1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::BlockHeader;
24 use bitcoin::blockdata::transaction::{OutPoint as BitcoinOutPoint, TxOut, Transaction};
25 use bitcoin::blockdata::script::{Script, Builder};
26 use bitcoin::blockdata::opcodes;
28 use bitcoin::hashes::Hash;
29 use bitcoin::hashes::sha256::Hash as Sha256;
30 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
33 use bitcoin::secp256k1::{SecretKey, PublicKey};
34 use bitcoin::secp256k1;
36 use crate::ln::{PaymentHash, PaymentPreimage};
37 use crate::ln::msgs::DecodeError;
38 use crate::ln::chan_utils;
39 use crate::ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCClaim, ChannelTransactionParameters, HolderCommitmentTransaction};
40 use crate::ln::channelmanager::{HTLCSource, SentHTLCId};
42 use crate::chain::{BestBlock, WatchedOutput};
43 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator, LowerBoundedFeeEstimator};
44 use crate::chain::transaction::{OutPoint, TransactionData};
45 use crate::chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, WriteableEcdsaChannelSigner, SignerProvider, EntropySource};
47 use crate::chain::onchaintx::ClaimEvent;
48 use crate::chain::onchaintx::OnchainTxHandler;
49 use crate::chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
50 use crate::chain::Filter;
51 use crate::util::logger::Logger;
52 use crate::util::ser::{Readable, ReadableArgs, RequiredWrapper, MaybeReadable, UpgradableRequired, Writer, Writeable, U48};
53 use crate::util::byte_utils;
54 use crate::util::events::Event;
56 use crate::util::events::{AnchorDescriptor, HTLCDescriptor, BumpTransactionEvent};
58 use crate::prelude::*;
60 use crate::io::{self, Error};
61 use core::convert::TryInto;
63 use crate::sync::{Mutex, LockTestExt};
65 /// An update generated by the underlying channel itself which contains some new information the
66 /// [`ChannelMonitor`] should be made aware of.
68 /// Because this represents only a small number of updates to the underlying state, it is generally
69 /// much smaller than a full [`ChannelMonitor`]. However, for large single commitment transaction
70 /// updates (e.g. ones during which there are hundreds of HTLCs pending on the commitment
71 /// transaction), a single update may reach upwards of 1 MiB in serialized size.
72 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq, Eq))]
75 pub struct ChannelMonitorUpdate {
76 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
77 /// The sequence number of this update. Updates *must* be replayed in-order according to this
78 /// sequence number (and updates may panic if they are not). The update_id values are strictly
79 /// increasing and increase by one for each new update, with one exception specified below.
81 /// This sequence number is also used to track up to which points updates which returned
82 /// [`ChannelMonitorUpdateStatus::InProgress`] have been applied to all copies of a given
83 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
85 /// The only instance where update_id values are not strictly increasing is the case where we
86 /// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
87 /// its docs for more details.
89 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
94 /// (1) a channel has been force closed and
95 /// (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
96 /// this channel's (the backward link's) broadcasted commitment transaction
97 /// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
98 /// with the update providing said payment preimage. No other update types are allowed after
100 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
102 impl Writeable for ChannelMonitorUpdate {
103 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
104 write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
105 self.update_id.write(w)?;
106 (self.updates.len() as u64).write(w)?;
107 for update_step in self.updates.iter() {
108 update_step.write(w)?;
110 write_tlv_fields!(w, {});
114 impl Readable for ChannelMonitorUpdate {
115 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
116 let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
117 let update_id: u64 = Readable::read(r)?;
118 let len: u64 = Readable::read(r)?;
119 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
121 if let Some(upd) = MaybeReadable::read(r)? {
125 read_tlv_fields!(r, {});
126 Ok(Self { update_id, updates })
130 /// An event to be processed by the ChannelManager.
131 #[derive(Clone, PartialEq, Eq)]
132 pub enum MonitorEvent {
133 /// A monitor event containing an HTLCUpdate.
134 HTLCEvent(HTLCUpdate),
136 /// A monitor event that the Channel's commitment transaction was confirmed.
137 CommitmentTxConfirmed(OutPoint),
139 /// Indicates a [`ChannelMonitor`] update has completed. See
140 /// [`ChannelMonitorUpdateStatus::InProgress`] for more information on how this is used.
142 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
144 /// The funding outpoint of the [`ChannelMonitor`] that was updated
145 funding_txo: OutPoint,
146 /// The Update ID from [`ChannelMonitorUpdate::update_id`] which was applied or
147 /// [`ChannelMonitor::get_latest_update_id`].
149 /// Note that this should only be set to a given update's ID if all previous updates for the
150 /// same [`ChannelMonitor`] have been applied and persisted.
151 monitor_update_id: u64,
154 /// Indicates a [`ChannelMonitor`] update has failed. See
155 /// [`ChannelMonitorUpdateStatus::PermanentFailure`] for more information on how this is used.
157 /// [`ChannelMonitorUpdateStatus::PermanentFailure`]: super::ChannelMonitorUpdateStatus::PermanentFailure
158 UpdateFailed(OutPoint),
160 impl_writeable_tlv_based_enum_upgradable!(MonitorEvent,
161 // Note that Completed and UpdateFailed are currently never serialized to disk as they are
162 // generated only in ChainMonitor
164 (0, funding_txo, required),
165 (2, monitor_update_id, required),
169 (4, CommitmentTxConfirmed),
173 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
174 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
175 /// preimage claim backward will lead to loss of funds.
176 #[derive(Clone, PartialEq, Eq)]
177 pub struct HTLCUpdate {
178 pub(crate) payment_hash: PaymentHash,
179 pub(crate) payment_preimage: Option<PaymentPreimage>,
180 pub(crate) source: HTLCSource,
181 pub(crate) htlc_value_satoshis: Option<u64>,
183 impl_writeable_tlv_based!(HTLCUpdate, {
184 (0, payment_hash, required),
185 (1, htlc_value_satoshis, option),
186 (2, source, required),
187 (4, payment_preimage, option),
190 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
191 /// instead claiming it in its own individual transaction.
192 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
193 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
194 /// HTLC-Success transaction.
195 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
196 /// transaction confirmed (and we use it in a few more, equivalent, places).
197 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
198 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
199 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
200 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
201 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
202 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
203 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
204 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
205 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
206 /// accurate block height.
207 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
208 /// with at worst this delay, so we are not only using this value as a mercy for them but also
209 /// us as a safeguard to delay with enough time.
210 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
211 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding
212 /// inbound HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us
215 /// Note that this is a library-wide security assumption. If a reorg deeper than this number of
216 /// blocks occurs, counterparties may be able to steal funds or claims made by and balances exposed
217 /// by a [`ChannelMonitor`] may be incorrect.
218 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
219 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
220 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
221 // keep bumping another claim tx to solve the outpoint.
222 pub const ANTI_REORG_DELAY: u32 = 6;
223 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
224 /// refuse to accept a new HTLC.
226 /// This is used for a few separate purposes:
227 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
228 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
230 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
231 /// condition with the above), we will fail this HTLC without telling the user we received it,
233 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
234 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
236 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
237 /// in a race condition between the user connecting a block (which would fail it) and the user
238 /// providing us the preimage (which would claim it).
239 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
241 // TODO(devrandom) replace this with HolderCommitmentTransaction
242 #[derive(Clone, PartialEq, Eq)]
243 struct HolderSignedTx {
244 /// txid of the transaction in tx, just used to make comparison faster
246 revocation_key: PublicKey,
247 a_htlc_key: PublicKey,
248 b_htlc_key: PublicKey,
249 delayed_payment_key: PublicKey,
250 per_commitment_point: PublicKey,
251 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
252 to_self_value_sat: u64,
255 impl_writeable_tlv_based!(HolderSignedTx, {
257 // Note that this is filled in with data from OnchainTxHandler if it's missing.
258 // For HolderSignedTx objects serialized with 0.0.100+, this should be filled in.
259 (1, to_self_value_sat, (default_value, u64::max_value())),
260 (2, revocation_key, required),
261 (4, a_htlc_key, required),
262 (6, b_htlc_key, required),
263 (8, delayed_payment_key, required),
264 (10, per_commitment_point, required),
265 (12, feerate_per_kw, required),
266 (14, htlc_outputs, vec_type)
270 impl HolderSignedTx {
271 fn non_dust_htlcs(&self) -> Vec<HTLCOutputInCommitment> {
272 self.htlc_outputs.iter().filter_map(|(htlc, _, _)| {
273 if let Some(_) = htlc.transaction_output_index {
283 /// We use this to track static counterparty commitment transaction data and to generate any
284 /// justice or 2nd-stage preimage/timeout transactions.
285 #[derive(PartialEq, Eq)]
286 struct CounterpartyCommitmentParameters {
287 counterparty_delayed_payment_base_key: PublicKey,
288 counterparty_htlc_base_key: PublicKey,
289 on_counterparty_tx_csv: u16,
292 impl Writeable for CounterpartyCommitmentParameters {
293 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
294 w.write_all(&(0 as u64).to_be_bytes())?;
295 write_tlv_fields!(w, {
296 (0, self.counterparty_delayed_payment_base_key, required),
297 (2, self.counterparty_htlc_base_key, required),
298 (4, self.on_counterparty_tx_csv, required),
303 impl Readable for CounterpartyCommitmentParameters {
304 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
305 let counterparty_commitment_transaction = {
306 // Versions prior to 0.0.100 had some per-HTLC state stored here, which is no longer
307 // used. Read it for compatibility.
308 let per_htlc_len: u64 = Readable::read(r)?;
309 for _ in 0..per_htlc_len {
310 let _txid: Txid = Readable::read(r)?;
311 let htlcs_count: u64 = Readable::read(r)?;
312 for _ in 0..htlcs_count {
313 let _htlc: HTLCOutputInCommitment = Readable::read(r)?;
317 let mut counterparty_delayed_payment_base_key = RequiredWrapper(None);
318 let mut counterparty_htlc_base_key = RequiredWrapper(None);
319 let mut on_counterparty_tx_csv: u16 = 0;
320 read_tlv_fields!(r, {
321 (0, counterparty_delayed_payment_base_key, required),
322 (2, counterparty_htlc_base_key, required),
323 (4, on_counterparty_tx_csv, required),
325 CounterpartyCommitmentParameters {
326 counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
327 counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
328 on_counterparty_tx_csv,
331 Ok(counterparty_commitment_transaction)
335 /// An entry for an [`OnchainEvent`], stating the block height and hash when the event was
336 /// observed, as well as the transaction causing it.
338 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
339 #[derive(PartialEq, Eq)]
340 struct OnchainEventEntry {
343 block_hash: Option<BlockHash>, // Added as optional, will be filled in for any entry generated on 0.0.113 or after
345 transaction: Option<Transaction>, // Added as optional, but always filled in, in LDK 0.0.110
348 impl OnchainEventEntry {
349 fn confirmation_threshold(&self) -> u32 {
350 let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
352 OnchainEvent::MaturingOutput {
353 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
355 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
356 // it's broadcastable when we see the previous block.
357 conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
359 OnchainEvent::FundingSpendConfirmation { on_local_output_csv: Some(csv), .. } |
360 OnchainEvent::HTLCSpendConfirmation { on_to_local_output_csv: Some(csv), .. } => {
361 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
362 // it's broadcastable when we see the previous block.
363 conf_threshold = cmp::max(conf_threshold, self.height + csv as u32 - 1);
370 fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
371 best_block.height() >= self.confirmation_threshold()
375 /// The (output index, sats value) for the counterparty's output in a commitment transaction.
377 /// This was added as an `Option` in 0.0.110.
378 type CommitmentTxCounterpartyOutputInfo = Option<(u32, u64)>;
380 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
381 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
382 #[derive(PartialEq, Eq)]
384 /// An outbound HTLC failing after a transaction is confirmed. Used
385 /// * when an outbound HTLC output is spent by us after the HTLC timed out
386 /// * an outbound HTLC which was not present in the commitment transaction which appeared
387 /// on-chain (either because it was not fully committed to or it was dust).
388 /// Note that this is *not* used for preimage claims, as those are passed upstream immediately,
389 /// appearing only as an `HTLCSpendConfirmation`, below.
392 payment_hash: PaymentHash,
393 htlc_value_satoshis: Option<u64>,
394 /// None in the second case, above, ie when there is no relevant output in the commitment
395 /// transaction which appeared on chain.
396 commitment_tx_output_idx: Option<u32>,
398 /// An output waiting on [`ANTI_REORG_DELAY`] confirmations before we hand the user the
399 /// [`SpendableOutputDescriptor`].
401 descriptor: SpendableOutputDescriptor,
403 /// A spend of the funding output, either a commitment transaction or a cooperative closing
405 FundingSpendConfirmation {
406 /// The CSV delay for the output of the funding spend transaction (implying it is a local
407 /// commitment transaction, and this is the delay on the to_self output).
408 on_local_output_csv: Option<u16>,
409 /// If the funding spend transaction was a known remote commitment transaction, we track
410 /// the output index and amount of the counterparty's `to_self` output here.
412 /// This allows us to generate a [`Balance::CounterpartyRevokedOutputClaimable`] for the
413 /// counterparty output.
414 commitment_tx_to_counterparty_output: CommitmentTxCounterpartyOutputInfo,
416 /// A spend of a commitment transaction HTLC output, set in the cases where *no* `HTLCUpdate`
417 /// is constructed. This is used when
418 /// * an outbound HTLC is claimed by our counterparty with a preimage, causing us to
419 /// immediately claim the HTLC on the inbound edge and track the resolution here,
420 /// * an inbound HTLC is claimed by our counterparty (with a timeout),
421 /// * an inbound HTLC is claimed by us (with a preimage).
422 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by the revocation
424 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by an
425 /// HTLC-Success/HTLC-Failure transaction (and is still claimable with a revocation
427 HTLCSpendConfirmation {
428 commitment_tx_output_idx: u32,
429 /// If the claim was made by either party with a preimage, this is filled in
430 preimage: Option<PaymentPreimage>,
431 /// If the claim was made by us on an inbound HTLC against a local commitment transaction,
432 /// we set this to the output CSV value which we will have to wait until to spend the
433 /// output (and generate a SpendableOutput event).
434 on_to_local_output_csv: Option<u16>,
438 impl Writeable for OnchainEventEntry {
439 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
440 write_tlv_fields!(writer, {
441 (0, self.txid, required),
442 (1, self.transaction, option),
443 (2, self.height, required),
444 (3, self.block_hash, option),
445 (4, self.event, required),
451 impl MaybeReadable for OnchainEventEntry {
452 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
453 let mut txid = Txid::all_zeros();
454 let mut transaction = None;
455 let mut block_hash = None;
457 let mut event = UpgradableRequired(None);
458 read_tlv_fields!(reader, {
460 (1, transaction, option),
461 (2, height, required),
462 (3, block_hash, option),
463 (4, event, upgradable_required),
465 Ok(Some(Self { txid, transaction, height, block_hash, event: _init_tlv_based_struct_field!(event, upgradable_required) }))
469 impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
471 (0, source, required),
472 (1, htlc_value_satoshis, option),
473 (2, payment_hash, required),
474 (3, commitment_tx_output_idx, option),
476 (1, MaturingOutput) => {
477 (0, descriptor, required),
479 (3, FundingSpendConfirmation) => {
480 (0, on_local_output_csv, option),
481 (1, commitment_tx_to_counterparty_output, option),
483 (5, HTLCSpendConfirmation) => {
484 (0, commitment_tx_output_idx, required),
485 (2, preimage, option),
486 (4, on_to_local_output_csv, option),
491 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq, Eq))]
493 pub(crate) enum ChannelMonitorUpdateStep {
494 LatestHolderCommitmentTXInfo {
495 commitment_tx: HolderCommitmentTransaction,
496 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
497 claimed_htlcs: Vec<(SentHTLCId, PaymentPreimage)>,
499 LatestCounterpartyCommitmentTXInfo {
500 commitment_txid: Txid,
501 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
502 commitment_number: u64,
503 their_per_commitment_point: PublicKey,
506 payment_preimage: PaymentPreimage,
512 /// Used to indicate that the no future updates will occur, and likely that the latest holder
513 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
515 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
516 /// think we've fallen behind!
517 should_broadcast: bool,
520 scriptpubkey: Script,
524 impl ChannelMonitorUpdateStep {
525 fn variant_name(&self) -> &'static str {
527 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { .. } => "LatestHolderCommitmentTXInfo",
528 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } => "LatestCounterpartyCommitmentTXInfo",
529 ChannelMonitorUpdateStep::PaymentPreimage { .. } => "PaymentPreimage",
530 ChannelMonitorUpdateStep::CommitmentSecret { .. } => "CommitmentSecret",
531 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => "ChannelForceClosed",
532 ChannelMonitorUpdateStep::ShutdownScript { .. } => "ShutdownScript",
537 impl_writeable_tlv_based_enum_upgradable!(ChannelMonitorUpdateStep,
538 (0, LatestHolderCommitmentTXInfo) => {
539 (0, commitment_tx, required),
540 (1, claimed_htlcs, vec_type),
541 (2, htlc_outputs, vec_type),
543 (1, LatestCounterpartyCommitmentTXInfo) => {
544 (0, commitment_txid, required),
545 (2, commitment_number, required),
546 (4, their_per_commitment_point, required),
547 (6, htlc_outputs, vec_type),
549 (2, PaymentPreimage) => {
550 (0, payment_preimage, required),
552 (3, CommitmentSecret) => {
554 (2, secret, required),
556 (4, ChannelForceClosed) => {
557 (0, should_broadcast, required),
559 (5, ShutdownScript) => {
560 (0, scriptpubkey, required),
564 /// Details about the balance(s) available for spending once the channel appears on chain.
566 /// See [`ChannelMonitor::get_claimable_balances`] for more details on when these will or will not
568 #[derive(Clone, Debug, PartialEq, Eq)]
569 #[cfg_attr(test, derive(PartialOrd, Ord))]
571 /// The channel is not yet closed (or the commitment or closing transaction has not yet
572 /// appeared in a block). The given balance is claimable (less on-chain fees) if the channel is
573 /// force-closed now.
574 ClaimableOnChannelClose {
575 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
576 /// required to do so.
577 claimable_amount_satoshis: u64,
579 /// The channel has been closed, and the given balance is ours but awaiting confirmations until
580 /// we consider it spendable.
581 ClaimableAwaitingConfirmations {
582 /// The amount available to claim, in satoshis, possibly excluding the on-chain fees which
583 /// were spent in broadcasting the transaction.
