1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::BlockHeader;
24 use bitcoin::blockdata::transaction::{OutPoint as BitcoinOutPoint, TxOut, Transaction};
25 use bitcoin::blockdata::script::{Script, Builder};
26 use bitcoin::blockdata::opcodes;
28 use bitcoin::hashes::Hash;
29 use bitcoin::hashes::sha256::Hash as Sha256;
30 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
33 use bitcoin::secp256k1::{SecretKey, PublicKey};
34 use bitcoin::secp256k1;
36 use crate::ln::{PaymentHash, PaymentPreimage};
37 use crate::ln::msgs::DecodeError;
38 use crate::ln::chan_utils;
39 use crate::ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCClaim, ChannelTransactionParameters, HolderCommitmentTransaction};
40 use crate::ln::channelmanager::{HTLCSource, SentHTLCId};
42 use crate::chain::{BestBlock, WatchedOutput};
43 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator, LowerBoundedFeeEstimator};
44 use crate::chain::transaction::{OutPoint, TransactionData};
45 use crate::chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, WriteableEcdsaChannelSigner, SignerProvider, EntropySource};
47 use crate::chain::onchaintx::ClaimEvent;
48 use crate::chain::onchaintx::OnchainTxHandler;
49 use crate::chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
50 use crate::chain::Filter;
51 use crate::util::logger::Logger;
52 use crate::util::ser::{Readable, ReadableArgs, RequiredWrapper, MaybeReadable, UpgradableRequired, Writer, Writeable, U48};
53 use crate::util::byte_utils;
54 use crate::util::events::Event;
56 use crate::util::events::{AnchorDescriptor, HTLCDescriptor, BumpTransactionEvent};
58 use crate::prelude::*;
60 use crate::io::{self, Error};
61 use core::convert::TryInto;
63 use crate::sync::{Mutex, LockTestExt};
65 /// An update generated by the underlying channel itself which contains some new information the
66 /// [`ChannelMonitor`] should be made aware of.
68 /// Because this represents only a small number of updates to the underlying state, it is generally
69 /// much smaller than a full [`ChannelMonitor`]. However, for large single commitment transaction
70 /// updates (e.g. ones during which there are hundreds of HTLCs pending on the commitment
71 /// transaction), a single update may reach upwards of 1 MiB in serialized size.
72 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq, Eq))]
75 pub struct ChannelMonitorUpdate {
76 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
77 /// The sequence number of this update. Updates *must* be replayed in-order according to this
78 /// sequence number (and updates may panic if they are not). The update_id values are strictly
79 /// increasing and increase by one for each new update, with two exceptions specified below.
81 /// This sequence number is also used to track up to which points updates which returned
82 /// [`ChannelMonitorUpdateStatus::InProgress`] have been applied to all copies of a given
83 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
85 /// The only instances we allow where update_id values are not strictly increasing have a
86 /// special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. This update ID is used for updates that
87 /// will force close the channel by broadcasting the latest commitment transaction or
88 /// special post-force-close updates, like providing preimages necessary to claim outputs on the
89 /// broadcast commitment transaction. See its docs for more details.
91 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
95 /// The update ID used for a [`ChannelMonitorUpdate`] that is either:
97 /// (1) attempting to force close the channel by broadcasting our latest commitment transaction or
98 /// (2) providing a preimage (after the channel has been force closed) from a forward link that
99 /// allows us to spend an HTLC output on this channel's (the backward link's) broadcasted
100 /// commitment transaction.
102 /// No other [`ChannelMonitorUpdate`]s are allowed after force-close.
103 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
105 impl Writeable for ChannelMonitorUpdate {
106 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
107 write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
108 self.update_id.write(w)?;
109 (self.updates.len() as u64).write(w)?;
110 for update_step in self.updates.iter() {
111 update_step.write(w)?;
113 write_tlv_fields!(w, {});
117 impl Readable for ChannelMonitorUpdate {
118 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
119 let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
120 let update_id: u64 = Readable::read(r)?;
121 let len: u64 = Readable::read(r)?;
122 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
124 if let Some(upd) = MaybeReadable::read(r)? {
128 read_tlv_fields!(r, {});
129 Ok(Self { update_id, updates })
133 /// An event to be processed by the ChannelManager.
134 #[derive(Clone, PartialEq, Eq)]
135 pub enum MonitorEvent {
136 /// A monitor event containing an HTLCUpdate.
137 HTLCEvent(HTLCUpdate),
139 /// A monitor event that the Channel's commitment transaction was confirmed.
140 CommitmentTxConfirmed(OutPoint),
142 /// Indicates a [`ChannelMonitor`] update has completed. See
143 /// [`ChannelMonitorUpdateStatus::InProgress`] for more information on how this is used.
145 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
147 /// The funding outpoint of the [`ChannelMonitor`] that was updated
148 funding_txo: OutPoint,
149 /// The Update ID from [`ChannelMonitorUpdate::update_id`] which was applied or
150 /// [`ChannelMonitor::get_latest_update_id`].
152 /// Note that this should only be set to a given update's ID if all previous updates for the
153 /// same [`ChannelMonitor`] have been applied and persisted.
154 monitor_update_id: u64,
157 /// Indicates a [`ChannelMonitor`] update has failed. See
158 /// [`ChannelMonitorUpdateStatus::PermanentFailure`] for more information on how this is used.
160 /// [`ChannelMonitorUpdateStatus::PermanentFailure`]: super::ChannelMonitorUpdateStatus::PermanentFailure
161 UpdateFailed(OutPoint),
163 impl_writeable_tlv_based_enum_upgradable!(MonitorEvent,
164 // Note that Completed and UpdateFailed are currently never serialized to disk as they are
165 // generated only in ChainMonitor
167 (0, funding_txo, required),
168 (2, monitor_update_id, required),
172 (4, CommitmentTxConfirmed),
176 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
177 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
178 /// preimage claim backward will lead to loss of funds.
179 #[derive(Clone, PartialEq, Eq)]
180 pub struct HTLCUpdate {
181 pub(crate) payment_hash: PaymentHash,
182 pub(crate) payment_preimage: Option<PaymentPreimage>,
183 pub(crate) source: HTLCSource,
184 pub(crate) htlc_value_satoshis: Option<u64>,
186 impl_writeable_tlv_based!(HTLCUpdate, {
187 (0, payment_hash, required),
188 (1, htlc_value_satoshis, option),
189 (2, source, required),
190 (4, payment_preimage, option),
193 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
194 /// instead claiming it in its own individual transaction.
195 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
196 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
197 /// HTLC-Success transaction.
198 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
199 /// transaction confirmed (and we use it in a few more, equivalent, places).
200 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
201 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
202 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
203 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
204 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
205 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
206 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
207 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
208 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
209 /// accurate block height.
210 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
211 /// with at worst this delay, so we are not only using this value as a mercy for them but also
212 /// us as a safeguard to delay with enough time.
213 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
214 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding
215 /// inbound HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us
218 /// Note that this is a library-wide security assumption. If a reorg deeper than this number of
219 /// blocks occurs, counterparties may be able to steal funds or claims made by and balances exposed
220 /// by a [`ChannelMonitor`] may be incorrect.
221 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
222 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
223 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
224 // keep bumping another claim tx to solve the outpoint.
225 pub const ANTI_REORG_DELAY: u32 = 6;
226 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
227 /// refuse to accept a new HTLC.
229 /// This is used for a few separate purposes:
230 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
231 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
233 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
234 /// condition with the above), we will fail this HTLC without telling the user we received it,
236 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
237 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
239 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
240 /// in a race condition between the user connecting a block (which would fail it) and the user
241 /// providing us the preimage (which would claim it).
242 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
244 // TODO(devrandom) replace this with HolderCommitmentTransaction
245 #[derive(Clone, PartialEq, Eq)]
246 struct HolderSignedTx {
247 /// txid of the transaction in tx, just used to make comparison faster
249 revocation_key: PublicKey,
250 a_htlc_key: PublicKey,
251 b_htlc_key: PublicKey,
252 delayed_payment_key: PublicKey,
253 per_commitment_point: PublicKey,
254 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
255 to_self_value_sat: u64,
258 impl_writeable_tlv_based!(HolderSignedTx, {
260 // Note that this is filled in with data from OnchainTxHandler if it's missing.
261 // For HolderSignedTx objects serialized with 0.0.100+, this should be filled in.
262 (1, to_self_value_sat, (default_value, u64::max_value())),
263 (2, revocation_key, required),
264 (4, a_htlc_key, required),
265 (6, b_htlc_key, required),
266 (8, delayed_payment_key, required),
267 (10, per_commitment_point, required),
268 (12, feerate_per_kw, required),
269 (14, htlc_outputs, vec_type)
273 impl HolderSignedTx {
274 fn non_dust_htlcs(&self) -> Vec<HTLCOutputInCommitment> {
275 self.htlc_outputs.iter().filter_map(|(htlc, _, _)| {
276 if let Some(_) = htlc.transaction_output_index {
286 /// We use this to track static counterparty commitment transaction data and to generate any
287 /// justice or 2nd-stage preimage/timeout transactions.
288 #[derive(PartialEq, Eq)]
289 struct CounterpartyCommitmentParameters {
290 counterparty_delayed_payment_base_key: PublicKey,
291 counterparty_htlc_base_key: PublicKey,
292 on_counterparty_tx_csv: u16,
295 impl Writeable for CounterpartyCommitmentParameters {
296 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
297 w.write_all(&(0 as u64).to_be_bytes())?;
298 write_tlv_fields!(w, {
299 (0, self.counterparty_delayed_payment_base_key, required),
300 (2, self.counterparty_htlc_base_key, required),
301 (4, self.on_counterparty_tx_csv, required),
306 impl Readable for CounterpartyCommitmentParameters {
307 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
308 let counterparty_commitment_transaction = {
309 // Versions prior to 0.0.100 had some per-HTLC state stored here, which is no longer
310 // used. Read it for compatibility.
311 let per_htlc_len: u64 = Readable::read(r)?;
312 for _ in 0..per_htlc_len {
313 let _txid: Txid = Readable::read(r)?;
314 let htlcs_count: u64 = Readable::read(r)?;
315 for _ in 0..htlcs_count {
316 let _htlc: HTLCOutputInCommitment = Readable::read(r)?;
320 let mut counterparty_delayed_payment_base_key = RequiredWrapper(None);
321 let mut counterparty_htlc_base_key = RequiredWrapper(None);
322 let mut on_counterparty_tx_csv: u16 = 0;
323 read_tlv_fields!(r, {
324 (0, counterparty_delayed_payment_base_key, required),
325 (2, counterparty_htlc_base_key, required),
326 (4, on_counterparty_tx_csv, required),
328 CounterpartyCommitmentParameters {
329 counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
330 counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
331 on_counterparty_tx_csv,
334 Ok(counterparty_commitment_transaction)
338 /// An entry for an [`OnchainEvent`], stating the block height and hash when the event was
339 /// observed, as well as the transaction causing it.
341 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
342 #[derive(PartialEq, Eq)]
343 struct OnchainEventEntry {
346 block_hash: Option<BlockHash>, // Added as optional, will be filled in for any entry generated on 0.0.113 or after
348 transaction: Option<Transaction>, // Added as optional, but always filled in, in LDK 0.0.110
351 impl OnchainEventEntry {
352 fn confirmation_threshold(&self) -> u32 {
353 let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
355 OnchainEvent::MaturingOutput {
356 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
358 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
359 // it's broadcastable when we see the previous block.
360 conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
362 OnchainEvent::FundingSpendConfirmation { on_local_output_csv: Some(csv), .. } |
363 OnchainEvent::HTLCSpendConfirmation { on_to_local_output_csv: Some(csv), .. } => {
364 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
365 // it's broadcastable when we see the previous block.
366 conf_threshold = cmp::max(conf_threshold, self.height + csv as u32 - 1);
373 fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
374 best_block.height() >= self.confirmation_threshold()
378 /// The (output index, sats value) for the counterparty's output in a commitment transaction.
380 /// This was added as an `Option` in 0.0.110.
381 type CommitmentTxCounterpartyOutputInfo = Option<(u32, u64)>;
383 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
384 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
385 #[derive(PartialEq, Eq)]
387 /// An outbound HTLC failing after a transaction is confirmed. Used
388 /// * when an outbound HTLC output is spent by us after the HTLC timed out
389 /// * an outbound HTLC which was not present in the commitment transaction which appeared
390 /// on-chain (either because it was not fully committed to or it was dust).
391 /// Note that this is *not* used for preimage claims, as those are passed upstream immediately,
392 /// appearing only as an `HTLCSpendConfirmation`, below.
395 payment_hash: PaymentHash,
396 htlc_value_satoshis: Option<u64>,
397 /// None in the second case, above, ie when there is no relevant output in the commitment
398 /// transaction which appeared on chain.
399 commitment_tx_output_idx: Option<u32>,
401 /// An output waiting on [`ANTI_REORG_DELAY`] confirmations before we hand the user the
402 /// [`SpendableOutputDescriptor`].
404 descriptor: SpendableOutputDescriptor,
406 /// A spend of the funding output, either a commitment transaction or a cooperative closing
408 FundingSpendConfirmation {
409 /// The CSV delay for the output of the funding spend transaction (implying it is a local
410 /// commitment transaction, and this is the delay on the to_self output).
411 on_local_output_csv: Option<u16>,
412 /// If the funding spend transaction was a known remote commitment transaction, we track
413 /// the output index and amount of the counterparty's `to_self` output here.
415 /// This allows us to generate a [`Balance::CounterpartyRevokedOutputClaimable`] for the
416 /// counterparty output.
417 commitment_tx_to_counterparty_output: CommitmentTxCounterpartyOutputInfo,
419 /// A spend of a commitment transaction HTLC output, set in the cases where *no* `HTLCUpdate`
420 /// is constructed. This is used when
421 /// * an outbound HTLC is claimed by our counterparty with a preimage, causing us to
422 /// immediately claim the HTLC on the inbound edge and track the resolution here,
423 /// * an inbound HTLC is claimed by our counterparty (with a timeout),
424 /// * an inbound HTLC is claimed by us (with a preimage).
