitment_point, feerate_per_kw,
1362 to_broadcaster_value_sat, to_countersignatory_value_sat, &logger);
1365 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1366 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1367 /// possibly future revocation/preimage information) to claim outputs where possible.
1368 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1370 fn provide_latest_counterparty_commitment_tx<L: Deref>(
1373 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1374 commitment_number: u64,
1375 their_per_commitment_point: PublicKey,
1377 ) where L::Target: Logger {
1378 let mut inner = self.inner.lock().unwrap();
1379 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1380 inner.provide_latest_counterparty_commitment_tx(
1381 txid, htlc_outputs, commitment_number, their_per_commitment_point, &logger)
1385 fn provide_latest_holder_commitment_tx(
1386 &self, holder_commitment_tx: HolderCommitmentTransaction,
1387 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1388 ) -> Result<(), ()> {
1389 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(holder_commitment_tx, htlc_outputs, &Vec::new(), Vec::new()).map_err(|_| ())
1392 /// This is used to provide payment preimage(s) out-of-band during startup without updating the
1393 /// off-chain state with a new commitment transaction.
1394 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1396 payment_hash: &PaymentHash,
1397 payment_preimage: &PaymentPreimage,
1399 fee_estimator: &LowerBoundedFeeEstimator<F>,
1402 B::Target: BroadcasterInterface,
1403 F::Target: FeeEstimator,
1406 let mut inner = self.inner.lock().unwrap();
1407 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1408 inner.provide_payment_preimage(
1409 payment_hash, payment_preimage, broadcaster, fee_estimator, &logger)
1412 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1415 /// panics if the given update is not the next update by update_id.
1416 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1418 updates: &ChannelMonitorUpdate,
1424 B::Target: BroadcasterInterface,
1425 F::Target: FeeEstimator,
1428 let mut inner = self.inner.lock().unwrap();
1429 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1430 inner.update_monitor(updates, broadcaster, fee_estimator, &logger)
1433 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1435 pub fn get_latest_update_id(&self) -> u64 {
1436 self.inner.lock().unwrap().get_latest_update_id()
1439 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1440 pub fn get_funding_txo(&self) -> (OutPoint, ScriptBuf) {
1441 self.inner.lock().unwrap().get_funding_txo().clone()
1444 /// Gets the channel_id of the channel this ChannelMonitor is monitoring for.
1445 pub fn channel_id(&self) -> ChannelId {
1446 self.inner.lock().unwrap().channel_id()
1449 /// Gets a list of txids, with their output scripts (in the order they appear in the
1450 /// transaction), which we must learn about spends of via block_connected().
1451 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, ScriptBuf)>)> {
1452 self.inner.lock().unwrap().get_outputs_to_watch()
1453 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1456 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1457 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1458 /// have been registered.
1459 pub fn load_outputs_to_watch<F: Deref, L: Deref>(&self, filter: &F, logger: &L)
1461 F::Target: chain::Filter, L::Target: Logger,
1463 let lock = self.inner.lock().unwrap();
1464 let logger = WithChannelMonitor::from_impl(logger, &*lock);
1465 log_trace!(&logger, "Registering funding outpoint {}", &lock.get_funding_txo().0);
1466 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1467 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1468 for (index, script_pubkey) in outputs.iter() {
1469 assert!(*index <= u16::max_value() as u32);
1470 let outpoint = OutPoint { txid: *txid, index: *index as u16 };
1471 log_trace!(logger, "Registering outpoint {} with the filter for monitoring spends", outpoint);
1472 filter.register_output(WatchedOutput {
1475 script_pubkey: script_pubkey.clone(),
1481 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1482 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1483 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1484 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1487 /// Processes [`SpendableOutputs`] events produced from each [`ChannelMonitor`] upon maturity.
1489 /// For channels featuring anchor outputs, this method will also process [`BumpTransaction`]
1490 /// events produced from each [`ChannelMonitor`] while there is a balance to claim onchain
1491 /// within each channel. As the confirmation of a commitment transaction may be critical to the
1492 /// safety of funds, we recommend invoking this every 30 seconds, or lower if running in an
1493 /// environment with spotty connections, like on mobile.
1495 /// An [`EventHandler`] may safely call back to the provider, though this shouldn't be needed in
1496 /// order to handle these events.
1498 /// [`SpendableOutputs`]: crate::events::Event::SpendableOutputs
1499 /// [`BumpTransaction`]: crate::events::Event::BumpTransaction
1500 pub fn process_pending_events<H: Deref>(&self, handler: &H) where H::Target: EventHandler {
1502 process_events_body!(Some(self), ev, handler.handle_event(ev));
1505 /// Processes any events asynchronously.
1507 /// See [`Self::process_pending_events`] for more information.
1508 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
1512 process_events_body!(Some(self), ev, { handler(ev).await });
1516 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1517 let mut ret = Vec::new();
1518 let mut lck = self.inner.lock().unwrap();
1519 mem::swap(&mut ret, &mut lck.pending_events);
1520 ret.append(&mut lck.get_repeated_events());
1524 /// Gets the counterparty's initial commitment transaction. The returned commitment
1525 /// transaction is unsigned. This is intended to be called during the initial persistence of
1526 /// the monitor (inside an implementation of [`Persist::persist_new_channel`]), to allow for
1527 /// watchtowers in the persistence pipeline to have enough data to form justice transactions.
1529 /// This is similar to [`Self::counterparty_commitment_txs_from_update`], except
1530 /// that for the initial commitment transaction, we don't have a corresponding update.
1532 /// This will only return `Some` for channel monitors that have been created after upgrading
1533 /// to LDK 0.0.117+.
1535 /// [`Persist::persist_new_channel`]: crate::chain::chainmonitor::Persist::persist_new_channel
1536 pub fn initial_counterparty_commitment_tx(&self) -> Option<CommitmentTransaction> {
1537 self.inner.lock().unwrap().initial_counterparty_commitment_tx()
1540 /// Gets all of the counterparty commitment transactions provided by the given update. This
1541 /// may be empty if the update doesn't include any new counterparty commitments. Returned
1542 /// commitment transactions are unsigned.
1544 /// This is provided so that watchtower clients in the persistence pipeline are able to build
1545 /// justice transactions for each counterparty commitment upon each update. It's intended to be
1546 /// used within an implementation of [`Persist::update_persisted_channel`], which is provided
1547 /// with a monitor and an update. Once revoked, signing a justice transaction can be done using
1548 /// [`Self::sign_to_local_justice_tx`].
1550 /// It is expected that a watchtower client may use this method to retrieve the latest counterparty
1551 /// commitment transaction(s), and then hold the necessary data until a later update in which
1552 /// the monitor has been updated with the corresponding revocation data, at which point the
1553 /// monitor can sign the justice transaction.
1555 /// This will only return a non-empty list for monitor updates that have been created after
1556 /// upgrading to LDK 0.0.117+. Note that no restriction lies on the monitors themselves, which
1557 /// may have been created prior to upgrading.
1559 /// [`Persist::update_persisted_channel`]: crate::chain::chainmonitor::Persist::update_persisted_channel
1560 pub fn counterparty_commitment_txs_from_update(&self, update: &ChannelMonitorUpdate) -> Vec<CommitmentTransaction> {
1561 self.inner.lock().unwrap().counterparty_commitment_txs_from_update(update)
1564 /// Wrapper around [`EcdsaChannelSigner::sign_justice_revoked_output`] to make
1565 /// signing the justice transaction easier for implementors of
1566 /// [`chain::chainmonitor::Persist`]. On success this method returns the provided transaction
1567 /// signing the input at `input_idx`. This method will only produce a valid signature for
1568 /// a transaction spending the `to_local` output of a commitment transaction, i.e. this cannot
1569 /// be used for revoked HTLC outputs.
1571 /// `Value` is the value of the output being spent by the input at `input_idx`, committed
1572 /// in the BIP 143 signature.
1574 /// This method will only succeed if this monitor has received the revocation secret for the
1575 /// provided `commitment_number`. If a commitment number is provided that does not correspond
1576 /// to the commitment transaction being revoked, this will return a signed transaction, but
1577 /// the signature will not be valid.
1579 /// [`EcdsaChannelSigner::sign_justice_revoked_output`]: crate::sign::ecdsa::EcdsaChannelSigner::sign_justice_revoked_output
1580 /// [`Persist`]: crate::chain::chainmonitor::Persist
1581 pub fn sign_to_local_justice_tx(&self, justice_tx: Transaction, input_idx: usize, value: u64, commitment_number: u64) -> Result<Transaction, ()> {
1582 self.inner.lock().unwrap().sign_to_local_justice_tx(justice_tx, input_idx, value, commitment_number)
1585 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1586 self.inner.lock().unwrap().get_min_seen_secret()
1589 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1590 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1593 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1594 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1597 /// Gets the `node_id` of the counterparty for this channel.
1599 /// Will be `None` for channels constructed on LDK versions prior to 0.0.110 and always `Some`
1601 pub fn get_counterparty_node_id(&self) -> Option<PublicKey> {
1602 self.inner.lock().unwrap().counterparty_node_id
1605 /// You may use this to broadcast the latest local commitment transaction, either because
1606 /// a monitor update failed or because we've fallen behind (i.e. we've received proof that our
1607 /// counterparty side knows a revocation secret we gave them that they shouldn't know).
1609 /// Broadcasting these transactions in this manner is UNSAFE, as they allow counterparty
1610 /// side to punish you. Nevertheless you may want to broadcast them if counterparty doesn't
1611 /// close channel with their commitment transaction after a substantial amount of time. Best
1612 /// may be to contact the other node operator out-of-band to coordinate other options available
1614 pub fn broadcast_latest_holder_commitment_txn<B: Deref, F: Deref, L: Deref>(
1615 &self, broadcaster: &B, fee_estimator: &F, logger: &L
1618 B::Target: BroadcasterInterface,
1619 F::Target: FeeEstimator,
1622 let mut inner = self.inner.lock().unwrap();
1623 let fee_estimator = LowerBoundedFeeEstimator::new(&**fee_estimator);
1624 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1625 inner.queue_latest_holder_commitment_txn_for_broadcast(broadcaster, &fee_estimator, &logger);
1628 /// Unsafe test-only version of `broadcast_latest_holder_commitment_txn` used by our test framework
1629 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1630 /// revoked commitment transaction.
1631 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1632 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1633 where L::Target: Logger {
1634 let mut inner = self.inner.lock().unwrap();
1635 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1636 inner.unsafe_get_latest_holder_commitment_txn(&logger)
1639 /// Processes transactions in a newly connected block, which may result in any of the following:
1640 /// - update the monitor's state against resolved HTLCs
1641 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1642 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1643 /// - detect settled outputs for later spending
1644 /// - schedule and bump any in-flight claims
1646 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1647 /// [`get_outputs_to_watch`].
1649 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1650 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1653 txdata: &TransactionData,
1658 ) -> Vec<TransactionOutputs>
1660 B::Target: BroadcasterInterface,
1661 F::Target: FeeEstimator,
1664 let mut inner = self.inner.lock().unwrap();
1665 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1666 inner.block_connected(
1667 header, txdata, height, broadcaster, fee_estimator, &logger)
1670 /// Determines if the disconnected block contained any transactions of interest and updates
1672 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1680 B::Target: BroadcasterInterface,
1681 F::Target: FeeEstimator,
1684 let mut inner = self.inner.lock().unwrap();
1685 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1686 inner.block_disconnected(
1687 header, height, broadcaster, fee_estimator, &logger)
1690 /// Processes transactions confirmed in a block with the given header and height, returning new
1691 /// outputs to watch. See [`block_connected`] for details.
1693 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1694 /// blocks. See [`chain::Confirm`] for calling expectations.
1696 /// [`block_connected`]: Self::block_connected
1697 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1700 txdata: &TransactionData,
1705 ) -> Vec<TransactionOutputs>
1707 B::Target: BroadcasterInterface,
1708 F::Target: FeeEstimator,
1711 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1712 let mut inner = self.inner.lock().unwrap();
1713 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1714 inner.transactions_confirmed(
1715 header, txdata, height, broadcaster, &bounded_fee_estimator, &logger)
1718 /// Processes a transaction that was reorganized out of the chain.
1720 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1721 /// than blocks. See [`chain::Confirm`] for calling expectations.
1723 /// [`block_disconnected`]: Self::block_disconnected
1724 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1731 B::Target: BroadcasterInterface,
1732 F::Target: FeeEstimator,
1735 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1736 let mut inner = self.inner.lock().unwrap();
1737 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1738 inner.transaction_unconfirmed(
1739 txid, broadcaster, &bounded_fee_estimator, &logger
1743 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1744 /// [`block_connected`] for details.
1746 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1747 /// blocks. See [`chain::Confirm`] for calling expectations.
1749 /// [`block_connected`]: Self::block_connected
1750 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1757 ) -> Vec<TransactionOutputs>
1759 B::Target: BroadcasterInterface,
1760 F::Target: FeeEstimator,
1763 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1764 let mut inner = self.inner.lock().unwrap();
1765 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1766 inner.best_block_updated(
1767 header, height, broadcaster, &bounded_fee_estimator, &logger
1771 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1772 pub fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
1773 let inner = self.inner.lock().unwrap();
1774 let mut txids: Vec<(Txid, u32, Option<BlockHash>)> = inner.onchain_events_awaiting_threshold_conf
1776 .map(|entry| (entry.txid, entry.height, entry.block_hash))
1777 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1779 txids.sort_unstable_by(|a, b| a.0.cmp(&b.0).then(b.1.cmp(&a.1)));
1780 txids.dedup_by_key(|(txid, _, _)| *txid);
1784 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
1785 /// [`chain::Confirm`] interfaces.
1786 pub fn current_best_block(&self) -> BestBlock {
1787 self.inner.lock().unwrap().best_block.clone()
1790 /// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
1791 /// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
1792 /// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
1793 /// invoking this every 30 seconds, or lower if running in an environment with spotty
1794 /// connections, like on mobile.
1795 pub fn rebroadcast_pending_claims<B: Deref, F: Deref, L: Deref>(
1796 &self, broadcaster: B, fee_estimator: F, logger: &L,
1799 B::Target: BroadcasterInterface,
1800 F::Target: FeeEstimator,
1803 let fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1804 let mut inner = self.inner.lock().unwrap();
1805 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1806 let current_height = inner.best_block.height;
1807 inner.onchain_tx_handler.rebroadcast_pending_claims(
1808 current_height, FeerateStrategy::HighestOfPreviousOrNew, &broadcaster, &fee_estimator, &logger,
1812 /// Triggers rebroadcasts of pending claims from a force-closed channel after a transaction
1813 /// signature generation failure.
1814 pub fn signer_unblocked<B: Deref, F: Deref, L: Deref>(
1815 &self, broadcaster: B, fee_estimator: F, logger: &L,
1818 B::Target: BroadcasterInterface,
1819 F::Target: FeeEstimator,
1822 let fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1823 let mut inner = self.inner.lock().unwrap();
1824 let logger = WithChannelMonitor::from_impl(logger, &*inner);
1825 let current_height = inner.best_block.height;
1826 inner.onchain_tx_handler.rebroadcast_pending_claims(
1827 current_height, FeerateStrategy::RetryPrevious, &broadcaster, &fee_estimator, &logger,
1831 /// Returns the descriptors for relevant outputs (i.e., those that we can spend) within the
1832 /// transaction if they exist and the transaction has at least [`ANTI_REORG_DELAY`]
1833 /// confirmations. For [`SpendableOutputDescriptor::DelayedPaymentOutput`] descriptors to be
1834 /// returned, the transaction must have at least `max(ANTI_REORG_DELAY, to_self_delay)`
1837 /// Descriptors returned by this method are primarily exposed via [`Event::SpendableOutputs`]
1838 /// once they are no longer under reorg risk. This method serves as a way to retrieve these
1839 /// descriptors at a later time, either for historical purposes, or to replay any
1840 /// missed/unhandled descriptors. For the purpose of gathering historical records, if the
1841 /// channel close has fully resolved (i.e., [`ChannelMonitor::get_claimable_balances`] returns
1842 /// an empty set), you can retrieve all spendable outputs by providing all descendant spending
1843 /// transactions starting from the channel's funding transaction and going down three levels.
1845 /// `tx` is a transaction we'll scan the outputs of. Any transaction can be provided. If any
1846 /// outputs which can be spent by us are found, at least one descriptor is returned.
1848 /// `confirmation_height` must be the height of the block in which `tx` was included in.
1849 pub fn get_spendable_outputs(&self, tx: &Transaction, confirmation_height: u32) -> Vec<SpendableOutputDescriptor> {
1850 let inner = self.inner.lock().unwrap();
1851 let current_height = inner.best_block.height;
1852 let mut spendable_outputs = inner.get_spendable_outputs(tx);
1853 spendable_outputs.retain(|descriptor| {
1854 let mut conf_threshold = current_height.saturating_sub(ANTI_REORG_DELAY) + 1;
1855 if let SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) = descriptor {
1856 conf_threshold = cmp::min(conf_threshold,
1857 current_height.saturating_sub(descriptor.to_self_delay as u32) + 1);
1859 conf_threshold >= confirmation_height
1864 /// Checks if the monitor is fully resolved. Resolved monitor is one that has claimed all of
1865 /// its outputs and balances (i.e. [`Self::get_claimable_balances`] returns an empty set).
1867 /// This function returns true only if [`Self::get_claimable_balances`] has been empty for at least
1868 /// 2016 blocks as an additional protection against any bugs resulting in spuriously empty balance sets.
1869 pub fn is_fully_resolved<L: Logger>(&self, logger: &L) -> bool {
1870 let mut is_all_funds_claimed = self.get_claimable_balances().is_empty();
1871 let current_height = self.current_best_block().height;
1872 let mut inner = self.inner.lock().unwrap();
1874 if is_all_funds_claimed {
1875 if !inner.funding_spend_seen {
1876 debug_assert!(false, "We should see funding spend by the time a monitor clears out");
1877 is_all_funds_claimed = false;
1881 match (inner.balances_empty_height, is_all_funds_claimed) {
1882 (Some(balances_empty_height), true) => {
1883 // Claimed all funds, check if reached the blocks threshold.
1884 const BLOCKS_THRESHOLD: u32 = 4032; // ~four weeks
1885 return current_height >= balances_empty_height + BLOCKS_THRESHOLD;
1887 (Some(_), false) => {
1888 // previously assumed we claimed all funds, but we have new funds to claim.
1889 // Should not happen in practice.