584 claimable_amount_satoshis: u64,
585 /// The height at which an [`Event::SpendableOutputs`] event will be generated for this
587 confirmation_height: u32,
589 /// The channel has been closed, and the given balance should be ours but awaiting spending
590 /// transaction confirmation. If the spending transaction does not confirm in time, it is
591 /// possible our counterparty can take the funds by broadcasting an HTLC timeout on-chain.
593 /// Once the spending transaction confirms, before it has reached enough confirmations to be
594 /// considered safe from chain reorganizations, the balance will instead be provided via
595 /// [`Balance::ClaimableAwaitingConfirmations`].
596 ContentiousClaimable {
597 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
598 /// required to do so.
599 claimable_amount_satoshis: u64,
600 /// The height at which the counterparty may be able to claim the balance if we have not
604 /// HTLCs which we sent to our counterparty which are claimable after a timeout (less on-chain
605 /// fees) if the counterparty does not know the preimage for the HTLCs. These are somewhat
606 /// likely to be claimed by our counterparty before we do.
607 MaybeTimeoutClaimableHTLC {
608 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
609 /// which will be required to do so.
610 claimable_amount_satoshis: u64,
611 /// The height at which we will be able to claim the balance if our counterparty has not
613 claimable_height: u32,
615 /// HTLCs which we received from our counterparty which are claimable with a preimage which we
616 /// do not currently have. This will only be claimable if we receive the preimage from the node
617 /// to which we forwarded this HTLC before the timeout.
618 MaybePreimageClaimableHTLC {
619 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
620 /// which will be required to do so.
621 claimable_amount_satoshis: u64,
622 /// The height at which our counterparty will be able to claim the balance if we have not
623 /// yet received the preimage and claimed it ourselves.
626 /// The channel has been closed, and our counterparty broadcasted a revoked commitment
629 /// Thus, we're able to claim all outputs in the commitment transaction, one of which has the
630 /// following amount.
631 CounterpartyRevokedOutputClaimable {
632 /// The amount, in satoshis, of the output which we can claim.
634 /// Note that for outputs from HTLC balances this may be excluding some on-chain fees that
635 /// were already spent.
636 claimable_amount_satoshis: u64,
640 /// An HTLC which has been irrevocably resolved on-chain, and has reached ANTI_REORG_DELAY.
641 #[derive(PartialEq, Eq)]
642 struct IrrevocablyResolvedHTLC {
643 commitment_tx_output_idx: Option<u32>,
644 /// The txid of the transaction which resolved the HTLC, this may be a commitment (if the HTLC
645 /// was not present in the confirmed commitment transaction), HTLC-Success, or HTLC-Timeout
647 resolving_txid: Option<Txid>, // Added as optional, but always filled in, in 0.0.110
648 resolving_tx: Option<Transaction>,
649 /// Only set if the HTLC claim was ours using a payment preimage
650 payment_preimage: Option<PaymentPreimage>,
653 // In LDK versions prior to 0.0.111 commitment_tx_output_idx was not Option-al and
654 // IrrevocablyResolvedHTLC objects only existed for non-dust HTLCs. This was a bug, but to maintain
655 // backwards compatibility we must ensure we always write out a commitment_tx_output_idx field,
656 // using `u32::max_value()` as a sentinal to indicate the HTLC was dust.
657 impl Writeable for IrrevocablyResolvedHTLC {
658 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
659 let mapped_commitment_tx_output_idx = self.commitment_tx_output_idx.unwrap_or(u32::max_value());
660 write_tlv_fields!(writer, {
661 (0, mapped_commitment_tx_output_idx, required),
662 (1, self.resolving_txid, option),
663 (2, self.payment_preimage, option),
664 (3, self.resolving_tx, option),
670 impl Readable for IrrevocablyResolvedHTLC {
671 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
672 let mut mapped_commitment_tx_output_idx = 0;
673 let mut resolving_txid = None;
674 let mut payment_preimage = None;
675 let mut resolving_tx = None;
676 read_tlv_fields!(reader, {
677 (0, mapped_commitment_tx_output_idx, required),
678 (1, resolving_txid, option),
679 (2, payment_preimage, option),
680 (3, resolving_tx, option),
683 commitment_tx_output_idx: if mapped_commitment_tx_output_idx == u32::max_value() { None } else { Some(mapped_commitment_tx_output_idx) },
691 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
692 /// on-chain transactions to ensure no loss of funds occurs.
694 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
695 /// information and are actively monitoring the chain.
697 /// Pending Events or updated HTLCs which have not yet been read out by
698 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
699 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
700 /// gotten are fully handled before re-serializing the new state.
702 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
703 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
704 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
705 /// returned block hash and the the current chain and then reconnecting blocks to get to the
706 /// best chain) upon deserializing the object!
707 pub struct ChannelMonitor<Signer: WriteableEcdsaChannelSigner> {
709 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
711 inner: Mutex<ChannelMonitorImpl<Signer>>,
715 pub(crate) struct ChannelMonitorImpl<Signer: WriteableEcdsaChannelSigner> {
716 latest_update_id: u64,
717 commitment_transaction_number_obscure_factor: u64,
719 destination_script: Script,
720 broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
721 counterparty_payment_script: Script,
722 shutdown_script: Option<Script>,
724 channel_keys_id: [u8; 32],
725 holder_revocation_basepoint: PublicKey,
726 funding_info: (OutPoint, Script),
727 current_counterparty_commitment_txid: Option<Txid>,
728 prev_counterparty_commitment_txid: Option<Txid>,
730 counterparty_commitment_params: CounterpartyCommitmentParameters,
731 funding_redeemscript: Script,
732 channel_value_satoshis: u64,
733 // first is the idx of the first of the two per-commitment points
734 their_cur_per_commitment_points: Option<(u64, PublicKey, Option<PublicKey>)>,
736 on_holder_tx_csv: u16,
738 commitment_secrets: CounterpartyCommitmentSecrets,
739 /// The set of outpoints in each counterparty commitment transaction. We always need at least
740 /// the payment hash from `HTLCOutputInCommitment` to claim even a revoked commitment
741 /// transaction broadcast as we need to be able to construct the witness script in all cases.
742 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
743 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
744 /// Nor can we figure out their commitment numbers without the commitment transaction they are
745 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
746 /// commitment transactions which we find on-chain, mapping them to the commitment number which
747 /// can be used to derive the revocation key and claim the transactions.
748 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
749 /// Cache used to make pruning of payment_preimages faster.
750 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
751 /// counterparty transactions (ie should remain pretty small).
752 /// Serialized to disk but should generally not be sent to Watchtowers.
753 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
755 counterparty_fulfilled_htlcs: HashMap<SentHTLCId, PaymentPreimage>,
757 // We store two holder commitment transactions to avoid any race conditions where we may update
758 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
759 // various monitors for one channel being out of sync, and us broadcasting a holder
760 // transaction for which we have deleted claim information on some watchtowers.
761 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
762 current_holder_commitment_tx: HolderSignedTx,
764 // Used just for ChannelManager to make sure it has the latest channel data during
766 current_counterparty_commitment_number: u64,
767 // Used just for ChannelManager to make sure it has the latest channel data during
769 current_holder_commitment_number: u64,
771 /// The set of payment hashes from inbound payments for which we know the preimage. Payment
772 /// preimages that are not included in any unrevoked local commitment transaction or unrevoked
773 /// remote commitment transactions are automatically removed when commitment transactions are
775 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
777 // Note that `MonitorEvent`s MUST NOT be generated during update processing, only generated
778 // during chain data processing. This prevents a race in `ChainMonitor::update_channel` (and
779 // presumably user implementations thereof as well) where we update the in-memory channel
780 // object, then before the persistence finishes (as it's all under a read-lock), we return
781 // pending events to the user or to the relevant `ChannelManager`. Then, on reload, we'll have
782 // the pre-event state here, but have processed the event in the `ChannelManager`.
783 // Note that because the `event_lock` in `ChainMonitor` is only taken in
784 // block/transaction-connected events and *not* during block/transaction-disconnected events,
785 // we further MUST NOT generate events during block/transaction-disconnection.
786 pending_monitor_events: Vec<MonitorEvent>,
788 pending_events: Vec<Event>,
790 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
791 // which to take actions once they reach enough confirmations. Each entry includes the
792 // transaction's id and the height when the transaction was confirmed on chain.
793 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
795 // If we get serialized out and re-read, we need to make sure that the chain monitoring
796 // interface knows about the TXOs that we want to be notified of spends of. We could probably
797 // be smart and derive them from the above storage fields, but its much simpler and more
798 // Obviously Correct (tm) if we just keep track of them explicitly.
799 outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
802 pub onchain_tx_handler: OnchainTxHandler<Signer>,
804 onchain_tx_handler: OnchainTxHandler<Signer>,
806 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
807 // channel has been force-closed. After this is set, no further holder commitment transaction
808 // updates may occur, and we panic!() if one is provided.
809 lockdown_from_offchain: bool,
811 // Set once we've signed a holder commitment transaction and handed it over to our
812 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
813 // may occur, and we fail any such monitor updates.
815 // In case of update rejection due to a locally already signed commitment transaction, we
816 // nevertheless store update content to track in case of concurrent broadcast by another
817 // remote monitor out-of-order with regards to the block view.
818 holder_tx_signed: bool,
820 // If a spend of the funding output is seen, we set this to true and reject any further
821 // updates. This prevents any further changes in the offchain state no matter the order
822 // of block connection between ChannelMonitors and the ChannelManager.
823 funding_spend_seen: bool,
825 /// Set to `Some` of the confirmed transaction spending the funding input of the channel after
826 /// reaching `ANTI_REORG_DELAY` confirmations.
827 funding_spend_confirmed: Option<Txid>,
829 confirmed_commitment_tx_counterparty_output: CommitmentTxCounterpartyOutputInfo,
830 /// The set of HTLCs which have been either claimed or failed on chain and have reached
831 /// the requisite confirmations on the claim/fail transaction (either ANTI_REORG_DELAY or the
832 /// spending CSV for revocable outputs).
833 htlcs_resolved_on_chain: Vec<IrrevocablyResolvedHTLC>,
835 /// The set of `SpendableOutput` events which we have already passed upstream to be claimed.
836 /// These are tracked explicitly to ensure that we don't generate the same events redundantly
837 /// if users duplicatively confirm old transactions. Specifically for transactions claiming a
838 /// revoked remote outpoint we otherwise have no tracking at all once they've reached
839 /// [`ANTI_REORG_DELAY`], so we have to track them here.
840 spendable_txids_confirmed: Vec<Txid>,
842 // We simply modify best_block in Channel's block_connected so that serialization is
843 // consistent but hopefully the users' copy handles block_connected in a consistent way.
844 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
845 // their best_block from its state and not based on updated copies that didn't run through
846 // the full block_connected).
847 best_block: BestBlock,
849 /// The node_id of our counterparty
850 counterparty_node_id: Option<PublicKey>,
853 /// Transaction outputs to watch for on-chain spends.
854 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
856 impl<Signer: WriteableEcdsaChannelSigner> PartialEq for ChannelMonitor<Signer> where Signer: PartialEq {
857 fn eq(&self, other: &Self) -> bool {
858 // We need some kind of total lockorder. Absent a better idea, we sort by position in
859 // memory and take locks in that order (assuming that we can't move within memory while a
861 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
862 let a = if ord { self.inner.unsafe_well_ordered_double_lock_self() } else { other.inner.unsafe_well_ordered_double_lock_self() };
863 let b = if ord { other.inner.unsafe_well_ordered_double_lock_self() } else { self.inner.unsafe_well_ordered_double_lock_self() };
868 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitor<Signer> {
869 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
870 self.inner.lock().unwrap().write(writer)
874 // These are also used for ChannelMonitorUpdate, above.
875 const SERIALIZATION_VERSION: u8 = 1;
876 const MIN_SERIALIZATION_VERSION: u8 = 1;
878 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitorImpl<Signer> {
879 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
880 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
882 self.latest_update_id.write(writer)?;
884 // Set in initial Channel-object creation, so should always be set by now:
885 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
887 self.destination_script.write(writer)?;
888 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
889 writer.write_all(&[0; 1])?;
890 broadcasted_holder_revokable_script.0.write(writer)?;
891 broadcasted_holder_revokable_script.1.write(writer)?;
892 broadcasted_holder_revokable_script.2.write(writer)?;
894 writer.write_all(&[1; 1])?;
897 self.counterparty_payment_script.write(writer)?;
898 match &self.shutdown_script {
899 Some(script) => script.write(writer)?,
900 None => Script::new().write(writer)?,
903 self.channel_keys_id.write(writer)?;
904 self.holder_revocation_basepoint.write(writer)?;
905 writer.write_all(&self.funding_info.0.txid[..])?;
906 writer.write_all(&self.funding_info.0.index.to_be_bytes())?;
907 self.funding_info.1.write(writer)?;
908 self.current_counterparty_commitment_txid.write(writer)?;
909 self.prev_counterparty_commitment_txid.write(writer)?;
911 self.counterparty_commitment_params.write(writer)?;
912 self.funding_redeemscript.write(writer)?;
913 self.channel_value_satoshis.write(writer)?;
915 match self.their_cur_per_commitment_points {
916 Some((idx, pubkey, second_option)) => {
917 writer.write_all(&byte_utils::be48_to_array(idx))?;
918 writer.write_all(&pubkey.serialize())?;
919 match second_option {
920 Some(second_pubkey) => {
921 writer.write_all(&second_pubkey.serialize())?;
924 writer.write_all(&[0; 33])?;
929 writer.write_all(&byte_utils::be48_to_array(0))?;
933 writer.write_all(&self.on_holder_tx_csv.to_be_bytes())?;
935 self.commitment_secrets.write(writer)?;
937 macro_rules! serialize_htlc_in_commitment {
938 ($htlc_output: expr) => {
939 writer.write_all(&[$htlc_output.offered as u8; 1])?;
940 writer.write_all(&$htlc_output.amount_msat.to_be_bytes())?;
941 writer.write_all(&$htlc_output.cltv_expiry.to_be_bytes())?;
942 writer.write_all(&$htlc_output.payment_hash.0[..])?;
943 $htlc_output.transaction_output_index.write(writer)?;
947 writer.write_all(&(self.counterparty_claimable_outpoints.len() as u64).to_be_bytes())?;
948 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
949 writer.write_all(&txid[..])?;
950 writer.write_all(&(htlc_infos.len() as u64).to_be_bytes())?;
951 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
952 debug_assert!(htlc_source.is_none() || Some(**txid) == self.current_counterparty_commitment_txid
953 || Some(**txid) == self.prev_counterparty_commitment_txid,
954 "HTLC Sources for all revoked commitment transactions should be none!");
955 serialize_htlc_in_commitment!(htlc_output);
956 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
960 writer.write_all(&(self.counterparty_commitment_txn_on_chain.len() as u64).to_be_bytes())?;
961 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
962 writer.write_all(&txid[..])?;
963 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
966 writer.write_all(&(self.counterparty_hash_commitment_number.len() as u64).to_be_bytes())?;
967 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
968 writer.write_all(&payment_hash.0[..])?;
969 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
972 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
973 writer.write_all(&[1; 1])?;
974 prev_holder_tx.write(writer)?;
976 writer.write_all(&[0; 1])?;
979 self.current_holder_commitment_tx.write(writer)?;
981 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
982 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
984 writer.write_all(&(self.payment_preimages.len() as u64).to_be_bytes())?;
985 for payment_preimage in self.payment_preimages.values() {
986 writer.write_all(&payment_preimage.0[..])?;
989 writer.write_all(&(self.pending_monitor_events.iter().filter(|ev| match ev {
990 MonitorEvent::HTLCEvent(_) => true,
991 MonitorEvent::CommitmentTxConfirmed(_) => true,
993 }).count() as u64).to_be_bytes())?;
994 for event in self.pending_monitor_events.iter() {
996 MonitorEvent::HTLCEvent(upd) => {
1000 MonitorEvent::CommitmentTxConfirmed(_) => 1u8.write(writer)?,
1001 _ => {}, // Covered in the TLV writes below
1005 writer.write_all(&(self.pending_events.len() as u64).to_be_bytes())?;
1006 for event in self.pending_events.iter() {
1007 event.write(writer)?;
1010 self.best_block.block_hash().write(writer)?;
1011 writer.write_all(&self.best_block.height().to_be_bytes())?;
1013 writer.write_all(&(self.onchain_events_awaiting_threshold_conf.len() as u64).to_be_bytes())?;
1014 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
1015 entry.write(writer)?;
1018 (self.outputs_to_watch.len() as u64).write(writer)?;
1019 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
1020 txid.write(writer)?;
1021 (idx_scripts.len() as u64).write(writer)?;
1022 for (idx, script) in idx_scripts.iter() {
1024 script.write(writer)?;
1027 self.onchain_tx_handler.write(writer)?;
1029 self.lockdown_from_offchain.write(writer)?;
1030 self.holder_tx_signed.write(writer)?;
1032 write_tlv_fields!(writer, {
1033 (1, self.funding_spend_confirmed, option),
1034 (3, self.htlcs_resolved_on_chain, vec_type),
1035 (5, self.pending_monitor_events, vec_type),
1036 (7, self.funding_spend_seen, required),
1037 (9, self.counterparty_node_id, option),
1038 (11, self.confirmed_commitment_tx_counterparty_output, option),
1039 (13, self.spendable_txids_confirmed, vec_type),
1040 (15, self.counterparty_fulfilled_htlcs, required),
1047 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1048 /// For lockorder enforcement purposes, we need to have a single site which constructs the
1049 /// `inner` mutex, otherwise cases where we lock two monitors at the same time (eg in our
1050 /// PartialEq implementation) we may decide a lockorder violation has occurred.