425 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by the revocation
427 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by an
428 /// HTLC-Success/HTLC-Failure transaction (and is still claimable with a revocation
430 HTLCSpendConfirmation {
431 commitment_tx_output_idx: u32,
432 /// If the claim was made by either party with a preimage, this is filled in
433 preimage: Option<PaymentPreimage>,
434 /// If the claim was made by us on an inbound HTLC against a local commitment transaction,
435 /// we set this to the output CSV value which we will have to wait until to spend the
436 /// output (and generate a SpendableOutput event).
437 on_to_local_output_csv: Option<u16>,
441 impl Writeable for OnchainEventEntry {
442 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
443 write_tlv_fields!(writer, {
444 (0, self.txid, required),
445 (1, self.transaction, option),
446 (2, self.height, required),
447 (3, self.block_hash, option),
448 (4, self.event, required),
454 impl MaybeReadable for OnchainEventEntry {
455 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
456 let mut txid = Txid::all_zeros();
457 let mut transaction = None;
458 let mut block_hash = None;
460 let mut event = UpgradableRequired(None);
461 read_tlv_fields!(reader, {
463 (1, transaction, option),
464 (2, height, required),
465 (3, block_hash, option),
466 (4, event, upgradable_required),
468 Ok(Some(Self { txid, transaction, height, block_hash, event: _init_tlv_based_struct_field!(event, upgradable_required) }))
472 impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
474 (0, source, required),
475 (1, htlc_value_satoshis, option),
476 (2, payment_hash, required),
477 (3, commitment_tx_output_idx, option),
479 (1, MaturingOutput) => {
480 (0, descriptor, required),
482 (3, FundingSpendConfirmation) => {
483 (0, on_local_output_csv, option),
484 (1, commitment_tx_to_counterparty_output, option),
486 (5, HTLCSpendConfirmation) => {
487 (0, commitment_tx_output_idx, required),
488 (2, preimage, option),
489 (4, on_to_local_output_csv, option),
494 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq, Eq))]
496 pub(crate) enum ChannelMonitorUpdateStep {
497 LatestHolderCommitmentTXInfo {
498 commitment_tx: HolderCommitmentTransaction,
499 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
500 claimed_htlcs: Vec<(SentHTLCId, PaymentPreimage)>,
502 LatestCounterpartyCommitmentTXInfo {
503 commitment_txid: Txid,
504 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
505 commitment_number: u64,
506 their_per_commitment_point: PublicKey,
509 payment_preimage: PaymentPreimage,
515 /// Used to indicate that the no future updates will occur, and likely that the latest holder
516 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
518 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
519 /// think we've fallen behind!
520 should_broadcast: bool,
523 scriptpubkey: Script,
527 impl ChannelMonitorUpdateStep {
528 fn variant_name(&self) -> &'static str {
530 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { .. } => "LatestHolderCommitmentTXInfo",
531 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } => "LatestCounterpartyCommitmentTXInfo",
532 ChannelMonitorUpdateStep::PaymentPreimage { .. } => "PaymentPreimage",
533 ChannelMonitorUpdateStep::CommitmentSecret { .. } => "CommitmentSecret",
534 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => "ChannelForceClosed",
535 ChannelMonitorUpdateStep::ShutdownScript { .. } => "ShutdownScript",
540 impl_writeable_tlv_based_enum_upgradable!(ChannelMonitorUpdateStep,
541 (0, LatestHolderCommitmentTXInfo) => {
542 (0, commitment_tx, required),
543 (1, claimed_htlcs, vec_type),
544 (2, htlc_outputs, vec_type),
546 (1, LatestCounterpartyCommitmentTXInfo) => {
547 (0, commitment_txid, required),
548 (2, commitment_number, required),
549 (4, their_per_commitment_point, required),
550 (6, htlc_outputs, vec_type),
552 (2, PaymentPreimage) => {
553 (0, payment_preimage, required),
555 (3, CommitmentSecret) => {
557 (2, secret, required),
559 (4, ChannelForceClosed) => {
560 (0, should_broadcast, required),
562 (5, ShutdownScript) => {
563 (0, scriptpubkey, required),
567 /// Details about the balance(s) available for spending once the channel appears on chain.
569 /// See [`ChannelMonitor::get_claimable_balances`] for more details on when these will or will not
571 #[derive(Clone, Debug, PartialEq, Eq)]
572 #[cfg_attr(test, derive(PartialOrd, Ord))]
574 /// The channel is not yet closed (or the commitment or closing transaction has not yet
575 /// appeared in a block). The given balance is claimable (less on-chain fees) if the channel is
576 /// force-closed now.
577 ClaimableOnChannelClose {
578 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
579 /// required to do so.
580 claimable_amount_satoshis: u64,
582 /// The channel has been closed, and the given balance is ours but awaiting confirmations until
583 /// we consider it spendable.
584 ClaimableAwaitingConfirmations {
585 /// The amount available to claim, in satoshis, possibly excluding the on-chain fees which
586 /// were spent in broadcasting the transaction.
587 claimable_amount_satoshis: u64,
588 /// The height at which an [`Event::SpendableOutputs`] event will be generated for this
590 confirmation_height: u32,
592 /// The channel has been closed, and the given balance should be ours but awaiting spending
593 /// transaction confirmation. If the spending transaction does not confirm in time, it is
594 /// possible our counterparty can take the funds by broadcasting an HTLC timeout on-chain.
596 /// Once the spending transaction confirms, before it has reached enough confirmations to be
597 /// considered safe from chain reorganizations, the balance will instead be provided via
598 /// [`Balance::ClaimableAwaitingConfirmations`].
599 ContentiousClaimable {
600 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
601 /// required to do so.
602 claimable_amount_satoshis: u64,
603 /// The height at which the counterparty may be able to claim the balance if we have not
607 /// HTLCs which we sent to our counterparty which are claimable after a timeout (less on-chain
608 /// fees) if the counterparty does not know the preimage for the HTLCs. These are somewhat
609 /// likely to be claimed by our counterparty before we do.
610 MaybeTimeoutClaimableHTLC {
611 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
612 /// which will be required to do so.
613 claimable_amount_satoshis: u64,
614 /// The height at which we will be able to claim the balance if our counterparty has not
616 claimable_height: u32,
618 /// HTLCs which we received from our counterparty which are claimable with a preimage which we
619 /// do not currently have. This will only be claimable if we receive the preimage from the node
620 /// to which we forwarded this HTLC before the timeout.
621 MaybePreimageClaimableHTLC {
622 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
623 /// which will be required to do so.
624 claimable_amount_satoshis: u64,
625 /// The height at which our counterparty will be able to claim the balance if we have not
626 /// yet received the preimage and claimed it ourselves.
629 /// The channel has been closed, and our counterparty broadcasted a revoked commitment
632 /// Thus, we're able to claim all outputs in the commitment transaction, one of which has the
633 /// following amount.
634 CounterpartyRevokedOutputClaimable {
635 /// The amount, in satoshis, of the output which we can claim.
637 /// Note that for outputs from HTLC balances this may be excluding some on-chain fees that
638 /// were already spent.
639 claimable_amount_satoshis: u64,
643 /// An HTLC which has been irrevocably resolved on-chain, and has reached ANTI_REORG_DELAY.
644 #[derive(PartialEq, Eq)]
645 struct IrrevocablyResolvedHTLC {
646 commitment_tx_output_idx: Option<u32>,
647 /// The txid of the transaction which resolved the HTLC, this may be a commitment (if the HTLC
648 /// was not present in the confirmed commitment transaction), HTLC-Success, or HTLC-Timeout
650 resolving_txid: Option<Txid>, // Added as optional, but always filled in, in 0.0.110
651 resolving_tx: Option<Transaction>,
652 /// Only set if the HTLC claim was ours using a payment preimage
653 payment_preimage: Option<PaymentPreimage>,
656 // In LDK versions prior to 0.0.111 commitment_tx_output_idx was not Option-al and
657 // IrrevocablyResolvedHTLC objects only existed for non-dust HTLCs. This was a bug, but to maintain
658 // backwards compatibility we must ensure we always write out a commitment_tx_output_idx field,
659 // using `u32::max_value()` as a sentinal to indicate the HTLC was dust.
660 impl Writeable for IrrevocablyResolvedHTLC {
661 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
662 let mapped_commitment_tx_output_idx = self.commitment_tx_output_idx.unwrap_or(u32::max_value());
663 write_tlv_fields!(writer, {
664 (0, mapped_commitment_tx_output_idx, required),
665 (1, self.resolving_txid, option),
666 (2, self.payment_preimage, option),
667 (3, self.resolving_tx, option),
673 impl Readable for IrrevocablyResolvedHTLC {
674 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
675 let mut mapped_commitment_tx_output_idx = 0;
676 let mut resolving_txid = None;
677 let mut payment_preimage = None;
678 let mut resolving_tx = None;
679 read_tlv_fields!(reader, {
680 (0, mapped_commitment_tx_output_idx, required),
681 (1, resolving_txid, option),
682 (2, payment_preimage, option),
683 (3, resolving_tx, option),
686 commitment_tx_output_idx: if mapped_commitment_tx_output_idx == u32::max_value() { None } else { Some(mapped_commitment_tx_output_idx) },
694 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
695 /// on-chain transactions to ensure no loss of funds occurs.
697 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
698 /// information and are actively monitoring the chain.
700 /// Pending Events or updated HTLCs which have not yet been read out by
701 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
702 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
703 /// gotten are fully handled before re-serializing the new state.
705 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
706 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
707 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
708 /// returned block hash and the the current chain and then reconnecting blocks to get to the
709 /// best chain) upon deserializing the object!
710 pub struct ChannelMonitor<Signer: WriteableEcdsaChannelSigner> {
712 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
714 inner: Mutex<ChannelMonitorImpl<Signer>>,
718 pub(crate) struct ChannelMonitorImpl<Signer: WriteableEcdsaChannelSigner> {
719 latest_update_id: u64,
720 commitment_transaction_number_obscure_factor: u64,
722 destination_script: Script,
723 broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
724 counterparty_payment_script: Script,
725 shutdown_script: Option<Script>,
727 channel_keys_id: [u8; 32],
728 holder_revocation_basepoint: PublicKey,
729 funding_info: (OutPoint, Script),
730 current_counterparty_commitment_txid: Option<Txid>,
731 prev_counterparty_commitment_txid: Option<Txid>,
733 counterparty_commitment_params: CounterpartyCommitmentParameters,
734 funding_redeemscript: Script,
735 channel_value_satoshis: u64,
736 // first is the idx of the first of the two per-commitment points
737 their_cur_per_commitment_points: Option<(u64, PublicKey, Option<PublicKey>)>,
739 on_holder_tx_csv: u16,
741 commitment_secrets: CounterpartyCommitmentSecrets,
742 /// The set of outpoints in each counterparty commitment transaction. We always need at least
743 /// the payment hash from `HTLCOutputInCommitment` to claim even a revoked commitment
744 /// transaction broadcast as we need to be able to construct the witness script in all cases.
745 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
746 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
747 /// Nor can we figure out their commitment numbers without the commitment transaction they are
748 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
749 /// commitment transactions which we find on-chain, mapping them to the commitment number which
750 /// can be used to derive the revocation key and claim the transactions.
751 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
752 /// Cache used to make pruning of payment_preimages faster.
753 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
754 /// counterparty transactions (ie should remain pretty small).
755 /// Serialized to disk but should generally not be sent to Watchtowers.
756 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
758 counterparty_fulfilled_htlcs: HashMap<SentHTLCId, PaymentPreimage>,
760 // We store two holder commitment transactions to avoid any race conditions where we may update
761 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
762 // various monitors for one channel being out of sync, and us broadcasting a holder
763 // transaction for which we have deleted claim information on some watchtowers.
764 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
765 current_holder_commitment_tx: HolderSignedTx,
767 // Used just for ChannelManager to make sure it has the latest channel data during
769 current_counterparty_commitment_number: u64,
770 // Used just for ChannelManager to make sure it has the latest channel data during
772 current_holder_commitment_number: u64,
774 /// The set of payment hashes from inbound payments for which we know the preimage. Payment
775 /// preimages that are not included in any unrevoked local commitment transaction or unrevoked
776 /// remote commitment transactions are automatically removed when commitment transactions are
778 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
780 // Note that `MonitorEvent`s MUST NOT be generated during update processing, only generated
781 // during chain data processing. This prevents a race in `ChainMonitor::update_channel` (and
782 // presumably user implementations thereof as well) where we update the in-memory channel
783 // object, then before the persistence finishes (as it's all under a read-lock), we return
784 // pending events to the user or to the relevant `ChannelManager`. Then, on reload, we'll have
785 // the pre-event state here, but have processed the event in the `ChannelManager`.
786 // Note that because the `event_lock` in `ChainMonitor` is only taken in
787 // block/transaction-connected events and *not* during block/transaction-disconnected events,
788 // we further MUST NOT generate events during block/transaction-disconnection.
789 pending_monitor_events: Vec<MonitorEvent>,
791 pending_events: Vec<Event>,
793 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
794 // which to take actions once they reach enough confirmations. Each entry includes the
795 // transaction's id and the height when the transaction was confirmed on chain.
796 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
798 // If we get serialized out and re-read, we need to make sure that the chain monitoring
799 // interface knows about the TXOs that we want to be notified of spends of. We could probably
800 // be smart and derive them from the above storage fields, but its much simpler and more
801 // Obviously Correct (tm) if we just keep track of them explicitly.
802 outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
805 pub onchain_tx_handler: OnchainTxHandler<Signer>,
807 onchain_tx_handler: OnchainTxHandler<Signer>,
809 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
810 // channel has been force-closed. After this is set, no further holder commitment transaction
811 // updates may occur, and we panic!() if one is provided.
812 lockdown_from_offchain: bool,
814 // Set once we've signed a holder commitment transaction and handed it over to our
815 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
816 // may occur, and we fail any such monitor updates.
818 // In case of update rejection due to a locally already signed commitment transaction, we
819 // nevertheless store update content to track in case of concurrent broadcast by another
820 // remote monitor out-of-order with regards to the block view.