1890 debug_assert!(false, "Thought we were done claiming funds, but claimable_balances now has entries");
1892 "WARNING: LDK thought it was done claiming all the available funds in the ChannelMonitor for channel {}, but later decided it had more to claim. This is potentially an important bug in LDK, please report it at https://github.com/lightningdevkit/rust-lightning/issues/new",
1893 inner.get_funding_txo().0);
1894 inner.balances_empty_height = None;
1898 // Claimed all funds but `balances_empty_height` is None. It is set to the
1899 // current block height.
1900 inner.balances_empty_height = Some(current_height);
1904 // Have funds to claim.
1911 pub fn get_counterparty_payment_script(&self) -> ScriptBuf {
1912 self.inner.lock().unwrap().counterparty_payment_script.clone()
1916 pub fn set_counterparty_payment_script(&self, script: ScriptBuf) {
1917 self.inner.lock().unwrap().counterparty_payment_script = script;
1921 pub fn do_signer_call<F: FnMut(&Signer) -> ()>(&self, mut f: F) {
1922 let inner = self.inner.lock().unwrap();
1923 f(&inner.onchain_tx_handler.signer);
1927 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
1928 /// Helper for get_claimable_balances which does the work for an individual HTLC, generating up
1929 /// to one `Balance` for the HTLC.
1930 fn get_htlc_balance(&self, htlc: &HTLCOutputInCommitment, holder_commitment: bool,
1931 counterparty_revoked_commitment: bool, confirmed_txid: Option<Txid>)
1932 -> Option<Balance> {
1933 let htlc_commitment_tx_output_idx =
1934 if let Some(v) = htlc.transaction_output_index { v } else { return None; };
1936 let mut htlc_spend_txid_opt = None;
1937 let mut htlc_spend_tx_opt = None;
1938 let mut holder_timeout_spend_pending = None;
1939 let mut htlc_spend_pending = None;
1940 let mut holder_delayed_output_pending = None;
1941 for event in self.onchain_events_awaiting_threshold_conf.iter() {
1943 OnchainEvent::HTLCUpdate { commitment_tx_output_idx, htlc_value_satoshis, .. }
1944 if commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) => {
1945 debug_assert!(htlc_spend_txid_opt.is_none());
1946 htlc_spend_txid_opt = Some(&event.txid);
1947 debug_assert!(htlc_spend_tx_opt.is_none());
1948 htlc_spend_tx_opt = event.transaction.as_ref();
1949 debug_assert!(holder_timeout_spend_pending.is_none());
1950 debug_assert_eq!(htlc_value_satoshis.unwrap(), htlc.amount_msat / 1000);
1951 holder_timeout_spend_pending = Some(event.confirmation_threshold());
1953 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. }
1954 if commitment_tx_output_idx == htlc_commitment_tx_output_idx => {
1955 debug_assert!(htlc_spend_txid_opt.is_none());
1956 htlc_spend_txid_opt = Some(&event.txid);
1957 debug_assert!(htlc_spend_tx_opt.is_none());
1958 htlc_spend_tx_opt = event.transaction.as_ref();
1959 debug_assert!(htlc_spend_pending.is_none());
1960 htlc_spend_pending = Some((event.confirmation_threshold(), preimage.is_some()));
1962 OnchainEvent::MaturingOutput {
1963 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) }
1964 if event.transaction.as_ref().map(|tx| tx.input.iter().enumerate()
1965 .any(|(input_idx, inp)|
1966 Some(inp.previous_output.txid) == confirmed_txid &&
1967 inp.previous_output.vout == htlc_commitment_tx_output_idx &&
1968 // A maturing output for an HTLC claim will always be at the same
1969 // index as the HTLC input. This is true pre-anchors, as there's
1970 // only 1 input and 1 output. This is also true post-anchors,
1971 // because we have a SIGHASH_SINGLE|ANYONECANPAY signature from our
1972 // channel counterparty.
1973 descriptor.outpoint.index as usize == input_idx
1977 debug_assert!(holder_delayed_output_pending.is_none());
1978 holder_delayed_output_pending = Some(event.confirmation_threshold());
1983 let htlc_resolved = self.htlcs_resolved_on_chain.iter()
1984 .find(|v| if v.commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) {
1985 debug_assert!(htlc_spend_txid_opt.is_none());
1986 htlc_spend_txid_opt = v.resolving_txid.as_ref();
1987 debug_assert!(htlc_spend_tx_opt.is_none());
1988 htlc_spend_tx_opt = v.resolving_tx.as_ref();
1991 debug_assert!(holder_timeout_spend_pending.is_some() as u8 + htlc_spend_pending.is_some() as u8 + htlc_resolved.is_some() as u8 <= 1);
1993 let htlc_commitment_outpoint = BitcoinOutPoint::new(confirmed_txid.unwrap(), htlc_commitment_tx_output_idx);
1994 let htlc_output_to_spend =
1995 if let Some(txid) = htlc_spend_txid_opt {
1996 // Because HTLC transactions either only have 1 input and 1 output (pre-anchors) or
1997 // are signed with SIGHASH_SINGLE|ANYONECANPAY under BIP-0143 (post-anchors), we can
1998 // locate the correct output by ensuring its adjacent input spends the HTLC output
1999 // in the commitment.
2000 if let Some(ref tx) = htlc_spend_tx_opt {
2001 let htlc_input_idx_opt = tx.input.iter().enumerate()
2002 .find(|(_, input)| input.previous_output == htlc_commitment_outpoint)
2003 .map(|(idx, _)| idx as u32);
2004 debug_assert!(htlc_input_idx_opt.is_some());
2005 BitcoinOutPoint::new(*txid, htlc_input_idx_opt.unwrap_or(0))
2007 debug_assert!(!self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx());
2008 BitcoinOutPoint::new(*txid, 0)
2011 htlc_commitment_outpoint
2013 let htlc_output_spend_pending = self.onchain_tx_handler.is_output_spend_pending(&htlc_output_to_spend);
2015 if let Some(conf_thresh) = holder_delayed_output_pending {
2016 debug_assert!(holder_commitment);
2017 return Some(Balance::ClaimableAwaitingConfirmations {
2018 amount_satoshis: htlc.amount_msat / 1000,
2019 confirmation_height: conf_thresh,
2021 } else if htlc_resolved.is_some() && !htlc_output_spend_pending {
2022 // Funding transaction spends should be fully confirmed by the time any
2023 // HTLC transactions are resolved, unless we're talking about a holder
2024 // commitment tx, whose resolution is delayed until the CSV timeout is
2025 // reached, even though HTLCs may be resolved after only
2026 // ANTI_REORG_DELAY confirmations.
2027 debug_assert!(holder_commitment || self.funding_spend_confirmed.is_some());
2028 } else if counterparty_revoked_commitment {
2029 let htlc_output_claim_pending = self.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
2030 if let OnchainEvent::MaturingOutput {
2031 descriptor: SpendableOutputDescriptor::StaticOutput { .. }
2033 if event.transaction.as_ref().map(|tx| tx.input.iter().any(|inp| {
2034 if let Some(htlc_spend_txid) = htlc_spend_txid_opt {
2035 tx.txid() == *htlc_spend_txid || inp.previous_output.txid == *htlc_spend_txid
2037 Some(inp.previous_output.txid) == confirmed_txid &&
2038 inp.previous_output.vout == htlc_commitment_tx_output_idx
2040 })).unwrap_or(false) {
2045 if htlc_output_claim_pending.is_some() {
2046 // We already push `Balance`s onto the `res` list for every
2047 // `StaticOutput` in a `MaturingOutput` in the revoked
2048 // counterparty commitment transaction case generally, so don't
2049 // need to do so again here.
2051 debug_assert!(holder_timeout_spend_pending.is_none(),
2052 "HTLCUpdate OnchainEvents should never appear for preimage claims");
2053 debug_assert!(!htlc.offered || htlc_spend_pending.is_none() || !htlc_spend_pending.unwrap().1,
2054 "We don't (currently) generate preimage claims against revoked outputs, where did you get one?!");
2055 return Some(Balance::CounterpartyRevokedOutputClaimable {
2056 amount_satoshis: htlc.amount_msat / 1000,
2059 } else if htlc.offered == holder_commitment {
2060 // If the payment was outbound, check if there's an HTLCUpdate
2061 // indicating we have spent this HTLC with a timeout, claiming it back
2062 // and awaiting confirmations on it.
2063 if let Some(conf_thresh) = holder_timeout_spend_pending {
2064 return Some(Balance::ClaimableAwaitingConfirmations {
2065 amount_satoshis: htlc.amount_msat / 1000,
2066 confirmation_height: conf_thresh,
2069 return Some(Balance::MaybeTimeoutClaimableHTLC {
2070 amount_satoshis: htlc.amount_msat / 1000,
2071 claimable_height: htlc.cltv_expiry,
2072 payment_hash: htlc.payment_hash,
2075 } else if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
2076 // Otherwise (the payment was inbound), only expose it as claimable if
2077 // we know the preimage.
2078 // Note that if there is a pending claim, but it did not use the
2079 // preimage, we lost funds to our counterparty! We will then continue
2080 // to show it as ContentiousClaimable until ANTI_REORG_DELAY.
2081 debug_assert!(holder_timeout_spend_pending.is_none());
2082 if let Some((conf_thresh, true)) = htlc_spend_pending {
2083 return Some(Balance::ClaimableAwaitingConfirmations {
2084 amount_satoshis: htlc.amount_msat / 1000,
2085 confirmation_height: conf_thresh,
2088 return Some(Balance::ContentiousClaimable {
2089 amount_satoshis: htlc.amount_msat / 1000,
2090 timeout_height: htlc.cltv_expiry,
2091 payment_hash: htlc.payment_hash,
2092 payment_preimage: *payment_preimage,
2095 } else if htlc_resolved.is_none() {
2096 return Some(Balance::MaybePreimageClaimableHTLC {
2097 amount_satoshis: htlc.amount_msat / 1000,
2098 expiry_height: htlc.cltv_expiry,
2099 payment_hash: htlc.payment_hash,
2106 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
2107 /// Gets the balances in this channel which are either claimable by us if we were to
2108 /// force-close the channel now or which are claimable on-chain (possibly awaiting
2111 /// Any balances in the channel which are available on-chain (excluding on-chain fees) are
2112 /// included here until an [`Event::SpendableOutputs`] event has been generated for the
2113 /// balance, or until our counterparty has claimed the balance and accrued several
2114 /// confirmations on the claim transaction.
2116 /// Note that for `ChannelMonitors` which track a channel which went on-chain with versions of
2117 /// LDK prior to 0.0.111, not all or excess balances may be included.
2119 /// See [`Balance`] for additional details on the types of claimable balances which
2120 /// may be returned here and their meanings.
2121 pub fn get_claimable_balances(&self) -> Vec<Balance> {
2122 let mut res = Vec::new();
2123 let us = self.inner.lock().unwrap();
2125 let mut confirmed_txid = us.funding_spend_confirmed;
2126 let mut confirmed_counterparty_output = us.confirmed_commitment_tx_counterparty_output;
2127 let mut pending_commitment_tx_conf_thresh = None;
2128 let funding_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
2129 if let OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } =
2132 confirmed_counterparty_output = commitment_tx_to_counterparty_output;
2133 Some((event.txid, event.confirmation_threshold()))
2136 if let Some((txid, conf_thresh)) = funding_spend_pending {
2137 debug_assert!(us.funding_spend_confirmed.is_none(),
2138 "We have a pending funding spend awaiting anti-reorg confirmation, we can't have confirmed it already!");
2139 confirmed_txid = Some(txid);
2140 pending_commitment_tx_conf_thresh = Some(conf_thresh);
2143 macro_rules! walk_htlcs {
2144 ($holder_commitment: expr, $counterparty_revoked_commitment: expr, $htlc_iter: expr) => {
2145 for htlc in $htlc_iter {
2146 if htlc.transaction_output_index.is_some() {
2148 if let Some(bal) = us.get_htlc_balance(htlc, $holder_commitment, $counterparty_revoked_commitment, confirmed_txid) {
2156 if let Some(txid) = confirmed_txid {
2157 let mut found_commitment_tx = false;
2158 if let Some(counterparty_tx_htlcs) = us.counterparty_claimable_outpoints.get(&txid) {
2159 // First look for the to_remote output back to us.
2160 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
2161 if let Some(value) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
2162 if let OnchainEvent::MaturingOutput {
2163 descriptor: SpendableOutputDescriptor::StaticPaymentOutput(descriptor)
2165 Some(descriptor.output.value)
2168 res.push(Balance::ClaimableAwaitingConfirmations {
2169 amount_satoshis: value,
2170 confirmation_height: conf_thresh,
2173 // If a counterparty commitment transaction is awaiting confirmation, we
2174 // should either have a StaticPaymentOutput MaturingOutput event awaiting
2175 // confirmation with the same height or have never met our dust amount.
2178 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
2179 walk_htlcs!(false, false, counterparty_tx_htlcs.iter().map(|(a, _)| a));
2181 walk_htlcs!(false, true, counterparty_tx_htlcs.iter().map(|(a, _)| a));
2182 // The counterparty broadcasted a revoked state!
2183 // Look for any StaticOutputs first, generating claimable balances for those.
2184 // If any match the confirmed counterparty revoked to_self output, skip
2185 // generating a CounterpartyRevokedOutputClaimable.
2186 let mut spent_counterparty_output = false;
2187 for event in us.onchain_events_awaiting_threshold_conf.iter() {
2188 if let OnchainEvent::MaturingOutput {
2189 descriptor: SpendableOutputDescriptor::StaticOutput { output, .. }
2191 res.push(Balance::ClaimableAwaitingConfirmations {
2192 amount_satoshis: output.value,
2193 confirmation_height: event.confirmation_threshold(),
2195 if let Some(confirmed_to_self_idx) = confirmed_counterparty_output.map(|(idx, _)| idx) {
2196 if event.transaction.as_ref().map(|tx|
2197 tx.input.iter().any(|inp| inp.previous_output.vout == confirmed_to_self_idx)
2198 ).unwrap_or(false) {
2199 spent_counterparty_output = true;
2205 if spent_counterparty_output {
2206 } else if let Some((confirmed_to_self_idx, amt)) = confirmed_counterparty_output {
2207 let output_spendable = us.onchain_tx_handler
2208 .is_output_spend_pending(&BitcoinOutPoint::new(txid, confirmed_to_self_idx));
2209 if output_spendable {
2210 res.push(Balance::CounterpartyRevokedOutputClaimable {
2211 amount_satoshis: amt,
2215 // Counterparty output is missing, either it was broadcasted on a
2216 // previous version of LDK or the counterparty hadn't met dust.
2219 found_commitment_tx = true;
2220 } else if txid == us.current_holder_commitment_tx.txid {
2221 walk_htlcs!(true, false, us.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, _)| a));
2222 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
2223 res.push(Balance::ClaimableAwaitingConfirmations {
2224 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
2225 confirmation_height: conf_thresh,
2228 found_commitment_tx = true;
2229 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
2230 if txid == prev_commitment.txid {
2231 walk_htlcs!(true, false, prev_commitment.htlc_outputs.iter().map(|(a, _, _)| a));
2232 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
2233 res.push(Balance::ClaimableAwaitingConfirmations {
2234 amount_satoshis: prev_commitment.to_self_value_sat,
2235 confirmation_height: conf_thresh,
2238 found_commitment_tx = true;
2241 if !found_commitment_tx {
2242 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
2243 // We blindly assume this is a cooperative close transaction here, and that
2244 // neither us nor our counterparty misbehaved. At worst we've under-estimated
2245 // the amount we can claim as we'll punish a misbehaving counterparty.
2246 res.push(Balance::ClaimableAwaitingConfirmations {
2247 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
2248 confirmation_height: conf_thresh,
2253 let mut claimable_inbound_htlc_value_sat = 0;
2254 for (htlc, _, _) in us.current_holder_commitment_tx.htlc_outputs.iter() {
2255 if htlc.transaction_output_index.is_none() { continue; }
2257 res.push(Balance::MaybeTimeoutClaimableHTLC {
2258 amount_satoshis: htlc.amount_msat / 1000,
2259 claimable_height: htlc.cltv_expiry,
2260 payment_hash: htlc.payment_hash,
2262 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
2263 claimable_inbound_htlc_value_sat += htlc.amount_msat / 1000;
2265 // As long as the HTLC is still in our latest commitment state, treat
2266 // it as potentially claimable, even if it has long-since expired.
2267 res.push(Balance::MaybePreimageClaimableHTLC {
2268 amount_satoshis: htlc.amount_msat / 1000,
2269 expiry_height: htlc.cltv_expiry,
2270 payment_hash: htlc.payment_hash,
2274 res.push(Balance::ClaimableOnChannelClose {
2275 amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat + claimable_inbound_htlc_value_sat,
2282 /// Gets the set of outbound HTLCs which can be (or have been) resolved by this
2283 /// `ChannelMonitor`. This is used to determine if an HTLC was removed from the channel prior
2284 /// to the `ChannelManager` having been persisted.
2286 /// This is similar to [`Self::get_pending_or_resolved_outbound_htlcs`] except it includes
2287 /// HTLCs which were resolved on-chain (i.e. where the final HTLC resolution was done by an
2288 /// event from this `ChannelMonitor`).
2289 pub(crate) fn get_all_current_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
2290 let mut res = new_hash_map();
2291 // Just examine the available counterparty commitment transactions. See docs on
2292 // `fail_unbroadcast_htlcs`, below, for justification.
2293 let us = self.inner.lock().unwrap();
2294 macro_rules! walk_counterparty_commitment {
2296 if let Some(ref latest_outpoints) = us.counterparty_claimable_outpoints.get($txid) {
2297 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
2298 if let &Some(ref source) = source_option {
2299 res.insert((**source).clone(), (htlc.clone(),
2300 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned()));
2306 if let Some(ref txid) = us.current_counterparty_commitment_txid {
2307 walk_counterparty_commitment!(txid);
2309 if let Some(ref txid) = us.prev_counterparty_commitment_txid {
2310 walk_counterparty_commitment!(txid);
2315 /// Gets the set of outbound HTLCs which are pending resolution in this channel or which were
2316 /// resolved with a preimage from our counterparty.
2318 /// This is used to reconstruct pending outbound payments on restart in the ChannelManager.
2320 /// Currently, the preimage is unused, however if it is present in the relevant internal state
2321 /// an HTLC is always included even if it has been resolved.
2322 pub(crate) fn get_pending_or_resolved_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
2323 let us = self.inner.lock().unwrap();
2324 // We're only concerned with the confirmation count of HTLC transactions, and don't
2325 // actually care how many confirmations a commitment transaction may or may not have. Thus,
2326 // we look for either a FundingSpendConfirmation event or a funding_spend_confirmed.