1051 fn from_impl(imp: ChannelMonitorImpl<Signer>) -> Self {
1052 ChannelMonitor { inner: Mutex::new(imp) }
1055 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_script: Option<Script>,
1056 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
1057 channel_parameters: &ChannelTransactionParameters,
1058 funding_redeemscript: Script, channel_value_satoshis: u64,
1059 commitment_transaction_number_obscure_factor: u64,
1060 initial_holder_commitment_tx: HolderCommitmentTransaction,
1061 best_block: BestBlock, counterparty_node_id: PublicKey) -> ChannelMonitor<Signer> {
1063 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1064 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
1065 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
1067 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
1068 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
1069 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
1070 let counterparty_commitment_params = CounterpartyCommitmentParameters { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv };
1072 let channel_keys_id = keys.channel_keys_id();
1073 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1075 // block for Rust 1.34 compat
1076 let (holder_commitment_tx, current_holder_commitment_number) = {
1077 let trusted_tx = initial_holder_commitment_tx.trust();
1078 let txid = trusted_tx.txid();
1080 let tx_keys = trusted_tx.keys();
1081 let holder_commitment_tx = HolderSignedTx {
1083 revocation_key: tx_keys.revocation_key,
1084 a_htlc_key: tx_keys.broadcaster_htlc_key,
1085 b_htlc_key: tx_keys.countersignatory_htlc_key,
1086 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1087 per_commitment_point: tx_keys.per_commitment_point,
1088 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1089 to_self_value_sat: initial_holder_commitment_tx.to_broadcaster_value_sat(),
1090 feerate_per_kw: trusted_tx.feerate_per_kw(),
1092 (holder_commitment_tx, trusted_tx.commitment_number())
1095 let onchain_tx_handler =
1096 OnchainTxHandler::new(destination_script.clone(), keys,
1097 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx);
1099 let mut outputs_to_watch = HashMap::new();
1100 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1102 Self::from_impl(ChannelMonitorImpl {
1103 latest_update_id: 0,
1104 commitment_transaction_number_obscure_factor,
1106 destination_script: destination_script.clone(),
1107 broadcasted_holder_revokable_script: None,
1108 counterparty_payment_script,
1112 holder_revocation_basepoint,
1114 current_counterparty_commitment_txid: None,
1115 prev_counterparty_commitment_txid: None,
1117 counterparty_commitment_params,
1118 funding_redeemscript,
1119 channel_value_satoshis,
1120 their_cur_per_commitment_points: None,
1122 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1124 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1125 counterparty_claimable_outpoints: HashMap::new(),
1126 counterparty_commitment_txn_on_chain: HashMap::new(),
1127 counterparty_hash_commitment_number: HashMap::new(),
1128 counterparty_fulfilled_htlcs: HashMap::new(),
1130 prev_holder_signed_commitment_tx: None,
1131 current_holder_commitment_tx: holder_commitment_tx,
1132 current_counterparty_commitment_number: 1 << 48,
1133 current_holder_commitment_number,
1135 payment_preimages: HashMap::new(),
1136 pending_monitor_events: Vec::new(),
1137 pending_events: Vec::new(),
1139 onchain_events_awaiting_threshold_conf: Vec::new(),
1144 lockdown_from_offchain: false,
1145 holder_tx_signed: false,
1146 funding_spend_seen: false,
1147 funding_spend_confirmed: None,
1148 confirmed_commitment_tx_counterparty_output: None,
1149 htlcs_resolved_on_chain: Vec::new(),
1150 spendable_txids_confirmed: Vec::new(),
1153 counterparty_node_id: Some(counterparty_node_id),
1158 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1159 self.inner.lock().unwrap().provide_secret(idx, secret)
1162 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1163 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1164 /// possibly future revocation/preimage information) to claim outputs where possible.
1165 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1166 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
1169 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1170 commitment_number: u64,
1171 their_per_commitment_point: PublicKey,
1173 ) where L::Target: Logger {
1174 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1175 txid, htlc_outputs, commitment_number, their_per_commitment_point, logger)
1179 fn provide_latest_holder_commitment_tx(
1180 &self, holder_commitment_tx: HolderCommitmentTransaction,
1181 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1182 ) -> Result<(), ()> {
1183 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(holder_commitment_tx, htlc_outputs, &Vec::new()).map_err(|_| ())
1186 /// This is used to provide payment preimage(s) out-of-band during startup without updating the
1187 /// off-chain state with a new commitment transaction.
1188 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1190 payment_hash: &PaymentHash,
1191 payment_preimage: &PaymentPreimage,
1193 fee_estimator: &LowerBoundedFeeEstimator<F>,
1196 B::Target: BroadcasterInterface,
1197 F::Target: FeeEstimator,
1200 self.inner.lock().unwrap().provide_payment_preimage(
1201 payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1204 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1209 B::Target: BroadcasterInterface,
1212 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger);
1215 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1218 /// panics if the given update is not the next update by update_id.
1219 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1221 updates: &ChannelMonitorUpdate,
1227 B::Target: BroadcasterInterface,
1228 F::Target: FeeEstimator,
1231 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1234 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1236 pub fn get_latest_update_id(&self) -> u64 {
1237 self.inner.lock().unwrap().get_latest_update_id()
1240 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1241 pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1242 self.inner.lock().unwrap().get_funding_txo().clone()
1245 /// Gets a list of txids, with their output scripts (in the order they appear in the
1246 /// transaction), which we must learn about spends of via block_connected().
1247 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1248 self.inner.lock().unwrap().get_outputs_to_watch()
1249 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1252 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1253 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1254 /// have been registered.
1255 pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1256 let lock = self.inner.lock().unwrap();
1257 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1258 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1259 for (index, script_pubkey) in outputs.iter() {
1260 assert!(*index <= u16::max_value() as u32);
1261 filter.register_output(WatchedOutput {
1263 outpoint: OutPoint { txid: *txid, index: *index as u16 },
1264 script_pubkey: script_pubkey.clone(),
1270 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1271 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1272 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1273 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1276 /// Gets the list of pending events which were generated by previous actions, clearing the list
1279 /// This is called by the [`EventsProvider::process_pending_events`] implementation for
1280 /// [`ChainMonitor`].
1282 /// [`EventsProvider::process_pending_events`]: crate::util::events::EventsProvider::process_pending_events
1283 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1284 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1285 self.inner.lock().unwrap().get_and_clear_pending_events()
1288 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1289 self.inner.lock().unwrap().get_min_seen_secret()
1292 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1293 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1296 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1297 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1300 /// Gets the `node_id` of the counterparty for this channel.
1302 /// Will be `None` for channels constructed on LDK versions prior to 0.0.110 and always `Some`
1304 pub fn get_counterparty_node_id(&self) -> Option<PublicKey> {
1305 self.inner.lock().unwrap().counterparty_node_id
1308 /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1309 /// the Channel was out-of-date.
1311 /// You may also use this to broadcast the latest local commitment transaction, either because
1312 /// a monitor update failed with [`ChannelMonitorUpdateStatus::PermanentFailure`] or because we've
1313 /// fallen behind (i.e. we've received proof that our counterparty side knows a revocation
1314 /// secret we gave them that they shouldn't know).
1316 /// Broadcasting these transactions in the second case is UNSAFE, as they allow counterparty
1317 /// side to punish you. Nevertheless you may want to broadcast them if counterparty doesn't
1318 /// close channel with their commitment transaction after a substantial amount of time. Best
1319 /// may be to contact the other node operator out-of-band to coordinate other options available
1320 /// to you. In any-case, the choice is up to you.
1322 /// [`ChannelMonitorUpdateStatus::PermanentFailure`]: super::ChannelMonitorUpdateStatus::PermanentFailure
1323 pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1324 where L::Target: Logger {
1325 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1328 /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1329 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1330 /// revoked commitment transaction.
1331 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1332 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1333 where L::Target: Logger {
1334 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1337 /// Processes transactions in a newly connected block, which may result in any of the following:
1338 /// - update the monitor's state against resolved HTLCs
1339 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1340 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1341 /// - detect settled outputs for later spending
1342 /// - schedule and bump any in-flight claims
1344 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1345 /// [`get_outputs_to_watch`].
1347 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1348 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1350 header: &BlockHeader,
1351 txdata: &TransactionData,
1356 ) -> Vec<TransactionOutputs>
1358 B::Target: BroadcasterInterface,
1359 F::Target: FeeEstimator,
1362 self.inner.lock().unwrap().block_connected(
1363 header, txdata, height, broadcaster, fee_estimator, logger)
1366 /// Determines if the disconnected block contained any transactions of interest and updates
1368 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1370 header: &BlockHeader,
1376 B::Target: BroadcasterInterface,
1377 F::Target: FeeEstimator,
1380 self.inner.lock().unwrap().block_disconnected(
1381 header, height, broadcaster, fee_estimator, logger)
1384 /// Processes transactions confirmed in a block with the given header and height, returning new
1385 /// outputs to watch. See [`block_connected`] for details.
1387 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1388 /// blocks. See [`chain::Confirm`] for calling expectations.
1390 /// [`block_connected`]: Self::block_connected
1391 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1393 header: &BlockHeader,
1394 txdata: &TransactionData,
1399 ) -> Vec<TransactionOutputs>
1401 B::Target: BroadcasterInterface,
1402 F::Target: FeeEstimator,
1405 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1406 self.inner.lock().unwrap().transactions_confirmed(
1407 header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
1410 /// Processes a transaction that was reorganized out of the chain.
1412 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1413 /// than blocks. See [`chain::Confirm`] for calling expectations.
1415 /// [`block_disconnected`]: Self::block_disconnected
1416 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1423 B::Target: BroadcasterInterface,
1424 F::Target: FeeEstimator,
1427 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1428 self.inner.lock().unwrap().transaction_unconfirmed(
1429 txid, broadcaster, &bounded_fee_estimator, logger);
1432 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1433 /// [`block_connected`] for details.
1435 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1436 /// blocks. See [`chain::Confirm`] for calling expectations.
1438 /// [`block_connected`]: Self::block_connected
1439 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1441 header: &BlockHeader,
1446 ) -> Vec<TransactionOutputs>
1448 B::Target: BroadcasterInterface,
1449 F::Target: FeeEstimator,
1452 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1453 self.inner.lock().unwrap().best_block_updated(
1454 header, height, broadcaster, &bounded_fee_estimator, logger)
1457 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1458 pub fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
1459 let inner = self.inner.lock().unwrap();
1460 let mut txids: Vec<(Txid, Option<BlockHash>)> = inner.onchain_events_awaiting_threshold_conf
1462 .map(|entry| (entry.txid, entry.block_hash))
1463 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1465 txids.sort_unstable();
1470 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
1471 /// [`chain::Confirm`] interfaces.
1472 pub fn current_best_block(&self) -> BestBlock {
1473 self.inner.lock().unwrap().best_block.clone()
1477 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
1478 /// Helper for get_claimable_balances which does the work for an individual HTLC, generating up
1479 /// to one `Balance` for the HTLC.
1480 fn get_htlc_balance(&self, htlc: &HTLCOutputInCommitment, holder_commitment: bool,
1481 counterparty_revoked_commitment: bool, confirmed_txid: Option<Txid>)
1482 -> Option<Balance> {
1483 let htlc_commitment_tx_output_idx =
1484 if let Some(v) = htlc.transaction_output_index { v } else { return None; };
1486 let mut htlc_spend_txid_opt = None;
1487 let mut htlc_spend_tx_opt = None;
1488 let mut holder_timeout_spend_pending = None;
1489 let mut htlc_spend_pending = None;
1490 let mut holder_delayed_output_pending = None;
1491 for event in self.onchain_events_awaiting_threshold_conf.iter() {
1493 OnchainEvent::HTLCUpdate { commitment_tx_output_idx, htlc_value_satoshis, .. }
1494 if commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) => {
1495 debug_assert!(htlc_spend_txid_opt.is_none());
1496 htlc_spend_txid_opt = Some(&event.txid);
1497 debug_assert!(htlc_spend_tx_opt.is_none());
1498 htlc_spend_tx_opt = event.transaction.as_ref();
1499 debug_assert!(holder_timeout_spend_pending.is_none());
1500 debug_assert_eq!(htlc_value_satoshis.unwrap(), htlc.amount_msat / 1000);
1501 holder_timeout_spend_pending = Some(event.confirmation_threshold());
1503 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. }
1504 if commitment_tx_output_idx == htlc_commitment_tx_output_idx => {
1505 debug_assert!(htlc_spend_txid_opt.is_none());
1506 htlc_spend_txid_opt = Some(&event.txid);
1507 debug_assert!(htlc_spend_tx_opt.is_none());
1508 htlc_spend_tx_opt = event.transaction.as_ref();
1509 debug_assert!(htlc_spend_pending.is_none());
1510 htlc_spend_pending = Some((event.confirmation_threshold(), preimage.is_some()));
1512 OnchainEvent::MaturingOutput {
1513 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) }
1514 if descriptor.outpoint.index as u32 == htlc_commitment_tx_output_idx => {
1515 debug_assert!(holder_delayed_output_pending.is_none());
1516 holder_delayed_output_pending = Some(event.confirmation_threshold());
1521 let htlc_resolved = self.htlcs_resolved_on_chain.iter()
1522 .find(|v| if v.commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) {
1523 debug_assert!(htlc_spend_txid_opt.is_none());
1524 htlc_spend_txid_opt = v.resolving_txid.as_ref();
1525 debug_assert!(htlc_spend_tx_opt.is_none());
1526 htlc_spend_tx_opt = v.resolving_tx.as_ref();
1529 debug_assert!(holder_timeout_spend_pending.is_some() as u8 + htlc_spend_pending.is_some() as u8 + htlc_resolved.is_some() as u8 <= 1);
1531 let htlc_commitment_outpoint = BitcoinOutPoint::new(confirmed_txid.unwrap(), htlc_commitment_tx_output_idx);
1532 let htlc_output_to_spend =
1533 if let Some(txid) = htlc_spend_txid_opt {
1534 // Because HTLC transactions either only have 1 input and 1 output (pre-anchors) or
1535 // are signed with SIGHASH_SINGLE|ANYONECANPAY under BIP-0143 (post-anchors), we can
1536 // locate the correct output by ensuring its adjacent input spends the HTLC output
1537 // in the commitment.
1538 if let Some(ref tx) = htlc_spend_tx_opt {
1539 let htlc_input_idx_opt = tx.input.iter().enumerate()
1540 .find(|(_, input)| input.previous_output == htlc_commitment_outpoint)
1541 .map(|(idx, _)| idx as u32);
1542 debug_assert!(htlc_input_idx_opt.is_some());
1543 BitcoinOutPoint::new(*txid, htlc_input_idx_opt.unwrap_or(0))
1545 debug_assert!(!self.onchain_tx_handler.opt_anchors());
1546 BitcoinOutPoint::new(*txid, 0)
1549 htlc_commitment_outpoint
1551 let htlc_output_spend_pending = self.onchain_tx_handler.is_output_spend_pending(&htlc_output_to_spend);
1553 if let Some(conf_thresh) = holder_delayed_output_pending {
1554 debug_assert!(holder_commitment);
1555 return Some(Balance::ClaimableAwaitingConfirmations {
1556 claimable_amount_satoshis: htlc.amount_msat / 1000,
1557 confirmation_height: conf_thresh,
1559 } else if htlc_resolved.is_some() && !htlc_output_spend_pending {
1560 // Funding transaction spends should be fully confirmed by the time any
1561 // HTLC transactions are resolved, unless we're talking about a holder
1562 // commitment tx, whose resolution is delayed until the CSV timeout is
1563 // reached, even though HTLCs may be resolved after only
1564 // ANTI_REORG_DELAY confirmations.
1565 debug_assert!(holder_commitment || self.funding_spend_confirmed.is_some());
1566 } else if counterparty_revoked_commitment {
1567 let htlc_output_claim_pending = self.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1568 if let OnchainEvent::MaturingOutput {
1569 descriptor: SpendableOutputDescriptor::StaticOutput { .. }
1571 if event.transaction.as_ref().map(|tx| tx.input.iter().any(|inp| {
1572 if let Some(htlc_spend_txid) = htlc_spend_txid_opt {
1573 tx.txid() == *htlc_spend_txid || inp.previous_output.txid == *htlc_spend_txid
1575 Some(inp.previous_output.txid) == confirmed_txid &&
1576 inp.previous_output.vout == htlc_commitment_tx_output_idx
1578 })).unwrap_or(false) {
1583 if htlc_output_claim_pending.is_some() {
1584 // We already push `Balance`s onto the `res` list for every
1585 // `StaticOutput` in a `MaturingOutput` in the revoked
1586 // counterparty commitment transaction case generally, so don't
1587 // need to do so again here.
1589 debug_assert!(holder_timeout_spend_pending.is_none(),
1590 "HTLCUpdate OnchainEvents should never appear for preimage claims");
1591 debug_assert!(!htlc.offered || htlc_spend_pending.is_none() || !htlc_spend_pending.unwrap().1,
1592 "We don't (currently) generate preimage claims against revoked outputs, where did you get one?!");
1593 return Some(Balance::CounterpartyRevokedOutputClaimable {
1594 claimable_amount_satoshis: htlc.amount_msat / 1000,
1597 } else if htlc.offered == holder_commitment {
1598 // If the payment was outbound, check if there's an HTLCUpdate
1599 // indicating we have spent this HTLC with a timeout, claiming it back
1600 // and awaiting confirmations on it.
1601 if let Some(conf_thresh) = holder_timeout_spend_pending {
1602 return Some(Balance::ClaimableAwaitingConfirmations {
1603 claimable_amount_satoshis: htlc.amount_msat / 1000,
1604 confirmation_height: conf_thresh,
1607 return Some(Balance::MaybeTimeoutClaimableHTLC {
1608 claimable_amount_satoshis: htlc.amount_msat / 1000,
1609 claimable_height: htlc.cltv_expiry,
1612 } else if self.payment_preimages.get(&htlc.payment_hash).is_some() {
1613 // Otherwise (the payment was inbound), only expose it as claimable if
1614 // we know the preimage.
1615 // Note that if there is a pending claim, but it did not use the
1616 // preimage, we lost funds to our counterparty! We will then continue
1617 // to show it as ContentiousClaimable until ANTI_REORG_DELAY.
1618 debug_assert!(holder_timeout_spend_pending.is_none());
1619 if let Some((conf_thresh, true)) = htlc_spend_pending {
1620 return Some(Balance::ClaimableAwaitingConfirmations {
1621 claimable_amount_satoshis: htlc.amount_msat / 1000,
1622 confirmation_height: conf_thresh,
1625 return Some(Balance::ContentiousClaimable {
1626 claimable_amount_satoshis: htlc.amount_msat / 1000,
1627 timeout_height: htlc.cltv_expiry,
1630 } else if htlc_resolved.is_none() {
1631 return Some(Balance::MaybePreimageClaimableHTLC {
1632 claimable_amount_satoshis: htlc.amount_msat / 1000,
1633 expiry_height: htlc.cltv_expiry,
1640 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1641 /// Gets the balances in this channel which are either claimable by us if we were to
1642 /// force-close the channel now or which are claimable on-chain (possibly awaiting
1645 /// Any balances in the channel which are available on-chain (excluding on-chain fees) are
1646 /// included here until an [`Event::SpendableOutputs`] event has been generated for the
1647 /// balance, or until our counterparty has claimed the balance and accrued several
1648 /// confirmations on the claim transaction.
1650 /// Note that for `ChannelMonitors` which track a channel which went on-chain with versions of
1651 /// LDK prior to 0.0.111, balances may not be fully captured if our counterparty broadcasted
1652 /// a revoked state.
1654 /// See [`Balance`] for additional details on the types of claimable balances which
1655 /// may be returned here and their meanings.