821 holder_tx_signed: bool,
823 // If a spend of the funding output is seen, we set this to true and reject any further
824 // updates. This prevents any further changes in the offchain state no matter the order
825 // of block connection between ChannelMonitors and the ChannelManager.
826 funding_spend_seen: bool,
828 /// Set to `Some` of the confirmed transaction spending the funding input of the channel after
829 /// reaching `ANTI_REORG_DELAY` confirmations.
830 funding_spend_confirmed: Option<Txid>,
832 confirmed_commitment_tx_counterparty_output: CommitmentTxCounterpartyOutputInfo,
833 /// The set of HTLCs which have been either claimed or failed on chain and have reached
834 /// the requisite confirmations on the claim/fail transaction (either ANTI_REORG_DELAY or the
835 /// spending CSV for revocable outputs).
836 htlcs_resolved_on_chain: Vec<IrrevocablyResolvedHTLC>,
838 /// The set of `SpendableOutput` events which we have already passed upstream to be claimed.
839 /// These are tracked explicitly to ensure that we don't generate the same events redundantly
840 /// if users duplicatively confirm old transactions. Specifically for transactions claiming a
841 /// revoked remote outpoint we otherwise have no tracking at all once they've reached
842 /// [`ANTI_REORG_DELAY`], so we have to track them here.
843 spendable_txids_confirmed: Vec<Txid>,
845 // We simply modify best_block in Channel's block_connected so that serialization is
846 // consistent but hopefully the users' copy handles block_connected in a consistent way.
847 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
848 // their best_block from its state and not based on updated copies that didn't run through
849 // the full block_connected).
850 best_block: BestBlock,
852 /// The node_id of our counterparty
853 counterparty_node_id: Option<PublicKey>,
856 /// Transaction outputs to watch for on-chain spends.
857 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
859 impl<Signer: WriteableEcdsaChannelSigner> PartialEq for ChannelMonitor<Signer> where Signer: PartialEq {
860 fn eq(&self, other: &Self) -> bool {
861 // We need some kind of total lockorder. Absent a better idea, we sort by position in
862 // memory and take locks in that order (assuming that we can't move within memory while a
864 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
865 let a = if ord { self.inner.unsafe_well_ordered_double_lock_self() } else { other.inner.unsafe_well_ordered_double_lock_self() };
866 let b = if ord { other.inner.unsafe_well_ordered_double_lock_self() } else { self.inner.unsafe_well_ordered_double_lock_self() };
871 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitor<Signer> {
872 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
873 self.inner.lock().unwrap().write(writer)
877 // These are also used for ChannelMonitorUpdate, above.
878 const SERIALIZATION_VERSION: u8 = 1;
879 const MIN_SERIALIZATION_VERSION: u8 = 1;
881 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitorImpl<Signer> {
882 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
883 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
885 self.latest_update_id.write(writer)?;
887 // Set in initial Channel-object creation, so should always be set by now:
888 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
890 self.destination_script.write(writer)?;
891 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
892 writer.write_all(&[0; 1])?;
893 broadcasted_holder_revokable_script.0.write(writer)?;
894 broadcasted_holder_revokable_script.1.write(writer)?;
895 broadcasted_holder_revokable_script.2.write(writer)?;
897 writer.write_all(&[1; 1])?;
900 self.counterparty_payment_script.write(writer)?;
901 match &self.shutdown_script {
902 Some(script) => script.write(writer)?,
903 None => Script::new().write(writer)?,
906 self.channel_keys_id.write(writer)?;
907 self.holder_revocation_basepoint.write(writer)?;
908 writer.write_all(&self.funding_info.0.txid[..])?;
909 writer.write_all(&self.funding_info.0.index.to_be_bytes())?;
910 self.funding_info.1.write(writer)?;
911 self.current_counterparty_commitment_txid.write(writer)?;
912 self.prev_counterparty_commitment_txid.write(writer)?;
914 self.counterparty_commitment_params.write(writer)?;
915 self.funding_redeemscript.write(writer)?;
916 self.channel_value_satoshis.write(writer)?;
918 match self.their_cur_per_commitment_points {
919 Some((idx, pubkey, second_option)) => {
920 writer.write_all(&byte_utils::be48_to_array(idx))?;
921 writer.write_all(&pubkey.serialize())?;
922 match second_option {
923 Some(second_pubkey) => {
924 writer.write_all(&second_pubkey.serialize())?;
927 writer.write_all(&[0; 33])?;
932 writer.write_all(&byte_utils::be48_to_array(0))?;
936 writer.write_all(&self.on_holder_tx_csv.to_be_bytes())?;
938 self.commitment_secrets.write(writer)?;
940 macro_rules! serialize_htlc_in_commitment {
941 ($htlc_output: expr) => {
942 writer.write_all(&[$htlc_output.offered as u8; 1])?;
943 writer.write_all(&$htlc_output.amount_msat.to_be_bytes())?;
944 writer.write_all(&$htlc_output.cltv_expiry.to_be_bytes())?;
945 writer.write_all(&$htlc_output.payment_hash.0[..])?;
946 $htlc_output.transaction_output_index.write(writer)?;
950 writer.write_all(&(self.counterparty_claimable_outpoints.len() as u64).to_be_bytes())?;
951 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
952 writer.write_all(&txid[..])?;
953 writer.write_all(&(htlc_infos.len() as u64).to_be_bytes())?;
954 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
955 debug_assert!(htlc_source.is_none() || Some(**txid) == self.current_counterparty_commitment_txid
956 || Some(**txid) == self.prev_counterparty_commitment_txid,
957 "HTLC Sources for all revoked commitment transactions should be none!");
958 serialize_htlc_in_commitment!(htlc_output);
959 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
963 writer.write_all(&(self.counterparty_commitment_txn_on_chain.len() as u64).to_be_bytes())?;
964 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
965 writer.write_all(&txid[..])?;
966 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
969 writer.write_all(&(self.counterparty_hash_commitment_number.len() as u64).to_be_bytes())?;
970 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
971 writer.write_all(&payment_hash.0[..])?;
972 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
975 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
976 writer.write_all(&[1; 1])?;
977 prev_holder_tx.write(writer)?;
979 writer.write_all(&[0; 1])?;
982 self.current_holder_commitment_tx.write(writer)?;
984 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
985 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
987 writer.write_all(&(self.payment_preimages.len() as u64).to_be_bytes())?;
988 for payment_preimage in self.payment_preimages.values() {
989 writer.write_all(&payment_preimage.0[..])?;
992 writer.write_all(&(self.pending_monitor_events.iter().filter(|ev| match ev {
993 MonitorEvent::HTLCEvent(_) => true,
994 MonitorEvent::CommitmentTxConfirmed(_) => true,
996 }).count() as u64).to_be_bytes())?;
997 for event in self.pending_monitor_events.iter() {
999 MonitorEvent::HTLCEvent(upd) => {
1003 MonitorEvent::CommitmentTxConfirmed(_) => 1u8.write(writer)?,
1004 _ => {}, // Covered in the TLV writes below
1008 writer.write_all(&(self.pending_events.len() as u64).to_be_bytes())?;
1009 for event in self.pending_events.iter() {
1010 event.write(writer)?;
1013 self.best_block.block_hash().write(writer)?;
1014 writer.write_all(&self.best_block.height().to_be_bytes())?;
1016 writer.write_all(&(self.onchain_events_awaiting_threshold_conf.len() as u64).to_be_bytes())?;
1017 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
1018 entry.write(writer)?;
1021 (self.outputs_to_watch.len() as u64).write(writer)?;
1022 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
1023 txid.write(writer)?;
1024 (idx_scripts.len() as u64).write(writer)?;
1025 for (idx, script) in idx_scripts.iter() {
1027 script.write(writer)?;
1030 self.onchain_tx_handler.write(writer)?;
1032 self.lockdown_from_offchain.write(writer)?;
1033 self.holder_tx_signed.write(writer)?;
1035 write_tlv_fields!(writer, {
1036 (1, self.funding_spend_confirmed, option),
1037 (3, self.htlcs_resolved_on_chain, vec_type),
1038 (5, self.pending_monitor_events, vec_type),
1039 (7, self.funding_spend_seen, required),
1040 (9, self.counterparty_node_id, option),
1041 (11, self.confirmed_commitment_tx_counterparty_output, option),
1042 (13, self.spendable_txids_confirmed, vec_type),
1043 (15, self.counterparty_fulfilled_htlcs, required),
1050 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1051 /// For lockorder enforcement purposes, we need to have a single site which constructs the
1052 /// `inner` mutex, otherwise cases where we lock two monitors at the same time (eg in our
1053 /// PartialEq implementation) we may decide a lockorder violation has occurred.
1054 fn from_impl(imp: ChannelMonitorImpl<Signer>) -> Self {
1055 ChannelMonitor { inner: Mutex::new(imp) }
1058 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_script: Option<Script>,
1059 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
1060 channel_parameters: &ChannelTransactionParameters,
1061 funding_redeemscript: Script, channel_value_satoshis: u64,
1062 commitment_transaction_number_obscure_factor: u64,
1063 initial_holder_commitment_tx: HolderCommitmentTransaction,
1064 best_block: BestBlock, counterparty_node_id: PublicKey) -> ChannelMonitor<Signer> {
1066 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1067 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
1068 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
1070 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
1071 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
1072 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
1073 let counterparty_commitment_params = CounterpartyCommitmentParameters { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv };
1075 let channel_keys_id = keys.channel_keys_id();
1076 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1078 // block for Rust 1.34 compat
1079 let (holder_commitment_tx, current_holder_commitment_number) = {
1080 let trusted_tx = initial_holder_commitment_tx.trust();
1081 let txid = trusted_tx.txid();
1083 let tx_keys = trusted_tx.keys();
1084 let holder_commitment_tx = HolderSignedTx {
1086 revocation_key: tx_keys.revocation_key,
1087 a_htlc_key: tx_keys.broadcaster_htlc_key,
1088 b_htlc_key: tx_keys.countersignatory_htlc_key,
1089 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1090 per_commitment_point: tx_keys.per_commitment_point,
1091 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1092 to_self_value_sat: initial_holder_commitment_tx.to_broadcaster_value_sat(),
1093 feerate_per_kw: trusted_tx.feerate_per_kw(),
1095 (holder_commitment_tx, trusted_tx.commitment_number())
1098 let onchain_tx_handler =
1099 OnchainTxHandler::new(destination_script.clone(), keys,
1100 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx);
1102 let mut outputs_to_watch = HashMap::new();
1103 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1105 Self::from_impl(ChannelMonitorImpl {
1106 latest_update_id: 0,
1107 commitment_transaction_number_obscure_factor,
1109 destination_script: destination_script.clone(),
1110 broadcasted_holder_revokable_script: None,
1111 counterparty_payment_script,
1115 holder_revocation_basepoint,
1117 current_counterparty_commitment_txid: None,
1118 prev_counterparty_commitment_txid: None,
1120 counterparty_commitment_params,
1121 funding_redeemscript,
1122 channel_value_satoshis,
1123 their_cur_per_commitment_points: None,
1125 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1127 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1128 counterparty_claimable_outpoints: HashMap::new(),
1129 counterparty_commitment_txn_on_chain: HashMap::new(),
1130 counterparty_hash_commitment_number: HashMap::new(),
1131 counterparty_fulfilled_htlcs: HashMap::new(),
1133 prev_holder_signed_commitment_tx: None,
1134 current_holder_commitment_tx: holder_commitment_tx,
1135 current_counterparty_commitment_number: 1 << 48,
1136 current_holder_commitment_number,
1138 payment_preimages: HashMap::new(),
1139 pending_monitor_events: Vec::new(),
1140 pending_events: Vec::new(),
1142 onchain_events_awaiting_threshold_conf: Vec::new(),
1147 lockdown_from_offchain: false,
1148 holder_tx_signed: false,
1149 funding_spend_seen: false,
1150 funding_spend_confirmed: None,
1151 confirmed_commitment_tx_counterparty_output: None,
1152 htlcs_resolved_on_chain: Vec::new(),
1153 spendable_txids_confirmed: Vec::new(),
1156 counterparty_node_id: Some(counterparty_node_id),
1161 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1162 self.inner.lock().unwrap().provide_secret(idx, secret)
1165 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1166 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1167 /// possibly future revocation/preimage information) to claim outputs where possible.
1168 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1169 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
1172 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1173 commitment_number: u64,
1174 their_per_commitment_point: PublicKey,
1176 ) where L::Target: Logger {
1177 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1178 txid, htlc_outputs, commitment_number, their_per_commitment_point, logger)
1182 fn provide_latest_holder_commitment_tx(
1183 &self, holder_commitment_tx: HolderCommitmentTransaction,
1184 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1185 ) -> Result<(), ()> {
1186 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(holder_commitment_tx, htlc_outputs, &Vec::new()).map_err(|_| ())
1189 /// This is used to provide payment preimage(s) out-of-band during startup without updating the
1190 /// off-chain state with a new commitment transaction.
1191 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1193 payment_hash: &PaymentHash,
1194 payment_preimage: &PaymentPreimage,
1196 fee_estimator: &LowerBoundedFeeEstimator<F>,
1199 B::Target: BroadcasterInterface,
1200 F::Target: FeeEstimator,
1203 self.inner.lock().unwrap().provide_payment_preimage(
1204 payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1207 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1212 B::Target: BroadcasterInterface,
1215 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger);
1218 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1221 /// panics if the given update is not the next update by update_id.
1222 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1224 updates: &ChannelMonitorUpdate,
1230 B::Target: BroadcasterInterface,
1231 F::Target: FeeEstimator,
1234 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1237 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1239 pub fn get_latest_update_id(&self) -> u64 {
1240 self.inner.lock().unwrap().get_latest_update_id()
1243 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1244 pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1245 self.inner.lock().unwrap().get_funding_txo().clone()
1248 /// Gets a list of txids, with their output scripts (in the order they appear in the
1249 /// transaction), which we must learn about spends of via block_connected().