2327 let confirmed_txid = us.funding_spend_confirmed.or_else(|| {
2328 us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
2329 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
2335 if confirmed_txid.is_none() {
2336 // If we have not seen a commitment transaction on-chain (ie the channel is not yet
2337 // closed), just get the full set.
2339 return self.get_all_current_outbound_htlcs();
2342 let mut res = new_hash_map();
2343 macro_rules! walk_htlcs {
2344 ($holder_commitment: expr, $htlc_iter: expr) => {
2345 for (htlc, source) in $htlc_iter {
2346 if us.htlcs_resolved_on_chain.iter().any(|v| v.commitment_tx_output_idx == htlc.transaction_output_index) {
2347 // We should assert that funding_spend_confirmed is_some() here, but we
2348 // have some unit tests which violate HTLC transaction CSVs entirely and
2350 // TODO: Once tests all connect transactions at consensus-valid times, we
2351 // should assert here like we do in `get_claimable_balances`.
2352 } else if htlc.offered == $holder_commitment {
2353 // If the payment was outbound, check if there's an HTLCUpdate
2354 // indicating we have spent this HTLC with a timeout, claiming it back
2355 // and awaiting confirmations on it.
2356 let htlc_update_confd = us.onchain_events_awaiting_threshold_conf.iter().any(|event| {
2357 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
2358 // If the HTLC was timed out, we wait for ANTI_REORG_DELAY blocks
2359 // before considering it "no longer pending" - this matches when we
2360 // provide the ChannelManager an HTLC failure event.
2361 Some(commitment_tx_output_idx) == htlc.transaction_output_index &&
2362 us.best_block.height >= event.height + ANTI_REORG_DELAY - 1
2363 } else if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, .. } = event.event {
2364 // If the HTLC was fulfilled with a preimage, we consider the HTLC
2365 // immediately non-pending, matching when we provide ChannelManager
2367 Some(commitment_tx_output_idx) == htlc.transaction_output_index
2370 let counterparty_resolved_preimage_opt =
2371 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned();
2372 if !htlc_update_confd || counterparty_resolved_preimage_opt.is_some() {
2373 res.insert(source.clone(), (htlc.clone(), counterparty_resolved_preimage_opt));
2380 let txid = confirmed_txid.unwrap();
2381 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
2382 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().filter_map(|(a, b)| {
2383 if let &Some(ref source) = b {
2384 Some((a, &**source))
2387 } else if txid == us.current_holder_commitment_tx.txid {
2388 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().filter_map(|(a, _, c)| {
2389 if let Some(source) = c { Some((a, source)) } else { None }
2391 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
2392 if txid == prev_commitment.txid {
2393 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().filter_map(|(a, _, c)| {
2394 if let Some(source) = c { Some((a, source)) } else { None }
2402 pub(crate) fn get_stored_preimages(&self) -> HashMap<PaymentHash, PaymentPreimage> {
2403 self.inner.lock().unwrap().payment_preimages.clone()
2407 /// Compares a broadcasted commitment transaction's HTLCs with those in the latest state,
2408 /// failing any HTLCs which didn't make it into the broadcasted commitment transaction back
2409 /// after ANTI_REORG_DELAY blocks.
2411 /// We always compare against the set of HTLCs in counterparty commitment transactions, as those
2412 /// are the commitment transactions which are generated by us. The off-chain state machine in
2413 /// `Channel` will automatically resolve any HTLCs which were never included in a commitment
2414 /// transaction when it detects channel closure, but it is up to us to ensure any HTLCs which were
2415 /// included in a remote commitment transaction are failed back if they are not present in the
2416 /// broadcasted commitment transaction.
2418 /// Specifically, the removal process for HTLCs in `Channel` is always based on the counterparty
2419 /// sending a `revoke_and_ack`, which causes us to clear `prev_counterparty_commitment_txid`. Thus,
2420 /// as long as we examine both the current counterparty commitment transaction and, if it hasn't
2421 /// been revoked yet, the previous one, we we will never "forget" to resolve an HTLC.
2422 macro_rules! fail_unbroadcast_htlcs {
2423 ($self: expr, $commitment_tx_type: expr, $commitment_txid_confirmed: expr, $commitment_tx_confirmed: expr,
2424 $commitment_tx_conf_height: expr, $commitment_tx_conf_hash: expr, $confirmed_htlcs_list: expr, $logger: expr) => { {
2425 debug_assert_eq!($commitment_tx_confirmed.txid(), $commitment_txid_confirmed);
2427 macro_rules! check_htlc_fails {
2428 ($txid: expr, $commitment_tx: expr) => {
2429 if let Some(ref latest_outpoints) = $self.counterparty_claimable_outpoints.get($txid) {
2430 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
2431 if let &Some(ref source) = source_option {
2432 // Check if the HTLC is present in the commitment transaction that was
2433 // broadcast, but not if it was below the dust limit, which we should
2434 // fail backwards immediately as there is no way for us to learn the
2435 // payment_preimage.
2436 // Note that if the dust limit were allowed to change between
2437 // commitment transactions we'd want to be check whether *any*
2438 // broadcastable commitment transaction has the HTLC in it, but it
2439 // cannot currently change after channel initialization, so we don't
2441 let confirmed_htlcs_iter: &mut dyn Iterator<Item = (&HTLCOutputInCommitment, Option<&HTLCSource>)> = &mut $confirmed_htlcs_list;
2443 let mut matched_htlc = false;
2444 for (ref broadcast_htlc, ref broadcast_source) in confirmed_htlcs_iter {
2445 if broadcast_htlc.transaction_output_index.is_some() &&
2446 (Some(&**source) == *broadcast_source ||
2447 (broadcast_source.is_none() &&
2448 broadcast_htlc.payment_hash == htlc.payment_hash &&
2449 broadcast_htlc.amount_msat == htlc.amount_msat)) {
2450 matched_htlc = true;
2454 if matched_htlc { continue; }
2455 if $self.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).is_some() {
2458 $self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
2459 if entry.height != $commitment_tx_conf_height { return true; }
2461 OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
2462 *update_source != **source
2467 let entry = OnchainEventEntry {
2468 txid: $commitment_txid_confirmed,
2469 transaction: Some($commitment_tx_confirmed.clone()),
2470 height: $commitment_tx_conf_height,
2471 block_hash: Some(*$commitment_tx_conf_hash),
2472 event: OnchainEvent::HTLCUpdate {
2473 source: (**source).clone(),
2474 payment_hash: htlc.payment_hash.clone(),
2475 htlc_value_satoshis: Some(htlc.amount_msat / 1000),
2476 commitment_tx_output_idx: None,
2479 log_trace!($logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of {} commitment transaction {}, waiting for confirmation (at height {})",
2480 &htlc.payment_hash, $commitment_tx, $commitment_tx_type,
2481 $commitment_txid_confirmed, entry.confirmation_threshold());
2482 $self.onchain_events_awaiting_threshold_conf.push(entry);
2488 if let Some(ref txid) = $self.current_counterparty_commitment_txid {
2489 check_htlc_fails!(txid, "current");
2491 if let Some(ref txid) = $self.prev_counterparty_commitment_txid {
2492 check_htlc_fails!(txid, "previous");
2497 // In the `test_invalid_funding_tx` test, we need a bogus script which matches the HTLC-Accepted
2498 // witness length match (ie is 136 bytes long). We generate one here which we also use in some
2499 // in-line tests later.
2502 pub fn deliberately_bogus_accepted_htlc_witness_program() -> Vec<u8> {
2503 use bitcoin::blockdata::opcodes;
2504 let mut ret = [opcodes::all::OP_NOP.to_u8(); 136];
2505 ret[131] = opcodes::all::OP_DROP.to_u8();
2506 ret[132] = opcodes::all::OP_DROP.to_u8();
2507 ret[133] = opcodes::all::OP_DROP.to_u8();
2508 ret[134] = opcodes::all::OP_DROP.to_u8();
2509 ret[135] = opcodes::OP_TRUE.to_u8();
2514 pub fn deliberately_bogus_accepted_htlc_witness() -> Vec<Vec<u8>> {
2515 vec![Vec::new(), Vec::new(), Vec::new(), Vec::new(), deliberately_bogus_accepted_htlc_witness_program().into()].into()
2518 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
2519 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
2520 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
2521 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
2522 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
2523 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
2524 return Err("Previous secret did not match new one");
2527 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
2528 // events for now-revoked/fulfilled HTLCs.
2529 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
2530 if self.current_counterparty_commitment_txid.unwrap() != txid {
2531 let cur_claimables = self.counterparty_claimable_outpoints.get(
2532 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2533 for (_, ref source_opt) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2534 if let Some(source) = source_opt {
2535 if !cur_claimables.iter()
2536 .any(|(_, cur_source_opt)| cur_source_opt == source_opt)
2538 self.counterparty_fulfilled_htlcs.remove(&SentHTLCId::from_source(source));
2542 for &mut (_, ref mut source_opt) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
2546 assert!(cfg!(fuzzing), "Commitment txids are unique outside of fuzzing, where hashes can collide");
2550 if !self.payment_preimages.is_empty() {
2551 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
2552 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
2553 let min_idx = self.get_min_seen_secret();
2554 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
2556 self.payment_preimages.retain(|&k, _| {
2557 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
2558 if k == htlc.payment_hash {
2562 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
2563 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
2564 if k == htlc.payment_hash {
2569 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
2576 counterparty_hash_commitment_number.remove(&k);
2585 fn provide_initial_counterparty_commitment_tx<L: Deref>(
2586 &mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
2587 commitment_number: u64, their_per_commitment_point: PublicKey, feerate_per_kw: u32,
2588 to_broadcaster_value: u64, to_countersignatory_value: u64, logger: &WithChannelMonitor<L>,
2589 ) where L::Target: Logger {
2590 self.initial_counterparty_commitment_info = Some((their_per_commitment_point.clone(),
2591 feerate_per_kw, to_broadcaster_value, to_countersignatory_value));
2593 #[cfg(debug_assertions)] {
2594 let rebuilt_commitment_tx = self.initial_counterparty_commitment_tx().unwrap();
2595 debug_assert_eq!(rebuilt_commitment_tx.trust().txid(), txid);
2598 self.provide_latest_counterparty_commitment_tx(txid, htlc_outputs, commitment_number,
2599 their_per_commitment_point, logger);
2602 fn provide_latest_counterparty_commitment_tx<L: Deref>(
2603 &mut self, txid: Txid,
2604 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
2605 commitment_number: u64, their_per_commitment_point: PublicKey, logger: &WithChannelMonitor<L>,
2606 ) where L::Target: Logger {
2607 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
2608 // so that a remote monitor doesn't learn anything unless there is a malicious close.
2609 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
2611 for &(ref htlc, _) in &htlc_outputs {
2612 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
2615 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
2616 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
2617 self.current_counterparty_commitment_txid = Some(txid);
2618 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
2619 self.current_counterparty_commitment_number = commitment_number;
2620 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
2621 match self.their_cur_per_commitment_points {
2622 Some(old_points) => {
2623 if old_points.0 == commitment_number + 1 {
2624 self.their_cur_per_commitment_points = Some((old_points.0, old_points.1, Some(their_per_commitment_point)));
2625 } else if old_points.0 == commitment_number + 2 {
2626 if let Some(old_second_point) = old_points.2 {
2627 self.their_cur_per_commitment_points = Some((old_points.0 - 1, old_second_point, Some(their_per_commitment_point)));
2629 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2632 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2636 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2639 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
2640 for htlc in htlc_outputs {
2641 if htlc.0.transaction_output_index.is_some() {
2647 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
2648 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
2649 /// is important that any clones of this channel monitor (including remote clones) by kept
2650 /// up-to-date as our holder commitment transaction is updated.
2651 /// Panics if set_on_holder_tx_csv has never been called.
2652 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, mut htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>, claimed_htlcs: &[(SentHTLCId, PaymentPreimage)], nondust_htlc_sources: Vec<HTLCSource>) -> Result<(), &'static str> {
2653 if htlc_outputs.iter().any(|(_, s, _)| s.is_some()) {
2654 // If we have non-dust HTLCs in htlc_outputs, ensure they match the HTLCs in the
2655 // `holder_commitment_tx`. In the future, we'll no longer provide the redundant data
2656 // and just pass in source data via `nondust_htlc_sources`.
2657 debug_assert_eq!(htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).count(), holder_commitment_tx.trust().htlcs().len());
2658 for (a, b) in htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).map(|(h, _, _)| h).zip(holder_commitment_tx.trust().htlcs().iter()) {
2659 debug_assert_eq!(a, b);
2661 debug_assert_eq!(htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).count(), holder_commitment_tx.counterparty_htlc_sigs.len());
2662 for (a, b) in htlc_outputs.iter().filter_map(|(_, s, _)| s.as_ref()).zip(holder_commitment_tx.counterparty_htlc_sigs.iter()) {
2663 debug_assert_eq!(a, b);
2665 debug_assert!(nondust_htlc_sources.is_empty());
2667 // If we don't have any non-dust HTLCs in htlc_outputs, assume they were all passed via
2668 // `nondust_htlc_sources`, building up the final htlc_outputs by combining
2669 // `nondust_htlc_sources` and the `holder_commitment_tx`
2670 #[cfg(debug_assertions)] {
2672 for htlc in holder_commitment_tx.trust().htlcs().iter() {
2673 assert!(htlc.transaction_output_index.unwrap() as i32 > prev);
2674 prev = htlc.transaction_output_index.unwrap() as i32;
2677 debug_assert!(htlc_outputs.iter().all(|(htlc, _, _)| htlc.transaction_output_index.is_none()));
2678 debug_assert!(htlc_outputs.iter().all(|(_, sig_opt, _)| sig_opt.is_none()));
2679 debug_assert_eq!(holder_commitment_tx.trust().htlcs().len(), holder_commitment_tx.counterparty_htlc_sigs.len());
2681 let mut sources_iter = nondust_htlc_sources.into_iter();
2683 for (htlc, counterparty_sig) in holder_commitment_tx.trust().htlcs().iter()
2684 .zip(holder_commitment_tx.counterparty_htlc_sigs.iter())
2687 let source = sources_iter.next().expect("Non-dust HTLC sources didn't match commitment tx");
2688 #[cfg(debug_assertions)] {
2689 assert!(source.possibly_matches_output(htlc));
2691 htlc_outputs.push((htlc.clone(), Some(counterparty_sig.clone()), Some(source)));
2693 htlc_outputs.push((htlc.clone(), Some(counterparty_sig.clone()), None));
2696 debug_assert!(sources_iter.next().is_none());
2699 let trusted_tx = holder_commitment_tx.trust();
2700 let txid = trusted_tx.txid();
2701 let tx_keys = trusted_tx.keys();
2702 self.current_holder_commitment_number = trusted_tx.commitment_number();
2703 let mut new_holder_commitment_tx = HolderSignedTx {
2705 revocation_key: tx_keys.revocation_key,
2706 a_htlc_key: tx_keys.broadcaster_htlc_key,
2707 b_htlc_key: tx_keys.countersignatory_htlc_key,
2708 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
2709 per_commitment_point: tx_keys.per_commitment_point,
2711 to_self_value_sat: holder_commitment_tx.to_broadcaster_value_sat(),
2712 feerate_per_kw: trusted_tx.feerate_per_kw(),
2714 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
2715 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
2716 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
2717 for (claimed_htlc_id, claimed_preimage) in claimed_htlcs {
2718 #[cfg(debug_assertions)] {
2719 let cur_counterparty_htlcs = self.counterparty_claimable_outpoints.get(
2720 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2721 assert!(cur_counterparty_htlcs.iter().any(|(_, source_opt)| {
2722 if let Some(source) = source_opt {
2723 SentHTLCId::from_source(source) == *claimed_htlc_id
2727 self.counterparty_fulfilled_htlcs.insert(*claimed_htlc_id, *claimed_preimage);
2729 if self.holder_tx_signed {
2730 return Err("Latest holder commitment signed has already been signed, update is rejected");
2735 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
2736 /// commitment_tx_infos which contain the payment hash have been revoked.
2737 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
2738 &mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B,
2739 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &WithChannelMonitor<L>)
2740 where B::Target: BroadcasterInterface,
2741 F::Target: FeeEstimator,
2744 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
2746 let confirmed_spend_txid = self.funding_spend_confirmed.or_else(|| {
2747 self.onchain_events_awaiting_threshold_conf.iter().find_map(|event| match event.event {
2748 OnchainEvent::FundingSpendConfirmation { .. } => Some(event.txid),
2752 let confirmed_spend_txid = if let Some(txid) = confirmed_spend_txid {
2758 // If the channel is force closed, try to claim the output from this preimage.
2759 // First check if a counterparty commitment transaction has been broadcasted:
2760 macro_rules! claim_htlcs {
2761 ($commitment_number: expr, $txid: expr) => {
2762 let (htlc_claim_reqs, _) = self.get_counterparty_output_claim_info($commitment_number, $txid, None);
2763 self.onchain_tx_handler.update_claims_view_from_requests(htlc_claim_reqs, self.best_block.height, self.best_block.height, broadcaster, fee_estimator, logger);
2766 if let Some(txid) = self.current_counterparty_commitment_txid {
2767 if txid == confirmed_spend_txid {
2768 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2769 claim_htlcs!(*commitment_number, txid);
2771 debug_assert!(false);
2772 log_error!(logger, "Detected counterparty commitment tx on-chain without tracking commitment number");
2777 if let Some(txid) = self.prev_counterparty_commitment_txid {
2778 if txid == confirmed_spend_txid {
2779 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2780 claim_htlcs!(*commitment_number, txid);
2782 debug_assert!(false);
2783 log_error!(logger, "Detected counterparty commitment tx on-chain without tracking commitment number");
2789 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
2790 // claiming the HTLC output from each of the holder commitment transactions.
2791 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
2792 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
2793 // holder commitment transactions.