1656 pub fn get_claimable_balances(&self) -> Vec<Balance> {
1657 let mut res = Vec::new();
1658 let us = self.inner.lock().unwrap();
1660 let mut confirmed_txid = us.funding_spend_confirmed;
1661 let mut confirmed_counterparty_output = us.confirmed_commitment_tx_counterparty_output;
1662 let mut pending_commitment_tx_conf_thresh = None;
1663 let funding_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1664 if let OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } =
1667 confirmed_counterparty_output = commitment_tx_to_counterparty_output;
1668 Some((event.txid, event.confirmation_threshold()))
1671 if let Some((txid, conf_thresh)) = funding_spend_pending {
1672 debug_assert!(us.funding_spend_confirmed.is_none(),
1673 "We have a pending funding spend awaiting anti-reorg confirmation, we can't have confirmed it already!");
1674 confirmed_txid = Some(txid);
1675 pending_commitment_tx_conf_thresh = Some(conf_thresh);
1678 macro_rules! walk_htlcs {
1679 ($holder_commitment: expr, $counterparty_revoked_commitment: expr, $htlc_iter: expr) => {
1680 for htlc in $htlc_iter {
1681 if htlc.transaction_output_index.is_some() {
1683 if let Some(bal) = us.get_htlc_balance(htlc, $holder_commitment, $counterparty_revoked_commitment, confirmed_txid) {
1691 if let Some(txid) = confirmed_txid {
1692 let mut found_commitment_tx = false;
1693 if let Some(counterparty_tx_htlcs) = us.counterparty_claimable_outpoints.get(&txid) {
1694 // First look for the to_remote output back to us.
1695 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1696 if let Some(value) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1697 if let OnchainEvent::MaturingOutput {
1698 descriptor: SpendableOutputDescriptor::StaticPaymentOutput(descriptor)
1700 Some(descriptor.output.value)
1703 res.push(Balance::ClaimableAwaitingConfirmations {
1704 claimable_amount_satoshis: value,
1705 confirmation_height: conf_thresh,
1708 // If a counterparty commitment transaction is awaiting confirmation, we
1709 // should either have a StaticPaymentOutput MaturingOutput event awaiting
1710 // confirmation with the same height or have never met our dust amount.
1713 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1714 walk_htlcs!(false, false, counterparty_tx_htlcs.iter().map(|(a, _)| a));
1716 walk_htlcs!(false, true, counterparty_tx_htlcs.iter().map(|(a, _)| a));
1717 // The counterparty broadcasted a revoked state!
1718 // Look for any StaticOutputs first, generating claimable balances for those.
1719 // If any match the confirmed counterparty revoked to_self output, skip
1720 // generating a CounterpartyRevokedOutputClaimable.
1721 let mut spent_counterparty_output = false;
1722 for event in us.onchain_events_awaiting_threshold_conf.iter() {
1723 if let OnchainEvent::MaturingOutput {
1724 descriptor: SpendableOutputDescriptor::StaticOutput { output, .. }
1726 res.push(Balance::ClaimableAwaitingConfirmations {
1727 claimable_amount_satoshis: output.value,
1728 confirmation_height: event.confirmation_threshold(),
1730 if let Some(confirmed_to_self_idx) = confirmed_counterparty_output.map(|(idx, _)| idx) {
1731 if event.transaction.as_ref().map(|tx|
1732 tx.input.iter().any(|inp| inp.previous_output.vout == confirmed_to_self_idx)
1733 ).unwrap_or(false) {
1734 spent_counterparty_output = true;
1740 if spent_counterparty_output {
1741 } else if let Some((confirmed_to_self_idx, amt)) = confirmed_counterparty_output {
1742 let output_spendable = us.onchain_tx_handler
1743 .is_output_spend_pending(&BitcoinOutPoint::new(txid, confirmed_to_self_idx));
1744 if output_spendable {
1745 res.push(Balance::CounterpartyRevokedOutputClaimable {
1746 claimable_amount_satoshis: amt,
1750 // Counterparty output is missing, either it was broadcasted on a
1751 // previous version of LDK or the counterparty hadn't met dust.
1754 found_commitment_tx = true;
1755 } else if txid == us.current_holder_commitment_tx.txid {
1756 walk_htlcs!(true, false, us.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, _)| a));
1757 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1758 res.push(Balance::ClaimableAwaitingConfirmations {
1759 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1760 confirmation_height: conf_thresh,
1763 found_commitment_tx = true;
1764 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1765 if txid == prev_commitment.txid {
1766 walk_htlcs!(true, false, prev_commitment.htlc_outputs.iter().map(|(a, _, _)| a));
1767 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1768 res.push(Balance::ClaimableAwaitingConfirmations {
1769 claimable_amount_satoshis: prev_commitment.to_self_value_sat,
1770 confirmation_height: conf_thresh,
1773 found_commitment_tx = true;
1776 if !found_commitment_tx {
1777 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1778 // We blindly assume this is a cooperative close transaction here, and that
1779 // neither us nor our counterparty misbehaved. At worst we've under-estimated
1780 // the amount we can claim as we'll punish a misbehaving counterparty.
1781 res.push(Balance::ClaimableAwaitingConfirmations {
1782 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1783 confirmation_height: conf_thresh,
1788 let mut claimable_inbound_htlc_value_sat = 0;
1789 for (htlc, _, _) in us.current_holder_commitment_tx.htlc_outputs.iter() {
1790 if htlc.transaction_output_index.is_none() { continue; }
1792 res.push(Balance::MaybeTimeoutClaimableHTLC {
1793 claimable_amount_satoshis: htlc.amount_msat / 1000,
1794 claimable_height: htlc.cltv_expiry,
1796 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
1797 claimable_inbound_htlc_value_sat += htlc.amount_msat / 1000;
1799 // As long as the HTLC is still in our latest commitment state, treat
1800 // it as potentially claimable, even if it has long-since expired.
1801 res.push(Balance::MaybePreimageClaimableHTLC {
1802 claimable_amount_satoshis: htlc.amount_msat / 1000,
1803 expiry_height: htlc.cltv_expiry,
1807 res.push(Balance::ClaimableOnChannelClose {
1808 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat + claimable_inbound_htlc_value_sat,
1815 /// Gets the set of outbound HTLCs which can be (or have been) resolved by this
1816 /// `ChannelMonitor`. This is used to determine if an HTLC was removed from the channel prior
1817 /// to the `ChannelManager` having been persisted.
1819 /// This is similar to [`Self::get_pending_or_resolved_outbound_htlcs`] except it includes
1820 /// HTLCs which were resolved on-chain (i.e. where the final HTLC resolution was done by an
1821 /// event from this `ChannelMonitor`).
1822 pub(crate) fn get_all_current_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
1823 let mut res = HashMap::new();
1824 // Just examine the available counterparty commitment transactions. See docs on
1825 // `fail_unbroadcast_htlcs`, below, for justification.
1826 let us = self.inner.lock().unwrap();
1827 macro_rules! walk_counterparty_commitment {
1829 if let Some(ref latest_outpoints) = us.counterparty_claimable_outpoints.get($txid) {
1830 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1831 if let &Some(ref source) = source_option {
1832 res.insert((**source).clone(), (htlc.clone(),
1833 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned()));
1839 if let Some(ref txid) = us.current_counterparty_commitment_txid {
1840 walk_counterparty_commitment!(txid);
1842 if let Some(ref txid) = us.prev_counterparty_commitment_txid {
1843 walk_counterparty_commitment!(txid);
1848 /// Gets the set of outbound HTLCs which are pending resolution in this channel or which were
1849 /// resolved with a preimage from our counterparty.
1851 /// This is used to reconstruct pending outbound payments on restart in the ChannelManager.
1853 /// Currently, the preimage is unused, however if it is present in the relevant internal state
1854 /// an HTLC is always included even if it has been resolved.
1855 pub(crate) fn get_pending_or_resolved_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
1856 let us = self.inner.lock().unwrap();
1857 // We're only concerned with the confirmation count of HTLC transactions, and don't
1858 // actually care how many confirmations a commitment transaction may or may not have. Thus,
1859 // we look for either a FundingSpendConfirmation event or a funding_spend_confirmed.
1860 let confirmed_txid = us.funding_spend_confirmed.or_else(|| {
1861 us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1862 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
1868 if confirmed_txid.is_none() {
1869 // If we have not seen a commitment transaction on-chain (ie the channel is not yet
1870 // closed), just get the full set.
1872 return self.get_all_current_outbound_htlcs();
1875 let mut res = HashMap::new();
1876 macro_rules! walk_htlcs {
1877 ($holder_commitment: expr, $htlc_iter: expr) => {
1878 for (htlc, source) in $htlc_iter {
1879 if us.htlcs_resolved_on_chain.iter().any(|v| v.commitment_tx_output_idx == htlc.transaction_output_index) {
1880 // We should assert that funding_spend_confirmed is_some() here, but we
1881 // have some unit tests which violate HTLC transaction CSVs entirely and
1883 // TODO: Once tests all connect transactions at consensus-valid times, we
1884 // should assert here like we do in `get_claimable_balances`.
1885 } else if htlc.offered == $holder_commitment {
1886 // If the payment was outbound, check if there's an HTLCUpdate
1887 // indicating we have spent this HTLC with a timeout, claiming it back
1888 // and awaiting confirmations on it.
1889 let htlc_update_confd = us.onchain_events_awaiting_threshold_conf.iter().any(|event| {
1890 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
1891 // If the HTLC was timed out, we wait for ANTI_REORG_DELAY blocks
1892 // before considering it "no longer pending" - this matches when we
1893 // provide the ChannelManager an HTLC failure event.
1894 Some(commitment_tx_output_idx) == htlc.transaction_output_index &&
1895 us.best_block.height() >= event.height + ANTI_REORG_DELAY - 1
1896 } else if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, .. } = event.event {
1897 // If the HTLC was fulfilled with a preimage, we consider the HTLC
1898 // immediately non-pending, matching when we provide ChannelManager
1900 Some(commitment_tx_output_idx) == htlc.transaction_output_index
1903 let counterparty_resolved_preimage_opt =
1904 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned();
1905 if !htlc_update_confd || counterparty_resolved_preimage_opt.is_some() {
1906 res.insert(source.clone(), (htlc.clone(), counterparty_resolved_preimage_opt));
1913 let txid = confirmed_txid.unwrap();
1914 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1915 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().filter_map(|(a, b)| {
1916 if let &Some(ref source) = b {
1917 Some((a, &**source))
1920 } else if txid == us.current_holder_commitment_tx.txid {
1921 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().filter_map(|(a, _, c)| {
1922 if let Some(source) = c { Some((a, source)) } else { None }
1924 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1925 if txid == prev_commitment.txid {
1926 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().filter_map(|(a, _, c)| {
1927 if let Some(source) = c { Some((a, source)) } else { None }
1935 pub(crate) fn get_stored_preimages(&self) -> HashMap<PaymentHash, PaymentPreimage> {
1936 self.inner.lock().unwrap().payment_preimages.clone()
1940 /// Compares a broadcasted commitment transaction's HTLCs with those in the latest state,
1941 /// failing any HTLCs which didn't make it into the broadcasted commitment transaction back
1942 /// after ANTI_REORG_DELAY blocks.
1944 /// We always compare against the set of HTLCs in counterparty commitment transactions, as those
1945 /// are the commitment transactions which are generated by us. The off-chain state machine in
1946 /// `Channel` will automatically resolve any HTLCs which were never included in a commitment
1947 /// transaction when it detects channel closure, but it is up to us to ensure any HTLCs which were
1948 /// included in a remote commitment transaction are failed back if they are not present in the
1949 /// broadcasted commitment transaction.
1951 /// Specifically, the removal process for HTLCs in `Channel` is always based on the counterparty
1952 /// sending a `revoke_and_ack`, which causes us to clear `prev_counterparty_commitment_txid`. Thus,
1953 /// as long as we examine both the current counterparty commitment transaction and, if it hasn't
1954 /// been revoked yet, the previous one, we we will never "forget" to resolve an HTLC.
1955 macro_rules! fail_unbroadcast_htlcs {
1956 ($self: expr, $commitment_tx_type: expr, $commitment_txid_confirmed: expr, $commitment_tx_confirmed: expr,
1957 $commitment_tx_conf_height: expr, $commitment_tx_conf_hash: expr, $confirmed_htlcs_list: expr, $logger: expr) => { {
1958 debug_assert_eq!($commitment_tx_confirmed.txid(), $commitment_txid_confirmed);
1960 macro_rules! check_htlc_fails {
1961 ($txid: expr, $commitment_tx: expr) => {
1962 if let Some(ref latest_outpoints) = $self.counterparty_claimable_outpoints.get($txid) {
1963 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1964 if let &Some(ref source) = source_option {
1965 // Check if the HTLC is present in the commitment transaction that was
1966 // broadcast, but not if it was below the dust limit, which we should
1967 // fail backwards immediately as there is no way for us to learn the
1968 // payment_preimage.
1969 // Note that if the dust limit were allowed to change between
1970 // commitment transactions we'd want to be check whether *any*
1971 // broadcastable commitment transaction has the HTLC in it, but it
1972 // cannot currently change after channel initialization, so we don't
1974 let confirmed_htlcs_iter: &mut Iterator<Item = (&HTLCOutputInCommitment, Option<&HTLCSource>)> = &mut $confirmed_htlcs_list;
1976 let mut matched_htlc = false;
1977 for (ref broadcast_htlc, ref broadcast_source) in confirmed_htlcs_iter {
1978 if broadcast_htlc.transaction_output_index.is_some() &&
1979 (Some(&**source) == *broadcast_source ||
1980 (broadcast_source.is_none() &&
1981 broadcast_htlc.payment_hash == htlc.payment_hash &&
1982 broadcast_htlc.amount_msat == htlc.amount_msat)) {
1983 matched_htlc = true;
1987 if matched_htlc { continue; }
1988 if $self.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).is_some() {
1991 $self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1992 if entry.height != $commitment_tx_conf_height { return true; }
1994 OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
1995 *update_source != **source
2000 let entry = OnchainEventEntry {
2001 txid: $commitment_txid_confirmed,
2002 transaction: Some($commitment_tx_confirmed.clone()),
2003 height: $commitment_tx_conf_height,
2004 block_hash: Some(*$commitment_tx_conf_hash),
2005 event: OnchainEvent::HTLCUpdate {
2006 source: (**source).clone(),
2007 payment_hash: htlc.payment_hash.clone(),
2008 htlc_value_satoshis: Some(htlc.amount_msat / 1000),
2009 commitment_tx_output_idx: None,
2012 log_trace!($logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of {} commitment transaction {}, waiting for confirmation (at height {})",
2013 log_bytes!(htlc.payment_hash.0), $commitment_tx, $commitment_tx_type,
2014 $commitment_txid_confirmed, entry.confirmation_threshold());
2015 $self.onchain_events_awaiting_threshold_conf.push(entry);
2021 if let Some(ref txid) = $self.current_counterparty_commitment_txid {
2022 check_htlc_fails!(txid, "current");
2024 if let Some(ref txid) = $self.prev_counterparty_commitment_txid {
2025 check_htlc_fails!(txid, "previous");
2030 // In the `test_invalid_funding_tx` test, we need a bogus script which matches the HTLC-Accepted
2031 // witness length match (ie is 136 bytes long). We generate one here which we also use in some
2032 // in-line tests later.
2035 pub fn deliberately_bogus_accepted_htlc_witness_program() -> Vec<u8> {
2036 let mut ret = [opcodes::all::OP_NOP.to_u8(); 136];
2037 ret[131] = opcodes::all::OP_DROP.to_u8();
2038 ret[132] = opcodes::all::OP_DROP.to_u8();
2039 ret[133] = opcodes::all::OP_DROP.to_u8();
2040 ret[134] = opcodes::all::OP_DROP.to_u8();
2041 ret[135] = opcodes::OP_TRUE.to_u8();
2046 pub fn deliberately_bogus_accepted_htlc_witness() -> Vec<Vec<u8>> {
2047 vec![Vec::new(), Vec::new(), Vec::new(), Vec::new(), deliberately_bogus_accepted_htlc_witness_program().into()].into()
2050 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
2051 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
2052 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
2053 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
2054 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
2055 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
2056 return Err("Previous secret did not match new one");
2059 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
2060 // events for now-revoked/fulfilled HTLCs.
2061 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
2062 if self.current_counterparty_commitment_txid.unwrap() != txid {
2063 let cur_claimables = self.counterparty_claimable_outpoints.get(
2064 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2065 for (_, ref source_opt) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2066 if let Some(source) = source_opt {
2067 if !cur_claimables.iter()
2068 .any(|(_, cur_source_opt)| cur_source_opt == source_opt)
2070 self.counterparty_fulfilled_htlcs.remove(&SentHTLCId::from_source(source));
2074 for &mut (_, ref mut source_opt) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
2078 assert!(cfg!(fuzzing), "Commitment txids are unique outside of fuzzing, where hashes can collide");
2082 if !self.payment_preimages.is_empty() {
2083 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
2084 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
2085 let min_idx = self.get_min_seen_secret();
2086 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
2088 self.payment_preimages.retain(|&k, _| {
2089 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
2090 if k == htlc.payment_hash {
2094 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
2095 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
2096 if k == htlc.payment_hash {
2101 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
2108 counterparty_hash_commitment_number.remove(&k);
2117 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_per_commitment_point: PublicKey, logger: &L) where L::Target: Logger {
2118 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
2119 // so that a remote monitor doesn't learn anything unless there is a malicious close.
2120 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
2122 for &(ref htlc, _) in &htlc_outputs {
2123 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
2126 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
2127 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
2128 self.current_counterparty_commitment_txid = Some(txid);
2129 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
2130 self.current_counterparty_commitment_number = commitment_number;
2131 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
2132 match self.their_cur_per_commitment_points {
2133 Some(old_points) => {
2134 if old_points.0 == commitment_number + 1 {
2135 self.their_cur_per_commitment_points = Some((old_points.0, old_points.1, Some(their_per_commitment_point)));
2136 } else if old_points.0 == commitment_number + 2 {
2137 if let Some(old_second_point) = old_points.2 {
2138 self.their_cur_per_commitment_points = Some((old_points.0 - 1, old_second_point, Some(their_per_commitment_point)));
2140 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2143 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2147 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2150 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
2151 for htlc in htlc_outputs {
2152 if htlc.0.transaction_output_index.is_some() {
2158 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
2159 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
2160 /// is important that any clones of this channel monitor (including remote clones) by kept
2161 /// up-to-date as our holder commitment transaction is updated.
2162 /// Panics if set_on_holder_tx_csv has never been called.