1250 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1251 self.inner.lock().unwrap().get_outputs_to_watch()
1252 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1255 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1256 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1257 /// have been registered.
1258 pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1259 let lock = self.inner.lock().unwrap();
1260 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1261 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1262 for (index, script_pubkey) in outputs.iter() {
1263 assert!(*index <= u16::max_value() as u32);
1264 filter.register_output(WatchedOutput {
1266 outpoint: OutPoint { txid: *txid, index: *index as u16 },
1267 script_pubkey: script_pubkey.clone(),
1273 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1274 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1275 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1276 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1279 /// Gets the list of pending events which were generated by previous actions, clearing the list
1282 /// This is called by the [`EventsProvider::process_pending_events`] implementation for
1283 /// [`ChainMonitor`].
1285 /// [`EventsProvider::process_pending_events`]: crate::util::events::EventsProvider::process_pending_events
1286 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1287 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1288 self.inner.lock().unwrap().get_and_clear_pending_events()
1291 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1292 self.inner.lock().unwrap().get_min_seen_secret()
1295 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1296 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1299 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1300 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1303 /// Gets the `node_id` of the counterparty for this channel.
1305 /// Will be `None` for channels constructed on LDK versions prior to 0.0.110 and always `Some`
1307 pub fn get_counterparty_node_id(&self) -> Option<PublicKey> {
1308 self.inner.lock().unwrap().counterparty_node_id
1311 /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1312 /// the Channel was out-of-date.
1314 /// You may also use this to broadcast the latest local commitment transaction, either because
1315 /// a monitor update failed with [`ChannelMonitorUpdateStatus::PermanentFailure`] or because we've
1316 /// fallen behind (i.e. we've received proof that our counterparty side knows a revocation
1317 /// secret we gave them that they shouldn't know).
1319 /// Broadcasting these transactions in the second case is UNSAFE, as they allow counterparty
1320 /// side to punish you. Nevertheless you may want to broadcast them if counterparty doesn't
1321 /// close channel with their commitment transaction after a substantial amount of time. Best
1322 /// may be to contact the other node operator out-of-band to coordinate other options available
1323 /// to you. In any-case, the choice is up to you.
1325 /// [`ChannelMonitorUpdateStatus::PermanentFailure`]: super::ChannelMonitorUpdateStatus::PermanentFailure
1326 pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1327 where L::Target: Logger {
1328 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1331 /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1332 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1333 /// revoked commitment transaction.
1334 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1335 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1336 where L::Target: Logger {
1337 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1340 /// Processes transactions in a newly connected block, which may result in any of the following:
1341 /// - update the monitor's state against resolved HTLCs
1342 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1343 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1344 /// - detect settled outputs for later spending
1345 /// - schedule and bump any in-flight claims
1347 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1348 /// [`get_outputs_to_watch`].
1350 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1351 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1353 header: &BlockHeader,
1354 txdata: &TransactionData,
1359 ) -> Vec<TransactionOutputs>
1361 B::Target: BroadcasterInterface,
1362 F::Target: FeeEstimator,
1365 self.inner.lock().unwrap().block_connected(
1366 header, txdata, height, broadcaster, fee_estimator, logger)
1369 /// Determines if the disconnected block contained any transactions of interest and updates
1371 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1373 header: &BlockHeader,
1379 B::Target: BroadcasterInterface,
1380 F::Target: FeeEstimator,
1383 self.inner.lock().unwrap().block_disconnected(
1384 header, height, broadcaster, fee_estimator, logger)
1387 /// Processes transactions confirmed in a block with the given header and height, returning new
1388 /// outputs to watch. See [`block_connected`] for details.
1390 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1391 /// blocks. See [`chain::Confirm`] for calling expectations.
1393 /// [`block_connected`]: Self::block_connected
1394 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1396 header: &BlockHeader,
1397 txdata: &TransactionData,
1402 ) -> Vec<TransactionOutputs>
1404 B::Target: BroadcasterInterface,
1405 F::Target: FeeEstimator,
1408 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1409 self.inner.lock().unwrap().transactions_confirmed(
1410 header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
1413 /// Processes a transaction that was reorganized out of the chain.
1415 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1416 /// than blocks. See [`chain::Confirm`] for calling expectations.
1418 /// [`block_disconnected`]: Self::block_disconnected
1419 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1426 B::Target: BroadcasterInterface,
1427 F::Target: FeeEstimator,
1430 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1431 self.inner.lock().unwrap().transaction_unconfirmed(
1432 txid, broadcaster, &bounded_fee_estimator, logger);
1435 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1436 /// [`block_connected`] for details.
1438 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1439 /// blocks. See [`chain::Confirm`] for calling expectations.
1441 /// [`block_connected`]: Self::block_connected
1442 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1444 header: &BlockHeader,
1449 ) -> Vec<TransactionOutputs>
1451 B::Target: BroadcasterInterface,
1452 F::Target: FeeEstimator,
1455 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1456 self.inner.lock().unwrap().best_block_updated(
1457 header, height, broadcaster, &bounded_fee_estimator, logger)
1460 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1461 pub fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
1462 let inner = self.inner.lock().unwrap();
1463 let mut txids: Vec<(Txid, Option<BlockHash>)> = inner.onchain_events_awaiting_threshold_conf
1465 .map(|entry| (entry.txid, entry.block_hash))
1466 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1468 txids.sort_unstable();
1473 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
1474 /// [`chain::Confirm`] interfaces.
1475 pub fn current_best_block(&self) -> BestBlock {
1476 self.inner.lock().unwrap().best_block.clone()
1480 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
1481 /// Helper for get_claimable_balances which does the work for an individual HTLC, generating up
1482 /// to one `Balance` for the HTLC.
1483 fn get_htlc_balance(&self, htlc: &HTLCOutputInCommitment, holder_commitment: bool,
1484 counterparty_revoked_commitment: bool, confirmed_txid: Option<Txid>)
1485 -> Option<Balance> {
1486 let htlc_commitment_tx_output_idx =
1487 if let Some(v) = htlc.transaction_output_index { v } else { return None; };
1489 let mut htlc_spend_txid_opt = None;
1490 let mut htlc_spend_tx_opt = None;
1491 let mut holder_timeout_spend_pending = None;
1492 let mut htlc_spend_pending = None;
1493 let mut holder_delayed_output_pending = None;
1494 for event in self.onchain_events_awaiting_threshold_conf.iter() {
1496 OnchainEvent::HTLCUpdate { commitment_tx_output_idx, htlc_value_satoshis, .. }
1497 if commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) => {
1498 debug_assert!(htlc_spend_txid_opt.is_none());
1499 htlc_spend_txid_opt = Some(&event.txid);
1500 debug_assert!(htlc_spend_tx_opt.is_none());
1501 htlc_spend_tx_opt = event.transaction.as_ref();
1502 debug_assert!(holder_timeout_spend_pending.is_none());
1503 debug_assert_eq!(htlc_value_satoshis.unwrap(), htlc.amount_msat / 1000);
1504 holder_timeout_spend_pending = Some(event.confirmation_threshold());
1506 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. }
1507 if commitment_tx_output_idx == htlc_commitment_tx_output_idx => {
1508 debug_assert!(htlc_spend_txid_opt.is_none());
1509 htlc_spend_txid_opt = Some(&event.txid);
1510 debug_assert!(htlc_spend_tx_opt.is_none());
1511 htlc_spend_tx_opt = event.transaction.as_ref();
1512 debug_assert!(htlc_spend_pending.is_none());
1513 htlc_spend_pending = Some((event.confirmation_threshold(), preimage.is_some()));
1515 OnchainEvent::MaturingOutput {
1516 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) }
1517 if descriptor.outpoint.index as u32 == htlc_commitment_tx_output_idx => {
1518 debug_assert!(holder_delayed_output_pending.is_none());
1519 holder_delayed_output_pending = Some(event.confirmation_threshold());
1524 let htlc_resolved = self.htlcs_resolved_on_chain.iter()
1525 .find(|v| if v.commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) {
1526 debug_assert!(htlc_spend_txid_opt.is_none());
1527 htlc_spend_txid_opt = v.resolving_txid.as_ref();
1528 debug_assert!(htlc_spend_tx_opt.is_none());
1529 htlc_spend_tx_opt = v.resolving_tx.as_ref();
1532 debug_assert!(holder_timeout_spend_pending.is_some() as u8 + htlc_spend_pending.is_some() as u8 + htlc_resolved.is_some() as u8 <= 1);
1534 let htlc_commitment_outpoint = BitcoinOutPoint::new(confirmed_txid.unwrap(), htlc_commitment_tx_output_idx);
1535 let htlc_output_to_spend =
1536 if let Some(txid) = htlc_spend_txid_opt {
1537 // Because HTLC transactions either only have 1 input and 1 output (pre-anchors) or
1538 // are signed with SIGHASH_SINGLE|ANYONECANPAY under BIP-0143 (post-anchors), we can
1539 // locate the correct output by ensuring its adjacent input spends the HTLC output
1540 // in the commitment.
1541 if let Some(ref tx) = htlc_spend_tx_opt {
1542 let htlc_input_idx_opt = tx.input.iter().enumerate()
1543 .find(|(_, input)| input.previous_output == htlc_commitment_outpoint)
1544 .map(|(idx, _)| idx as u32);
1545 debug_assert!(htlc_input_idx_opt.is_some());
1546 BitcoinOutPoint::new(*txid, htlc_input_idx_opt.unwrap_or(0))
1548 debug_assert!(!self.onchain_tx_handler.opt_anchors());
1549 BitcoinOutPoint::new(*txid, 0)
1552 htlc_commitment_outpoint
1554 let htlc_output_spend_pending = self.onchain_tx_handler.is_output_spend_pending(&htlc_output_to_spend);
1556 if let Some(conf_thresh) = holder_delayed_output_pending {
1557 debug_assert!(holder_commitment);
1558 return Some(Balance::ClaimableAwaitingConfirmations {
1559 claimable_amount_satoshis: htlc.amount_msat / 1000,
1560 confirmation_height: conf_thresh,
1562 } else if htlc_resolved.is_some() && !htlc_output_spend_pending {
1563 // Funding transaction spends should be fully confirmed by the time any
1564 // HTLC transactions are resolved, unless we're talking about a holder
1565 // commitment tx, whose resolution is delayed until the CSV timeout is
1566 // reached, even though HTLCs may be resolved after only
1567 // ANTI_REORG_DELAY confirmations.
1568 debug_assert!(holder_commitment || self.funding_spend_confirmed.is_some());
1569 } else if counterparty_revoked_commitment {
1570 let htlc_output_claim_pending = self.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1571 if let OnchainEvent::MaturingOutput {
1572 descriptor: SpendableOutputDescriptor::StaticOutput { .. }
1574 if event.transaction.as_ref().map(|tx| tx.input.iter().any(|inp| {
1575 if let Some(htlc_spend_txid) = htlc_spend_txid_opt {
1576 tx.txid() == *htlc_spend_txid || inp.previous_output.txid == *htlc_spend_txid
1578 Some(inp.previous_output.txid) == confirmed_txid &&
1579 inp.previous_output.vout == htlc_commitment_tx_output_idx
1581 })).unwrap_or(false) {
1586 if htlc_output_claim_pending.is_some() {
1587 // We already push `Balance`s onto the `res` list for every
1588 // `StaticOutput` in a `MaturingOutput` in the revoked
1589 // counterparty commitment transaction case generally, so don't
1590 // need to do so again here.
1592 debug_assert!(holder_timeout_spend_pending.is_none(),
1593 "HTLCUpdate OnchainEvents should never appear for preimage claims");
1594 debug_assert!(!htlc.offered || htlc_spend_pending.is_none() || !htlc_spend_pending.unwrap().1,
1595 "We don't (currently) generate preimage claims against revoked outputs, where did you get one?!");
1596 return Some(Balance::CounterpartyRevokedOutputClaimable {
1597 claimable_amount_satoshis: htlc.amount_msat / 1000,
1600 } else if htlc.offered == holder_commitment {
1601 // If the payment was outbound, check if there's an HTLCUpdate
1602 // indicating we have spent this HTLC with a timeout, claiming it back
1603 // and awaiting confirmations on it.
1604 if let Some(conf_thresh) = holder_timeout_spend_pending {
1605 return Some(Balance::ClaimableAwaitingConfirmations {
1606 claimable_amount_satoshis: htlc.amount_msat / 1000,
1607 confirmation_height: conf_thresh,
1610 return Some(Balance::MaybeTimeoutClaimableHTLC {
1611 claimable_amount_satoshis: htlc.amount_msat / 1000,
1612 claimable_height: htlc.cltv_expiry,
1615 } else if self.payment_preimages.get(&htlc.payment_hash).is_some() {
1616 // Otherwise (the payment was inbound), only expose it as claimable if
1617 // we know the preimage.
1618 // Note that if there is a pending claim, but it did not use the
1619 // preimage, we lost funds to our counterparty! We will then continue
1620 // to show it as ContentiousClaimable until ANTI_REORG_DELAY.
1621 debug_assert!(holder_timeout_spend_pending.is_none());
1622 if let Some((conf_thresh, true)) = htlc_spend_pending {
1623 return Some(Balance::ClaimableAwaitingConfirmations {
1624 claimable_amount_satoshis: htlc.amount_msat / 1000,
1625 confirmation_height: conf_thresh,
1628 return Some(Balance::ContentiousClaimable {
1629 claimable_amount_satoshis: htlc.amount_msat / 1000,
1630 timeout_height: htlc.cltv_expiry,
1633 } else if htlc_resolved.is_none() {
1634 return Some(Balance::MaybePreimageClaimableHTLC {
1635 claimable_amount_satoshis: htlc.amount_msat / 1000,
1636 expiry_height: htlc.cltv_expiry,
1643 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1644 /// Gets the balances in this channel which are either claimable by us if we were to
1645 /// force-close the channel now or which are claimable on-chain (possibly awaiting
1648 /// Any balances in the channel which are available on-chain (excluding on-chain fees) are
1649 /// included here until an [`Event::SpendableOutputs`] event has been generated for the
1650 /// balance, or until our counterparty has claimed the balance and accrued several
1651 /// confirmations on the claim transaction.