2794 if self.broadcasted_holder_revokable_script.is_some() {
2795 let holder_commitment_tx = if self.current_holder_commitment_tx.txid == confirmed_spend_txid {
2796 Some(&self.current_holder_commitment_tx)
2797 } else if let Some(prev_holder_commitment_tx) = &self.prev_holder_signed_commitment_tx {
2798 if prev_holder_commitment_tx.txid == confirmed_spend_txid {
2799 Some(prev_holder_commitment_tx)
2806 if let Some(holder_commitment_tx) = holder_commitment_tx {
2807 // Assume that the broadcasted commitment transaction confirmed in the current best
2808 // block. Even if not, its a reasonable metric for the bump criteria on the HTLC
2810 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&holder_commitment_tx, self.best_block.height);
2811 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height, self.best_block.height, broadcaster, fee_estimator, logger);
2816 fn generate_claimable_outpoints_and_watch_outputs(&mut self, reason: ClosureReason) -> (Vec<PackageTemplate>, Vec<TransactionOutputs>) {
2817 let funding_outp = HolderFundingOutput::build(
2818 self.funding_redeemscript.clone(),
2819 self.channel_value_satoshis,
2820 self.onchain_tx_handler.channel_type_features().clone()
2822 let commitment_package = PackageTemplate::build_package(
2823 self.funding_info.0.txid.clone(), self.funding_info.0.index as u32,
2824 PackageSolvingData::HolderFundingOutput(funding_outp),
2825 self.best_block.height, self.best_block.height
2827 let mut claimable_outpoints = vec![commitment_package];
2828 let event = MonitorEvent::HolderForceClosedWithInfo {
2830 outpoint: self.funding_info.0,
2831 channel_id: self.channel_id,
2833 self.pending_monitor_events.push(event);
2835 // Although we aren't signing the transaction directly here, the transaction will be signed
2836 // in the claim that is queued to OnchainTxHandler. We set holder_tx_signed here to reject
2837 // new channel updates.
2838 self.holder_tx_signed = true;
2839 let mut watch_outputs = Vec::new();
2840 // We can't broadcast our HTLC transactions while the commitment transaction is
2841 // unconfirmed. We'll delay doing so until we detect the confirmed commitment in
2842 // `transactions_confirmed`.
2843 if !self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
2844 // Because we're broadcasting a commitment transaction, we should construct the package
2845 // assuming it gets confirmed in the next block. Sadly, we have code which considers
2846 // "not yet confirmed" things as discardable, so we cannot do that here.
2847 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(
2848 &self.current_holder_commitment_tx, self.best_block.height
2850 let unsigned_commitment_tx = self.onchain_tx_handler.get_unsigned_holder_commitment_tx();
2851 let new_outputs = self.get_broadcasted_holder_watch_outputs(
2852 &self.current_holder_commitment_tx, &unsigned_commitment_tx
2854 if !new_outputs.is_empty() {
2855 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
2857 claimable_outpoints.append(&mut new_outpoints);
2859 (claimable_outpoints, watch_outputs)
2862 pub(crate) fn queue_latest_holder_commitment_txn_for_broadcast<B: Deref, F: Deref, L: Deref>(
2863 &mut self, broadcaster: &B, fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &WithChannelMonitor<L>
2866 B::Target: BroadcasterInterface,
2867 F::Target: FeeEstimator,
2870 let (claimable_outpoints, _) = self.generate_claimable_outpoints_and_watch_outputs(ClosureReason::HolderForceClosed);
2871 self.onchain_tx_handler.update_claims_view_from_requests(
2872 claimable_outpoints, self.best_block.height, self.best_block.height, broadcaster,
2873 fee_estimator, logger
2877 fn update_monitor<B: Deref, F: Deref, L: Deref>(
2878 &mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: &F, logger: &WithChannelMonitor<L>
2880 where B::Target: BroadcasterInterface,
2881 F::Target: FeeEstimator,
2884 if self.latest_update_id == CLOSED_CHANNEL_UPDATE_ID && updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2885 log_info!(logger, "Applying post-force-closed update to monitor {} with {} change(s).",
2886 log_funding_info!(self), updates.updates.len());
2887 } else if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2888 log_info!(logger, "Applying force close update to monitor {} with {} change(s).",
2889 log_funding_info!(self), updates.updates.len());
2891 log_info!(logger, "Applying update to monitor {}, bringing update_id from {} to {} with {} change(s).",
2892 log_funding_info!(self), self.latest_update_id, updates.update_id, updates.updates.len());
2895 if updates.counterparty_node_id.is_some() {
2896 if self.counterparty_node_id.is_none() {
2897 self.counterparty_node_id = updates.counterparty_node_id;
2899 debug_assert_eq!(self.counterparty_node_id, updates.counterparty_node_id);
2903 // ChannelMonitor updates may be applied after force close if we receive a preimage for a
2904 // broadcasted commitment transaction HTLC output that we'd like to claim on-chain. If this
2905 // is the case, we no longer have guaranteed access to the monitor's update ID, so we use a
2906 // sentinel value instead.
2908 // The `ChannelManager` may also queue redundant `ChannelForceClosed` updates if it still
2909 // thinks the channel needs to have its commitment transaction broadcast, so we'll allow
2911 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2912 assert_eq!(updates.updates.len(), 1);
2913 match updates.updates[0] {
2914 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => {},
2915 // We should have already seen a `ChannelForceClosed` update if we're trying to
2916 // provide a preimage at this point.
2917 ChannelMonitorUpdateStep::PaymentPreimage { .. } =>
2918 debug_assert_eq!(self.latest_update_id, CLOSED_CHANNEL_UPDATE_ID),
2920 log_error!(logger, "Attempted to apply post-force-close ChannelMonitorUpdate of type {}", updates.updates[0].variant_name());
2921 panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage");
2924 } else if self.latest_update_id + 1 != updates.update_id {
2925 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
2927 let mut ret = Ok(());
2928 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&**fee_estimator);
2929 for update in updates.updates.iter() {
2931 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs, claimed_htlcs, nondust_htlc_sources } => {
2932 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
2933 if self.lockdown_from_offchain { panic!(); }
2934 if let Err(e) = self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone(), &claimed_htlcs, nondust_htlc_sources.clone()) {
2935 log_error!(logger, "Providing latest holder commitment transaction failed/was refused:");
2936 log_error!(logger, " {}", e);
2940 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_per_commitment_point, .. } => {
2941 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
2942 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_per_commitment_point, logger)
2944 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
2945 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
2946 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array()), &payment_preimage, broadcaster, &bounded_fee_estimator, logger)
2948 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
2949 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
2950 if let Err(e) = self.provide_secret(*idx, *secret) {
2951 debug_assert!(false, "Latest counterparty commitment secret was invalid");
2952 log_error!(logger, "Providing latest counterparty commitment secret failed/was refused:");
2953 log_error!(logger, " {}", e);
2957 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
2958 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
2959 self.lockdown_from_offchain = true;
2960 if *should_broadcast {
2961 // There's no need to broadcast our commitment transaction if we've seen one
2962 // confirmed (even with 1 confirmation) as it'll be rejected as
2963 // duplicate/conflicting.
2964 let detected_funding_spend = self.funding_spend_confirmed.is_some() ||
2965 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
2966 OnchainEvent::FundingSpendConfirmation { .. } => true,
2969 if detected_funding_spend {
2970 log_trace!(logger, "Avoiding commitment broadcast, already detected confirmed spend onchain");
2973 self.queue_latest_holder_commitment_txn_for_broadcast(broadcaster, &bounded_fee_estimator, logger);
2974 } else if !self.holder_tx_signed {
2975 log_error!(logger, "WARNING: You have a potentially-unsafe holder commitment transaction available to broadcast");
2976 log_error!(logger, " in channel monitor for channel {}!", &self.channel_id());
2977 log_error!(logger, " Read the docs for ChannelMonitor::broadcast_latest_holder_commitment_txn to take manual action!");
2979 // If we generated a MonitorEvent::HolderForceClosed, the ChannelManager
2980 // will still give us a ChannelForceClosed event with !should_broadcast, but we
2981 // shouldn't print the scary warning above.
2982 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
2985 ChannelMonitorUpdateStep::ShutdownScript { scriptpubkey } => {
2986 log_trace!(logger, "Updating ChannelMonitor with shutdown script");
2987 if let Some(shutdown_script) = self.shutdown_script.replace(scriptpubkey.clone()) {
2988 panic!("Attempted to replace shutdown script {} with {}", shutdown_script, scriptpubkey);
2994 #[cfg(debug_assertions)] {
2995 self.counterparty_commitment_txs_from_update(updates);
2998 // If the updates succeeded and we were in an already closed channel state, then there's no
2999 // need to refuse any updates we expect to receive afer seeing a confirmed commitment.
3000 if ret.is_ok() && updates.update_id == CLOSED_CHANNEL_UPDATE_ID && self.latest_update_id == updates.update_id {
3004 self.latest_update_id = updates.update_id;
3006 // Refuse updates after we've detected a spend onchain, but only if we haven't processed a
3007 // force closed monitor update yet.
3008 if ret.is_ok() && self.funding_spend_seen && self.latest_update_id != CLOSED_CHANNEL_UPDATE_ID {
3009 log_error!(logger, "Refusing Channel Monitor Update as counterparty attempted to update commitment after funding was spent");
3014 fn get_latest_update_id(&self) -> u64 {
3015 self.latest_update_id
3018 fn get_funding_txo(&self) -> &(OutPoint, ScriptBuf) {
3022 pub fn channel_id(&self) -> ChannelId {
3026 fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, ScriptBuf)>> {
3027 // If we've detected a counterparty commitment tx on chain, we must include it in the set
3028 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
3029 // its trivial to do, double-check that here.
3030 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
3031 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
3033 &self.outputs_to_watch
3036 fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
3037 let mut ret = Vec::new();
3038 mem::swap(&mut ret, &mut self.pending_monitor_events);
3042 /// Gets the set of events that are repeated regularly (e.g. those which RBF bump
3043 /// transactions). We're okay if we lose these on restart as they'll be regenerated for us at
3044 /// some regular interval via [`ChannelMonitor::rebroadcast_pending_claims`].
3045 pub(super) fn get_repeated_events(&mut self) -> Vec<Event> {
3046 let pending_claim_events = self.onchain_tx_handler.get_and_clear_pending_claim_events();
3047 let mut ret = Vec::with_capacity(pending_claim_events.len());
3048 for (claim_id, claim_event) in pending_claim_events {
3050 ClaimEvent::BumpCommitment {
3051 package_target_feerate_sat_per_1000_weight, commitment_tx, anchor_output_idx,
3053 let channel_id = self.channel_id;
3054 // unwrap safety: `ClaimEvent`s are only available for Anchor channels,
3055 // introduced with v0.0.116. counterparty_node_id is guaranteed to be `Some`
3057 let counterparty_node_id = self.counterparty_node_id.unwrap();
3058 let commitment_txid = commitment_tx.txid();
3059 debug_assert_eq!(self.current_holder_commitment_tx.txid, commitment_txid);
3060 let pending_htlcs = self.current_holder_commitment_tx.non_dust_htlcs();
3061 let commitment_tx_fee_satoshis = self.channel_value_satoshis -
3062 commitment_tx.output.iter().fold(0u64, |sum, output| sum + output.value);
3063 ret.push(Event::BumpTransaction(BumpTransactionEvent::ChannelClose {
3065 counterparty_node_id,
3067 package_target_feerate_sat_per_1000_weight,
3069 commitment_tx_fee_satoshis,
3070 anchor_descriptor: AnchorDescriptor {
3071 channel_derivation_parameters: ChannelDerivationParameters {
3072 keys_id: self.channel_keys_id,
3073 value_satoshis: self.channel_value_satoshis,
3074 transaction_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
3076 outpoint: BitcoinOutPoint {
3077 txid: commitment_txid,
3078 vout: anchor_output_idx,
3084 ClaimEvent::BumpHTLC {
3085 target_feerate_sat_per_1000_weight, htlcs, tx_lock_time,
3087 let channel_id = self.channel_id;
3088 // unwrap safety: `ClaimEvent`s are only available for Anchor channels,
3089 // introduced with v0.0.116. counterparty_node_id is guaranteed to be `Some`
3091 let counterparty_node_id = self.counterparty_node_id.unwrap();
3092 let mut htlc_descriptors = Vec::with_capacity(htlcs.len());
3094 htlc_descriptors.push(HTLCDescriptor {
3095 channel_derivation_parameters: ChannelDerivationParameters {
3096 keys_id: self.channel_keys_id,
3097 value_satoshis: self.channel_value_satoshis,
3098 transaction_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
3100 commitment_txid: htlc.commitment_txid,
3101 per_commitment_number: htlc.per_commitment_number,
3102 per_commitment_point: self.onchain_tx_handler.signer.get_per_commitment_point(
3103 htlc.per_commitment_number, &self.onchain_tx_handler.secp_ctx,
3107 preimage: htlc.preimage,
3108 counterparty_sig: htlc.counterparty_sig,
3111 ret.push(Event::BumpTransaction(BumpTransactionEvent::HTLCResolution {
3113 counterparty_node_id,
3115 target_feerate_sat_per_1000_weight,
3125 fn initial_counterparty_commitment_tx(&mut self) -> Option<CommitmentTransaction> {
3126 let (their_per_commitment_point, feerate_per_kw, to_broadcaster_value,
3127 to_countersignatory_value) = self.initial_counterparty_commitment_info?;
3128 let htlc_outputs = vec![];
3130 let commitment_tx = self.build_counterparty_commitment_tx(INITIAL_COMMITMENT_NUMBER,
3131 &their_per_commitment_point, to_broadcaster_value, to_countersignatory_value,
3132 feerate_per_kw, htlc_outputs);
3136 fn build_counterparty_commitment_tx(
3137 &self, commitment_number: u64, their_per_commitment_point: &PublicKey,
3138 to_broadcaster_value: u64, to_countersignatory_value: u64, feerate_per_kw: u32,
3139 mut nondust_htlcs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>
3140 ) -> CommitmentTransaction {
3141 let broadcaster_keys = &self.onchain_tx_handler.channel_transaction_parameters
3142 .counterparty_parameters.as_ref().unwrap().pubkeys;
3143 let countersignatory_keys =
3144 &self.onchain_tx_handler.channel_transaction_parameters.holder_pubkeys;
3146 let broadcaster_funding_key = broadcaster_keys.funding_pubkey;
3147 let countersignatory_funding_key = countersignatory_keys.funding_pubkey;
3148 let keys = TxCreationKeys::from_channel_static_keys(&their_per_commitment_point,
3149 &broadcaster_keys, &countersignatory_keys, &self.onchain_tx_handler.secp_ctx);
3150 let channel_parameters =
3151 &self.onchain_tx_handler.channel_transaction_parameters.as_counterparty_broadcastable();
3153 CommitmentTransaction::new_with_auxiliary_htlc_data(commitment_number,
3154 to_broadcaster_value, to_countersignatory_value, broadcaster_funding_key,
3155 countersignatory_funding_key, keys, feerate_per_kw, &mut nondust_htlcs,
3159 fn counterparty_commitment_txs_from_update(&self, update: &ChannelMonitorUpdate) -> Vec<CommitmentTransaction> {
3160 update.updates.iter().filter_map(|update| {
3162 &ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid,
3163 ref htlc_outputs, commitment_number, their_per_commitment_point,
3164 feerate_per_kw: Some(feerate_per_kw),
3165 to_broadcaster_value_sat: Some(to_broadcaster_value),
3166 to_countersignatory_value_sat: Some(to_countersignatory_value) } => {
3168 let nondust_htlcs = htlc_outputs.iter().filter_map(|(htlc, _)| {
3169 htlc.transaction_output_index.map(|_| (htlc.clone(), None))
3170 }).collect::<Vec<_>>();
3172 let commitment_tx = self.build_counterparty_commitment_tx(commitment_number,
3173 &their_per_commitment_point, to_broadcaster_value,
3174 to_countersignatory_value, feerate_per_kw, nondust_htlcs);
3176 debug_assert_eq!(commitment_tx.trust().txid(), commitment_txid);
3185 fn sign_to_local_justice_tx(
3186 &self, mut justice_tx: Transaction, input_idx: usize, value: u64, commitment_number: u64
3187 ) -> Result<Transaction, ()> {
3188 let secret = self.get_secret(commitment_number).ok_or(())?;
3189 let per_commitment_key = SecretKey::from_slice(&secret).map_err(|_| ())?;
3190 let their_per_commitment_point = PublicKey::from_secret_key(
3191 &self.onchain_tx_handler.secp_ctx, &per_commitment_key);
3193 let revocation_pubkey = RevocationKey::from_basepoint(&self.onchain_tx_handler.secp_ctx,
3194 &self.holder_revocation_basepoint, &their_per_commitment_point);
3195 let delayed_key = DelayedPaymentKey::from_basepoint(&self.onchain_tx_handler.secp_ctx,
3196 &self.counterparty_commitment_params.counterparty_delayed_payment_base_key, &their_per_commitment_point);
3197 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
3198 self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
3200 let sig = self.onchain_tx_handler.signer.sign_justice_revoked_output(
3201 &justice_tx, input_idx, value, &per_commitment_key, &self.onchain_tx_handler.secp_ctx)?;
3202 justice_tx.input[input_idx].witness.push_bitcoin_signature(&sig.serialize_der(), EcdsaSighashType::All);
3203 justice_tx.input[input_idx].witness.push(&[1u8]);
3204 justice_tx.input[input_idx].witness.push(revokeable_redeemscript.as_bytes());
3208 /// Can only fail if idx is < get_min_seen_secret
3209 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
3210 self.commitment_secrets.get_secret(idx)
3213 fn get_min_seen_secret(&self) -> u64 {
3214 self.commitment_secrets.get_min_seen_secret()
3217 fn get_cur_counterparty_commitment_number(&self) -> u64 {
3218 self.current_counterparty_commitment_number
3221 fn get_cur_holder_commitment_number(&self) -> u64 {
3222 self.current_holder_commitment_number
3225 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
3226 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
3227 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
3228 /// HTLC-Success/HTLC-Timeout transactions.
3230 /// Returns packages to claim the revoked output(s), as well as additional outputs to watch and
3231 /// general information about the output that is to the counterparty in the commitment
3233 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L)
3234 -> (Vec<PackageTemplate>, TransactionOutputs, CommitmentTxCounterpartyOutputInfo)
3235 where L::Target: Logger {
3236 // Most secp and related errors trying to create keys means we have no hope of constructing
3237 // a spend transaction...so we return no transactions to broadcast
3238 let mut claimable_outpoints = Vec::new();
3239 let mut watch_outputs = Vec::new();
3240 let mut to_counterparty_output_info = None;
3242 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
3243 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
3245 macro_rules! ignore_error {
3246 ( $thing : expr ) => {
3249 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
3254 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence.0 as u64 & 0xffffff) << 3*8) | (tx.lock_time.to_consensus_u32() as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
3255 if commitment_number >= self.get_min_seen_secret() {
3256 let secret = self.get_secret(commitment_number).unwrap();
3257 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
3258 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
3259 let revocation_pubkey = RevocationKey::from_basepoint(&self.onchain_tx_handler.secp_ctx, &self.holder_revocation_basepoint, &per_commitment_point,);
3260 let delayed_key = DelayedPaymentKey::from_basepoint(&self.onchain_tx_handler.secp_ctx, &self.counterparty_commitment_params.counterparty_delayed_payment_base_key, &PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key));
3262 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
3263 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
3265 // First, process non-htlc outputs (to_holder & to_counterparty)
3266 for (idx, outp) in tx.output.iter().enumerate() {
3267 if outp.script_pubkey == revokeable_p2wsh {
3268 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_commitment_params.on_counterparty_tx_csv, self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx());
3269 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, height);
3270 claimable_outpoints.push(justice_package);
3271 to_counterparty_output_info =
3272 Some((idx.try_into().expect("Txn can't have more than 2^32 outputs"), outp.value));
3276 // Then, try to find revoked htlc outputs
3277 if let Some(ref per_commitment_data) = per_commitment_option {
3278 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
3279 if let Some(transaction_output_index) = htlc.transaction_output_index {
3280 if transaction_output_index as usize >= tx.output.len() ||
3281 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
3282 // per_commitment_data is corrupt or our commitment signing key leaked!