2163 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>, claimed_htlcs: &[(SentHTLCId, PaymentPreimage)]) -> Result<(), &'static str> {
2164 let trusted_tx = holder_commitment_tx.trust();
2165 let txid = trusted_tx.txid();
2166 let tx_keys = trusted_tx.keys();
2167 self.current_holder_commitment_number = trusted_tx.commitment_number();
2168 let mut new_holder_commitment_tx = HolderSignedTx {
2170 revocation_key: tx_keys.revocation_key,
2171 a_htlc_key: tx_keys.broadcaster_htlc_key,
2172 b_htlc_key: tx_keys.countersignatory_htlc_key,
2173 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
2174 per_commitment_point: tx_keys.per_commitment_point,
2176 to_self_value_sat: holder_commitment_tx.to_broadcaster_value_sat(),
2177 feerate_per_kw: trusted_tx.feerate_per_kw(),
2179 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
2180 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
2181 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
2182 for (claimed_htlc_id, claimed_preimage) in claimed_htlcs {
2183 #[cfg(debug_assertions)] {
2184 let cur_counterparty_htlcs = self.counterparty_claimable_outpoints.get(
2185 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2186 assert!(cur_counterparty_htlcs.iter().any(|(_, source_opt)| {
2187 if let Some(source) = source_opt {
2188 SentHTLCId::from_source(source) == *claimed_htlc_id
2192 self.counterparty_fulfilled_htlcs.insert(*claimed_htlc_id, *claimed_preimage);
2194 if self.holder_tx_signed {
2195 return Err("Latest holder commitment signed has already been signed, update is rejected");
2200 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
2201 /// commitment_tx_infos which contain the payment hash have been revoked.
2202 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
2203 &mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B,
2204 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L)
2205 where B::Target: BroadcasterInterface,
2206 F::Target: FeeEstimator,
2209 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
2211 // If the channel is force closed, try to claim the output from this preimage.
2212 // First check if a counterparty commitment transaction has been broadcasted:
2213 macro_rules! claim_htlcs {
2214 ($commitment_number: expr, $txid: expr) => {
2215 let (htlc_claim_reqs, _) = self.get_counterparty_output_claim_info($commitment_number, $txid, None);
2216 self.onchain_tx_handler.update_claims_view_from_requests(htlc_claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2219 if let Some(txid) = self.current_counterparty_commitment_txid {
2220 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2221 claim_htlcs!(*commitment_number, txid);
2225 if let Some(txid) = self.prev_counterparty_commitment_txid {
2226 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2227 claim_htlcs!(*commitment_number, txid);
2232 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
2233 // claiming the HTLC output from each of the holder commitment transactions.
2234 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
2235 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
2236 // holder commitment transactions.
2237 if self.broadcasted_holder_revokable_script.is_some() {
2238 // Assume that the broadcasted commitment transaction confirmed in the current best
2239 // block. Even if not, its a reasonable metric for the bump criteria on the HTLC
2241 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
2242 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2243 if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
2244 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx, self.best_block.height());
2245 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2250 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
2251 where B::Target: BroadcasterInterface,
2254 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
2255 log_info!(logger, "Broadcasting local {}", log_tx!(tx));
2256 broadcaster.broadcast_transaction(tx);
2258 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
2261 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: F, logger: &L) -> Result<(), ()>
2262 where B::Target: BroadcasterInterface,
2263 F::Target: FeeEstimator,
2266 log_info!(logger, "Applying update to monitor {}, bringing update_id from {} to {} with {} changes.",
2267 log_funding_info!(self), self.latest_update_id, updates.update_id, updates.updates.len());
2268 // ChannelMonitor updates may be applied after force close if we receive a
2269 // preimage for a broadcasted commitment transaction HTLC output that we'd
2270 // like to claim on-chain. If this is the case, we no longer have guaranteed
2271 // access to the monitor's update ID, so we use a sentinel value instead.
2272 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2273 assert_eq!(updates.updates.len(), 1);
2274 match updates.updates[0] {
2275 ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
2277 log_error!(logger, "Attempted to apply post-force-close ChannelMonitorUpdate of type {}", updates.updates[0].variant_name());
2278 panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage");
2281 } else if self.latest_update_id + 1 != updates.update_id {
2282 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
2284 let mut ret = Ok(());
2285 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&*fee_estimator);
2286 for update in updates.updates.iter() {
2288 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs, claimed_htlcs } => {
2289 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
2290 if self.lockdown_from_offchain { panic!(); }
2291 if let Err(e) = self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone(), &claimed_htlcs) {
2292 log_error!(logger, "Providing latest holder commitment transaction failed/was refused:");
2293 log_error!(logger, " {}", e);
2297 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_per_commitment_point } => {
2298 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
2299 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_per_commitment_point, logger)
2301 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
2302 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
2303 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, &bounded_fee_estimator, logger)
2305 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
2306 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
2307 if let Err(e) = self.provide_secret(*idx, *secret) {
2308 log_error!(logger, "Providing latest counterparty commitment secret failed/was refused:");
2309 log_error!(logger, " {}", e);
2313 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
2314 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
2315 self.lockdown_from_offchain = true;
2316 if *should_broadcast {
2317 // There's no need to broadcast our commitment transaction if we've seen one
2318 // confirmed (even with 1 confirmation) as it'll be rejected as
2319 // duplicate/conflicting.
2320 let detected_funding_spend = self.funding_spend_confirmed.is_some() ||
2321 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
2322 OnchainEvent::FundingSpendConfirmation { .. } => true,
2325 if detected_funding_spend {
2328 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
2329 // If the channel supports anchor outputs, we'll need to emit an external
2330 // event to be consumed such that a child transaction is broadcast with a
2331 // high enough feerate for the parent commitment transaction to confirm.
2332 if self.onchain_tx_handler.opt_anchors() {
2333 let funding_output = HolderFundingOutput::build(
2334 self.funding_redeemscript.clone(), self.channel_value_satoshis,
2335 self.onchain_tx_handler.opt_anchors(),
2337 let best_block_height = self.best_block.height();
2338 let commitment_package = PackageTemplate::build_package(
2339 self.funding_info.0.txid.clone(), self.funding_info.0.index as u32,
2340 PackageSolvingData::HolderFundingOutput(funding_output),
2341 best_block_height, false, best_block_height,
2343 self.onchain_tx_handler.update_claims_view_from_requests(
2344 vec![commitment_package], best_block_height, best_block_height,
2345 broadcaster, &bounded_fee_estimator, logger,
2348 } else if !self.holder_tx_signed {
2349 log_error!(logger, "WARNING: You have a potentially-unsafe holder commitment transaction available to broadcast");
2350 log_error!(logger, " in channel monitor for channel {}!", log_bytes!(self.funding_info.0.to_channel_id()));
2351 log_error!(logger, " Read the docs for ChannelMonitor::get_latest_holder_commitment_txn and take manual action!");
2353 // If we generated a MonitorEvent::CommitmentTxConfirmed, the ChannelManager
2354 // will still give us a ChannelForceClosed event with !should_broadcast, but we
2355 // shouldn't print the scary warning above.
2356 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
2359 ChannelMonitorUpdateStep::ShutdownScript { scriptpubkey } => {
2360 log_trace!(logger, "Updating ChannelMonitor with shutdown script");
2361 if let Some(shutdown_script) = self.shutdown_script.replace(scriptpubkey.clone()) {
2362 panic!("Attempted to replace shutdown script {} with {}", shutdown_script, scriptpubkey);
2367 self.latest_update_id = updates.update_id;
2369 if ret.is_ok() && self.funding_spend_seen {
2370 log_error!(logger, "Refusing Channel Monitor Update as counterparty attempted to update commitment after funding was spent");
2375 pub fn get_latest_update_id(&self) -> u64 {
2376 self.latest_update_id
2379 pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
2383 pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
2384 // If we've detected a counterparty commitment tx on chain, we must include it in the set
2385 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
2386 // its trivial to do, double-check that here.
2387 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
2388 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
2390 &self.outputs_to_watch
2393 pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
2394 let mut ret = Vec::new();
2395 mem::swap(&mut ret, &mut self.pending_monitor_events);
2399 pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
2400 let mut ret = Vec::new();
2401 mem::swap(&mut ret, &mut self.pending_events);
2403 for claim_event in self.onchain_tx_handler.get_and_clear_pending_claim_events().drain(..) {
2405 ClaimEvent::BumpCommitment {
2406 package_target_feerate_sat_per_1000_weight, commitment_tx, anchor_output_idx,
2408 let commitment_txid = commitment_tx.txid();
2409 debug_assert_eq!(self.current_holder_commitment_tx.txid, commitment_txid);
2410 let pending_htlcs = self.current_holder_commitment_tx.non_dust_htlcs();
2411 let commitment_tx_fee_satoshis = self.channel_value_satoshis -
2412 commitment_tx.output.iter().fold(0u64, |sum, output| sum + output.value);
2413 ret.push(Event::BumpTransaction(BumpTransactionEvent::ChannelClose {
2414 package_target_feerate_sat_per_1000_weight,
2416 commitment_tx_fee_satoshis,
2417 anchor_descriptor: AnchorDescriptor {
2418 channel_keys_id: self.channel_keys_id,
2419 channel_value_satoshis: self.channel_value_satoshis,
2420 outpoint: BitcoinOutPoint {
2421 txid: commitment_txid,
2422 vout: anchor_output_idx,
2428 ClaimEvent::BumpHTLC {
2429 target_feerate_sat_per_1000_weight, htlcs,
2431 let mut htlc_descriptors = Vec::with_capacity(htlcs.len());
2433 htlc_descriptors.push(HTLCDescriptor {
2434 channel_keys_id: self.channel_keys_id,
2435 channel_value_satoshis: self.channel_value_satoshis,
2436 channel_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
2437 commitment_txid: htlc.commitment_txid,
2438 per_commitment_number: htlc.per_commitment_number,
2440 preimage: htlc.preimage,
2441 counterparty_sig: htlc.counterparty_sig,
2444 ret.push(Event::BumpTransaction(BumpTransactionEvent::HTLCResolution {
2445 target_feerate_sat_per_1000_weight,
2454 /// Can only fail if idx is < get_min_seen_secret
2455 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
2456 self.commitment_secrets.get_secret(idx)
2459 pub(crate) fn get_min_seen_secret(&self) -> u64 {
2460 self.commitment_secrets.get_min_seen_secret()
2463 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
2464 self.current_counterparty_commitment_number
2467 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
2468 self.current_holder_commitment_number
2471 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
2472 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
2473 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
2474 /// HTLC-Success/HTLC-Timeout transactions.
2476 /// Returns packages to claim the revoked output(s), as well as additional outputs to watch and
2477 /// general information about the output that is to the counterparty in the commitment
2479 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L)
2480 -> (Vec<PackageTemplate>, TransactionOutputs, CommitmentTxCounterpartyOutputInfo)
2481 where L::Target: Logger {
2482 // Most secp and related errors trying to create keys means we have no hope of constructing
2483 // a spend transaction...so we return no transactions to broadcast
2484 let mut claimable_outpoints = Vec::new();
2485 let mut watch_outputs = Vec::new();
2486 let mut to_counterparty_output_info = None;
2488 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
2489 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
2491 macro_rules! ignore_error {
2492 ( $thing : expr ) => {
2495 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
2500 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence.0 as u64 & 0xffffff) << 3*8) | (tx.lock_time.0 as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
2501 if commitment_number >= self.get_min_seen_secret() {
2502 let secret = self.get_secret(commitment_number).unwrap();
2503 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2504 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
2505 let revocation_pubkey = chan_utils::derive_public_revocation_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint);
2506 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx, &PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key), &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
2508 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
2509 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
2511 // First, process non-htlc outputs (to_holder & to_counterparty)
2512 for (idx, outp) in tx.output.iter().enumerate() {
2513 if outp.script_pubkey == revokeable_p2wsh {
2514 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_commitment_params.on_counterparty_tx_csv);
2515 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height);
2516 claimable_outpoints.push(justice_package);
2517 to_counterparty_output_info =
2518 Some((idx.try_into().expect("Txn can't have more than 2^32 outputs"), outp.value));
2522 // Then, try to find revoked htlc outputs
2523 if let Some(ref per_commitment_data) = per_commitment_option {
2524 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
2525 if let Some(transaction_output_index) = htlc.transaction_output_index {
2526 if transaction_output_index as usize >= tx.output.len() ||
2527 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2528 // per_commitment_data is corrupt or our commitment signing key leaked!
2529 return (claimable_outpoints, (commitment_txid, watch_outputs),
2530 to_counterparty_output_info);
2532 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone(), self.onchain_tx_handler.channel_transaction_parameters.opt_anchors.is_some());
2533 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, true, height);
2534 claimable_outpoints.push(justice_package);
2539 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
2540 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
2541 // We're definitely a counterparty commitment transaction!
2542 log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
2543 for (idx, outp) in tx.output.iter().enumerate() {
2544 watch_outputs.push((idx as u32, outp.clone()));
2546 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2548 if let Some(per_commitment_data) = per_commitment_option {
2549 fail_unbroadcast_htlcs!(self, "revoked_counterparty", commitment_txid, tx, height,
2550 block_hash, per_commitment_data.iter().map(|(htlc, htlc_source)|
2551 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2554 debug_assert!(false, "We should have per-commitment option for any recognized old commitment txn");
2555 fail_unbroadcast_htlcs!(self, "revoked counterparty", commitment_txid, tx, height,
2556 block_hash, [].iter().map(|reference| *reference), logger);
2559 } else if let Some(per_commitment_data) = per_commitment_option {
2560 // While this isn't useful yet, there is a potential race where if a counterparty
2561 // revokes a state at the same time as the commitment transaction for that state is
2562 // confirmed, and the watchtower receives the block before the user, the user could
2563 // upload a new ChannelMonitor with the revocation secret but the watchtower has
2564 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
2565 // not being generated by the above conditional. Thus, to be safe, we go ahead and
2567 for (idx, outp) in tx.output.iter().enumerate() {
2568 watch_outputs.push((idx as u32, outp.clone()));
2570 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2572 log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
2573 fail_unbroadcast_htlcs!(self, "counterparty", commitment_txid, tx, height, block_hash,
2574 per_commitment_data.iter().map(|(htlc, htlc_source)|
2575 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2578 let (htlc_claim_reqs, counterparty_output_info) =
2579 self.get_counterparty_output_claim_info(commitment_number, commitment_txid, Some(tx));
2580 to_counterparty_output_info = counterparty_output_info;
2581 for req in htlc_claim_reqs {
2582 claimable_outpoints.push(req);
2586 (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
2589 /// Returns the HTLC claim package templates and the counterparty output info
2590 fn get_counterparty_output_claim_info(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>)
2591 -> (Vec<PackageTemplate>, CommitmentTxCounterpartyOutputInfo) {
2592 let mut claimable_outpoints = Vec::new();
2593 let mut to_counterparty_output_info: CommitmentTxCounterpartyOutputInfo = None;
2595 let htlc_outputs = match self.counterparty_claimable_outpoints.get(&commitment_txid) {
2596 Some(outputs) => outputs,
2597 None => return (claimable_outpoints, to_counterparty_output_info),
2599 let per_commitment_points = match self.their_cur_per_commitment_points {
2600 Some(points) => points,
2601 None => return (claimable_outpoints, to_counterparty_output_info),
2604 let per_commitment_point =
2605 // If the counterparty commitment tx is the latest valid state, use their latest
2606 // per-commitment point
2607 if per_commitment_points.0 == commitment_number { &per_commitment_points.1 }
2608 else if let Some(point) = per_commitment_points.2.as_ref() {
2609 // If counterparty commitment tx is the state previous to the latest valid state, use
2610 // their previous per-commitment point (non-atomicity of revocation means it's valid for
2611 // them to temporarily have two valid commitment txns from our viewpoint)
2612 if per_commitment_points.0 == commitment_number + 1 {
2614 } else { return (claimable_outpoints, to_counterparty_output_info); }
2615 } else { return (claimable_outpoints, to_counterparty_output_info); };
2617 if let Some(transaction) = tx {
2618 let revocation_pubkey = chan_utils::derive_public_revocation_key(
2619 &self.onchain_tx_handler.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint);
2620 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx,
2621 &per_commitment_point,
2622 &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
2623 let revokeable_p2wsh = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
2624 self.counterparty_commitment_params.on_counterparty_tx_csv,
2625 &delayed_key).to_v0_p2wsh();
2626 for (idx, outp) in transaction.output.iter().enumerate() {
2627 if outp.script_pubkey == revokeable_p2wsh {
2628 to_counterparty_output_info =
2629 Some((idx.try_into().expect("Can't have > 2^32 outputs"), outp.value));
2634 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
2635 if let Some(transaction_output_index) = htlc.transaction_output_index {
2636 if let Some(transaction) = tx {
2637 if transaction_output_index as usize >= transaction.output.len() ||
2638 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2639 // per_commitment_data is corrupt or our commitment signing key leaked!
2640 return (claimable_outpoints, to_counterparty_output_info);
2643 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
2644 if preimage.is_some() || !htlc.offered {
2645 let counterparty_htlc_outp = if htlc.offered {
2646 PackageSolvingData::CounterpartyOfferedHTLCOutput(
2647 CounterpartyOfferedHTLCOutput::build(*per_commitment_point,
2648 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2649 self.counterparty_commitment_params.counterparty_htlc_base_key,
2650 preimage.unwrap(), htlc.clone(), self.onchain_tx_handler.opt_anchors()))
2652 PackageSolvingData::CounterpartyReceivedHTLCOutput(
2653 CounterpartyReceivedHTLCOutput::build(*per_commitment_point,
2654 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2655 self.counterparty_commitment_params.counterparty_htlc_base_key,
2656 htlc.clone(), self.onchain_tx_handler.opt_anchors()))
2658 let aggregation = if !htlc.offered { false } else { true };
2659 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry,aggregation, 0);
2660 claimable_outpoints.push(counterparty_package);
2665 (claimable_outpoints, to_counterparty_output_info)
2668 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
2669 fn check_spend_counterparty_htlc<L: Deref>(
2670 &mut self, tx: &Transaction, commitment_number: u64, commitment_txid: &Txid, height: u32, logger: &L
2671 ) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
2672 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
2673 let per_commitment_key = match SecretKey::from_slice(&secret) {
2675 Err(_) => return (Vec::new(), None)
2677 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
2679 let htlc_txid = tx.txid();
2680 let mut claimable_outpoints = vec![];
2681 let mut outputs_to_watch = None;
2682 // Previously, we would only claim HTLCs from revoked HTLC transactions if they had 1 input
2683 // with a witness of 5 elements and 1 output. This wasn't enough for anchor outputs, as the
2684 // counterparty can now aggregate multiple HTLCs into a single transaction thanks to
2685 // `SIGHASH_SINGLE` remote signatures, leading us to not claim any HTLCs upon seeing a
2686 // confirmed revoked HTLC transaction (for more details, see
2687 // https://lists.linuxfoundation.org/pipermail/lightning-dev/2022-April/003561.html).