1653 /// Note that for `ChannelMonitors` which track a channel which went on-chain with versions of
1654 /// LDK prior to 0.0.111, balances may not be fully captured if our counterparty broadcasted
1655 /// a revoked state.
1657 /// See [`Balance`] for additional details on the types of claimable balances which
1658 /// may be returned here and their meanings.
1659 pub fn get_claimable_balances(&self) -> Vec<Balance> {
1660 let mut res = Vec::new();
1661 let us = self.inner.lock().unwrap();
1663 let mut confirmed_txid = us.funding_spend_confirmed;
1664 let mut confirmed_counterparty_output = us.confirmed_commitment_tx_counterparty_output;
1665 let mut pending_commitment_tx_conf_thresh = None;
1666 let funding_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1667 if let OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } =
1670 confirmed_counterparty_output = commitment_tx_to_counterparty_output;
1671 Some((event.txid, event.confirmation_threshold()))
1674 if let Some((txid, conf_thresh)) = funding_spend_pending {
1675 debug_assert!(us.funding_spend_confirmed.is_none(),
1676 "We have a pending funding spend awaiting anti-reorg confirmation, we can't have confirmed it already!");
1677 confirmed_txid = Some(txid);
1678 pending_commitment_tx_conf_thresh = Some(conf_thresh);
1681 macro_rules! walk_htlcs {
1682 ($holder_commitment: expr, $counterparty_revoked_commitment: expr, $htlc_iter: expr) => {
1683 for htlc in $htlc_iter {
1684 if htlc.transaction_output_index.is_some() {
1686 if let Some(bal) = us.get_htlc_balance(htlc, $holder_commitment, $counterparty_revoked_commitment, confirmed_txid) {
1694 if let Some(txid) = confirmed_txid {
1695 let mut found_commitment_tx = false;
1696 if let Some(counterparty_tx_htlcs) = us.counterparty_claimable_outpoints.get(&txid) {
1697 // First look for the to_remote output back to us.
1698 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1699 if let Some(value) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1700 if let OnchainEvent::MaturingOutput {
1701 descriptor: SpendableOutputDescriptor::StaticPaymentOutput(descriptor)
1703 Some(descriptor.output.value)
1706 res.push(Balance::ClaimableAwaitingConfirmations {
1707 claimable_amount_satoshis: value,
1708 confirmation_height: conf_thresh,
1711 // If a counterparty commitment transaction is awaiting confirmation, we
1712 // should either have a StaticPaymentOutput MaturingOutput event awaiting
1713 // confirmation with the same height or have never met our dust amount.
1716 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1717 walk_htlcs!(false, false, counterparty_tx_htlcs.iter().map(|(a, _)| a));
1719 walk_htlcs!(false, true, counterparty_tx_htlcs.iter().map(|(a, _)| a));
1720 // The counterparty broadcasted a revoked state!
1721 // Look for any StaticOutputs first, generating claimable balances for those.
1722 // If any match the confirmed counterparty revoked to_self output, skip
1723 // generating a CounterpartyRevokedOutputClaimable.
1724 let mut spent_counterparty_output = false;
1725 for event in us.onchain_events_awaiting_threshold_conf.iter() {
1726 if let OnchainEvent::MaturingOutput {
1727 descriptor: SpendableOutputDescriptor::StaticOutput { output, .. }
1729 res.push(Balance::ClaimableAwaitingConfirmations {
1730 claimable_amount_satoshis: output.value,
1731 confirmation_height: event.confirmation_threshold(),
1733 if let Some(confirmed_to_self_idx) = confirmed_counterparty_output.map(|(idx, _)| idx) {
1734 if event.transaction.as_ref().map(|tx|
1735 tx.input.iter().any(|inp| inp.previous_output.vout == confirmed_to_self_idx)
1736 ).unwrap_or(false) {
1737 spent_counterparty_output = true;
1743 if spent_counterparty_output {
1744 } else if let Some((confirmed_to_self_idx, amt)) = confirmed_counterparty_output {
1745 let output_spendable = us.onchain_tx_handler
1746 .is_output_spend_pending(&BitcoinOutPoint::new(txid, confirmed_to_self_idx));
1747 if output_spendable {
1748 res.push(Balance::CounterpartyRevokedOutputClaimable {
1749 claimable_amount_satoshis: amt,
1753 // Counterparty output is missing, either it was broadcasted on a
1754 // previous version of LDK or the counterparty hadn't met dust.
1757 found_commitment_tx = true;
1758 } else if txid == us.current_holder_commitment_tx.txid {
1759 walk_htlcs!(true, false, us.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, _)| a));
1760 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1761 res.push(Balance::ClaimableAwaitingConfirmations {
1762 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1763 confirmation_height: conf_thresh,
1766 found_commitment_tx = true;
1767 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1768 if txid == prev_commitment.txid {
1769 walk_htlcs!(true, false, prev_commitment.htlc_outputs.iter().map(|(a, _, _)| a));
1770 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1771 res.push(Balance::ClaimableAwaitingConfirmations {
1772 claimable_amount_satoshis: prev_commitment.to_self_value_sat,
1773 confirmation_height: conf_thresh,
1776 found_commitment_tx = true;
1779 if !found_commitment_tx {
1780 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1781 // We blindly assume this is a cooperative close transaction here, and that
1782 // neither us nor our counterparty misbehaved. At worst we've under-estimated
1783 // the amount we can claim as we'll punish a misbehaving counterparty.
1784 res.push(Balance::ClaimableAwaitingConfirmations {
1785 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1786 confirmation_height: conf_thresh,
1791 let mut claimable_inbound_htlc_value_sat = 0;
1792 for (htlc, _, _) in us.current_holder_commitment_tx.htlc_outputs.iter() {
1793 if htlc.transaction_output_index.is_none() { continue; }
1795 res.push(Balance::MaybeTimeoutClaimableHTLC {
1796 claimable_amount_satoshis: htlc.amount_msat / 1000,
1797 claimable_height: htlc.cltv_expiry,
1799 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
1800 claimable_inbound_htlc_value_sat += htlc.amount_msat / 1000;
1802 // As long as the HTLC is still in our latest commitment state, treat
1803 // it as potentially claimable, even if it has long-since expired.
1804 res.push(Balance::MaybePreimageClaimableHTLC {
1805 claimable_amount_satoshis: htlc.amount_msat / 1000,
1806 expiry_height: htlc.cltv_expiry,
1810 res.push(Balance::ClaimableOnChannelClose {
1811 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat + claimable_inbound_htlc_value_sat,
1818 /// Gets the set of outbound HTLCs which can be (or have been) resolved by this
1819 /// `ChannelMonitor`. This is used to determine if an HTLC was removed from the channel prior
1820 /// to the `ChannelManager` having been persisted.
1822 /// This is similar to [`Self::get_pending_or_resolved_outbound_htlcs`] except it includes
1823 /// HTLCs which were resolved on-chain (i.e. where the final HTLC resolution was done by an
1824 /// event from this `ChannelMonitor`).
1825 pub(crate) fn get_all_current_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
1826 let mut res = HashMap::new();
1827 // Just examine the available counterparty commitment transactions. See docs on
1828 // `fail_unbroadcast_htlcs`, below, for justification.
1829 let us = self.inner.lock().unwrap();
1830 macro_rules! walk_counterparty_commitment {
1832 if let Some(ref latest_outpoints) = us.counterparty_claimable_outpoints.get($txid) {
1833 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1834 if let &Some(ref source) = source_option {
1835 res.insert((**source).clone(), (htlc.clone(),
1836 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned()));
1842 if let Some(ref txid) = us.current_counterparty_commitment_txid {
1843 walk_counterparty_commitment!(txid);
1845 if let Some(ref txid) = us.prev_counterparty_commitment_txid {
1846 walk_counterparty_commitment!(txid);
1851 /// Gets the set of outbound HTLCs which are pending resolution in this channel or which were
1852 /// resolved with a preimage from our counterparty.
1854 /// This is used to reconstruct pending outbound payments on restart in the ChannelManager.
1856 /// Currently, the preimage is unused, however if it is present in the relevant internal state
1857 /// an HTLC is always included even if it has been resolved.
1858 pub(crate) fn get_pending_or_resolved_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
1859 let us = self.inner.lock().unwrap();
1860 // We're only concerned with the confirmation count of HTLC transactions, and don't
1861 // actually care how many confirmations a commitment transaction may or may not have. Thus,
1862 // we look for either a FundingSpendConfirmation event or a funding_spend_confirmed.
1863 let confirmed_txid = us.funding_spend_confirmed.or_else(|| {
1864 us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1865 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
1871 if confirmed_txid.is_none() {
1872 // If we have not seen a commitment transaction on-chain (ie the channel is not yet
1873 // closed), just get the full set.
1875 return self.get_all_current_outbound_htlcs();
1878 let mut res = HashMap::new();
1879 macro_rules! walk_htlcs {
1880 ($holder_commitment: expr, $htlc_iter: expr) => {
1881 for (htlc, source) in $htlc_iter {
1882 if us.htlcs_resolved_on_chain.iter().any(|v| v.commitment_tx_output_idx == htlc.transaction_output_index) {
1883 // We should assert that funding_spend_confirmed is_some() here, but we
1884 // have some unit tests which violate HTLC transaction CSVs entirely and
1886 // TODO: Once tests all connect transactions at consensus-valid times, we
1887 // should assert here like we do in `get_claimable_balances`.
1888 } else if htlc.offered == $holder_commitment {
1889 // If the payment was outbound, check if there's an HTLCUpdate
1890 // indicating we have spent this HTLC with a timeout, claiming it back
1891 // and awaiting confirmations on it.
1892 let htlc_update_confd = us.onchain_events_awaiting_threshold_conf.iter().any(|event| {
1893 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
1894 // If the HTLC was timed out, we wait for ANTI_REORG_DELAY blocks
1895 // before considering it "no longer pending" - this matches when we
1896 // provide the ChannelManager an HTLC failure event.
1897 Some(commitment_tx_output_idx) == htlc.transaction_output_index &&
1898 us.best_block.height() >= event.height + ANTI_REORG_DELAY - 1
1899 } else if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, .. } = event.event {
1900 // If the HTLC was fulfilled with a preimage, we consider the HTLC
1901 // immediately non-pending, matching when we provide ChannelManager
1903 Some(commitment_tx_output_idx) == htlc.transaction_output_index
1906 let counterparty_resolved_preimage_opt =
1907 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned();
1908 if !htlc_update_confd || counterparty_resolved_preimage_opt.is_some() {
1909 res.insert(source.clone(), (htlc.clone(), counterparty_resolved_preimage_opt));
1916 let txid = confirmed_txid.unwrap();
1917 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1918 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().filter_map(|(a, b)| {
1919 if let &Some(ref source) = b {
1920 Some((a, &**source))
1923 } else if txid == us.current_holder_commitment_tx.txid {
1924 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().filter_map(|(a, _, c)| {
1925 if let Some(source) = c { Some((a, source)) } else { None }
1927 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1928 if txid == prev_commitment.txid {
1929 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().filter_map(|(a, _, c)| {
1930 if let Some(source) = c { Some((a, source)) } else { None }
1938 pub(crate) fn get_stored_preimages(&self) -> HashMap<PaymentHash, PaymentPreimage> {
1939 self.inner.lock().unwrap().payment_preimages.clone()
1943 /// Compares a broadcasted commitment transaction's HTLCs with those in the latest state,
1944 /// failing any HTLCs which didn't make it into the broadcasted commitment transaction back
1945 /// after ANTI_REORG_DELAY blocks.
1947 /// We always compare against the set of HTLCs in counterparty commitment transactions, as those
1948 /// are the commitment transactions which are generated by us. The off-chain state machine in
1949 /// `Channel` will automatically resolve any HTLCs which were never included in a commitment
1950 /// transaction when it detects channel closure, but it is up to us to ensure any HTLCs which were
1951 /// included in a remote commitment transaction are failed back if they are not present in the
1952 /// broadcasted commitment transaction.
1954 /// Specifically, the removal process for HTLCs in `Channel` is always based on the counterparty
1955 /// sending a `revoke_and_ack`, which causes us to clear `prev_counterparty_commitment_txid`. Thus,
1956 /// as long as we examine both the current counterparty commitment transaction and, if it hasn't
1957 /// been revoked yet, the previous one, we we will never "forget" to resolve an HTLC.
1958 macro_rules! fail_unbroadcast_htlcs {
1959 ($self: expr, $commitment_tx_type: expr, $commitment_txid_confirmed: expr, $commitment_tx_confirmed: expr,
1960 $commitment_tx_conf_height: expr, $commitment_tx_conf_hash: expr, $confirmed_htlcs_list: expr, $logger: expr) => { {
1961 debug_assert_eq!($commitment_tx_confirmed.txid(), $commitment_txid_confirmed);
1963 macro_rules! check_htlc_fails {
1964 ($txid: expr, $commitment_tx: expr) => {
1965 if let Some(ref latest_outpoints) = $self.counterparty_claimable_outpoints.get($txid) {
1966 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1967 if let &Some(ref source) = source_option {
1968 // Check if the HTLC is present in the commitment transaction that was
1969 // broadcast, but not if it was below the dust limit, which we should
1970 // fail backwards immediately as there is no way for us to learn the
1971 // payment_preimage.