3283 return (claimable_outpoints, (commitment_txid, watch_outputs),
3284 to_counterparty_output_info);
3286 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone(), &self.onchain_tx_handler.channel_transaction_parameters.channel_type_features);
3287 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, height);
3288 claimable_outpoints.push(justice_package);
3293 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
3294 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
3295 // We're definitely a counterparty commitment transaction!
3296 log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
3297 for (idx, outp) in tx.output.iter().enumerate() {
3298 watch_outputs.push((idx as u32, outp.clone()));
3300 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
3302 if let Some(per_commitment_data) = per_commitment_option {
3303 fail_unbroadcast_htlcs!(self, "revoked_counterparty", commitment_txid, tx, height,
3304 block_hash, per_commitment_data.iter().map(|(htlc, htlc_source)|
3305 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
3308 // Our fuzzers aren't constrained by pesky things like valid signatures, so can
3309 // spend our funding output with a transaction which doesn't match our past
3310 // commitment transactions. Thus, we can only debug-assert here when not
3312 debug_assert!(cfg!(fuzzing), "We should have per-commitment option for any recognized old commitment txn");
3313 fail_unbroadcast_htlcs!(self, "revoked counterparty", commitment_txid, tx, height,
3314 block_hash, [].iter().map(|reference| *reference), logger);
3317 } else if let Some(per_commitment_data) = per_commitment_option {
3318 // While this isn't useful yet, there is a potential race where if a counterparty
3319 // revokes a state at the same time as the commitment transaction for that state is
3320 // confirmed, and the watchtower receives the block before the user, the user could
3321 // upload a new ChannelMonitor with the revocation secret but the watchtower has
3322 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
3323 // not being generated by the above conditional. Thus, to be safe, we go ahead and
3325 for (idx, outp) in tx.output.iter().enumerate() {
3326 watch_outputs.push((idx as u32, outp.clone()));
3328 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
3330 log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
3331 fail_unbroadcast_htlcs!(self, "counterparty", commitment_txid, tx, height, block_hash,
3332 per_commitment_data.iter().map(|(htlc, htlc_source)|
3333 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
3336 let (htlc_claim_reqs, counterparty_output_info) =
3337 self.get_counterparty_output_claim_info(commitment_number, commitment_txid, Some(tx));
3338 to_counterparty_output_info = counterparty_output_info;
3339 for req in htlc_claim_reqs {
3340 claimable_outpoints.push(req);
3344 (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
3347 /// Returns the HTLC claim package templates and the counterparty output info
3348 fn get_counterparty_output_claim_info(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>)
3349 -> (Vec<PackageTemplate>, CommitmentTxCounterpartyOutputInfo) {
3350 let mut claimable_outpoints = Vec::new();
3351 let mut to_counterparty_output_info: CommitmentTxCounterpartyOutputInfo = None;
3353 let htlc_outputs = match self.counterparty_claimable_outpoints.get(&commitment_txid) {
3354 Some(outputs) => outputs,
3355 None => return (claimable_outpoints, to_counterparty_output_info),
3357 let per_commitment_points = match self.their_cur_per_commitment_points {
3358 Some(points) => points,
3359 None => return (claimable_outpoints, to_counterparty_output_info),
3362 let per_commitment_point =
3363 // If the counterparty commitment tx is the latest valid state, use their latest
3364 // per-commitment point
3365 if per_commitment_points.0 == commitment_number { &per_commitment_points.1 }
3366 else if let Some(point) = per_commitment_points.2.as_ref() {
3367 // If counterparty commitment tx is the state previous to the latest valid state, use
3368 // their previous per-commitment point (non-atomicity of revocation means it's valid for
3369 // them to temporarily have two valid commitment txns from our viewpoint)
3370 if per_commitment_points.0 == commitment_number + 1 {
3372 } else { return (claimable_outpoints, to_counterparty_output_info); }
3373 } else { return (claimable_outpoints, to_counterparty_output_info); };
3375 if let Some(transaction) = tx {
3376 let revocation_pubkey = RevocationKey::from_basepoint(
3377 &self.onchain_tx_handler.secp_ctx, &self.holder_revocation_basepoint, &per_commitment_point);
3379 let delayed_key = DelayedPaymentKey::from_basepoint(&self.onchain_tx_handler.secp_ctx, &self.counterparty_commitment_params.counterparty_delayed_payment_base_key, &per_commitment_point);
3381 let revokeable_p2wsh = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
3382 self.counterparty_commitment_params.on_counterparty_tx_csv,
3383 &delayed_key).to_v0_p2wsh();
3384 for (idx, outp) in transaction.output.iter().enumerate() {
3385 if outp.script_pubkey == revokeable_p2wsh {
3386 to_counterparty_output_info =
3387 Some((idx.try_into().expect("Can't have > 2^32 outputs"), outp.value));
3392 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
3393 if let Some(transaction_output_index) = htlc.transaction_output_index {
3394 if let Some(transaction) = tx {
3395 if transaction_output_index as usize >= transaction.output.len() ||
3396 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
3397 // per_commitment_data is corrupt or our commitment signing key leaked!
3398 return (claimable_outpoints, to_counterparty_output_info);
3401 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
3402 if preimage.is_some() || !htlc.offered {
3403 let counterparty_htlc_outp = if htlc.offered {
3404 PackageSolvingData::CounterpartyOfferedHTLCOutput(
3405 CounterpartyOfferedHTLCOutput::build(*per_commitment_point,
3406 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3407 self.counterparty_commitment_params.counterparty_htlc_base_key,
3408 preimage.unwrap(), htlc.clone(), self.onchain_tx_handler.channel_type_features().clone()))
3410 PackageSolvingData::CounterpartyReceivedHTLCOutput(
3411 CounterpartyReceivedHTLCOutput::build(*per_commitment_point,
3412 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3413 self.counterparty_commitment_params.counterparty_htlc_base_key,
3414 htlc.clone(), self.onchain_tx_handler.channel_type_features().clone()))
3416 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry, 0);
3417 claimable_outpoints.push(counterparty_package);
3422 (claimable_outpoints, to_counterparty_output_info)
3425 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
3426 fn check_spend_counterparty_htlc<L: Deref>(
3427 &mut self, tx: &Transaction, commitment_number: u64, commitment_txid: &Txid, height: u32, logger: &L
3428 ) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
3429 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
3430 let per_commitment_key = match SecretKey::from_slice(&secret) {
3432 Err(_) => return (Vec::new(), None)
3434 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
3436 let htlc_txid = tx.txid();
3437 let mut claimable_outpoints = vec![];
3438 let mut outputs_to_watch = None;
3439 // Previously, we would only claim HTLCs from revoked HTLC transactions if they had 1 input
3440 // with a witness of 5 elements and 1 output. This wasn't enough for anchor outputs, as the
3441 // counterparty can now aggregate multiple HTLCs into a single transaction thanks to
3442 // `SIGHASH_SINGLE` remote signatures, leading us to not claim any HTLCs upon seeing a
3443 // confirmed revoked HTLC transaction (for more details, see
3444 // https://lists.linuxfoundation.org/pipermail/lightning-dev/2022-April/003561.html).
3446 // We make sure we're not vulnerable to this case by checking all inputs of the transaction,
3447 // and claim those which spend the commitment transaction, have a witness of 5 elements, and
3448 // have a corresponding output at the same index within the transaction.
3449 for (idx, input) in tx.input.iter().enumerate() {
3450 if input.previous_output.txid == *commitment_txid && input.witness.len() == 5 && tx.output.get(idx).is_some() {
3451 log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, idx);
3452 let revk_outp = RevokedOutput::build(
3453 per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
3454 self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key,
3455 tx.output[idx].value, self.counterparty_commitment_params.on_counterparty_tx_csv,
3458 let justice_package = PackageTemplate::build_package(
3459 htlc_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp),
3460 height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, height
3462 claimable_outpoints.push(justice_package);
3463 if outputs_to_watch.is_none() {
3464 outputs_to_watch = Some((htlc_txid, vec![]));
3466 outputs_to_watch.as_mut().unwrap().1.push((idx as u32, tx.output[idx].clone()));
3469 (claimable_outpoints, outputs_to_watch)
3472 // Returns (1) `PackageTemplate`s that can be given to the OnchainTxHandler, so that the handler can
3473 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
3474 // script so we can detect whether a holder transaction has been seen on-chain.
3475 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(ScriptBuf, PublicKey, RevocationKey)>) {
3476 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
3478 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
3479 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
3481 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
3482 if let Some(transaction_output_index) = htlc.transaction_output_index {
3483 let htlc_output = if htlc.offered {
3484 let htlc_output = HolderHTLCOutput::build_offered(
3485 htlc.amount_msat, htlc.cltv_expiry, self.onchain_tx_handler.channel_type_features().clone()
3489 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
3492 // We can't build an HTLC-Success transaction without the preimage
3495 let htlc_output = HolderHTLCOutput::build_accepted(
3496 payment_preimage, htlc.amount_msat, self.onchain_tx_handler.channel_type_features().clone()
3500 let htlc_package = PackageTemplate::build_package(
3501 holder_tx.txid, transaction_output_index,
3502 PackageSolvingData::HolderHTLCOutput(htlc_output),
3503 htlc.cltv_expiry, conf_height
3505 claim_requests.push(htlc_package);
3509 (claim_requests, broadcasted_holder_revokable_script)
3512 // Returns holder HTLC outputs to watch and react to in case of spending.
3513 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
3514 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
3515 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
3516 if let Some(transaction_output_index) = htlc.transaction_output_index {
3517 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
3523 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
3524 /// revoked using data in holder_claimable_outpoints.
3525 /// Should not be used if check_spend_revoked_transaction succeeds.
3526 /// Returns None unless the transaction is definitely one of our commitment transactions.
3527 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) -> Option<(Vec<PackageTemplate>, TransactionOutputs)> where L::Target: Logger {
3528 let commitment_txid = tx.txid();
3529 let mut claim_requests = Vec::new();
3530 let mut watch_outputs = Vec::new();
3532 macro_rules! append_onchain_update {
3533 ($updates: expr, $to_watch: expr) => {
3534 claim_requests = $updates.0;
3535 self.broadcasted_holder_revokable_script = $updates.1;
3536 watch_outputs.append(&mut $to_watch);
3540 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
3541 let mut is_holder_tx = false;
3543 if self.current_holder_commitment_tx.txid == commitment_txid {
3544 is_holder_tx = true;
3545 log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
3546 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
3547 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
3548 append_onchain_update!(res, to_watch);
3549 fail_unbroadcast_htlcs!(self, "latest holder", commitment_txid, tx, height,
3550 block_hash, self.current_holder_commitment_tx.htlc_outputs.iter()
3551 .map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())), logger);
3552 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
3553 if holder_tx.txid == commitment_txid {
3554 is_holder_tx = true;
3555 log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
3556 let res = self.get_broadcasted_holder_claims(holder_tx, height);
3557 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
3558 append_onchain_update!(res, to_watch);
3559 fail_unbroadcast_htlcs!(self, "previous holder", commitment_txid, tx, height, block_hash,
3560 holder_tx.htlc_outputs.iter().map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())),
3566 Some((claim_requests, (commitment_txid, watch_outputs)))
3572 /// Cancels any existing pending claims for a commitment that previously confirmed and has now
3573 /// been replaced by another.
3574 pub fn cancel_prev_commitment_claims<L: Deref>(
3575 &mut self, logger: &L, confirmed_commitment_txid: &Txid
3576 ) where L::Target: Logger {
3577 for (counterparty_commitment_txid, _) in &self.counterparty_commitment_txn_on_chain {
3578 // Cancel any pending claims for counterparty commitments we've seen confirm.
3579 if counterparty_commitment_txid == confirmed_commitment_txid {
3582 for (htlc, _) in self.counterparty_claimable_outpoints.get(counterparty_commitment_txid).unwrap_or(&vec![]) {
3583 log_trace!(logger, "Canceling claims for previously confirmed counterparty commitment {}",
3584 counterparty_commitment_txid);
3585 let mut outpoint = BitcoinOutPoint { txid: *counterparty_commitment_txid, vout: 0 };
3586 if let Some(vout) = htlc.transaction_output_index {
3587 outpoint.vout = vout;
3588 self.onchain_tx_handler.abandon_claim(&outpoint);
3592 if self.holder_tx_signed {
3593 // If we've signed, we may have broadcast either commitment (prev or current), and
3594 // attempted to claim from it immediately without waiting for a confirmation.
3595 if self.current_holder_commitment_tx.txid != *confirmed_commitment_txid {
3596 log_trace!(logger, "Canceling claims for previously broadcast holder commitment {}",
3597 self.current_holder_commitment_tx.txid);
3598 let mut outpoint = BitcoinOutPoint { txid: self.current_holder_commitment_tx.txid, vout: 0 };
3599 for (htlc, _, _) in &self.current_holder_commitment_tx.htlc_outputs {
3600 if let Some(vout) = htlc.transaction_output_index {
3601 outpoint.vout = vout;
3602 self.onchain_tx_handler.abandon_claim(&outpoint);
3606 if let Some(prev_holder_commitment_tx) = &self.prev_holder_signed_commitment_tx {
3607 if prev_holder_commitment_tx.txid != *confirmed_commitment_txid {
3608 log_trace!(logger, "Canceling claims for previously broadcast holder commitment {}",
3609 prev_holder_commitment_tx.txid);
3610 let mut outpoint = BitcoinOutPoint { txid: prev_holder_commitment_tx.txid, vout: 0 };
3611 for (htlc, _, _) in &prev_holder_commitment_tx.htlc_outputs {
3612 if let Some(vout) = htlc.transaction_output_index {
3613 outpoint.vout = vout;
3614 self.onchain_tx_handler.abandon_claim(&outpoint);
3620 // No previous claim.
3624 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
3625 /// Note that this includes possibly-locktimed-in-the-future transactions!
3626 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(
3627 &mut self, logger: &WithChannelMonitor<L>
3628 ) -> Vec<Transaction> where L::Target: Logger {
3629 log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
3630 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
3631 let txid = commitment_tx.txid();
3632 let mut holder_transactions = vec![commitment_tx];
3633 // When anchor outputs are present, the HTLC transactions are only final once the commitment
3634 // transaction confirms due to the CSV 1 encumberance.
3635 if self.onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() {
3636 return holder_transactions;
3638 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
3639 if let Some(vout) = htlc.0.transaction_output_index {
3640 let preimage = if !htlc.0.offered {
3641 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
3642 // We can't build an HTLC-Success transaction without the preimage
3646 if let Some(htlc_tx) = self.onchain_tx_handler.get_maybe_signed_htlc_tx(
3647 &::bitcoin::OutPoint { txid, vout }, &preimage
3649 if htlc_tx.is_fully_signed() {
3650 holder_transactions.push(htlc_tx.0);
3658 fn block_connected<B: Deref, F: Deref, L: Deref>(
3659 &mut self, header: &Header, txdata: &TransactionData, height: u32, broadcaster: B,
3660 fee_estimator: F, logger: &WithChannelMonitor<L>,
3661 ) -> Vec<TransactionOutputs>
3662 where B::Target: BroadcasterInterface,
3663 F::Target: FeeEstimator,
3666 let block_hash = header.block_hash();
3667 self.best_block = BestBlock::new(block_hash, height);
3669 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
3670 self.transactions_confirmed(header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
3673 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
3678 fee_estimator: &LowerBoundedFeeEstimator<F>,
3679 logger: &WithChannelMonitor<L>,
3680 ) -> Vec<TransactionOutputs>
3682 B::Target: BroadcasterInterface,
3683 F::Target: FeeEstimator,
3686 let block_hash = header.block_hash();
3688 if height > self.best_block.height {
3689 self.best_block = BestBlock::new(block_hash, height);
3690 log_trace!(logger, "Connecting new block {} at height {}", block_hash, height);
3691 self.block_confirmed(height, block_hash, vec![], vec![], vec![], &broadcaster, &fee_estimator, logger)
3692 } else if block_hash != self.best_block.block_hash {
3693 self.best_block = BestBlock::new(block_hash, height);
3694 log_trace!(logger, "Best block re-orged, replaced with new block {} at height {}", block_hash, height);
3695 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
3696 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
3698 } else { Vec::new() }
3701 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
3704 txdata: &TransactionData,
3707 fee_estimator: &LowerBoundedFeeEstimator<F>,
3708 logger: &WithChannelMonitor<L>,
3709 ) -> Vec<TransactionOutputs>
3711 B::Target: BroadcasterInterface,
3712 F::Target: FeeEstimator,
3715 let txn_matched = self.filter_block(txdata);
3716 for tx in &txn_matched {
3717 let mut output_val = 0;
3718 for out in tx.output.iter() {
3719 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
3720 output_val += out.value;
3721 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
3725 let block_hash = header.block_hash();
3727 let mut watch_outputs = Vec::new();
3728 let mut claimable_outpoints = Vec::new();
3729 'tx_iter: for tx in &txn_matched {
3730 let txid = tx.txid();
3731 log_trace!(logger, "Transaction {} confirmed in block {}", txid , block_hash);
3732 // If a transaction has already been confirmed, ensure we don't bother processing it duplicatively.
3733 if Some(txid) == self.funding_spend_confirmed {
3734 log_debug!(logger, "Skipping redundant processing of funding-spend tx {} as it was previously confirmed", txid);
3737 for ev in self.onchain_events_awaiting_threshold_conf.iter() {
3738 if ev.txid == txid {
3739 if let Some(conf_hash) = ev.block_hash {
3740 assert_eq!(header.block_hash(), conf_hash,
3741 "Transaction {} was already confirmed and is being re-confirmed in a different block.\n\
3742 This indicates a severe bug in the transaction connection logic - a reorg should have been processed first!", ev.txid);
3744 log_debug!(logger, "Skipping redundant processing of confirming tx {} as it was previously confirmed", txid);
3748 for htlc in self.htlcs_resolved_on_chain.iter() {
3749 if Some(txid) == htlc.resolving_txid {
3750 log_debug!(logger, "Skipping redundant processing of HTLC resolution tx {} as it was previously confirmed", txid);
3754 for spendable_txid in self.spendable_txids_confirmed.iter() {
3755 if txid == *spendable_txid {
3756 log_debug!(logger, "Skipping redundant processing of spendable tx {} as it was previously confirmed", txid);
3761 if tx.input.len() == 1 {
3762 // Assuming our keys were not leaked (in which case we're screwed no matter what),
3763 // commitment transactions and HTLC transactions will all only ever have one input
3764 // (except for HTLC transactions for channels with anchor outputs), which is an easy
3765 // way to filter out any potential non-matching txn for lazy filters.