2689 // We make sure we're not vulnerable to this case by checking all inputs of the transaction,
2690 // and claim those which spend the commitment transaction, have a witness of 5 elements, and
2691 // have a corresponding output at the same index within the transaction.
2692 for (idx, input) in tx.input.iter().enumerate() {
2693 if input.previous_output.txid == *commitment_txid && input.witness.len() == 5 && tx.output.get(idx).is_some() {
2694 log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, idx);
2695 let revk_outp = RevokedOutput::build(
2696 per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2697 self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key,
2698 tx.output[idx].value, self.counterparty_commitment_params.on_counterparty_tx_csv
2700 let justice_package = PackageTemplate::build_package(
2701 htlc_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp),
2702 height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height
2704 claimable_outpoints.push(justice_package);
2705 if outputs_to_watch.is_none() {
2706 outputs_to_watch = Some((htlc_txid, vec![]));
2708 outputs_to_watch.as_mut().unwrap().1.push((idx as u32, tx.output[idx].clone()));
2711 (claimable_outpoints, outputs_to_watch)
2714 // Returns (1) `PackageTemplate`s that can be given to the OnchainTxHandler, so that the handler can
2715 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
2716 // script so we can detect whether a holder transaction has been seen on-chain.
2717 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(Script, PublicKey, PublicKey)>) {
2718 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
2720 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
2721 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
2723 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2724 if let Some(transaction_output_index) = htlc.transaction_output_index {
2725 let (htlc_output, aggregable) = if htlc.offered {
2726 let htlc_output = HolderHTLCOutput::build_offered(
2727 htlc.amount_msat, htlc.cltv_expiry, self.onchain_tx_handler.opt_anchors()
2729 (htlc_output, false)
2731 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
2734 // We can't build an HTLC-Success transaction without the preimage
2737 let htlc_output = HolderHTLCOutput::build_accepted(
2738 payment_preimage, htlc.amount_msat, self.onchain_tx_handler.opt_anchors()
2740 (htlc_output, self.onchain_tx_handler.opt_anchors())
2742 let htlc_package = PackageTemplate::build_package(
2743 holder_tx.txid, transaction_output_index,
2744 PackageSolvingData::HolderHTLCOutput(htlc_output),
2745 htlc.cltv_expiry, aggregable, conf_height
2747 claim_requests.push(htlc_package);
2751 (claim_requests, broadcasted_holder_revokable_script)
2754 // Returns holder HTLC outputs to watch and react to in case of spending.
2755 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
2756 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
2757 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2758 if let Some(transaction_output_index) = htlc.transaction_output_index {
2759 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
2765 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
2766 /// revoked using data in holder_claimable_outpoints.
2767 /// Should not be used if check_spend_revoked_transaction succeeds.
2768 /// Returns None unless the transaction is definitely one of our commitment transactions.
2769 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) -> Option<(Vec<PackageTemplate>, TransactionOutputs)> where L::Target: Logger {
2770 let commitment_txid = tx.txid();
2771 let mut claim_requests = Vec::new();
2772 let mut watch_outputs = Vec::new();
2774 macro_rules! append_onchain_update {
2775 ($updates: expr, $to_watch: expr) => {
2776 claim_requests = $updates.0;
2777 self.broadcasted_holder_revokable_script = $updates.1;
2778 watch_outputs.append(&mut $to_watch);
2782 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
2783 let mut is_holder_tx = false;
2785 if self.current_holder_commitment_tx.txid == commitment_txid {
2786 is_holder_tx = true;
2787 log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2788 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
2789 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
2790 append_onchain_update!(res, to_watch);
2791 fail_unbroadcast_htlcs!(self, "latest holder", commitment_txid, tx, height,
2792 block_hash, self.current_holder_commitment_tx.htlc_outputs.iter()
2793 .map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())), logger);
2794 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
2795 if holder_tx.txid == commitment_txid {
2796 is_holder_tx = true;
2797 log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2798 let res = self.get_broadcasted_holder_claims(holder_tx, height);
2799 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
2800 append_onchain_update!(res, to_watch);
2801 fail_unbroadcast_htlcs!(self, "previous holder", commitment_txid, tx, height, block_hash,
2802 holder_tx.htlc_outputs.iter().map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())),
2808 Some((claim_requests, (commitment_txid, watch_outputs)))
2814 pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2815 log_debug!(logger, "Getting signed latest holder commitment transaction!");
2816 self.holder_tx_signed = true;
2817 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2818 let txid = commitment_tx.txid();
2819 let mut holder_transactions = vec![commitment_tx];
2820 // When anchor outputs are present, the HTLC transactions are only valid once the commitment
2821 // transaction confirms.
2822 if self.onchain_tx_handler.opt_anchors() {
2823 return holder_transactions;
2825 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2826 if let Some(vout) = htlc.0.transaction_output_index {
2827 let preimage = if !htlc.0.offered {
2828 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2829 // We can't build an HTLC-Success transaction without the preimage
2832 } else if htlc.0.cltv_expiry > self.best_block.height() + 1 {
2833 // Don't broadcast HTLC-Timeout transactions immediately as they don't meet the
2834 // current locktime requirements on-chain. We will broadcast them in
2835 // `block_confirmed` when `should_broadcast_holder_commitment_txn` returns true.
2836 // Note that we add + 1 as transactions are broadcastable when they can be
2837 // confirmed in the next block.
2840 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
2841 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2842 holder_transactions.push(htlc_tx);
2846 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
2847 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
2851 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
2852 /// Note that this includes possibly-locktimed-in-the-future transactions!
2853 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2854 log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
2855 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
2856 let txid = commitment_tx.txid();
2857 let mut holder_transactions = vec![commitment_tx];
2858 // When anchor outputs are present, the HTLC transactions are only final once the commitment
2859 // transaction confirms due to the CSV 1 encumberance.
2860 if self.onchain_tx_handler.opt_anchors() {
2861 return holder_transactions;
2863 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2864 if let Some(vout) = htlc.0.transaction_output_index {
2865 let preimage = if !htlc.0.offered {
2866 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2867 // We can't build an HTLC-Success transaction without the preimage
2871 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
2872 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2873 holder_transactions.push(htlc_tx);
2880 pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
2881 where B::Target: BroadcasterInterface,
2882 F::Target: FeeEstimator,
2885 let block_hash = header.block_hash();
2886 self.best_block = BestBlock::new(block_hash, height);
2888 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
2889 self.transactions_confirmed(header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
2892 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
2894 header: &BlockHeader,
2897 fee_estimator: &LowerBoundedFeeEstimator<F>,
2899 ) -> Vec<TransactionOutputs>
2901 B::Target: BroadcasterInterface,
2902 F::Target: FeeEstimator,
2905 let block_hash = header.block_hash();
2907 if height > self.best_block.height() {
2908 self.best_block = BestBlock::new(block_hash, height);
2909 self.block_confirmed(height, block_hash, vec![], vec![], vec![], &broadcaster, &fee_estimator, &logger)
2910 } else if block_hash != self.best_block.block_hash() {
2911 self.best_block = BestBlock::new(block_hash, height);
2912 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
2913 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
2915 } else { Vec::new() }
2918 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
2920 header: &BlockHeader,
2921 txdata: &TransactionData,
2924 fee_estimator: &LowerBoundedFeeEstimator<F>,
2926 ) -> Vec<TransactionOutputs>
2928 B::Target: BroadcasterInterface,
2929 F::Target: FeeEstimator,
2932 let txn_matched = self.filter_block(txdata);
2933 for tx in &txn_matched {
2934 let mut output_val = 0;
2935 for out in tx.output.iter() {
2936 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2937 output_val += out.value;
2938 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2942 let block_hash = header.block_hash();
2944 let mut watch_outputs = Vec::new();
2945 let mut claimable_outpoints = Vec::new();
2946 'tx_iter: for tx in &txn_matched {
2947 let txid = tx.txid();
2948 // If a transaction has already been confirmed, ensure we don't bother processing it duplicatively.
2949 if Some(txid) == self.funding_spend_confirmed {
2950 log_debug!(logger, "Skipping redundant processing of funding-spend tx {} as it was previously confirmed", txid);
2953 for ev in self.onchain_events_awaiting_threshold_conf.iter() {
2954 if ev.txid == txid {
2955 if let Some(conf_hash) = ev.block_hash {
2956 assert_eq!(header.block_hash(), conf_hash,
2957 "Transaction {} was already confirmed and is being re-confirmed in a different block.\n\
2958 This indicates a severe bug in the transaction connection logic - a reorg should have been processed first!", ev.txid);
2960 log_debug!(logger, "Skipping redundant processing of confirming tx {} as it was previously confirmed", txid);
2964 for htlc in self.htlcs_resolved_on_chain.iter() {
2965 if Some(txid) == htlc.resolving_txid {
2966 log_debug!(logger, "Skipping redundant processing of HTLC resolution tx {} as it was previously confirmed", txid);
2970 for spendable_txid in self.spendable_txids_confirmed.iter() {
2971 if txid == *spendable_txid {
2972 log_debug!(logger, "Skipping redundant processing of spendable tx {} as it was previously confirmed", txid);
2977 if tx.input.len() == 1 {
2978 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2979 // commitment transactions and HTLC transactions will all only ever have one input
2980 // (except for HTLC transactions for channels with anchor outputs), which is an easy
2981 // way to filter out any potential non-matching txn for lazy filters.
2982 let prevout = &tx.input[0].previous_output;
2983 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
2984 let mut balance_spendable_csv = None;
2985 log_info!(logger, "Channel {} closed by funding output spend in txid {}.",
2986 log_bytes!(self.funding_info.0.to_channel_id()), txid);
2987 self.funding_spend_seen = true;
2988 let mut commitment_tx_to_counterparty_output = None;
2989 if (tx.input[0].sequence.0 >> 8*3) as u8 == 0x80 && (tx.lock_time.0 >> 8*3) as u8 == 0x20 {
2990 let (mut new_outpoints, new_outputs, counterparty_output_idx_sats) =
2991 self.check_spend_counterparty_transaction(&tx, height, &block_hash, &logger);
2992 commitment_tx_to_counterparty_output = counterparty_output_idx_sats;
2993 if !new_outputs.1.is_empty() {
2994 watch_outputs.push(new_outputs);
2996 claimable_outpoints.append(&mut new_outpoints);
2997 if new_outpoints.is_empty() {
2998 if let Some((mut new_outpoints, new_outputs)) = self.check_spend_holder_transaction(&tx, height, &block_hash, &logger) {
2999 debug_assert!(commitment_tx_to_counterparty_output.is_none(),
3000 "A commitment transaction matched as both a counterparty and local commitment tx?");
3001 if !new_outputs.1.is_empty() {
3002 watch_outputs.push(new_outputs);
3004 claimable_outpoints.append(&mut new_outpoints);
3005 balance_spendable_csv = Some(self.on_holder_tx_csv);
3009 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3011 transaction: Some((*tx).clone()),
3013 block_hash: Some(block_hash),
3014 event: OnchainEvent::FundingSpendConfirmation {
3015 on_local_output_csv: balance_spendable_csv,
3016 commitment_tx_to_counterparty_output,
3021 if tx.input.len() >= 1 {
3022 // While all commitment transactions have one input, HTLC transactions may have more
3023 // if the HTLC was present in an anchor channel. HTLCs can also be resolved in a few
3024 // other ways which can have more than one output.
3025 for tx_input in &tx.input {
3026 let commitment_txid = tx_input.previous_output.txid;
3027 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&commitment_txid) {
3028 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(
3029 &tx, commitment_number, &commitment_txid, height, &logger
3031 claimable_outpoints.append(&mut new_outpoints);
3032 if let Some(new_outputs) = new_outputs_option {
3033 watch_outputs.push(new_outputs);
3035 // Since there may be multiple HTLCs for this channel (all spending the
3036 // same commitment tx) being claimed by the counterparty within the same
3037 // transaction, and `check_spend_counterparty_htlc` already checks all the
3038 // ones relevant to this channel, we can safely break from our loop.
3042 self.is_resolving_htlc_output(&tx, height, &block_hash, &logger);
3044 self.is_paying_spendable_output(&tx, height, &block_hash, &logger);
3048 if height > self.best_block.height() {
3049 self.best_block = BestBlock::new(block_hash, height);
3052 self.block_confirmed(height, block_hash, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, &logger)
3055 /// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
3056 /// `self.best_block` before calling if a new best blockchain tip is available. More
3057 /// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
3058 /// complexity especially in
3059 /// `OnchainTx::update_claims_view_from_requests`/`OnchainTx::update_claims_view_from_matched_txn`.
3061 /// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
3062 /// confirmed at, even if it is not the current best height.
3063 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
3066 conf_hash: BlockHash,
3067 txn_matched: Vec<&Transaction>,
3068 mut watch_outputs: Vec<TransactionOutputs>,
3069 mut claimable_outpoints: Vec<PackageTemplate>,
3071 fee_estimator: &LowerBoundedFeeEstimator<F>,
3073 ) -> Vec<TransactionOutputs>
3075 B::Target: BroadcasterInterface,
3076 F::Target: FeeEstimator,
3079 log_trace!(logger, "Processing {} matched transactions for block at height {}.", txn_matched.len(), conf_height);
3080 debug_assert!(self.best_block.height() >= conf_height);
3082 let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
3083 if should_broadcast {
3084 let funding_outp = HolderFundingOutput::build(self.funding_redeemscript.clone(), self.channel_value_satoshis, self.onchain_tx_handler.opt_anchors());
3085 let commitment_package = PackageTemplate::build_package(self.funding_info.0.txid.clone(), self.funding_info.0.index as u32, PackageSolvingData::HolderFundingOutput(funding_outp), self.best_block.height(), false, self.best_block.height());
3086 claimable_outpoints.push(commitment_package);
3087 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
3088 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
3089 self.holder_tx_signed = true;
3090 // We can't broadcast our HTLC transactions while the commitment transaction is
3091 // unconfirmed. We'll delay doing so until we detect the confirmed commitment in
3092 // `transactions_confirmed`.
3093 if !self.onchain_tx_handler.opt_anchors() {
3094 // Because we're broadcasting a commitment transaction, we should construct the package
3095 // assuming it gets confirmed in the next block. Sadly, we have code which considers
3096 // "not yet confirmed" things as discardable, so we cannot do that here.
3097 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
3098 let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
3099 if !new_outputs.is_empty() {
3100 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
3102 claimable_outpoints.append(&mut new_outpoints);
3106 // Find which on-chain events have reached their confirmation threshold.
3107 let onchain_events_awaiting_threshold_conf =
3108 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
3109 let mut onchain_events_reaching_threshold_conf = Vec::new();
3110 for entry in onchain_events_awaiting_threshold_conf {
3111 if entry.has_reached_confirmation_threshold(&self.best_block) {
3112 onchain_events_reaching_threshold_conf.push(entry);
3114 self.onchain_events_awaiting_threshold_conf.push(entry);
3118 // Used to check for duplicate HTLC resolutions.
3119 #[cfg(debug_assertions)]
3120 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
3122 .filter_map(|entry| match &entry.event {
3123 OnchainEvent::HTLCUpdate { source, .. } => Some(source),
3127 #[cfg(debug_assertions)]
3128 let mut matured_htlcs = Vec::new();
3130 // Produce actionable events from on-chain events having reached their threshold.
3131 for entry in onchain_events_reaching_threshold_conf.drain(..) {
3133 OnchainEvent::HTLCUpdate { ref source, payment_hash, htlc_value_satoshis, commitment_tx_output_idx } => {
3134 // Check for duplicate HTLC resolutions.
3135 #[cfg(debug_assertions)]
3138 unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
3139 "An unmature HTLC transaction conflicts with a maturing one; failed to \
3140 call either transaction_unconfirmed for the conflicting transaction \
3141 or block_disconnected for a block containing it.");
3143 matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
3144 "A matured HTLC transaction conflicts with a maturing one; failed to \
3145 call either transaction_unconfirmed for the conflicting transaction \
3146 or block_disconnected for a block containing it.");
3147 matured_htlcs.push(source.clone());
3150 log_debug!(logger, "HTLC {} failure update in {} has got enough confirmations to be passed upstream",
3151 log_bytes!(payment_hash.0), entry.txid);
3152 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3154 payment_preimage: None,
3155 source: source.clone(),
3156 htlc_value_satoshis,
3158 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3159 commitment_tx_output_idx,
3160 resolving_txid: Some(entry.txid),
3161 resolving_tx: entry.transaction,
3162 payment_preimage: None,
3165 OnchainEvent::MaturingOutput { descriptor } => {
3166 log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
3167 self.pending_events.push(Event::SpendableOutputs {
3168 outputs: vec![descriptor]
3170 self.spendable_txids_confirmed.push(entry.txid);
3172 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } => {
3173 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3174 commitment_tx_output_idx: Some(commitment_tx_output_idx),
3175 resolving_txid: Some(entry.txid),
3176 resolving_tx: entry.transaction,
3177 payment_preimage: preimage,
3180 OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } => {
3181 self.funding_spend_confirmed = Some(entry.txid);
3182 self.confirmed_commitment_tx_counterparty_output = commitment_tx_to_counterparty_output;
3187 self.onchain_tx_handler.update_claims_view_from_requests(claimable_outpoints, conf_height, self.best_block.height(), broadcaster, fee_estimator, logger);
3188 self.onchain_tx_handler.update_claims_view_from_matched_txn(&txn_matched, conf_height, conf_hash, self.best_block.height(), broadcaster, fee_estimator, logger);
3190 // Determine new outputs to watch by comparing against previously known outputs to watch,
3191 // updating the latter in the process.
3192 watch_outputs.retain(|&(ref txid, ref txouts)| {
3193 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
3194 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
3198 // If we see a transaction for which we registered outputs previously,
3199 // make sure the registered scriptpubkey at the expected index match
3200 // the actual transaction output one. We failed this case before #653.