1972 // Note that if the dust limit were allowed to change between
1973 // commitment transactions we'd want to be check whether *any*
1974 // broadcastable commitment transaction has the HTLC in it, but it
1975 // cannot currently change after channel initialization, so we don't
1977 let confirmed_htlcs_iter: &mut Iterator<Item = (&HTLCOutputInCommitment, Option<&HTLCSource>)> = &mut $confirmed_htlcs_list;
1979 let mut matched_htlc = false;
1980 for (ref broadcast_htlc, ref broadcast_source) in confirmed_htlcs_iter {
1981 if broadcast_htlc.transaction_output_index.is_some() &&
1982 (Some(&**source) == *broadcast_source ||
1983 (broadcast_source.is_none() &&
1984 broadcast_htlc.payment_hash == htlc.payment_hash &&
1985 broadcast_htlc.amount_msat == htlc.amount_msat)) {
1986 matched_htlc = true;
1990 if matched_htlc { continue; }
1991 if $self.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).is_some() {
1994 $self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1995 if entry.height != $commitment_tx_conf_height { return true; }
1997 OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
1998 *update_source != **source
2003 let entry = OnchainEventEntry {
2004 txid: $commitment_txid_confirmed,
2005 transaction: Some($commitment_tx_confirmed.clone()),
2006 height: $commitment_tx_conf_height,
2007 block_hash: Some(*$commitment_tx_conf_hash),
2008 event: OnchainEvent::HTLCUpdate {
2009 source: (**source).clone(),
2010 payment_hash: htlc.payment_hash.clone(),
2011 htlc_value_satoshis: Some(htlc.amount_msat / 1000),
2012 commitment_tx_output_idx: None,
2015 log_trace!($logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of {} commitment transaction {}, waiting for confirmation (at height {})",
2016 log_bytes!(htlc.payment_hash.0), $commitment_tx, $commitment_tx_type,
2017 $commitment_txid_confirmed, entry.confirmation_threshold());
2018 $self.onchain_events_awaiting_threshold_conf.push(entry);
2024 if let Some(ref txid) = $self.current_counterparty_commitment_txid {
2025 check_htlc_fails!(txid, "current");
2027 if let Some(ref txid) = $self.prev_counterparty_commitment_txid {
2028 check_htlc_fails!(txid, "previous");
2033 // In the `test_invalid_funding_tx` test, we need a bogus script which matches the HTLC-Accepted
2034 // witness length match (ie is 136 bytes long). We generate one here which we also use in some
2035 // in-line tests later.
2038 pub fn deliberately_bogus_accepted_htlc_witness_program() -> Vec<u8> {
2039 let mut ret = [opcodes::all::OP_NOP.to_u8(); 136];
2040 ret[131] = opcodes::all::OP_DROP.to_u8();
2041 ret[132] = opcodes::all::OP_DROP.to_u8();
2042 ret[133] = opcodes::all::OP_DROP.to_u8();
2043 ret[134] = opcodes::all::OP_DROP.to_u8();
2044 ret[135] = opcodes::OP_TRUE.to_u8();
2049 pub fn deliberately_bogus_accepted_htlc_witness() -> Vec<Vec<u8>> {
2050 vec![Vec::new(), Vec::new(), Vec::new(), Vec::new(), deliberately_bogus_accepted_htlc_witness_program().into()].into()
2053 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
2054 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
2055 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
2056 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
2057 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
2058 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
2059 return Err("Previous secret did not match new one");
2062 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
2063 // events for now-revoked/fulfilled HTLCs.
2064 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
2065 if self.current_counterparty_commitment_txid.unwrap() != txid {
2066 let cur_claimables = self.counterparty_claimable_outpoints.get(
2067 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2068 for (_, ref source_opt) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2069 if let Some(source) = source_opt {
2070 if !cur_claimables.iter()
2071 .any(|(_, cur_source_opt)| cur_source_opt == source_opt)
2073 self.counterparty_fulfilled_htlcs.remove(&SentHTLCId::from_source(source));
2077 for &mut (_, ref mut source_opt) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
2081 assert!(cfg!(fuzzing), "Commitment txids are unique outside of fuzzing, where hashes can collide");
2085 if !self.payment_preimages.is_empty() {
2086 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
2087 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
2088 let min_idx = self.get_min_seen_secret();
2089 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
2091 self.payment_preimages.retain(|&k, _| {
2092 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
2093 if k == htlc.payment_hash {
2097 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
2098 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
2099 if k == htlc.payment_hash {
2104 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
2111 counterparty_hash_commitment_number.remove(&k);
2120 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_per_commitment_point: PublicKey, logger: &L) where L::Target: Logger {
2121 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
2122 // so that a remote monitor doesn't learn anything unless there is a malicious close.
2123 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
2125 for &(ref htlc, _) in &htlc_outputs {
2126 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
2129 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
2130 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
2131 self.current_counterparty_commitment_txid = Some(txid);
2132 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
2133 self.current_counterparty_commitment_number = commitment_number;
2134 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
2135 match self.their_cur_per_commitment_points {
2136 Some(old_points) => {
2137 if old_points.0 == commitment_number + 1 {
2138 self.their_cur_per_commitment_points = Some((old_points.0, old_points.1, Some(their_per_commitment_point)));
2139 } else if old_points.0 == commitment_number + 2 {
2140 if let Some(old_second_point) = old_points.2 {
2141 self.their_cur_per_commitment_points = Some((old_points.0 - 1, old_second_point, Some(their_per_commitment_point)));
2143 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2146 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2150 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2153 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
2154 for htlc in htlc_outputs {
2155 if htlc.0.transaction_output_index.is_some() {
2161 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
2162 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
2163 /// is important that any clones of this channel monitor (including remote clones) by kept
2164 /// up-to-date as our holder commitment transaction is updated.
2165 /// Panics if set_on_holder_tx_csv has never been called.
2166 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>, claimed_htlcs: &[(SentHTLCId, PaymentPreimage)]) -> Result<(), &'static str> {
2167 let trusted_tx = holder_commitment_tx.trust();
2168 let txid = trusted_tx.txid();
2169 let tx_keys = trusted_tx.keys();
2170 self.current_holder_commitment_number = trusted_tx.commitment_number();
2171 let mut new_holder_commitment_tx = HolderSignedTx {
2173 revocation_key: tx_keys.revocation_key,
2174 a_htlc_key: tx_keys.broadcaster_htlc_key,
2175 b_htlc_key: tx_keys.countersignatory_htlc_key,
2176 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
2177 per_commitment_point: tx_keys.per_commitment_point,
2179 to_self_value_sat: holder_commitment_tx.to_broadcaster_value_sat(),
2180 feerate_per_kw: trusted_tx.feerate_per_kw(),
2182 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
2183 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
2184 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
2185 for (claimed_htlc_id, claimed_preimage) in claimed_htlcs {
2186 #[cfg(debug_assertions)] {
2187 let cur_counterparty_htlcs = self.counterparty_claimable_outpoints.get(
2188 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2189 assert!(cur_counterparty_htlcs.iter().any(|(_, source_opt)| {
2190 if let Some(source) = source_opt {
2191 SentHTLCId::from_source(source) == *claimed_htlc_id
2195 self.counterparty_fulfilled_htlcs.insert(*claimed_htlc_id, *claimed_preimage);
2197 if self.holder_tx_signed {
2198 return Err("Latest holder commitment signed has already been signed, update is rejected");
2203 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
2204 /// commitment_tx_infos which contain the payment hash have been revoked.
2205 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
2206 &mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B,
2207 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L)
2208 where B::Target: BroadcasterInterface,
2209 F::Target: FeeEstimator,
2212 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
2214 // If the channel is force closed, try to claim the output from this preimage.
2215 // First check if a counterparty commitment transaction has been broadcasted:
2216 macro_rules! claim_htlcs {
2217 ($commitment_number: expr, $txid: expr) => {
2218 let (htlc_claim_reqs, _) = self.get_counterparty_output_claim_info($commitment_number, $txid, None);
2219 self.onchain_tx_handler.update_claims_view_from_requests(htlc_claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2222 if let Some(txid) = self.current_counterparty_commitment_txid {
2223 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2224 claim_htlcs!(*commitment_number, txid);
2228 if let Some(txid) = self.prev_counterparty_commitment_txid {
2229 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2230 claim_htlcs!(*commitment_number, txid);
2235 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
2236 // claiming the HTLC output from each of the holder commitment transactions.
2237 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
2238 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
2239 // holder commitment transactions.
2240 if self.broadcasted_holder_revokable_script.is_some() {
2241 // Assume that the broadcasted commitment transaction confirmed in the current best
2242 // block. Even if not, its a reasonable metric for the bump criteria on the HTLC
2244 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
2245 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2246 if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
2247 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx, self.best_block.height());
2248 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2253 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
2254 where B::Target: BroadcasterInterface,
2257 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
2258 log_info!(logger, "Broadcasting local {}", log_tx!(tx));
2259 broadcaster.broadcast_transaction(tx);
2261 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
2264 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: F, logger: &L) -> Result<(), ()>
2265 where B::Target: BroadcasterInterface,
2266 F::Target: FeeEstimator,
2269 log_info!(logger, "Applying update to monitor {}, bringing update_id from {} to {} with {} changes.",
2270 log_funding_info!(self), self.latest_update_id, updates.update_id, updates.updates.len());
2271 // ChannelMonitor updates may be applied after force close if we receive a
2272 // preimage for a broadcasted commitment transaction HTLC output that we'd
2273 // like to claim on-chain. If this is the case, we no longer have guaranteed
2274 // access to the monitor's update ID, so we use a sentinel value instead.
2275 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2276 assert_eq!(updates.updates.len(), 1);
2277 match updates.updates[0] {
2278 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => {},
2279 // We should have already seen a `ChannelForceClosed` update if we're trying to
2280 // provide a preimage at this point.
2281 ChannelMonitorUpdateStep::PaymentPreimage { .. } =>
2282 debug_assert_eq!(self.latest_update_id, CLOSED_CHANNEL_UPDATE_ID),
2284 log_error!(logger, "Attempted to apply post-force-close ChannelMonitorUpdate of type {}", updates.updates[0].variant_name());
2285 panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage");
2288 } else if self.latest_update_id + 1 != updates.update_id {
2289 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
2291 let mut ret = Ok(());
2292 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&*fee_estimator);
2293 for update in updates.updates.iter() {
2295 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs, claimed_htlcs } => {
2296 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
2297 if self.lockdown_from_offchain { panic!(); }
2298 if let Err(e) = self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone(), &claimed_htlcs) {
2299 log_error!(logger, "Providing latest holder commitment transaction failed/was refused:");
2300 log_error!(logger, " {}", e);
2304 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_per_commitment_point } => {
2305 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
2306 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_per_commitment_point, logger)
2308 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
2309 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
2310 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, &bounded_fee_estimator, logger)
2312 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
2313 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
2314 if let Err(e) = self.provide_secret(*idx, *secret) {
2315 log_error!(logger, "Providing latest counterparty commitment secret failed/was refused:");
2316 log_error!(logger, " {}", e);
2320 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
2321 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
2322 self.lockdown_from_offchain = true;
2323 if *should_broadcast {
2324 // There's no need to broadcast our commitment transaction if we've seen one
2325 // confirmed (even with 1 confirmation) as it'll be rejected as
2326 // duplicate/conflicting.
2327 let detected_funding_spend = self.funding_spend_confirmed.is_some() ||
2328 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
2329 OnchainEvent::FundingSpendConfirmation { .. } => true,
2332 if detected_funding_spend {
2335 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
2336 // If the channel supports anchor outputs, we'll need to emit an external
2337 // event to be consumed such that a child transaction is broadcast with a
2338 // high enough feerate for the parent commitment transaction to confirm.
2339 if self.onchain_tx_handler.opt_anchors() {
2340 let funding_output = HolderFundingOutput::build(
2341 self.funding_redeemscript.clone(), self.channel_value_satoshis,
2342 self.onchain_tx_handler.opt_anchors(),
2344 let best_block_height = self.best_block.height();
2345 let commitment_package = PackageTemplate::build_package(
2346 self.funding_info.0.txid.clone(), self.funding_info.0.index as u32,
2347 PackageSolvingData::HolderFundingOutput(funding_output),
2348 best_block_height, false, best_block_height,
2350 self.onchain_tx_handler.update_claims_view_from_requests(
2351 vec![commitment_package], best_block_height, best_block_height,
2352 broadcaster, &bounded_fee_estimator, logger,
2355 } else if !self.holder_tx_signed {
2356 log_error!(logger, "WARNING: You have a potentially-unsafe holder commitment transaction available to broadcast");
2357 log_error!(logger, " in channel monitor for channel {}!", log_bytes!(self.funding_info.0.to_channel_id()));
2358 log_error!(logger, " Read the docs for ChannelMonitor::get_latest_holder_commitment_txn and take manual action!");
2360 // If we generated a MonitorEvent::CommitmentTxConfirmed, the ChannelManager
2361 // will still give us a ChannelForceClosed event with !should_broadcast, but we
2362 // shouldn't print the scary warning above.
2363 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
2366 ChannelMonitorUpdateStep::ShutdownScript { scriptpubkey } => {
2367 log_trace!(logger, "Updating ChannelMonitor with shutdown script");
2368 if let Some(shutdown_script) = self.shutdown_script.replace(scriptpubkey.clone()) {
2369 panic!("Attempted to replace shutdown script {} with {}", shutdown_script, scriptpubkey);
2374 self.latest_update_id = updates.update_id;
2376 if ret.is_ok() && self.funding_spend_seen {
2377 log_error!(logger, "Refusing Channel Monitor Update as counterparty attempted to update commitment after funding was spent");
2382 pub fn get_latest_update_id(&self) -> u64 {
2383 self.latest_update_id
2386 pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
2390 pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
2391 // If we've detected a counterparty commitment tx on chain, we must include it in the set
2392 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
2393 // its trivial to do, double-check that here.