3766 let prevout = &tx.input[0].previous_output;
3767 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
3768 let mut balance_spendable_csv = None;
3769 log_info!(logger, "Channel {} closed by funding output spend in txid {}.",
3770 &self.channel_id(), txid);
3771 self.funding_spend_seen = true;
3772 let mut commitment_tx_to_counterparty_output = None;
3773 if (tx.input[0].sequence.0 >> 8*3) as u8 == 0x80 && (tx.lock_time.to_consensus_u32() >> 8*3) as u8 == 0x20 {
3774 let (mut new_outpoints, new_outputs, counterparty_output_idx_sats) =
3775 self.check_spend_counterparty_transaction(&tx, height, &block_hash, &logger);
3776 commitment_tx_to_counterparty_output = counterparty_output_idx_sats;
3777 if !new_outputs.1.is_empty() {
3778 watch_outputs.push(new_outputs);
3780 claimable_outpoints.append(&mut new_outpoints);
3781 if new_outpoints.is_empty() {
3782 if let Some((mut new_outpoints, new_outputs)) = self.check_spend_holder_transaction(&tx, height, &block_hash, &logger) {
3783 #[cfg(not(fuzzing))]
3784 debug_assert!(commitment_tx_to_counterparty_output.is_none(),
3785 "A commitment transaction matched as both a counterparty and local commitment tx?");
3786 if !new_outputs.1.is_empty() {
3787 watch_outputs.push(new_outputs);
3789 claimable_outpoints.append(&mut new_outpoints);
3790 balance_spendable_csv = Some(self.on_holder_tx_csv);
3794 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3796 transaction: Some((*tx).clone()),
3798 block_hash: Some(block_hash),
3799 event: OnchainEvent::FundingSpendConfirmation {
3800 on_local_output_csv: balance_spendable_csv,
3801 commitment_tx_to_counterparty_output,
3804 // Now that we've detected a confirmed commitment transaction, attempt to cancel
3805 // pending claims for any commitments that were previously confirmed such that
3806 // we don't continue claiming inputs that no longer exist.
3807 self.cancel_prev_commitment_claims(&logger, &txid);
3810 if tx.input.len() >= 1 {
3811 // While all commitment transactions have one input, HTLC transactions may have more
3812 // if the HTLC was present in an anchor channel. HTLCs can also be resolved in a few
3813 // other ways which can have more than one output.
3814 for tx_input in &tx.input {
3815 let commitment_txid = tx_input.previous_output.txid;
3816 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&commitment_txid) {
3817 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(
3818 &tx, commitment_number, &commitment_txid, height, &logger
3820 claimable_outpoints.append(&mut new_outpoints);
3821 if let Some(new_outputs) = new_outputs_option {
3822 watch_outputs.push(new_outputs);
3824 // Since there may be multiple HTLCs for this channel (all spending the
3825 // same commitment tx) being claimed by the counterparty within the same
3826 // transaction, and `check_spend_counterparty_htlc` already checks all the
3827 // ones relevant to this channel, we can safely break from our loop.
3831 self.is_resolving_htlc_output(&tx, height, &block_hash, logger);
3833 self.check_tx_and_push_spendable_outputs(&tx, height, &block_hash, logger);
3837 if height > self.best_block.height {
3838 self.best_block = BestBlock::new(block_hash, height);
3841 self.block_confirmed(height, block_hash, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, logger)
3844 /// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
3845 /// `self.best_block` before calling if a new best blockchain tip is available. More
3846 /// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
3847 /// complexity especially in
3848 /// `OnchainTx::update_claims_view_from_requests`/`OnchainTx::update_claims_view_from_matched_txn`.
3850 /// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
3851 /// confirmed at, even if it is not the current best height.
3852 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
3855 conf_hash: BlockHash,
3856 txn_matched: Vec<&Transaction>,
3857 mut watch_outputs: Vec<TransactionOutputs>,
3858 mut claimable_outpoints: Vec<PackageTemplate>,
3860 fee_estimator: &LowerBoundedFeeEstimator<F>,
3861 logger: &WithChannelMonitor<L>,
3862 ) -> Vec<TransactionOutputs>
3864 B::Target: BroadcasterInterface,
3865 F::Target: FeeEstimator,
3868 log_trace!(logger, "Processing {} matched transactions for block at height {}.", txn_matched.len(), conf_height);
3869 debug_assert!(self.best_block.height >= conf_height);
3871 let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
3872 if should_broadcast {
3873 let (mut new_outpoints, mut new_outputs) = self.generate_claimable_outpoints_and_watch_outputs(ClosureReason::HTLCsTimedOut);
3874 claimable_outpoints.append(&mut new_outpoints);
3875 watch_outputs.append(&mut new_outputs);
3878 // Find which on-chain events have reached their confirmation threshold.
3879 let onchain_events_awaiting_threshold_conf =
3880 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
3881 let mut onchain_events_reaching_threshold_conf = Vec::new();
3882 for entry in onchain_events_awaiting_threshold_conf {
3883 if entry.has_reached_confirmation_threshold(&self.best_block) {
3884 onchain_events_reaching_threshold_conf.push(entry);
3886 self.onchain_events_awaiting_threshold_conf.push(entry);
3890 // Used to check for duplicate HTLC resolutions.
3891 #[cfg(debug_assertions)]
3892 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
3894 .filter_map(|entry| match &entry.event {
3895 OnchainEvent::HTLCUpdate { source, .. } => Some(source),
3899 #[cfg(debug_assertions)]
3900 let mut matured_htlcs = Vec::new();
3902 // Produce actionable events from on-chain events having reached their threshold.
3903 for entry in onchain_events_reaching_threshold_conf.drain(..) {
3905 OnchainEvent::HTLCUpdate { ref source, payment_hash, htlc_value_satoshis, commitment_tx_output_idx } => {
3906 // Check for duplicate HTLC resolutions.
3907 #[cfg(debug_assertions)]
3910 unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
3911 "An unmature HTLC transaction conflicts with a maturing one; failed to \
3912 call either transaction_unconfirmed for the conflicting transaction \
3913 or block_disconnected for a block containing it.");
3915 matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
3916 "A matured HTLC transaction conflicts with a maturing one; failed to \
3917 call either transaction_unconfirmed for the conflicting transaction \
3918 or block_disconnected for a block containing it.");
3919 matured_htlcs.push(source.clone());
3922 log_debug!(logger, "HTLC {} failure update in {} has got enough confirmations to be passed upstream",
3923 &payment_hash, entry.txid);
3924 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3926 payment_preimage: None,
3927 source: source.clone(),
3928 htlc_value_satoshis,
3930 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3931 commitment_tx_output_idx,
3932 resolving_txid: Some(entry.txid),
3933 resolving_tx: entry.transaction,
3934 payment_preimage: None,
3937 OnchainEvent::MaturingOutput { descriptor } => {
3938 log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
3939 self.pending_events.push(Event::SpendableOutputs {
3940 outputs: vec![descriptor],
3941 channel_id: Some(self.channel_id()),
3943 self.spendable_txids_confirmed.push(entry.txid);
3945 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } => {
3946 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3947 commitment_tx_output_idx: Some(commitment_tx_output_idx),
3948 resolving_txid: Some(entry.txid),
3949 resolving_tx: entry.transaction,
3950 payment_preimage: preimage,
3953 OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } => {
3954 self.funding_spend_confirmed = Some(entry.txid);
3955 self.confirmed_commitment_tx_counterparty_output = commitment_tx_to_counterparty_output;
3960 self.onchain_tx_handler.update_claims_view_from_requests(claimable_outpoints, conf_height, self.best_block.height, broadcaster, fee_estimator, logger);
3961 self.onchain_tx_handler.update_claims_view_from_matched_txn(&txn_matched, conf_height, conf_hash, self.best_block.height, broadcaster, fee_estimator, logger);
3963 // Determine new outputs to watch by comparing against previously known outputs to watch,
3964 // updating the latter in the process.
3965 watch_outputs.retain(|&(ref txid, ref txouts)| {
3966 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
3967 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
3971 // If we see a transaction for which we registered outputs previously,
3972 // make sure the registered scriptpubkey at the expected index match
3973 // the actual transaction output one. We failed this case before #653.
3974 for tx in &txn_matched {
3975 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
3976 for idx_and_script in outputs.iter() {
3977 assert!((idx_and_script.0 as usize) < tx.output.len());
3978 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
3986 fn block_disconnected<B: Deref, F: Deref, L: Deref>(
3987 &mut self, header: &Header, height: u32, broadcaster: B, fee_estimator: F, logger: &WithChannelMonitor<L>
3988 ) where B::Target: BroadcasterInterface,
3989 F::Target: FeeEstimator,
3992 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
3995 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
3996 //- maturing spendable output has transaction paying us has been disconnected
3997 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
3999 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
4000 self.onchain_tx_handler.block_disconnected(height, broadcaster, &bounded_fee_estimator, logger);
4002 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
4005 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
4009 fee_estimator: &LowerBoundedFeeEstimator<F>,
4010 logger: &WithChannelMonitor<L>,
4012 B::Target: BroadcasterInterface,
4013 F::Target: FeeEstimator,
4016 let mut removed_height = None;
4017 for entry in self.onchain_events_awaiting_threshold_conf.iter() {
4018 if entry.txid == *txid {
4019 removed_height = Some(entry.height);
4024 if let Some(removed_height) = removed_height {
4025 log_info!(logger, "transaction_unconfirmed of txid {} implies height {} was reorg'd out", txid, removed_height);
4026 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| if entry.height >= removed_height {
4027 log_info!(logger, "Transaction {} reorg'd out", entry.txid);
4032 debug_assert!(!self.onchain_events_awaiting_threshold_conf.iter().any(|ref entry| entry.txid == *txid));
4034 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
4037 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
4038 /// transactions thereof.
4039 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
4040 let mut matched_txn = new_hash_set();
4041 txdata.iter().filter(|&&(_, tx)| {
4042 let mut matches = self.spends_watched_output(tx);
4043 for input in tx.input.iter() {
4044 if matches { break; }
4045 if matched_txn.contains(&input.previous_output.txid) {
4050 matched_txn.insert(tx.txid());
4053 }).map(|(_, tx)| *tx).collect()
4056 /// Checks if a given transaction spends any watched outputs.
4057 fn spends_watched_output(&self, tx: &Transaction) -> bool {
4058 for input in tx.input.iter() {
4059 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
4060 for (idx, _script_pubkey) in outputs.iter() {
4061 if *idx == input.previous_output.vout {
4064 // If the expected script is a known type, check that the witness
4065 // appears to be spending the correct type (ie that the match would
4066 // actually succeed in BIP 158/159-style filters).
4067 if _script_pubkey.is_v0_p2wsh() {
4068 if input.witness.last().unwrap().to_vec() == deliberately_bogus_accepted_htlc_witness_program() {
4069 // In at least one test we use a deliberately bogus witness
4070 // script which hit an old panic. Thus, we check for that here
4071 // and avoid the assert if its the expected bogus script.
4075 assert_eq!(&bitcoin::Address::p2wsh(&ScriptBuf::from(input.witness.last().unwrap().to_vec()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
4076 } else if _script_pubkey.is_v0_p2wpkh() {
4077 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
4078 } else { panic!(); }
4089 fn should_broadcast_holder_commitment_txn<L: Deref>(
4090 &self, logger: &WithChannelMonitor<L>
4091 ) -> bool where L::Target: Logger {
4092 // There's no need to broadcast our commitment transaction if we've seen one confirmed (even
4093 // with 1 confirmation) as it'll be rejected as duplicate/conflicting.
4094 if self.funding_spend_confirmed.is_some() ||
4095 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
4096 OnchainEvent::FundingSpendConfirmation { .. } => true,
4102 // We need to consider all HTLCs which are:
4103 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
4104 // transactions and we'd end up in a race, or
4105 // * are in our latest holder commitment transaction, as this is the thing we will
4106 // broadcast if we go on-chain.
4107 // Note that we consider HTLCs which were below dust threshold here - while they don't
4108 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
4109 // to the source, and if we don't fail the channel we will have to ensure that the next
4110 // updates that peer sends us are update_fails, failing the channel if not. It's probably
4111 // easier to just fail the channel as this case should be rare enough anyway.
4112 let height = self.best_block.height;
4113 macro_rules! scan_commitment {
4114 ($htlcs: expr, $holder_tx: expr) => {
4115 for ref htlc in $htlcs {
4116 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
4117 // chain with enough room to claim the HTLC without our counterparty being able to
4118 // time out the HTLC first.
4119 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
4120 // concern is being able to claim the corresponding inbound HTLC (on another
4121 // channel) before it expires. In fact, we don't even really care if our
4122 // counterparty here claims such an outbound HTLC after it expired as long as we
4123 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
4124 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
4125 // we give ourselves a few blocks of headroom after expiration before going
4126 // on-chain for an expired HTLC.
4127 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
4128 // from us until we've reached the point where we go on-chain with the
4129 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
4130 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
4131 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
4132 // inbound_cltv == height + CLTV_CLAIM_BUFFER
4133 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
4134 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
4135 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
4136 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
4137 // The final, above, condition is checked for statically in channelmanager
4138 // with CHECK_CLTV_EXPIRY_SANITY_2.
4139 let htlc_outbound = $holder_tx == htlc.offered;
4140 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
4141 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
4142 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
4149 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
4151 if let Some(ref txid) = self.current_counterparty_commitment_txid {
4152 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
4153 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
4156 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
4157 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
4158 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
4165 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
4166 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
4167 fn is_resolving_htlc_output<L: Deref>(
4168 &mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &WithChannelMonitor<L>,
4169 ) where L::Target: Logger {
4170 'outer_loop: for input in &tx.input {
4171 let mut payment_data = None;
4172 let htlc_claim = HTLCClaim::from_witness(&input.witness);
4173 let revocation_sig_claim = htlc_claim == Some(HTLCClaim::Revocation);
4174 let accepted_preimage_claim = htlc_claim == Some(HTLCClaim::AcceptedPreimage);
4175 #[cfg(not(fuzzing))]
4176 let accepted_timeout_claim = htlc_claim == Some(HTLCClaim::AcceptedTimeout);
4177 let offered_preimage_claim = htlc_claim == Some(HTLCClaim::OfferedPreimage);
4178 #[cfg(not(fuzzing))]
4179 let offered_timeout_claim = htlc_claim == Some(HTLCClaim::OfferedTimeout);
4181 let mut payment_preimage = PaymentPreimage([0; 32]);
4182 if offered_preimage_claim || accepted_preimage_claim {
4183 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
4186 macro_rules! log_claim {
4187 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
4188 let outbound_htlc = $holder_tx == $htlc.offered;
4189 // HTLCs must either be claimed by a matching script type or through the
4191 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
4192 debug_assert!(!$htlc.offered || offered_preimage_claim || offered_timeout_claim || revocation_sig_claim);
4193 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
4194 debug_assert!($htlc.offered || accepted_preimage_claim || accepted_timeout_claim || revocation_sig_claim);
4195 // Further, only exactly one of the possible spend paths should have been
4196 // matched by any HTLC spend:
4197 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
4198 debug_assert_eq!(accepted_preimage_claim as u8 + accepted_timeout_claim as u8 +
4199 offered_preimage_claim as u8 + offered_timeout_claim as u8 +
4200 revocation_sig_claim as u8, 1);
4201 if ($holder_tx && revocation_sig_claim) ||
4202 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
4203 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
4204 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
4205 if outbound_htlc { "outbound" } else { "inbound" }, &$htlc.payment_hash,
4206 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back. We can likely claim the HTLC output with a revocation claim" });
4208 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
4209 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
4210 if outbound_htlc { "outbound" } else { "inbound" }, &$htlc.payment_hash,
4211 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
4216 macro_rules! check_htlc_valid_counterparty {
4217 ($counterparty_txid: expr, $htlc_output: expr) => {
4218 if let Some(txid) = $counterparty_txid {
4219 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
4220 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
4221 if let &Some(ref source) = pending_source {
4222 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
4223 payment_data = Some(((**source).clone(), $htlc_output.payment_hash, $htlc_output.amount_msat));
4232 macro_rules! scan_commitment {
4233 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
4234 for (ref htlc_output, source_option) in $htlcs {
4235 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
4236 if let Some(ref source) = source_option {
4237 log_claim!($tx_info, $holder_tx, htlc_output, true);
4238 // We have a resolution of an HTLC either from one of our latest
4239 // holder commitment transactions or an unrevoked counterparty commitment
4240 // transaction. This implies we either learned a preimage, the HTLC
4241 // has timed out, or we screwed up. In any case, we should now
4242 // resolve the source HTLC with the original sender.
4243 payment_data = Some(((*source).clone(), htlc_output.payment_hash, htlc_output.amount_msat));
4244 } else if !$holder_tx {
4245 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
4246 if payment_data.is_none() {
4247 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
4250 if payment_data.is_none() {
4251 log_claim!($tx_info, $holder_tx, htlc_output, false);
4252 let outbound_htlc = $holder_tx == htlc_output.offered;
4253 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
4254 txid: tx.txid(), height, block_hash: Some(*block_hash), transaction: Some(tx.clone()),
4255 event: OnchainEvent::HTLCSpendConfirmation {
4256 commitment_tx_output_idx: input.previous_output.vout,
4257 preimage: if accepted_preimage_claim || offered_preimage_claim {
4258 Some(payment_preimage) } else { None },
4259 // If this is a payment to us (ie !outbound_htlc), wait for
4260 // the CSV delay before dropping the HTLC from claimable
4261 // balance if the claim was an HTLC-Success transaction (ie
4262 // accepted_preimage_claim).