3201 for tx in &txn_matched {
3202 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
3203 for idx_and_script in outputs.iter() {
3204 assert!((idx_and_script.0 as usize) < tx.output.len());
3205 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
3213 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
3214 where B::Target: BroadcasterInterface,
3215 F::Target: FeeEstimator,
3218 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
3221 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
3222 //- maturing spendable output has transaction paying us has been disconnected
3223 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
3225 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
3226 self.onchain_tx_handler.block_disconnected(height, broadcaster, &bounded_fee_estimator, logger);
3228 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
3231 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
3235 fee_estimator: &LowerBoundedFeeEstimator<F>,
3238 B::Target: BroadcasterInterface,
3239 F::Target: FeeEstimator,
3242 let mut removed_height = None;
3243 for entry in self.onchain_events_awaiting_threshold_conf.iter() {
3244 if entry.txid == *txid {
3245 removed_height = Some(entry.height);
3250 if let Some(removed_height) = removed_height {
3251 log_info!(logger, "transaction_unconfirmed of txid {} implies height {} was reorg'd out", txid, removed_height);
3252 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| if entry.height >= removed_height {
3253 log_info!(logger, "Transaction {} reorg'd out", entry.txid);
3258 debug_assert!(!self.onchain_events_awaiting_threshold_conf.iter().any(|ref entry| entry.txid == *txid));
3260 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
3263 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
3264 /// transactions thereof.
3265 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
3266 let mut matched_txn = HashSet::new();
3267 txdata.iter().filter(|&&(_, tx)| {
3268 let mut matches = self.spends_watched_output(tx);
3269 for input in tx.input.iter() {
3270 if matches { break; }
3271 if matched_txn.contains(&input.previous_output.txid) {
3276 matched_txn.insert(tx.txid());
3279 }).map(|(_, tx)| *tx).collect()
3282 /// Checks if a given transaction spends any watched outputs.
3283 fn spends_watched_output(&self, tx: &Transaction) -> bool {
3284 for input in tx.input.iter() {
3285 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
3286 for (idx, _script_pubkey) in outputs.iter() {
3287 if *idx == input.previous_output.vout {
3290 // If the expected script is a known type, check that the witness
3291 // appears to be spending the correct type (ie that the match would
3292 // actually succeed in BIP 158/159-style filters).
3293 if _script_pubkey.is_v0_p2wsh() {
3294 if input.witness.last().unwrap().to_vec() == deliberately_bogus_accepted_htlc_witness_program() {
3295 // In at least one test we use a deliberately bogus witness
3296 // script which hit an old panic. Thus, we check for that here
3297 // and avoid the assert if its the expected bogus script.
3301 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().to_vec()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
3302 } else if _script_pubkey.is_v0_p2wpkh() {
3303 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
3304 } else { panic!(); }
3315 fn should_broadcast_holder_commitment_txn<L: Deref>(&self, logger: &L) -> bool where L::Target: Logger {
3316 // There's no need to broadcast our commitment transaction if we've seen one confirmed (even
3317 // with 1 confirmation) as it'll be rejected as duplicate/conflicting.
3318 if self.funding_spend_confirmed.is_some() ||
3319 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
3320 OnchainEvent::FundingSpendConfirmation { .. } => true,
3326 // We need to consider all HTLCs which are:
3327 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
3328 // transactions and we'd end up in a race, or
3329 // * are in our latest holder commitment transaction, as this is the thing we will
3330 // broadcast if we go on-chain.
3331 // Note that we consider HTLCs which were below dust threshold here - while they don't
3332 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
3333 // to the source, and if we don't fail the channel we will have to ensure that the next
3334 // updates that peer sends us are update_fails, failing the channel if not. It's probably
3335 // easier to just fail the channel as this case should be rare enough anyway.
3336 let height = self.best_block.height();
3337 macro_rules! scan_commitment {
3338 ($htlcs: expr, $holder_tx: expr) => {
3339 for ref htlc in $htlcs {
3340 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
3341 // chain with enough room to claim the HTLC without our counterparty being able to
3342 // time out the HTLC first.
3343 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
3344 // concern is being able to claim the corresponding inbound HTLC (on another
3345 // channel) before it expires. In fact, we don't even really care if our
3346 // counterparty here claims such an outbound HTLC after it expired as long as we
3347 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
3348 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
3349 // we give ourselves a few blocks of headroom after expiration before going
3350 // on-chain for an expired HTLC.
3351 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
3352 // from us until we've reached the point where we go on-chain with the
3353 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
3354 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
3355 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
3356 // inbound_cltv == height + CLTV_CLAIM_BUFFER
3357 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
3358 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
3359 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
3360 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
3361 // The final, above, condition is checked for statically in channelmanager
3362 // with CHECK_CLTV_EXPIRY_SANITY_2.
3363 let htlc_outbound = $holder_tx == htlc.offered;
3364 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
3365 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
3366 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
3373 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
3375 if let Some(ref txid) = self.current_counterparty_commitment_txid {
3376 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
3377 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
3380 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
3381 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
3382 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
3389 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
3390 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
3391 fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) where L::Target: Logger {
3392 'outer_loop: for input in &tx.input {
3393 let mut payment_data = None;
3394 let htlc_claim = HTLCClaim::from_witness(&input.witness);
3395 let revocation_sig_claim = htlc_claim == Some(HTLCClaim::Revocation);
3396 let accepted_preimage_claim = htlc_claim == Some(HTLCClaim::AcceptedPreimage);
3397 #[cfg(not(fuzzing))]
3398 let accepted_timeout_claim = htlc_claim == Some(HTLCClaim::AcceptedTimeout);
3399 let offered_preimage_claim = htlc_claim == Some(HTLCClaim::OfferedPreimage);
3400 #[cfg(not(fuzzing))]
3401 let offered_timeout_claim = htlc_claim == Some(HTLCClaim::OfferedTimeout);
3403 let mut payment_preimage = PaymentPreimage([0; 32]);
3404 if offered_preimage_claim || accepted_preimage_claim {
3405 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
3408 macro_rules! log_claim {
3409 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
3410 let outbound_htlc = $holder_tx == $htlc.offered;
3411 // HTLCs must either be claimed by a matching script type or through the
3413 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3414 debug_assert!(!$htlc.offered || offered_preimage_claim || offered_timeout_claim || revocation_sig_claim);
3415 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3416 debug_assert!($htlc.offered || accepted_preimage_claim || accepted_timeout_claim || revocation_sig_claim);
3417 // Further, only exactly one of the possible spend paths should have been
3418 // matched by any HTLC spend:
3419 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3420 debug_assert_eq!(accepted_preimage_claim as u8 + accepted_timeout_claim as u8 +
3421 offered_preimage_claim as u8 + offered_timeout_claim as u8 +
3422 revocation_sig_claim as u8, 1);
3423 if ($holder_tx && revocation_sig_claim) ||
3424 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
3425 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
3426 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
3427 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
3428 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back. We can likely claim the HTLC output with a revocation claim" });
3430 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
3431 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
3432 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
3433 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
3438 macro_rules! check_htlc_valid_counterparty {
3439 ($counterparty_txid: expr, $htlc_output: expr) => {
3440 if let Some(txid) = $counterparty_txid {
3441 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
3442 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
3443 if let &Some(ref source) = pending_source {
3444 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
3445 payment_data = Some(((**source).clone(), $htlc_output.payment_hash, $htlc_output.amount_msat));
3454 macro_rules! scan_commitment {
3455 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
3456 for (ref htlc_output, source_option) in $htlcs {
3457 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
3458 if let Some(ref source) = source_option {
3459 log_claim!($tx_info, $holder_tx, htlc_output, true);
3460 // We have a resolution of an HTLC either from one of our latest
3461 // holder commitment transactions or an unrevoked counterparty commitment
3462 // transaction. This implies we either learned a preimage, the HTLC
3463 // has timed out, or we screwed up. In any case, we should now
3464 // resolve the source HTLC with the original sender.
3465 payment_data = Some(((*source).clone(), htlc_output.payment_hash, htlc_output.amount_msat));
3466 } else if !$holder_tx {
3467 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
3468 if payment_data.is_none() {
3469 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
3472 if payment_data.is_none() {
3473 log_claim!($tx_info, $holder_tx, htlc_output, false);
3474 let outbound_htlc = $holder_tx == htlc_output.offered;
3475 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3476 txid: tx.txid(), height, block_hash: Some(*block_hash), transaction: Some(tx.clone()),
3477 event: OnchainEvent::HTLCSpendConfirmation {
3478 commitment_tx_output_idx: input.previous_output.vout,
3479 preimage: if accepted_preimage_claim || offered_preimage_claim {
3480 Some(payment_preimage) } else { None },
3481 // If this is a payment to us (ie !outbound_htlc), wait for
3482 // the CSV delay before dropping the HTLC from claimable
3483 // balance if the claim was an HTLC-Success transaction (ie
3484 // accepted_preimage_claim).
3485 on_to_local_output_csv: if accepted_preimage_claim && !outbound_htlc {
3486 Some(self.on_holder_tx_csv) } else { None },
3489 continue 'outer_loop;
3496 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
3497 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
3498 "our latest holder commitment tx", true);
3500 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
3501 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
3502 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
3503 "our previous holder commitment tx", true);
3506 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
3507 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
3508 "counterparty commitment tx", false);
3511 // Check that scan_commitment, above, decided there is some source worth relaying an
3512 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
3513 if let Some((source, payment_hash, amount_msat)) = payment_data {
3514 if accepted_preimage_claim {
3515 if !self.pending_monitor_events.iter().any(
3516 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
3517 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3520 block_hash: Some(*block_hash),
3521 transaction: Some(tx.clone()),
3522 event: OnchainEvent::HTLCSpendConfirmation {
3523 commitment_tx_output_idx: input.previous_output.vout,
3524 preimage: Some(payment_preimage),
3525 on_to_local_output_csv: None,
3528 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3530 payment_preimage: Some(payment_preimage),
3532 htlc_value_satoshis: Some(amount_msat / 1000),
3535 } else if offered_preimage_claim {
3536 if !self.pending_monitor_events.iter().any(
3537 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
3538 upd.source == source
3540 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3542 transaction: Some(tx.clone()),
3544 block_hash: Some(*block_hash),
3545 event: OnchainEvent::HTLCSpendConfirmation {
3546 commitment_tx_output_idx: input.previous_output.vout,
3547 preimage: Some(payment_preimage),
3548 on_to_local_output_csv: None,
3551 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3553 payment_preimage: Some(payment_preimage),
3555 htlc_value_satoshis: Some(amount_msat / 1000),
3559 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
3560 if entry.height != height { return true; }
3562 OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
3563 *htlc_source != source
3568 let entry = OnchainEventEntry {
3570 transaction: Some(tx.clone()),
3572 block_hash: Some(*block_hash),
3573 event: OnchainEvent::HTLCUpdate {
3574 source, payment_hash,
3575 htlc_value_satoshis: Some(amount_msat / 1000),
3576 commitment_tx_output_idx: Some(input.previous_output.vout),
3579 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
3580 self.onchain_events_awaiting_threshold_conf.push(entry);
3586 /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
3587 fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) where L::Target: Logger {
3588 let mut spendable_output = None;
3589 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
3590 if i > ::core::u16::MAX as usize {
3591 // While it is possible that an output exists on chain which is greater than the
3592 // 2^16th output in a given transaction, this is only possible if the output is not
3593 // in a lightning transaction and was instead placed there by some third party who
3594 // wishes to give us money for no reason.
3595 // Namely, any lightning transactions which we pre-sign will never have anywhere
3596 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
3597 // scripts are not longer than one byte in length and because they are inherently
3598 // non-standard due to their size.
3599 // Thus, it is completely safe to ignore such outputs, and while it may result in
3600 // us ignoring non-lightning fund to us, that is only possible if someone fills
3601 // nearly a full block with garbage just to hit this case.
3604 if outp.script_pubkey == self.destination_script {
3605 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3606 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3607 output: outp.clone(),
3611 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
3612 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
3613 spendable_output = Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
3614 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3615 per_commitment_point: broadcasted_holder_revokable_script.1,
3616 to_self_delay: self.on_holder_tx_csv,
3617 output: outp.clone(),
3618 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
3619 channel_keys_id: self.channel_keys_id,
3620 channel_value_satoshis: self.channel_value_satoshis,
3625 if self.counterparty_payment_script == outp.script_pubkey {
3626 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
3627 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3628 output: outp.clone(),
3629 channel_keys_id: self.channel_keys_id,
3630 channel_value_satoshis: self.channel_value_satoshis,
3634 if self.shutdown_script.as_ref() == Some(&outp.script_pubkey) {
3635 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3636 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3637 output: outp.clone(),
3642 if let Some(spendable_output) = spendable_output {
3643 let entry = OnchainEventEntry {
3645 transaction: Some(tx.clone()),
3647 block_hash: Some(*block_hash),
3648 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
3650 log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
3651 self.onchain_events_awaiting_threshold_conf.push(entry);
3656 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
3658 T::Target: BroadcasterInterface,
3659 F::Target: FeeEstimator,
3662 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3663 self.0.block_connected(header, txdata, height, &*self.1, &*self.2, &*self.3);
3666 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3667 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
3671 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Confirm for (ChannelMonitor<Signer>, T, F, L)
3673 T::Target: BroadcasterInterface,
3674 F::Target: FeeEstimator,
3677 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3678 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
3681 fn transaction_unconfirmed(&self, txid: &Txid) {
3682 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
3685 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3686 self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
3689 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
3690 self.0.get_relevant_txids()
3694 const MAX_ALLOC_SIZE: usize = 64*1024;
3696 impl<'a, 'b, ES: EntropySource, SP: SignerProvider> ReadableArgs<(&'a ES, &'b SP)>
3697 for (BlockHash, ChannelMonitor<SP::Signer>) {
3698 fn read<R: io::Read>(reader: &mut R, args: (&'a ES, &'b SP)) -> Result<Self, DecodeError> {
3699 macro_rules! unwrap_obj {
3703 Err(_) => return Err(DecodeError::InvalidValue),
3708 let (entropy_source, signer_provider) = args;
3710 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
3712 let latest_update_id: u64 = Readable::read(reader)?;
3713 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
3715 let destination_script = Readable::read(reader)?;
3716 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
3718 let revokable_address = Readable::read(reader)?;
3719 let per_commitment_point = Readable::read(reader)?;
3720 let revokable_script = Readable::read(reader)?;
3721 Some((revokable_address, per_commitment_point, revokable_script))
3724 _ => return Err(DecodeError::InvalidValue),
3726 let counterparty_payment_script = Readable::read(reader)?;
3727 let shutdown_script = {
3728 let script = <Script as Readable>::read(reader)?;
3729 if script.is_empty() { None } else { Some(script) }
3732 let channel_keys_id = Readable::read(reader)?;
3733 let holder_revocation_basepoint = Readable::read(reader)?;
3734 // Technically this can fail and serialize fail a round-trip, but only for serialization of
3735 // barely-init'd ChannelMonitors that we can't do anything with.
3736 let outpoint = OutPoint {
3737 txid: Readable::read(reader)?,
3738 index: Readable::read(reader)?,
3740 let funding_info = (outpoint, Readable::read(reader)?);
3741 let current_counterparty_commitment_txid = Readable::read(reader)?;
3742 let prev_counterparty_commitment_txid = Readable::read(reader)?;
3744 let counterparty_commitment_params = Readable::read(reader)?;
3745 let funding_redeemscript = Readable::read(reader)?;
3746 let channel_value_satoshis = Readable::read(reader)?;
3748 let their_cur_per_commitment_points = {
3749 let first_idx = <U48 as Readable>::read(reader)?.0;
3753 let first_point = Readable::read(reader)?;
3754 let second_point_slice: [u8; 33] = Readable::read(reader)?;
3755 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
3756 Some((first_idx, first_point, None))
3758 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
3763 let on_holder_tx_csv: u16 = Readable::read(reader)?;
3765 let commitment_secrets = Readable::read(reader)?;
3767 macro_rules! read_htlc_in_commitment {
3770 let offered: bool = Readable::read(reader)?;
3771 let amount_msat: u64 = Readable::read(reader)?;
3772 let cltv_expiry: u32 = Readable::read(reader)?;
3773 let payment_hash: PaymentHash = Readable::read(reader)?;
3774 let transaction_output_index: Option<u32> = Readable::read(reader)?;
3776 HTLCOutputInCommitment {
3777 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
3783 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
3784 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
3785 for _ in 0..counterparty_claimable_outpoints_len {
3786 let txid: Txid = Readable::read(reader)?;
3787 let htlcs_count: u64 = Readable::read(reader)?;
3788 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
3789 for _ in 0..htlcs_count {
3790 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
3792 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
3793 return Err(DecodeError::InvalidValue);
3797 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
3798 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
3799 for _ in 0..counterparty_commitment_txn_on_chain_len {
3800 let txid: Txid = Readable::read(reader)?;
3801 let commitment_number = <U48 as Readable>::read(reader)?.0;
3802 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
3803 return Err(DecodeError::InvalidValue);
3807 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
3808 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
3809 for _ in 0..counterparty_hash_commitment_number_len {
3810 let payment_hash: PaymentHash = Readable::read(reader)?;
3811 let commitment_number = <U48 as Readable>::read(reader)?.0;
3812 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
3813 return Err(DecodeError::InvalidValue);