2394 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
2395 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
2397 &self.outputs_to_watch
2400 pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
2401 let mut ret = Vec::new();
2402 mem::swap(&mut ret, &mut self.pending_monitor_events);
2406 pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
2407 let mut ret = Vec::new();
2408 mem::swap(&mut ret, &mut self.pending_events);
2410 for claim_event in self.onchain_tx_handler.get_and_clear_pending_claim_events().drain(..) {
2412 ClaimEvent::BumpCommitment {
2413 package_target_feerate_sat_per_1000_weight, commitment_tx, anchor_output_idx,
2415 let commitment_txid = commitment_tx.txid();
2416 debug_assert_eq!(self.current_holder_commitment_tx.txid, commitment_txid);
2417 let pending_htlcs = self.current_holder_commitment_tx.non_dust_htlcs();
2418 let commitment_tx_fee_satoshis = self.channel_value_satoshis -
2419 commitment_tx.output.iter().fold(0u64, |sum, output| sum + output.value);
2420 ret.push(Event::BumpTransaction(BumpTransactionEvent::ChannelClose {
2421 package_target_feerate_sat_per_1000_weight,
2423 commitment_tx_fee_satoshis,
2424 anchor_descriptor: AnchorDescriptor {
2425 channel_keys_id: self.channel_keys_id,
2426 channel_value_satoshis: self.channel_value_satoshis,
2427 outpoint: BitcoinOutPoint {
2428 txid: commitment_txid,
2429 vout: anchor_output_idx,
2435 ClaimEvent::BumpHTLC {
2436 target_feerate_sat_per_1000_weight, htlcs,
2438 let mut htlc_descriptors = Vec::with_capacity(htlcs.len());
2440 htlc_descriptors.push(HTLCDescriptor {
2441 channel_keys_id: self.channel_keys_id,
2442 channel_value_satoshis: self.channel_value_satoshis,
2443 channel_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
2444 commitment_txid: htlc.commitment_txid,
2445 per_commitment_number: htlc.per_commitment_number,
2447 preimage: htlc.preimage,
2448 counterparty_sig: htlc.counterparty_sig,
2451 ret.push(Event::BumpTransaction(BumpTransactionEvent::HTLCResolution {
2452 target_feerate_sat_per_1000_weight,
2461 /// Can only fail if idx is < get_min_seen_secret
2462 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
2463 self.commitment_secrets.get_secret(idx)
2466 pub(crate) fn get_min_seen_secret(&self) -> u64 {
2467 self.commitment_secrets.get_min_seen_secret()
2470 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
2471 self.current_counterparty_commitment_number
2474 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
2475 self.current_holder_commitment_number
2478 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
2479 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
2480 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
2481 /// HTLC-Success/HTLC-Timeout transactions.
2483 /// Returns packages to claim the revoked output(s), as well as additional outputs to watch and
2484 /// general information about the output that is to the counterparty in the commitment
2486 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L)
2487 -> (Vec<PackageTemplate>, TransactionOutputs, CommitmentTxCounterpartyOutputInfo)
2488 where L::Target: Logger {
2489 // Most secp and related errors trying to create keys means we have no hope of constructing
2490 // a spend transaction...so we return no transactions to broadcast
2491 let mut claimable_outpoints = Vec::new();
2492 let mut watch_outputs = Vec::new();
2493 let mut to_counterparty_output_info = None;
2495 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
2496 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
2498 macro_rules! ignore_error {
2499 ( $thing : expr ) => {
2502 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
2507 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence.0 as u64 & 0xffffff) << 3*8) | (tx.lock_time.0 as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
2508 if commitment_number >= self.get_min_seen_secret() {
2509 let secret = self.get_secret(commitment_number).unwrap();
2510 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2511 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
2512 let revocation_pubkey = chan_utils::derive_public_revocation_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint);
2513 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx, &PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key), &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
2515 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
2516 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
2518 // First, process non-htlc outputs (to_holder & to_counterparty)
2519 for (idx, outp) in tx.output.iter().enumerate() {
2520 if outp.script_pubkey == revokeable_p2wsh {
2521 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_commitment_params.on_counterparty_tx_csv);
2522 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height);
2523 claimable_outpoints.push(justice_package);
2524 to_counterparty_output_info =
2525 Some((idx.try_into().expect("Txn can't have more than 2^32 outputs"), outp.value));
2529 // Then, try to find revoked htlc outputs
2530 if let Some(ref per_commitment_data) = per_commitment_option {
2531 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
2532 if let Some(transaction_output_index) = htlc.transaction_output_index {
2533 if transaction_output_index as usize >= tx.output.len() ||
2534 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2535 // per_commitment_data is corrupt or our commitment signing key leaked!
2536 return (claimable_outpoints, (commitment_txid, watch_outputs),
2537 to_counterparty_output_info);
2539 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone(), self.onchain_tx_handler.channel_transaction_parameters.opt_anchors.is_some());
2540 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, true, height);
2541 claimable_outpoints.push(justice_package);
2546 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
2547 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
2548 // We're definitely a counterparty commitment transaction!
2549 log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
2550 for (idx, outp) in tx.output.iter().enumerate() {
2551 watch_outputs.push((idx as u32, outp.clone()));
2553 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2555 if let Some(per_commitment_data) = per_commitment_option {
2556 fail_unbroadcast_htlcs!(self, "revoked_counterparty", commitment_txid, tx, height,
2557 block_hash, per_commitment_data.iter().map(|(htlc, htlc_source)|
2558 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2561 debug_assert!(false, "We should have per-commitment option for any recognized old commitment txn");
2562 fail_unbroadcast_htlcs!(self, "revoked counterparty", commitment_txid, tx, height,
2563 block_hash, [].iter().map(|reference| *reference), logger);
2566 } else if let Some(per_commitment_data) = per_commitment_option {
2567 // While this isn't useful yet, there is a potential race where if a counterparty
2568 // revokes a state at the same time as the commitment transaction for that state is
2569 // confirmed, and the watchtower receives the block before the user, the user could
2570 // upload a new ChannelMonitor with the revocation secret but the watchtower has
2571 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
2572 // not being generated by the above conditional. Thus, to be safe, we go ahead and
2574 for (idx, outp) in tx.output.iter().enumerate() {
2575 watch_outputs.push((idx as u32, outp.clone()));
2577 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2579 log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
2580 fail_unbroadcast_htlcs!(self, "counterparty", commitment_txid, tx, height, block_hash,
2581 per_commitment_data.iter().map(|(htlc, htlc_source)|
2582 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2585 let (htlc_claim_reqs, counterparty_output_info) =
2586 self.get_counterparty_output_claim_info(commitment_number, commitment_txid, Some(tx));
2587 to_counterparty_output_info = counterparty_output_info;
2588 for req in htlc_claim_reqs {
2589 claimable_outpoints.push(req);
2593 (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
2596 /// Returns the HTLC claim package templates and the counterparty output info
2597 fn get_counterparty_output_claim_info(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>)
2598 -> (Vec<PackageTemplate>, CommitmentTxCounterpartyOutputInfo) {
2599 let mut claimable_outpoints = Vec::new();
2600 let mut to_counterparty_output_info: CommitmentTxCounterpartyOutputInfo = None;
2602 let htlc_outputs = match self.counterparty_claimable_outpoints.get(&commitment_txid) {
2603 Some(outputs) => outputs,
2604 None => return (claimable_outpoints, to_counterparty_output_info),
2606 let per_commitment_points = match self.their_cur_per_commitment_points {
2607 Some(points) => points,
2608 None => return (claimable_outpoints, to_counterparty_output_info),
2611 let per_commitment_point =
2612 // If the counterparty commitment tx is the latest valid state, use their latest
2613 // per-commitment point
2614 if per_commitment_points.0 == commitment_number { &per_commitment_points.1 }
2615 else if let Some(point) = per_commitment_points.2.as_ref() {
2616 // If counterparty commitment tx is the state previous to the latest valid state, use
2617 // their previous per-commitment point (non-atomicity of revocation means it's valid for
2618 // them to temporarily have two valid commitment txns from our viewpoint)
2619 if per_commitment_points.0 == commitment_number + 1 {
2621 } else { return (claimable_outpoints, to_counterparty_output_info); }
2622 } else { return (claimable_outpoints, to_counterparty_output_info); };
2624 if let Some(transaction) = tx {
2625 let revocation_pubkey = chan_utils::derive_public_revocation_key(
2626 &self.onchain_tx_handler.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint);
2627 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx,
2628 &per_commitment_point,
2629 &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
2630 let revokeable_p2wsh = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
2631 self.counterparty_commitment_params.on_counterparty_tx_csv,
2632 &delayed_key).to_v0_p2wsh();
2633 for (idx, outp) in transaction.output.iter().enumerate() {
2634 if outp.script_pubkey == revokeable_p2wsh {
2635 to_counterparty_output_info =
2636 Some((idx.try_into().expect("Can't have > 2^32 outputs"), outp.value));
2641 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
2642 if let Some(transaction_output_index) = htlc.transaction_output_index {
2643 if let Some(transaction) = tx {
2644 if transaction_output_index as usize >= transaction.output.len() ||
2645 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2646 // per_commitment_data is corrupt or our commitment signing key leaked!
2647 return (claimable_outpoints, to_counterparty_output_info);
2650 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
2651 if preimage.is_some() || !htlc.offered {
2652 let counterparty_htlc_outp = if htlc.offered {
2653 PackageSolvingData::CounterpartyOfferedHTLCOutput(
2654 CounterpartyOfferedHTLCOutput::build(*per_commitment_point,
2655 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2656 self.counterparty_commitment_params.counterparty_htlc_base_key,
2657 preimage.unwrap(), htlc.clone(), self.onchain_tx_handler.opt_anchors()))
2659 PackageSolvingData::CounterpartyReceivedHTLCOutput(
2660 CounterpartyReceivedHTLCOutput::build(*per_commitment_point,
2661 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2662 self.counterparty_commitment_params.counterparty_htlc_base_key,
2663 htlc.clone(), self.onchain_tx_handler.opt_anchors()))
2665 let aggregation = if !htlc.offered { false } else { true };
2666 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry,aggregation, 0);
2667 claimable_outpoints.push(counterparty_package);
2672 (claimable_outpoints, to_counterparty_output_info)
2675 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
2676 fn check_spend_counterparty_htlc<L: Deref>(
2677 &mut self, tx: &Transaction, commitment_number: u64, commitment_txid: &Txid, height: u32, logger: &L
2678 ) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
2679 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
2680 let per_commitment_key = match SecretKey::from_slice(&secret) {
2682 Err(_) => return (Vec::new(), None)
2684 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
2686 let htlc_txid = tx.txid();
2687 let mut claimable_outpoints = vec![];
2688 let mut outputs_to_watch = None;
2689 // Previously, we would only claim HTLCs from revoked HTLC transactions if they had 1 input
2690 // with a witness of 5 elements and 1 output. This wasn't enough for anchor outputs, as the
2691 // counterparty can now aggregate multiple HTLCs into a single transaction thanks to
2692 // `SIGHASH_SINGLE` remote signatures, leading us to not claim any HTLCs upon seeing a
2693 // confirmed revoked HTLC transaction (for more details, see
2694 // https://lists.linuxfoundation.org/pipermail/lightning-dev/2022-April/003561.html).
2696 // We make sure we're not vulnerable to this case by checking all inputs of the transaction,
2697 // and claim those which spend the commitment transaction, have a witness of 5 elements, and
2698 // have a corresponding output at the same index within the transaction.
2699 for (idx, input) in tx.input.iter().enumerate() {
2700 if input.previous_output.txid == *commitment_txid && input.witness.len() == 5 && tx.output.get(idx).is_some() {
2701 log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, idx);
2702 let revk_outp = RevokedOutput::build(
2703 per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2704 self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key,
2705 tx.output[idx].value, self.counterparty_commitment_params.on_counterparty_tx_csv
2707 let justice_package = PackageTemplate::build_package(
2708 htlc_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp),
2709 height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height
2711 claimable_outpoints.push(justice_package);
2712 if outputs_to_watch.is_none() {
2713 outputs_to_watch = Some((htlc_txid, vec![]));
2715 outputs_to_watch.as_mut().unwrap().1.push((idx as u32, tx.output[idx].clone()));
2718 (claimable_outpoints, outputs_to_watch)
2721 // Returns (1) `PackageTemplate`s that can be given to the OnchainTxHandler, so that the handler can
2722 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
2723 // script so we can detect whether a holder transaction has been seen on-chain.
2724 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(Script, PublicKey, PublicKey)>) {
2725 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
2727 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
2728 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
2730 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2731 if let Some(transaction_output_index) = htlc.transaction_output_index {
2732 let (htlc_output, aggregable) = if htlc.offered {
2733 let htlc_output = HolderHTLCOutput::build_offered(
2734 htlc.amount_msat, htlc.cltv_expiry, self.onchain_tx_handler.opt_anchors()
2736 (htlc_output, false)
2738 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
2741 // We can't build an HTLC-Success transaction without the preimage
2744 let htlc_output = HolderHTLCOutput::build_accepted(
2745 payment_preimage, htlc.amount_msat, self.onchain_tx_handler.opt_anchors()
2747 (htlc_output, self.onchain_tx_handler.opt_anchors())
2749 let htlc_package = PackageTemplate::build_package(
2750 holder_tx.txid, transaction_output_index,
2751 PackageSolvingData::HolderHTLCOutput(htlc_output),
2752 htlc.cltv_expiry, aggregable, conf_height
2754 claim_requests.push(htlc_package);
2758 (claim_requests, broadcasted_holder_revokable_script)
2761 // Returns holder HTLC outputs to watch and react to in case of spending.
2762 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
2763 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
2764 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2765 if let Some(transaction_output_index) = htlc.transaction_output_index {
2766 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
2772 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
2773 /// revoked using data in holder_claimable_outpoints.
2774 /// Should not be used if check_spend_revoked_transaction succeeds.
2775 /// Returns None unless the transaction is definitely one of our commitment transactions.
2776 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) -> Option<(Vec<PackageTemplate>, TransactionOutputs)> where L::Target: Logger {
2777 let commitment_txid = tx.txid();
2778 let mut claim_requests = Vec::new();
2779 let mut watch_outputs = Vec::new();
2781 macro_rules! append_onchain_update {
2782 ($updates: expr, $to_watch: expr) => {
2783 claim_requests = $updates.0;
2784 self.broadcasted_holder_revokable_script = $updates.1;
2785 watch_outputs.append(&mut $to_watch);
2789 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
2790 let mut is_holder_tx = false;
2792 if self.current_holder_commitment_tx.txid == commitment_txid {
2793 is_holder_tx = true;
2794 log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2795 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
2796 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
2797 append_onchain_update!(res, to_watch);
2798 fail_unbroadcast_htlcs!(self, "latest holder", commitment_txid, tx, height,
2799 block_hash, self.current_holder_commitment_tx.htlc_outputs.iter()
2800 .map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())), logger);
2801 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
2802 if holder_tx.txid == commitment_txid {
2803 is_holder_tx = true;
2804 log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2805 let res = self.get_broadcasted_holder_claims(holder_tx, height);
2806 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
2807 append_onchain_update!(res, to_watch);
2808 fail_unbroadcast_htlcs!(self, "previous holder", commitment_txid, tx, height, block_hash,
2809 holder_tx.htlc_outputs.iter().map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())),
2815 Some((claim_requests, (commitment_txid, watch_outputs)))
2821 pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2822 log_debug!(logger, "Getting signed latest holder commitment transaction!");
2823 self.holder_tx_signed = true;
2824 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2825 let txid = commitment_tx.txid();
2826 let mut holder_transactions = vec![commitment_tx];
2827 // When anchor outputs are present, the HTLC transactions are only valid once the commitment
2828 // transaction confirms.