4263 on_to_local_output_csv: if accepted_preimage_claim && !outbound_htlc {
4264 Some(self.on_holder_tx_csv) } else { None },
4267 continue 'outer_loop;
4274 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
4275 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
4276 "our latest holder commitment tx", true);
4278 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
4279 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
4280 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
4281 "our previous holder commitment tx", true);
4284 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
4285 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
4286 "counterparty commitment tx", false);
4289 // Check that scan_commitment, above, decided there is some source worth relaying an
4290 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
4291 if let Some((source, payment_hash, amount_msat)) = payment_data {
4292 if accepted_preimage_claim {
4293 if !self.pending_monitor_events.iter().any(
4294 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
4295 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
4298 block_hash: Some(*block_hash),
4299 transaction: Some(tx.clone()),
4300 event: OnchainEvent::HTLCSpendConfirmation {
4301 commitment_tx_output_idx: input.previous_output.vout,
4302 preimage: Some(payment_preimage),
4303 on_to_local_output_csv: None,
4306 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
4308 payment_preimage: Some(payment_preimage),
4310 htlc_value_satoshis: Some(amount_msat / 1000),
4313 } else if offered_preimage_claim {
4314 if !self.pending_monitor_events.iter().any(
4315 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
4316 upd.source == source
4318 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
4320 transaction: Some(tx.clone()),
4322 block_hash: Some(*block_hash),
4323 event: OnchainEvent::HTLCSpendConfirmation {
4324 commitment_tx_output_idx: input.previous_output.vout,
4325 preimage: Some(payment_preimage),
4326 on_to_local_output_csv: None,
4329 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
4331 payment_preimage: Some(payment_preimage),
4333 htlc_value_satoshis: Some(amount_msat / 1000),
4337 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
4338 if entry.height != height { return true; }
4340 OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
4341 *htlc_source != source
4346 let entry = OnchainEventEntry {
4348 transaction: Some(tx.clone()),
4350 block_hash: Some(*block_hash),
4351 event: OnchainEvent::HTLCUpdate {
4352 source, payment_hash,
4353 htlc_value_satoshis: Some(amount_msat / 1000),
4354 commitment_tx_output_idx: Some(input.previous_output.vout),
4357 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", &payment_hash, entry.confirmation_threshold());
4358 self.onchain_events_awaiting_threshold_conf.push(entry);
4364 fn get_spendable_outputs(&self, tx: &Transaction) -> Vec<SpendableOutputDescriptor> {
4365 let mut spendable_outputs = Vec::new();
4366 for (i, outp) in tx.output.iter().enumerate() {
4367 if outp.script_pubkey == self.destination_script {
4368 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
4369 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4370 output: outp.clone(),
4371 channel_keys_id: Some(self.channel_keys_id),
4374 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
4375 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
4376 spendable_outputs.push(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
4377 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4378 per_commitment_point: broadcasted_holder_revokable_script.1,
4379 to_self_delay: self.on_holder_tx_csv,
4380 output: outp.clone(),
4381 revocation_pubkey: broadcasted_holder_revokable_script.2,
4382 channel_keys_id: self.channel_keys_id,
4383 channel_value_satoshis: self.channel_value_satoshis,
4387 if self.counterparty_payment_script == outp.script_pubkey {
4388 spendable_outputs.push(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
4389 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4390 output: outp.clone(),
4391 channel_keys_id: self.channel_keys_id,
4392 channel_value_satoshis: self.channel_value_satoshis,
4393 channel_transaction_parameters: Some(self.onchain_tx_handler.channel_transaction_parameters.clone()),
4396 if self.shutdown_script.as_ref() == Some(&outp.script_pubkey) {
4397 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
4398 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
4399 output: outp.clone(),
4400 channel_keys_id: Some(self.channel_keys_id),
4407 /// Checks if the confirmed transaction is paying funds back to some address we can assume to
4409 fn check_tx_and_push_spendable_outputs<L: Deref>(
4410 &mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &WithChannelMonitor<L>,
4411 ) where L::Target: Logger {
4412 for spendable_output in self.get_spendable_outputs(tx) {
4413 let entry = OnchainEventEntry {
4415 transaction: Some(tx.clone()),
4417 block_hash: Some(*block_hash),
4418 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
4420 log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
4421 self.onchain_events_awaiting_threshold_conf.push(entry);
4426 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
4428 T::Target: BroadcasterInterface,
4429 F::Target: FeeEstimator,
4432 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
4433 self.0.block_connected(header, txdata, height, &*self.1, &*self.2, &self.3);
4436 fn block_disconnected(&self, header: &Header, height: u32) {
4437 self.0.block_disconnected(header, height, &*self.1, &*self.2, &self.3);
4441 impl<Signer: WriteableEcdsaChannelSigner, M, T: Deref, F: Deref, L: Deref> chain::Confirm for (M, T, F, L)
4443 M: Deref<Target = ChannelMonitor<Signer>>,
4444 T::Target: BroadcasterInterface,
4445 F::Target: FeeEstimator,
4448 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
4449 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &self.3);
4452 fn transaction_unconfirmed(&self, txid: &Txid) {
4453 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &self.3);
4456 fn best_block_updated(&self, header: &Header, height: u32) {
4457 self.0.best_block_updated(header, height, &*self.1, &*self.2, &self.3);
4460 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
4461 self.0.get_relevant_txids()
4465 const MAX_ALLOC_SIZE: usize = 64*1024;
4467 impl<'a, 'b, ES: EntropySource, SP: SignerProvider> ReadableArgs<(&'a ES, &'b SP)>
4468 for (BlockHash, ChannelMonitor<SP::EcdsaSigner>) {
4469 fn read<R: io::Read>(reader: &mut R, args: (&'a ES, &'b SP)) -> Result<Self, DecodeError> {
4470 macro_rules! unwrap_obj {
4474 Err(_) => return Err(DecodeError::InvalidValue),
4479 let (entropy_source, signer_provider) = args;
4481 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
4483 let latest_update_id: u64 = Readable::read(reader)?;
4484 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
4486 let destination_script = Readable::read(reader)?;
4487 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
4489 let revokable_address = Readable::read(reader)?;
4490 let per_commitment_point = Readable::read(reader)?;
4491 let revokable_script = Readable::read(reader)?;
4492 Some((revokable_address, per_commitment_point, revokable_script))
4495 _ => return Err(DecodeError::InvalidValue),
4497 let mut counterparty_payment_script: ScriptBuf = Readable::read(reader)?;
4498 let shutdown_script = {
4499 let script = <ScriptBuf as Readable>::read(reader)?;
4500 if script.is_empty() { None } else { Some(script) }
4503 let channel_keys_id = Readable::read(reader)?;
4504 let holder_revocation_basepoint = Readable::read(reader)?;
4505 // Technically this can fail and serialize fail a round-trip, but only for serialization of
4506 // barely-init'd ChannelMonitors that we can't do anything with.
4507 let outpoint = OutPoint {
4508 txid: Readable::read(reader)?,
4509 index: Readable::read(reader)?,
4511 let funding_info = (outpoint, Readable::read(reader)?);
4512 let current_counterparty_commitment_txid = Readable::read(reader)?;
4513 let prev_counterparty_commitment_txid = Readable::read(reader)?;
4515 let counterparty_commitment_params = Readable::read(reader)?;
4516 let funding_redeemscript = Readable::read(reader)?;
4517 let channel_value_satoshis = Readable::read(reader)?;
4519 let their_cur_per_commitment_points = {
4520 let first_idx = <U48 as Readable>::read(reader)?.0;
4524 let first_point = Readable::read(reader)?;
4525 let second_point_slice: [u8; 33] = Readable::read(reader)?;
4526 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
4527 Some((first_idx, first_point, None))
4529 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
4534 let on_holder_tx_csv: u16 = Readable::read(reader)?;
4536 let commitment_secrets = Readable::read(reader)?;
4538 macro_rules! read_htlc_in_commitment {
4541 let offered: bool = Readable::read(reader)?;
4542 let amount_msat: u64 = Readable::read(reader)?;
4543 let cltv_expiry: u32 = Readable::read(reader)?;
4544 let payment_hash: PaymentHash = Readable::read(reader)?;
4545 let transaction_output_index: Option<u32> = Readable::read(reader)?;
4547 HTLCOutputInCommitment {
4548 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
4554 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
4555 let mut counterparty_claimable_outpoints = hash_map_with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
4556 for _ in 0..counterparty_claimable_outpoints_len {
4557 let txid: Txid = Readable::read(reader)?;
4558 let htlcs_count: u64 = Readable::read(reader)?;
4559 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
4560 for _ in 0..htlcs_count {
4561 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
4563 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
4564 return Err(DecodeError::InvalidValue);
4568 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
4569 let mut counterparty_commitment_txn_on_chain = hash_map_with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
4570 for _ in 0..counterparty_commitment_txn_on_chain_len {
4571 let txid: Txid = Readable::read(reader)?;
4572 let commitment_number = <U48 as Readable>::read(reader)?.0;
4573 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
4574 return Err(DecodeError::InvalidValue);
4578 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
4579 let mut counterparty_hash_commitment_number = hash_map_with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
4580 for _ in 0..counterparty_hash_commitment_number_len {
4581 let payment_hash: PaymentHash = Readable::read(reader)?;
4582 let commitment_number = <U48 as Readable>::read(reader)?.0;
4583 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
4584 return Err(DecodeError::InvalidValue);
4588 let mut prev_holder_signed_commitment_tx: Option<HolderSignedTx> =
4589 match <u8 as Readable>::read(reader)? {
4592 Some(Readable::read(reader)?)
4594 _ => return Err(DecodeError::InvalidValue),
4596 let mut current_holder_commitment_tx: HolderSignedTx = Readable::read(reader)?;
4598 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
4599 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
4601 let payment_preimages_len: u64 = Readable::read(reader)?;
4602 let mut payment_preimages = hash_map_with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
4603 for _ in 0..payment_preimages_len {
4604 let preimage: PaymentPreimage = Readable::read(reader)?;
4605 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).to_byte_array());
4606 if let Some(_) = payment_preimages.insert(hash, preimage) {
4607 return Err(DecodeError::InvalidValue);
4611 let pending_monitor_events_len: u64 = Readable::read(reader)?;
4612 let mut pending_monitor_events = Some(
4613 Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))));
4614 for _ in 0..pending_monitor_events_len {
4615 let ev = match <u8 as Readable>::read(reader)? {
4616 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
4617 1 => MonitorEvent::HolderForceClosed(funding_info.0),
4618 _ => return Err(DecodeError::InvalidValue)
4620 pending_monitor_events.as_mut().unwrap().push(ev);
4623 let pending_events_len: u64 = Readable::read(reader)?;
4624 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
4625 for _ in 0..pending_events_len {
4626 if let Some(event) = MaybeReadable::read(reader)? {
4627 pending_events.push(event);
4631 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
4633 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
4634 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
4635 for _ in 0..waiting_threshold_conf_len {
4636 if let Some(val) = MaybeReadable::read(reader)? {
4637 onchain_events_awaiting_threshold_conf.push(val);
4641 let outputs_to_watch_len: u64 = Readable::read(reader)?;
4642 let mut outputs_to_watch = hash_map_with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<ScriptBuf>>())));
4643 for _ in 0..outputs_to_watch_len {
4644 let txid = Readable::read(reader)?;
4645 let outputs_len: u64 = Readable::read(reader)?;
4646 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<ScriptBuf>())));
4647 for _ in 0..outputs_len {
4648 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
4650 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
4651 return Err(DecodeError::InvalidValue);
4654 let onchain_tx_handler: OnchainTxHandler<SP::EcdsaSigner> = ReadableArgs::read(
4655 reader, (entropy_source, signer_provider, channel_value_satoshis, channel_keys_id)
4658 let lockdown_from_offchain = Readable::read(reader)?;
4659 let holder_tx_signed = Readable::read(reader)?;
4661 if let Some(prev_commitment_tx) = prev_holder_signed_commitment_tx.as_mut() {
4662 let prev_holder_value = onchain_tx_handler.get_prev_holder_commitment_to_self_value();
4663 if prev_holder_value.is_none() { return Err(DecodeError::InvalidValue); }
4664 if prev_commitment_tx.to_self_value_sat == u64::max_value() {
4665 prev_commitment_tx.to_self_value_sat = prev_holder_value.unwrap();
4666 } else if prev_commitment_tx.to_self_value_sat != prev_holder_value.unwrap() {
4667 return Err(DecodeError::InvalidValue);
4671 let cur_holder_value = onchain_tx_handler.get_cur_holder_commitment_to_self_value();
4672 if current_holder_commitment_tx.to_self_value_sat == u64::max_value() {
4673 current_holder_commitment_tx.to_self_value_sat = cur_holder_value;
4674 } else if current_holder_commitment_tx.to_self_value_sat != cur_holder_value {
4675 return Err(DecodeError::InvalidValue);
4678 let mut funding_spend_confirmed = None;
4679 let mut htlcs_resolved_on_chain = Some(Vec::new());
4680 let mut funding_spend_seen = Some(false);
4681 let mut counterparty_node_id = None;
4682 let mut confirmed_commitment_tx_counterparty_output = None;
4683 let mut spendable_txids_confirmed = Some(Vec::new());
4684 let mut counterparty_fulfilled_htlcs = Some(new_hash_map());
4685 let mut initial_counterparty_commitment_info = None;
4686 let mut balances_empty_height = None;
4687 let mut channel_id = None;
4688 read_tlv_fields!(reader, {
4689 (1, funding_spend_confirmed, option),
4690 (3, htlcs_resolved_on_chain, optional_vec),
4691 (5, pending_monitor_events, optional_vec),
4692 (7, funding_spend_seen, option),
4693 (9, counterparty_node_id, option),
4694 (11, confirmed_commitment_tx_counterparty_output, option),
4695 (13, spendable_txids_confirmed, optional_vec),
4696 (15, counterparty_fulfilled_htlcs, option),
4697 (17, initial_counterparty_commitment_info, option),
4698 (19, channel_id, option),
4699 (21, balances_empty_height, option),
4702 // `HolderForceClosedWithInfo` replaced `HolderForceClosed` in v0.0.122. If we have both
4703 // events, we can remove the `HolderForceClosed` event and just keep the `HolderForceClosedWithInfo`.
4704 if let Some(ref mut pending_monitor_events) = pending_monitor_events {
4705 if pending_monitor_events.iter().any(|e| matches!(e, MonitorEvent::HolderForceClosed(_))) &&
4706 pending_monitor_events.iter().any(|e| matches!(e, MonitorEvent::HolderForceClosedWithInfo { .. }))
4708 pending_monitor_events.retain(|e| !matches!(e, MonitorEvent::HolderForceClosed(_)));
4712 // Monitors for anchor outputs channels opened in v0.0.116 suffered from a bug in which the
4713 // wrong `counterparty_payment_script` was being tracked. Fix it now on deserialization to
4714 // give them a chance to recognize the spendable output.
4715 if onchain_tx_handler.channel_type_features().supports_anchors_zero_fee_htlc_tx() &&
4716 counterparty_payment_script.is_v0_p2wpkh()
4718 let payment_point = onchain_tx_handler.channel_transaction_parameters.holder_pubkeys.payment_point;
4719 counterparty_payment_script =
4720 chan_utils::get_to_countersignatory_with_anchors_redeemscript(&payment_point).to_v0_p2wsh();
4723 Ok((best_block.block_hash, ChannelMonitor::from_impl(ChannelMonitorImpl {
4725 commitment_transaction_number_obscure_factor,
4728 broadcasted_holder_revokable_script,
4729 counterparty_payment_script,
4733 holder_revocation_basepoint,
4734 channel_id: channel_id.unwrap_or(ChannelId::v1_from_funding_outpoint(outpoint)),
4736 current_counterparty_commitment_txid,
4737 prev_counterparty_commitment_txid,
4739 counterparty_commitment_params,
4740 funding_redeemscript,
4741 channel_value_satoshis,
4742 their_cur_per_commitment_points,
4747 counterparty_claimable_outpoints,
4748 counterparty_commitment_txn_on_chain,
4749 counterparty_hash_commitment_number,
4750 counterparty_fulfilled_htlcs: counterparty_fulfilled_htlcs.unwrap(),
4752 prev_holder_signed_commitment_tx,
4753 current_holder_commitment_tx,
4754 current_counterparty_commitment_number,
4755 current_holder_commitment_number,
4758 pending_monitor_events: pending_monitor_events.unwrap(),
4760 is_processing_pending_events: false,
4762 onchain_events_awaiting_threshold_conf,
4767 lockdown_from_offchain,
4769 funding_spend_seen: funding_spend_seen.unwrap(),
4770 funding_spend_confirmed,
4771 confirmed_commitment_tx_counterparty_output,
4772 htlcs_resolved_on_chain: htlcs_resolved_on_chain.unwrap(),
4773 spendable_txids_confirmed: spendable_txids_confirmed.unwrap(),
4776 counterparty_node_id,
4777 initial_counterparty_commitment_info,
4778 balances_empty_height,
4785 use bitcoin::blockdata::locktime::absolute::LockTime;
4786 use bitcoin::blockdata::script::{ScriptBuf, Builder};
4787 use bitcoin::blockdata::opcodes;
4788 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut};
4789 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
4790 use bitcoin::sighash;
4791 use bitcoin::sighash::EcdsaSighashType;
4792 use bitcoin::hashes::Hash;
4793 use bitcoin::hashes::sha256::Hash as Sha256;
4794 use bitcoin::hashes::hex::FromHex;
4795 use bitcoin::hash_types::{BlockHash, Txid};
4796 use bitcoin::network::constants::Network;
4797 use bitcoin::secp256k1::{SecretKey,PublicKey};
4798 use bitcoin::secp256k1::Secp256k1;
4799 use bitcoin::{Sequence, Witness};
4801 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
4803 use super::ChannelMonitorUpdateStep;
4804 use crate::{check_added_monitors, check_spends, get_local_commitment_txn, get_monitor, get_route_and_payment_hash, unwrap_send_err};
4805 use crate::chain::{BestBlock, Confirm};
4806 use crate::chain::channelmonitor::{ChannelMonitor, WithChannelMonitor};
4807 use crate::chain::package::{weight_offered_htlc, weight_received_htlc, weight_revoked_offered_htlc, weight_revoked_received_htlc, WEIGHT_REVOKED_OUTPUT};
4808 use crate::chain::transaction::OutPoint;
4809 use crate::sign::InMemorySigner;
4810 use crate::ln::{PaymentPreimage, PaymentHash, ChannelId};
4811 use crate::ln::channel_keys::{DelayedPaymentBasepoint, DelayedPaymentKey, HtlcBasepoint, RevocationBasepoint, RevocationKey};
4812 use crate::ln::chan_utils::{self,HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
4813 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId, RecipientOnionFields};
4814 use crate::ln::functional_test_utils::*;
4815 use crate::ln::script::ShutdownScript;
4816 use crate::util::errors::APIError;
4817 use crate::util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
4818 use crate::util::ser::{ReadableArgs, Writeable};
4819 use crate::util::logger::Logger;
4820 use crate::sync::{Arc, Mutex};
4822 use crate::ln::features::ChannelTypeFeatures;
4824 #[allow(unused_imports)]
4825 use crate::prelude::*;
4827 use std::str::FromStr;
4829 fn do_test_funding_spend_refuses_updates(use_local_txn: bool) {
4830 // Previously, monitor updates were allowed freely even after a funding-spend transaction
4831 // confirmed. This would allow a race condition where we could receive a payment (including
4832 // the counterparty revoking their broadcasted state!) and accept it without recourse as
4833 // long as the ChannelMonitor receives the block first, the full commitment update dance
4834 // occurs after the block is connected, and before the ChannelManager receives the block.