3817 let mut prev_holder_signed_commitment_tx: Option<HolderSignedTx> =
3818 match <u8 as Readable>::read(reader)? {
3821 Some(Readable::read(reader)?)
3823 _ => return Err(DecodeError::InvalidValue),
3825 let mut current_holder_commitment_tx: HolderSignedTx = Readable::read(reader)?;
3827 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
3828 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
3830 let payment_preimages_len: u64 = Readable::read(reader)?;
3831 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
3832 for _ in 0..payment_preimages_len {
3833 let preimage: PaymentPreimage = Readable::read(reader)?;
3834 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3835 if let Some(_) = payment_preimages.insert(hash, preimage) {
3836 return Err(DecodeError::InvalidValue);
3840 let pending_monitor_events_len: u64 = Readable::read(reader)?;
3841 let mut pending_monitor_events = Some(
3842 Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))));
3843 for _ in 0..pending_monitor_events_len {
3844 let ev = match <u8 as Readable>::read(reader)? {
3845 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
3846 1 => MonitorEvent::CommitmentTxConfirmed(funding_info.0),
3847 _ => return Err(DecodeError::InvalidValue)
3849 pending_monitor_events.as_mut().unwrap().push(ev);
3852 let pending_events_len: u64 = Readable::read(reader)?;
3853 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
3854 for _ in 0..pending_events_len {
3855 if let Some(event) = MaybeReadable::read(reader)? {
3856 pending_events.push(event);
3860 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
3862 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
3863 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
3864 for _ in 0..waiting_threshold_conf_len {
3865 if let Some(val) = MaybeReadable::read(reader)? {
3866 onchain_events_awaiting_threshold_conf.push(val);
3870 let outputs_to_watch_len: u64 = Readable::read(reader)?;
3871 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
3872 for _ in 0..outputs_to_watch_len {
3873 let txid = Readable::read(reader)?;
3874 let outputs_len: u64 = Readable::read(reader)?;
3875 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
3876 for _ in 0..outputs_len {
3877 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
3879 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
3880 return Err(DecodeError::InvalidValue);
3883 let onchain_tx_handler: OnchainTxHandler<SP::Signer> = ReadableArgs::read(
3884 reader, (entropy_source, signer_provider, channel_value_satoshis, channel_keys_id)
3887 let lockdown_from_offchain = Readable::read(reader)?;
3888 let holder_tx_signed = Readable::read(reader)?;
3890 if let Some(prev_commitment_tx) = prev_holder_signed_commitment_tx.as_mut() {
3891 let prev_holder_value = onchain_tx_handler.get_prev_holder_commitment_to_self_value();
3892 if prev_holder_value.is_none() { return Err(DecodeError::InvalidValue); }
3893 if prev_commitment_tx.to_self_value_sat == u64::max_value() {
3894 prev_commitment_tx.to_self_value_sat = prev_holder_value.unwrap();
3895 } else if prev_commitment_tx.to_self_value_sat != prev_holder_value.unwrap() {
3896 return Err(DecodeError::InvalidValue);
3900 let cur_holder_value = onchain_tx_handler.get_cur_holder_commitment_to_self_value();
3901 if current_holder_commitment_tx.to_self_value_sat == u64::max_value() {
3902 current_holder_commitment_tx.to_self_value_sat = cur_holder_value;
3903 } else if current_holder_commitment_tx.to_self_value_sat != cur_holder_value {
3904 return Err(DecodeError::InvalidValue);
3907 let mut funding_spend_confirmed = None;
3908 let mut htlcs_resolved_on_chain = Some(Vec::new());
3909 let mut funding_spend_seen = Some(false);
3910 let mut counterparty_node_id = None;
3911 let mut confirmed_commitment_tx_counterparty_output = None;
3912 let mut spendable_txids_confirmed = Some(Vec::new());
3913 let mut counterparty_fulfilled_htlcs = Some(HashMap::new());
3914 read_tlv_fields!(reader, {
3915 (1, funding_spend_confirmed, option),
3916 (3, htlcs_resolved_on_chain, vec_type),
3917 (5, pending_monitor_events, vec_type),
3918 (7, funding_spend_seen, option),
3919 (9, counterparty_node_id, option),
3920 (11, confirmed_commitment_tx_counterparty_output, option),
3921 (13, spendable_txids_confirmed, vec_type),
3922 (15, counterparty_fulfilled_htlcs, option),
3925 Ok((best_block.block_hash(), ChannelMonitor::from_impl(ChannelMonitorImpl {
3927 commitment_transaction_number_obscure_factor,
3930 broadcasted_holder_revokable_script,
3931 counterparty_payment_script,
3935 holder_revocation_basepoint,
3937 current_counterparty_commitment_txid,
3938 prev_counterparty_commitment_txid,
3940 counterparty_commitment_params,
3941 funding_redeemscript,
3942 channel_value_satoshis,
3943 their_cur_per_commitment_points,
3948 counterparty_claimable_outpoints,
3949 counterparty_commitment_txn_on_chain,
3950 counterparty_hash_commitment_number,
3951 counterparty_fulfilled_htlcs: counterparty_fulfilled_htlcs.unwrap(),
3953 prev_holder_signed_commitment_tx,
3954 current_holder_commitment_tx,
3955 current_counterparty_commitment_number,
3956 current_holder_commitment_number,
3959 pending_monitor_events: pending_monitor_events.unwrap(),
3962 onchain_events_awaiting_threshold_conf,
3967 lockdown_from_offchain,
3969 funding_spend_seen: funding_spend_seen.unwrap(),
3970 funding_spend_confirmed,
3971 confirmed_commitment_tx_counterparty_output,
3972 htlcs_resolved_on_chain: htlcs_resolved_on_chain.unwrap(),
3973 spendable_txids_confirmed: spendable_txids_confirmed.unwrap(),
3976 counterparty_node_id,
3983 use bitcoin::blockdata::block::BlockHeader;
3984 use bitcoin::blockdata::script::{Script, Builder};
3985 use bitcoin::blockdata::opcodes;
3986 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, EcdsaSighashType};
3987 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
3988 use bitcoin::util::sighash;
3989 use bitcoin::hashes::Hash;
3990 use bitcoin::hashes::sha256::Hash as Sha256;
3991 use bitcoin::hashes::hex::FromHex;
3992 use bitcoin::hash_types::{BlockHash, Txid};
3993 use bitcoin::network::constants::Network;
3994 use bitcoin::secp256k1::{SecretKey,PublicKey};
3995 use bitcoin::secp256k1::Secp256k1;
3999 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
4001 use super::ChannelMonitorUpdateStep;
4002 use crate::{check_added_monitors, check_closed_broadcast, check_closed_event, check_spends, get_local_commitment_txn, get_monitor, get_route_and_payment_hash, unwrap_send_err};
4003 use crate::chain::{BestBlock, Confirm};
4004 use crate::chain::channelmonitor::ChannelMonitor;
4005 use crate::chain::package::{weight_offered_htlc, weight_received_htlc, weight_revoked_offered_htlc, weight_revoked_received_htlc, WEIGHT_REVOKED_OUTPUT};
4006 use crate::chain::transaction::OutPoint;
4007 use crate::chain::keysinterface::InMemorySigner;
4008 use crate::ln::{PaymentPreimage, PaymentHash};
4009 use crate::ln::chan_utils;
4010 use crate::ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
4011 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId};
4012 use crate::ln::functional_test_utils::*;
4013 use crate::ln::script::ShutdownScript;
4014 use crate::util::errors::APIError;
4015 use crate::util::events::ClosureReason;
4016 use crate::util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
4017 use crate::util::ser::{ReadableArgs, Writeable};
4018 use crate::sync::{Arc, Mutex};
4020 use bitcoin::{PackedLockTime, Sequence, TxMerkleNode, Witness};
4021 use crate::prelude::*;
4023 fn do_test_funding_spend_refuses_updates(use_local_txn: bool) {
4024 // Previously, monitor updates were allowed freely even after a funding-spend transaction
4025 // confirmed. This would allow a race condition where we could receive a payment (including
4026 // the counterparty revoking their broadcasted state!) and accept it without recourse as
4027 // long as the ChannelMonitor receives the block first, the full commitment update dance
4028 // occurs after the block is connected, and before the ChannelManager receives the block.
4029 // Obviously this is an incredibly contrived race given the counterparty would be risking
4030 // their full channel balance for it, but its worth fixing nonetheless as it makes the
4031 // potential ChannelMonitor states simpler to reason about.
4033 // This test checks said behavior, as well as ensuring a ChannelMonitorUpdate with multiple
4034 // updates is handled correctly in such conditions.
4035 let chanmon_cfgs = create_chanmon_cfgs(3);
4036 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
4037 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
4038 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
4039 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
4040 create_announced_chan_between_nodes(&nodes, 1, 2);
4042 // Rebalance somewhat
4043 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
4045 // First route two payments for testing at the end
4046 let payment_preimage_1 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4047 let payment_preimage_2 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4049 let local_txn = get_local_commitment_txn!(nodes[1], channel.2);
4050 assert_eq!(local_txn.len(), 1);
4051 let remote_txn = get_local_commitment_txn!(nodes[0], channel.2);
4052 assert_eq!(remote_txn.len(), 3); // Commitment and two HTLC-Timeouts
4053 check_spends!(remote_txn[1], remote_txn[0]);
4054 check_spends!(remote_txn[2], remote_txn[0]);
4055 let broadcast_tx = if use_local_txn { &local_txn[0] } else { &remote_txn[0] };
4057 // Connect a commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
4058 // channel is now closed, but the ChannelManager doesn't know that yet.
4059 let new_header = BlockHeader {
4060 version: 2, time: 0, bits: 0, nonce: 0,
4061 prev_blockhash: nodes[0].best_block_info().0,
4062 merkle_root: TxMerkleNode::all_zeros() };
4063 let conf_height = nodes[0].best_block_info().1 + 1;
4064 nodes[1].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
4065 &[(0, broadcast_tx)], conf_height);
4067 let (_, pre_update_monitor) = <(BlockHash, ChannelMonitor<InMemorySigner>)>::read(
4068 &mut io::Cursor::new(&get_monitor!(nodes[1], channel.2).encode()),
4069 (&nodes[1].keys_manager.backing, &nodes[1].keys_manager.backing)).unwrap();
4071 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
4072 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
4073 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 100_000);
4074 unwrap_send_err!(nodes[1].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
4075 true, APIError::ChannelUnavailable { ref err },
4076 assert!(err.contains("ChannelMonitor storage failure")));
4077 check_added_monitors!(nodes[1], 2); // After the failure we generate a close-channel monitor update
4078 check_closed_broadcast!(nodes[1], true);
4079 check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "ChannelMonitor storage failure".to_string() });
4081 // Build a new ChannelMonitorUpdate which contains both the failing commitment tx update
4082 // and provides the claim preimages for the two pending HTLCs. The first update generates
4083 // an error, but the point of this test is to ensure the later updates are still applied.
4084 let monitor_updates = nodes[1].chain_monitor.monitor_updates.lock().unwrap();
4085 let mut replay_update = monitor_updates.get(&channel.2).unwrap().iter().rev().skip(1).next().unwrap().clone();
4086 assert_eq!(replay_update.updates.len(), 1);
4087 if let ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } = replay_update.updates[0] {
4088 } else { panic!(); }
4089 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_1 });
4090 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_2 });
4092 let broadcaster = TestBroadcaster::new(Arc::clone(&nodes[1].blocks));
4094 pre_update_monitor.update_monitor(&replay_update, &&broadcaster, &chanmon_cfgs[1].fee_estimator, &nodes[1].logger)
4096 // Even though we error'd on the first update, we should still have generated an HTLC claim
4098 let txn_broadcasted = broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
4099 assert!(txn_broadcasted.len() >= 2);
4100 let htlc_txn = txn_broadcasted.iter().filter(|tx| {
4101 assert_eq!(tx.input.len(), 1);
4102 tx.input[0].previous_output.txid == broadcast_tx.txid()
4103 }).collect::<Vec<_>>();
4104 assert_eq!(htlc_txn.len(), 2);
4105 check_spends!(htlc_txn[0], broadcast_tx);
4106 check_spends!(htlc_txn[1], broadcast_tx);
4109 fn test_funding_spend_refuses_updates() {
4110 do_test_funding_spend_refuses_updates(true);
4111 do_test_funding_spend_refuses_updates(false);
4115 fn test_prune_preimages() {
4116 let secp_ctx = Secp256k1::new();
4117 let logger = Arc::new(TestLogger::new());
4118 let broadcaster = Arc::new(TestBroadcaster {
4119 txn_broadcasted: Mutex::new(Vec::new()),
4120 blocks: Arc::new(Mutex::new(Vec::new()))
4122 let fee_estimator = TestFeeEstimator { sat_per_kw: Mutex::new(253) };
4124 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4126 let mut preimages = Vec::new();
4129 let preimage = PaymentPreimage([i; 32]);
4130 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
4131 preimages.push((preimage, hash));
4135 macro_rules! preimages_slice_to_htlc_outputs {
4136 ($preimages_slice: expr) => {
4138 let mut res = Vec::new();
4139 for (idx, preimage) in $preimages_slice.iter().enumerate() {
4140 res.push((HTLCOutputInCommitment {
4144 payment_hash: preimage.1.clone(),
4145 transaction_output_index: Some(idx as u32),
4152 macro_rules! preimages_to_holder_htlcs {
4153 ($preimages_slice: expr) => {
4155 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
4156 let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
4162 macro_rules! test_preimages_exist {
4163 ($preimages_slice: expr, $monitor: expr) => {
4164 for preimage in $preimages_slice {
4165 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
4170 let keys = InMemorySigner::new(
4172 SecretKey::from_slice(&[41; 32]).unwrap(),
4173 SecretKey::from_slice(&[41; 32]).unwrap(),
4174 SecretKey::from_slice(&[41; 32]).unwrap(),
4175 SecretKey::from_slice(&[41; 32]).unwrap(),
4176 SecretKey::from_slice(&[41; 32]).unwrap(),
4182 let counterparty_pubkeys = ChannelPublicKeys {
4183 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
4184 revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
4185 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
4186 delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
4187 htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
4189 let funding_outpoint = OutPoint { txid: Txid::all_zeros(), index: u16::max_value() };
4190 let channel_parameters = ChannelTransactionParameters {
4191 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
4192 holder_selected_contest_delay: 66,
4193 is_outbound_from_holder: true,
4194 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
4195 pubkeys: counterparty_pubkeys,
4196 selected_contest_delay: 67,
4198 funding_outpoint: Some(funding_outpoint),
4200 opt_non_zero_fee_anchors: None,
4202 // Prune with one old state and a holder commitment tx holding a few overlaps with the
4204 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4205 let best_block = BestBlock::from_network(Network::Testnet);
4206 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
4207 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &Script::new(),
4208 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
4209 &channel_parameters,
4210 Script::new(), 46, 0,
4211 HolderCommitmentTransaction::dummy(), best_block, dummy_key);
4213 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
4214 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"1").into_inner()),
4215 preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
4216 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"2").into_inner()),
4217 preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
4218 for &(ref preimage, ref hash) in preimages.iter() {
4219 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&fee_estimator);
4220 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &bounded_fee_estimator, &logger);
4223 // Now provide a secret, pruning preimages 10-15
4224 let mut secret = [0; 32];
4225 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
4226 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
4227 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
4228 test_preimages_exist!(&preimages[0..10], monitor);
4229 test_preimages_exist!(&preimages[15..20], monitor);
4231 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"3").into_inner()),
4232 preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
4234 // Now provide a further secret, pruning preimages 15-17
4235 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
4236 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
4237 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
4238 test_preimages_exist!(&preimages[0..10], monitor);
4239 test_preimages_exist!(&preimages[17..20], monitor);
4241 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"4").into_inner()),
4242 preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
4244 // Now update holder commitment tx info, pruning only element 18 as we still care about the
4245 // previous commitment tx's preimages too
4246 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
4247 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
4248 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
4249 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
4250 test_preimages_exist!(&preimages[0..10], monitor);
4251 test_preimages_exist!(&preimages[18..20], monitor);
4253 // But if we do it again, we'll prune 5-10
4254 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
4255 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
4256 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
4257 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
4258 test_preimages_exist!(&preimages[0..5], monitor);
4262 fn test_claim_txn_weight_computation() {
4263 // We test Claim txn weight, knowing that we want expected weigth and
4264 // not actual case to avoid sigs and time-lock delays hell variances.
4266 let secp_ctx = Secp256k1::new();
4267 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
4268 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
4270 macro_rules! sign_input {
4271 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr, $opt_anchors: expr) => {
4272 let htlc = HTLCOutputInCommitment {
4273 offered: if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_offered_htlc($opt_anchors) { true } else { false },
4275 cltv_expiry: 2 << 16,
4276 payment_hash: PaymentHash([1; 32]),
4277 transaction_output_index: Some($idx as u32),
4279 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, $opt_anchors, &pubkey, &pubkey, &pubkey) };
4280 let sighash = hash_to_message!(&$sighash_parts.segwit_signature_hash($idx, &redeem_script, $amount, EcdsaSighashType::All).unwrap()[..]);
4281 let sig = secp_ctx.sign_ecdsa(&sighash, &privkey);
4282 let mut ser_sig = sig.serialize_der().to_vec();
4283 ser_sig.push(EcdsaSighashType::All as u8);
4284 $sum_actual_sigs += ser_sig.len();
4285 let witness = $sighash_parts.witness_mut($idx).unwrap();
4286 witness.push(ser_sig);
4287 if *$weight == WEIGHT_REVOKED_OUTPUT {
4288 witness.push(vec!(1));
4289 } else if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_revoked_received_htlc($opt_anchors) {
4290 witness.push(pubkey.clone().serialize().to_vec());
4291 } else if *$weight == weight_received_htlc($opt_anchors) {
4292 witness.push(vec![0]);
4294 witness.push(PaymentPreimage([1; 32]).0.to_vec());
4296 witness.push(redeem_script.into_bytes());
4297 let witness = witness.to_vec();
4298 println!("witness[0] {}", witness[0].len());
4299 println!("witness[1] {}", witness[1].len());
4300 println!("witness[2] {}", witness[2].len());
4304 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
4305 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
4307 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
4308 for &opt_anchors in [false, true].iter() {
4309 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4310 let mut sum_actual_sigs = 0;
4312 claim_tx.input.push(TxIn {
4313 previous_output: BitcoinOutPoint {
4317 script_sig: Script::new(),
4318 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4319 witness: Witness::new(),
4322 claim_tx.output.push(TxOut {
4323 script_pubkey: script_pubkey.clone(),
4326 let base_weight = claim_tx.weight();
4327 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, weight_revoked_offered_htlc(opt_anchors), weight_revoked_offered_htlc(opt_anchors), weight_revoked_received_htlc(opt_anchors)];
4328 let mut inputs_total_weight = 2; // count segwit flags
4330 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4331 for (idx, inp) in inputs_weight.iter().enumerate() {
4332 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4333 inputs_total_weight += inp;
4336 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
4339 // Claim tx with 1 offered HTLCs, 3 received HTLCs
4340 for &opt_anchors in [false, true].iter() {
4341 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4342 let mut sum_actual_sigs = 0;
4344 claim_tx.input.push(TxIn {
4345 previous_output: BitcoinOutPoint {
4349 script_sig: Script::new(),
4350 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4351 witness: Witness::new(),
4354 claim_tx.output.push(TxOut {
4355 script_pubkey: script_pubkey.clone(),
4358 let base_weight = claim_tx.weight();
4359 let inputs_weight = vec![weight_offered_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors)];
4360 let mut inputs_total_weight = 2; // count segwit flags
4362 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4363 for (idx, inp) in inputs_weight.iter().enumerate() {
4364 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4365 inputs_total_weight += inp;
4368 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
4371 // Justice tx with 1 revoked HTLC-Success tx output
4372 for &opt_anchors in [false, true].iter() {
4373 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4374 let mut sum_actual_sigs = 0;
4375 claim_tx.input.push(TxIn {
4376 previous_output: BitcoinOutPoint {
4380 script_sig: Script::new(),
4381 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4382 witness: Witness::new(),
4384 claim_tx.output.push(TxOut {
4385 script_pubkey: script_pubkey.clone(),
4388 let base_weight = claim_tx.weight();
4389 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
4390 let mut inputs_total_weight = 2; // count segwit flags
4392 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4393 for (idx, inp) in inputs_weight.iter().enumerate() {
4394 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4395 inputs_total_weight += inp;
4398 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_isg */ (73 * inputs_weight.len() - sum_actual_sigs));
4402 // Further testing is done in the ChannelManager integration tests.