4835 // Obviously this is an incredibly contrived race given the counterparty would be risking
4836 // their full channel balance for it, but its worth fixing nonetheless as it makes the
4837 // potential ChannelMonitor states simpler to reason about.
4839 // This test checks said behavior, as well as ensuring a ChannelMonitorUpdate with multiple
4840 // updates is handled correctly in such conditions.
4841 let chanmon_cfgs = create_chanmon_cfgs(3);
4842 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
4843 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
4844 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
4845 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
4846 create_announced_chan_between_nodes(&nodes, 1, 2);
4848 // Rebalance somewhat
4849 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
4851 // First route two payments for testing at the end
4852 let payment_preimage_1 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4853 let payment_preimage_2 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4855 let local_txn = get_local_commitment_txn!(nodes[1], channel.2);
4856 assert_eq!(local_txn.len(), 1);
4857 let remote_txn = get_local_commitment_txn!(nodes[0], channel.2);
4858 assert_eq!(remote_txn.len(), 3); // Commitment and two HTLC-Timeouts
4859 check_spends!(remote_txn[1], remote_txn[0]);
4860 check_spends!(remote_txn[2], remote_txn[0]);
4861 let broadcast_tx = if use_local_txn { &local_txn[0] } else { &remote_txn[0] };
4863 // Connect a commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
4864 // channel is now closed, but the ChannelManager doesn't know that yet.
4865 let new_header = create_dummy_header(nodes[0].best_block_info().0, 0);
4866 let conf_height = nodes[0].best_block_info().1 + 1;
4867 nodes[1].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
4868 &[(0, broadcast_tx)], conf_height);
4870 let (_, pre_update_monitor) = <(BlockHash, ChannelMonitor<InMemorySigner>)>::read(
4871 &mut io::Cursor::new(&get_monitor!(nodes[1], channel.2).encode()),
4872 (&nodes[1].keys_manager.backing, &nodes[1].keys_manager.backing)).unwrap();
4874 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
4875 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
4876 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 100_000);
4877 unwrap_send_err!(nodes[1].node.send_payment_with_route(&route, payment_hash,
4878 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)
4879 ), false, APIError::MonitorUpdateInProgress, {});
4880 check_added_monitors!(nodes[1], 1);
4882 // Build a new ChannelMonitorUpdate which contains both the failing commitment tx update
4883 // and provides the claim preimages for the two pending HTLCs. The first update generates
4884 // an error, but the point of this test is to ensure the later updates are still applied.
4885 let monitor_updates = nodes[1].chain_monitor.monitor_updates.lock().unwrap();
4886 let mut replay_update = monitor_updates.get(&channel.2).unwrap().iter().rev().next().unwrap().clone();
4887 assert_eq!(replay_update.updates.len(), 1);
4888 if let ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } = replay_update.updates[0] {
4889 } else { panic!(); }
4890 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_1 });
4891 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_2 });
4893 let broadcaster = TestBroadcaster::with_blocks(Arc::clone(&nodes[1].blocks));
4895 pre_update_monitor.update_monitor(&replay_update, &&broadcaster, &&chanmon_cfgs[1].fee_estimator, &nodes[1].logger)
4897 // Even though we error'd on the first update, we should still have generated an HTLC claim
4899 let txn_broadcasted = broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
4900 assert!(txn_broadcasted.len() >= 2);
4901 let htlc_txn = txn_broadcasted.iter().filter(|tx| {
4902 assert_eq!(tx.input.len(), 1);
4903 tx.input[0].previous_output.txid == broadcast_tx.txid()
4904 }).collect::<Vec<_>>();
4905 assert_eq!(htlc_txn.len(), 2);
4906 check_spends!(htlc_txn[0], broadcast_tx);
4907 check_spends!(htlc_txn[1], broadcast_tx);
4910 fn test_funding_spend_refuses_updates() {
4911 do_test_funding_spend_refuses_updates(true);
4912 do_test_funding_spend_refuses_updates(false);
4916 fn test_prune_preimages() {
4917 let secp_ctx = Secp256k1::new();
4918 let logger = Arc::new(TestLogger::new());
4919 let broadcaster = Arc::new(TestBroadcaster::new(Network::Testnet));
4920 let fee_estimator = TestFeeEstimator { sat_per_kw: Mutex::new(253) };
4922 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4924 let mut preimages = Vec::new();
4927 let preimage = PaymentPreimage([i; 32]);
4928 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).to_byte_array());
4929 preimages.push((preimage, hash));
4933 macro_rules! preimages_slice_to_htlcs {
4934 ($preimages_slice: expr) => {
4936 let mut res = Vec::new();
4937 for (idx, preimage) in $preimages_slice.iter().enumerate() {
4938 res.push((HTLCOutputInCommitment {
4942 payment_hash: preimage.1.clone(),
4943 transaction_output_index: Some(idx as u32),
4950 macro_rules! preimages_slice_to_htlc_outputs {
4951 ($preimages_slice: expr) => {
4952 preimages_slice_to_htlcs!($preimages_slice).into_iter().map(|(htlc, _)| (htlc, None)).collect()
4955 let dummy_sig = crate::crypto::utils::sign(&secp_ctx,
4956 &bitcoin::secp256k1::Message::from_slice(&[42; 32]).unwrap(),
4957 &SecretKey::from_slice(&[42; 32]).unwrap());
4959 macro_rules! test_preimages_exist {
4960 ($preimages_slice: expr, $monitor: expr) => {
4961 for preimage in $preimages_slice {
4962 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
4967 let keys = InMemorySigner::new(
4969 SecretKey::from_slice(&[41; 32]).unwrap(),
4970 SecretKey::from_slice(&[41; 32]).unwrap(),
4971 SecretKey::from_slice(&[41; 32]).unwrap(),
4972 SecretKey::from_slice(&[41; 32]).unwrap(),
4973 SecretKey::from_slice(&[41; 32]).unwrap(),
4980 let counterparty_pubkeys = ChannelPublicKeys {
4981 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
4982 revocation_basepoint: RevocationBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap())),
4983 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
4984 delayed_payment_basepoint: DelayedPaymentBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap())),
4985 htlc_basepoint: HtlcBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap()))
4987 let funding_outpoint = OutPoint { txid: Txid::all_zeros(), index: u16::max_value() };
4988 let channel_id = ChannelId::v1_from_funding_outpoint(funding_outpoint);
4989 let channel_parameters = ChannelTransactionParameters {
4990 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
4991 holder_selected_contest_delay: 66,
4992 is_outbound_from_holder: true,
4993 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
4994 pubkeys: counterparty_pubkeys,
4995 selected_contest_delay: 67,
4997 funding_outpoint: Some(funding_outpoint),
4998 channel_type_features: ChannelTypeFeatures::only_static_remote_key()
5000 // Prune with one old state and a holder commitment tx holding a few overlaps with the
5002 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
5003 let best_block = BestBlock::from_network(Network::Testnet);
5004 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
5005 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &ScriptBuf::new(),
5006 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, ScriptBuf::new()),
5007 &channel_parameters, ScriptBuf::new(), 46, 0, HolderCommitmentTransaction::dummy(&mut Vec::new()),
5008 best_block, dummy_key, channel_id);
5010 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..10]);
5011 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
5013 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx.clone(),
5014 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
5015 monitor.provide_latest_counterparty_commitment_tx(Txid::from_byte_array(Sha256::hash(b"1").to_byte_array()),
5016 preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
5017 monitor.provide_latest_counterparty_commitment_tx(Txid::from_byte_array(Sha256::hash(b"2").to_byte_array()),
5018 preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
5019 for &(ref preimage, ref hash) in preimages.iter() {
5020 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&fee_estimator);
5021 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &bounded_fee_estimator, &logger);
5024 // Now provide a secret, pruning preimages 10-15
5025 let mut secret = [0; 32];
5026 secret[0..32].clone_from_slice(&<Vec<u8>>::from_hex("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
5027 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
5028 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
5029 test_preimages_exist!(&preimages[0..10], monitor);
5030 test_preimages_exist!(&preimages[15..20], monitor);
5032 monitor.provide_latest_counterparty_commitment_tx(Txid::from_byte_array(Sha256::hash(b"3").to_byte_array()),
5033 preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
5035 // Now provide a further secret, pruning preimages 15-17
5036 secret[0..32].clone_from_slice(&<Vec<u8>>::from_hex("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
5037 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
5038 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
5039 test_preimages_exist!(&preimages[0..10], monitor);
5040 test_preimages_exist!(&preimages[17..20], monitor);
5042 monitor.provide_latest_counterparty_commitment_tx(Txid::from_byte_array(Sha256::hash(b"4").to_byte_array()),
5043 preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
5045 // Now update holder commitment tx info, pruning only element 18 as we still care about the
5046 // previous commitment tx's preimages too
5047 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..5]);
5048 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
5049 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx.clone(),
5050 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
5051 secret[0..32].clone_from_slice(&<Vec<u8>>::from_hex("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
5052 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
5053 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
5054 test_preimages_exist!(&preimages[0..10], monitor);
5055 test_preimages_exist!(&preimages[18..20], monitor);
5057 // But if we do it again, we'll prune 5-10
5058 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..3]);
5059 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
5060 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx,
5061 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
5062 secret[0..32].clone_from_slice(&<Vec<u8>>::from_hex("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
5063 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
5064 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
5065 test_preimages_exist!(&preimages[0..5], monitor);
5069 fn test_claim_txn_weight_computation() {
5070 // We test Claim txn weight, knowing that we want expected weigth and
5071 // not actual case to avoid sigs and time-lock delays hell variances.
5073 let secp_ctx = Secp256k1::new();
5074 let privkey = SecretKey::from_slice(&<Vec<u8>>::from_hex("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
5075 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
5077 use crate::ln::channel_keys::{HtlcKey, HtlcBasepoint};
5078 macro_rules! sign_input {
5079 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr, $opt_anchors: expr) => {
5080 let htlc = HTLCOutputInCommitment {
5081 offered: if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_offered_htlc($opt_anchors) { true } else { false },
5083 cltv_expiry: 2 << 16,
5084 payment_hash: PaymentHash([1; 32]),
5085 transaction_output_index: Some($idx as u32),
5087 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&RevocationKey::from_basepoint(&secp_ctx, &RevocationBasepoint::from(pubkey), &pubkey), 256, &DelayedPaymentKey::from_basepoint(&secp_ctx, &DelayedPaymentBasepoint::from(pubkey), &pubkey)) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, $opt_anchors, &HtlcKey::from_basepoint(&secp_ctx, &HtlcBasepoint::from(pubkey), &pubkey), &HtlcKey::from_basepoint(&secp_ctx, &HtlcBasepoint::from(pubkey), &pubkey), &RevocationKey::from_basepoint(&secp_ctx, &RevocationBasepoint::from(pubkey), &pubkey)) };
5088 let sighash = hash_to_message!(&$sighash_parts.segwit_signature_hash($idx, &redeem_script, $amount, EcdsaSighashType::All).unwrap()[..]);
5089 let sig = secp_ctx.sign_ecdsa(&sighash, &privkey);
5090 let mut ser_sig = sig.serialize_der().to_vec();
5091 ser_sig.push(EcdsaSighashType::All as u8);
5092 $sum_actual_sigs += ser_sig.len() as u64;
5093 let witness = $sighash_parts.witness_mut($idx).unwrap();
5094 witness.push(ser_sig);
5095 if *$weight == WEIGHT_REVOKED_OUTPUT {
5096 witness.push(vec!(1));
5097 } else if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_revoked_received_htlc($opt_anchors) {
5098 witness.push(pubkey.clone().serialize().to_vec());
5099 } else if *$weight == weight_received_htlc($opt_anchors) {
5100 witness.push(vec![0]);
5102 witness.push(PaymentPreimage([1; 32]).0.to_vec());
5104 witness.push(redeem_script.into_bytes());
5105 let witness = witness.to_vec();
5106 println!("witness[0] {}", witness[0].len());
5107 println!("witness[1] {}", witness[1].len());
5108 println!("witness[2] {}", witness[2].len());
5112 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
5113 let txid = Txid::from_str("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
5115 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
5116 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
5117 let mut claim_tx = Transaction { version: 0, lock_time: LockTime::ZERO, input: Vec::new(), output: Vec::new() };
5118 let mut sum_actual_sigs = 0;
5120 claim_tx.input.push(TxIn {
5121 previous_output: BitcoinOutPoint {
5125 script_sig: ScriptBuf::new(),
5126 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
5127 witness: Witness::new(),
5130 claim_tx.output.push(TxOut {
5131 script_pubkey: script_pubkey.clone(),
5134 let base_weight = claim_tx.weight().to_wu();
5135 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, weight_revoked_offered_htlc(channel_type_features), weight_revoked_offered_htlc(channel_type_features), weight_revoked_received_htlc(channel_type_features)];
5136 let mut inputs_total_weight = 2; // count segwit flags
5138 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
5139 for (idx, inp) in inputs_weight.iter().enumerate() {
5140 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
5141 inputs_total_weight += inp;
5144 assert_eq!(base_weight + inputs_total_weight, claim_tx.weight().to_wu() + /* max_length_sig */ (73 * inputs_weight.len() as u64 - sum_actual_sigs));
5147 // Claim tx with 1 offered HTLCs, 3 received HTLCs
5148 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
5149 let mut claim_tx = Transaction { version: 0, lock_time: LockTime::ZERO, input: Vec::new(), output: Vec::new() };
5150 let mut sum_actual_sigs = 0;
5152 claim_tx.input.push(TxIn {
5153 previous_output: BitcoinOutPoint {
5157 script_sig: ScriptBuf::new(),
5158 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
5159 witness: Witness::new(),
5162 claim_tx.output.push(TxOut {
5163 script_pubkey: script_pubkey.clone(),
5166 let base_weight = claim_tx.weight().to_wu();
5167 let inputs_weight = vec![weight_offered_htlc(channel_type_features), weight_received_htlc(channel_type_features), weight_received_htlc(channel_type_features), weight_received_htlc(channel_type_features)];
5168 let mut inputs_total_weight = 2; // count segwit flags
5170 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
5171 for (idx, inp) in inputs_weight.iter().enumerate() {
5172 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
5173 inputs_total_weight += inp;
5176 assert_eq!(base_weight + inputs_total_weight, claim_tx.weight().to_wu() + /* max_length_sig */ (73 * inputs_weight.len() as u64 - sum_actual_sigs));
5179 // Justice tx with 1 revoked HTLC-Success tx output
5180 for channel_type_features in [ChannelTypeFeatures::only_static_remote_key(), ChannelTypeFeatures::anchors_zero_htlc_fee_and_dependencies()].iter() {
5181 let mut claim_tx = Transaction { version: 0, lock_time: LockTime::ZERO, input: Vec::new(), output: Vec::new() };
5182 let mut sum_actual_sigs = 0;
5183 claim_tx.input.push(TxIn {
5184 previous_output: BitcoinOutPoint {
5188 script_sig: ScriptBuf::new(),
5189 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
5190 witness: Witness::new(),
5192 claim_tx.output.push(TxOut {
5193 script_pubkey: script_pubkey.clone(),
5196 let base_weight = claim_tx.weight().to_wu();
5197 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
5198 let mut inputs_total_weight = 2; // count segwit flags
5200 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
5201 for (idx, inp) in inputs_weight.iter().enumerate() {
5202 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, channel_type_features);
5203 inputs_total_weight += inp;
5206 assert_eq!(base_weight + inputs_total_weight, claim_tx.weight().to_wu() + /* max_length_isg */ (73 * inputs_weight.len() as u64 - sum_actual_sigs));
5211 fn test_with_channel_monitor_impl_logger() {
5212 let secp_ctx = Secp256k1::new();
5213 let logger = Arc::new(TestLogger::new());
5215 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
5217 let keys = InMemorySigner::new(
5219 SecretKey::from_slice(&[41; 32]).unwrap(),
5220 SecretKey::from_slice(&[41; 32]).unwrap(),
5221 SecretKey::from_slice(&[41; 32]).unwrap(),
5222 SecretKey::from_slice(&[41; 32]).unwrap(),
5223 SecretKey::from_slice(&[41; 32]).unwrap(),
5230 let counterparty_pubkeys = ChannelPublicKeys {
5231 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
5232 revocation_basepoint: RevocationBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap())),
5233 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
5234 delayed_payment_basepoint: DelayedPaymentBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap())),
5235 htlc_basepoint: HtlcBasepoint::from(PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())),
5237 let funding_outpoint = OutPoint { txid: Txid::all_zeros(), index: u16::max_value() };
5238 let channel_id = ChannelId::v1_from_funding_outpoint(funding_outpoint);
5239 let channel_parameters = ChannelTransactionParameters {
5240 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
5241 holder_selected_contest_delay: 66,
5242 is_outbound_from_holder: true,
5243 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
5244 pubkeys: counterparty_pubkeys,
5245 selected_contest_delay: 67,
5247 funding_outpoint: Some(funding_outpoint),
5248 channel_type_features: ChannelTypeFeatures::only_static_remote_key()
5250 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
5251 let best_block = BestBlock::from_network(Network::Testnet);
5252 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
5253 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &ScriptBuf::new(),
5254 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, ScriptBuf::new()),
5255 &channel_parameters, ScriptBuf::new(), 46, 0, HolderCommitmentTransaction::dummy(&mut Vec::new()),
5256 best_block, dummy_key, channel_id);
5258 let chan_id = monitor.inner.lock().unwrap().channel_id();
5259 let context_logger = WithChannelMonitor::from(&logger, &monitor);
5260 log_error!(context_logger, "This is an error");
5261 log_warn!(context_logger, "This is an error");
5262 log_debug!(context_logger, "This is an error");
5263 log_trace!(context_logger, "This is an error");
5264 log_gossip!(context_logger, "This is an error");
5265 log_info!(context_logger, "This is an error");
5266 logger.assert_log_context_contains("lightning::chain::channelmonitor::tests", Some(dummy_key), Some(chan_id), 6);
5268 // Further testing is done in the ChannelManager integration tests.