2829 if self.onchain_tx_handler.opt_anchors() {
2830 return holder_transactions;
2832 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2833 if let Some(vout) = htlc.0.transaction_output_index {
2834 let preimage = if !htlc.0.offered {
2835 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2836 // We can't build an HTLC-Success transaction without the preimage
2839 } else if htlc.0.cltv_expiry > self.best_block.height() + 1 {
2840 // Don't broadcast HTLC-Timeout transactions immediately as they don't meet the
2841 // current locktime requirements on-chain. We will broadcast them in
2842 // `block_confirmed` when `should_broadcast_holder_commitment_txn` returns true.
2843 // Note that we add + 1 as transactions are broadcastable when they can be
2844 // confirmed in the next block.
2847 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
2848 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2849 holder_transactions.push(htlc_tx);
2853 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
2854 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
2858 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
2859 /// Note that this includes possibly-locktimed-in-the-future transactions!
2860 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2861 log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
2862 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
2863 let txid = commitment_tx.txid();
2864 let mut holder_transactions = vec![commitment_tx];
2865 // When anchor outputs are present, the HTLC transactions are only final once the commitment
2866 // transaction confirms due to the CSV 1 encumberance.
2867 if self.onchain_tx_handler.opt_anchors() {
2868 return holder_transactions;
2870 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2871 if let Some(vout) = htlc.0.transaction_output_index {
2872 let preimage = if !htlc.0.offered {
2873 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2874 // We can't build an HTLC-Success transaction without the preimage
2878 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
2879 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2880 holder_transactions.push(htlc_tx);
2887 pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
2888 where B::Target: BroadcasterInterface,
2889 F::Target: FeeEstimator,
2892 let block_hash = header.block_hash();
2893 self.best_block = BestBlock::new(block_hash, height);
2895 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
2896 self.transactions_confirmed(header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
2899 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
2901 header: &BlockHeader,
2904 fee_estimator: &LowerBoundedFeeEstimator<F>,
2906 ) -> Vec<TransactionOutputs>
2908 B::Target: BroadcasterInterface,
2909 F::Target: FeeEstimator,
2912 let block_hash = header.block_hash();
2914 if height > self.best_block.height() {
2915 self.best_block = BestBlock::new(block_hash, height);
2916 self.block_confirmed(height, block_hash, vec![], vec![], vec![], &broadcaster, &fee_estimator, &logger)
2917 } else if block_hash != self.best_block.block_hash() {
2918 self.best_block = BestBlock::new(block_hash, height);
2919 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
2920 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
2922 } else { Vec::new() }
2925 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
2927 header: &BlockHeader,
2928 txdata: &TransactionData,
2931 fee_estimator: &LowerBoundedFeeEstimator<F>,
2933 ) -> Vec<TransactionOutputs>
2935 B::Target: BroadcasterInterface,
2936 F::Target: FeeEstimator,
2939 let txn_matched = self.filter_block(txdata);
2940 for tx in &txn_matched {
2941 let mut output_val = 0;
2942 for out in tx.output.iter() {
2943 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2944 output_val += out.value;
2945 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2949 let block_hash = header.block_hash();
2951 let mut watch_outputs = Vec::new();
2952 let mut claimable_outpoints = Vec::new();
2953 'tx_iter: for tx in &txn_matched {
2954 let txid = tx.txid();
2955 // If a transaction has already been confirmed, ensure we don't bother processing it duplicatively.
2956 if Some(txid) == self.funding_spend_confirmed {
2957 log_debug!(logger, "Skipping redundant processing of funding-spend tx {} as it was previously confirmed", txid);
2960 for ev in self.onchain_events_awaiting_threshold_conf.iter() {
2961 if ev.txid == txid {
2962 if let Some(conf_hash) = ev.block_hash {
2963 assert_eq!(header.block_hash(), conf_hash,
2964 "Transaction {} was already confirmed and is being re-confirmed in a different block.\n\
2965 This indicates a severe bug in the transaction connection logic - a reorg should have been processed first!", ev.txid);
2967 log_debug!(logger, "Skipping redundant processing of confirming tx {} as it was previously confirmed", txid);
2971 for htlc in self.htlcs_resolved_on_chain.iter() {
2972 if Some(txid) == htlc.resolving_txid {
2973 log_debug!(logger, "Skipping redundant processing of HTLC resolution tx {} as it was previously confirmed", txid);
2977 for spendable_txid in self.spendable_txids_confirmed.iter() {
2978 if txid == *spendable_txid {
2979 log_debug!(logger, "Skipping redundant processing of spendable tx {} as it was previously confirmed", txid);
2984 if tx.input.len() == 1 {
2985 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2986 // commitment transactions and HTLC transactions will all only ever have one input
2987 // (except for HTLC transactions for channels with anchor outputs), which is an easy
2988 // way to filter out any potential non-matching txn for lazy filters.
2989 let prevout = &tx.input[0].previous_output;
2990 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
2991 let mut balance_spendable_csv = None;
2992 log_info!(logger, "Channel {} closed by funding output spend in txid {}.",
2993 log_bytes!(self.funding_info.0.to_channel_id()), txid);
2994 self.funding_spend_seen = true;
2995 let mut commitment_tx_to_counterparty_output = None;
2996 if (tx.input[0].sequence.0 >> 8*3) as u8 == 0x80 && (tx.lock_time.0 >> 8*3) as u8 == 0x20 {
2997 let (mut new_outpoints, new_outputs, counterparty_output_idx_sats) =
2998 self.check_spend_counterparty_transaction(&tx, height, &block_hash, &logger);
2999 commitment_tx_to_counterparty_output = counterparty_output_idx_sats;
3000 if !new_outputs.1.is_empty() {
3001 watch_outputs.push(new_outputs);
3003 claimable_outpoints.append(&mut new_outpoints);
3004 if new_outpoints.is_empty() {
3005 if let Some((mut new_outpoints, new_outputs)) = self.check_spend_holder_transaction(&tx, height, &block_hash, &logger) {
3006 debug_assert!(commitment_tx_to_counterparty_output.is_none(),
3007 "A commitment transaction matched as both a counterparty and local commitment tx?");
3008 if !new_outputs.1.is_empty() {
3009 watch_outputs.push(new_outputs);
3011 claimable_outpoints.append(&mut new_outpoints);
3012 balance_spendable_csv = Some(self.on_holder_tx_csv);
3016 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3018 transaction: Some((*tx).clone()),
3020 block_hash: Some(block_hash),
3021 event: OnchainEvent::FundingSpendConfirmation {
3022 on_local_output_csv: balance_spendable_csv,
3023 commitment_tx_to_counterparty_output,
3028 if tx.input.len() >= 1 {
3029 // While all commitment transactions have one input, HTLC transactions may have more
3030 // if the HTLC was present in an anchor channel. HTLCs can also be resolved in a few
3031 // other ways which can have more than one output.
3032 for tx_input in &tx.input {
3033 let commitment_txid = tx_input.previous_output.txid;
3034 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&commitment_txid) {
3035 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(
3036 &tx, commitment_number, &commitment_txid, height, &logger
3038 claimable_outpoints.append(&mut new_outpoints);
3039 if let Some(new_outputs) = new_outputs_option {
3040 watch_outputs.push(new_outputs);
3042 // Since there may be multiple HTLCs for this channel (all spending the
3043 // same commitment tx) being claimed by the counterparty within the same
3044 // transaction, and `check_spend_counterparty_htlc` already checks all the
3045 // ones relevant to this channel, we can safely break from our loop.
3049 self.is_resolving_htlc_output(&tx, height, &block_hash, &logger);
3051 self.is_paying_spendable_output(&tx, height, &block_hash, &logger);
3055 if height > self.best_block.height() {
3056 self.best_block = BestBlock::new(block_hash, height);
3059 self.block_confirmed(height, block_hash, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, &logger)
3062 /// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
3063 /// `self.best_block` before calling if a new best blockchain tip is available. More
3064 /// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
3065 /// complexity especially in
3066 /// `OnchainTx::update_claims_view_from_requests`/`OnchainTx::update_claims_view_from_matched_txn`.
3068 /// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
3069 /// confirmed at, even if it is not the current best height.
3070 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
3073 conf_hash: BlockHash,
3074 txn_matched: Vec<&Transaction>,
3075 mut watch_outputs: Vec<TransactionOutputs>,
3076 mut claimable_outpoints: Vec<PackageTemplate>,
3078 fee_estimator: &LowerBoundedFeeEstimator<F>,
3080 ) -> Vec<TransactionOutputs>
3082 B::Target: BroadcasterInterface,
3083 F::Target: FeeEstimator,
3086 log_trace!(logger, "Processing {} matched transactions for block at height {}.", txn_matched.len(), conf_height);
3087 debug_assert!(self.best_block.height() >= conf_height);
3089 let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
3090 if should_broadcast {
3091 let funding_outp = HolderFundingOutput::build(self.funding_redeemscript.clone(), self.channel_value_satoshis, self.onchain_tx_handler.opt_anchors());
3092 let commitment_package = PackageTemplate::build_package(self.funding_info.0.txid.clone(), self.funding_info.0.index as u32, PackageSolvingData::HolderFundingOutput(funding_outp), self.best_block.height(), false, self.best_block.height());
3093 claimable_outpoints.push(commitment_package);
3094 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
3095 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
3096 self.holder_tx_signed = true;
3097 // We can't broadcast our HTLC transactions while the commitment transaction is
3098 // unconfirmed. We'll delay doing so until we detect the confirmed commitment in
3099 // `transactions_confirmed`.
3100 if !self.onchain_tx_handler.opt_anchors() {
3101 // Because we're broadcasting a commitment transaction, we should construct the package
3102 // assuming it gets confirmed in the next block. Sadly, we have code which considers
3103 // "not yet confirmed" things as discardable, so we cannot do that here.
3104 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
3105 let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
3106 if !new_outputs.is_empty() {
3107 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
3109 claimable_outpoints.append(&mut new_outpoints);
3113 // Find which on-chain events have reached their confirmation threshold.
3114 let onchain_events_awaiting_threshold_conf =
3115 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
3116 let mut onchain_events_reaching_threshold_conf = Vec::new();
3117 for entry in onchain_events_awaiting_threshold_conf {
3118 if entry.has_reached_confirmation_threshold(&self.best_block) {
3119 onchain_events_reaching_threshold_conf.push(entry);
3121 self.onchain_events_awaiting_threshold_conf.push(entry);
3125 // Used to check for duplicate HTLC resolutions.
3126 #[cfg(debug_assertions)]
3127 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
3129 .filter_map(|entry| match &entry.event {
3130 OnchainEvent::HTLCUpdate { source, .. } => Some(source),
3134 #[cfg(debug_assertions)]
3135 let mut matured_htlcs = Vec::new();
3137 // Produce actionable events from on-chain events having reached their threshold.
3138 for entry in onchain_events_reaching_threshold_conf.drain(..) {
3140 OnchainEvent::HTLCUpdate { ref source, payment_hash, htlc_value_satoshis, commitment_tx_output_idx } => {
3141 // Check for duplicate HTLC resolutions.
3142 #[cfg(debug_assertions)]
3145 unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
3146 "An unmature HTLC transaction conflicts with a maturing one; failed to \
3147 call either transaction_unconfirmed for the conflicting transaction \
3148 or block_disconnected for a block containing it.");
3150 matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
3151 "A matured HTLC transaction conflicts with a maturing one; failed to \
3152 call either transaction_unconfirmed for the conflicting transaction \
3153 or block_disconnected for a block containing it.");
3154 matured_htlcs.push(source.clone());
3157 log_debug!(logger, "HTLC {} failure update in {} has got enough confirmations to be passed upstream",
3158 log_bytes!(payment_hash.0), entry.txid);
3159 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3161 payment_preimage: None,
3162 source: source.clone(),
3163 htlc_value_satoshis,
3165 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3166 commitment_tx_output_idx,
3167 resolving_txid: Some(entry.txid),
3168 resolving_tx: entry.transaction,
3169 payment_preimage: None,
3172 OnchainEvent::MaturingOutput { descriptor } => {
3173 log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
3174 self.pending_events.push(Event::SpendableOutputs {
3175 outputs: vec![descriptor]
3177 self.spendable_txids_confirmed.push(entry.txid);
3179 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } => {
3180 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3181 commitment_tx_output_idx: Some(commitment_tx_output_idx),
3182 resolving_txid: Some(entry.txid),
3183 resolving_tx: entry.transaction,
3184 payment_preimage: preimage,
3187 OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } => {
3188 self.funding_spend_confirmed = Some(entry.txid);
3189 self.confirmed_commitment_tx_counterparty_output = commitment_tx_to_counterparty_output;
3194 self.onchain_tx_handler.update_claims_view_from_requests(claimable_outpoints, conf_height, self.best_block.height(), broadcaster, fee_estimator, logger);
3195 self.onchain_tx_handler.update_claims_view_from_matched_txn(&txn_matched, conf_height, conf_hash, self.best_block.height(), broadcaster, fee_estimator, logger);
3197 // Determine new outputs to watch by comparing against previously known outputs to watch,
3198 // updating the latter in the process.
3199 watch_outputs.retain(|&(ref txid, ref txouts)| {
3200 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
3201 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
3205 // If we see a transaction for which we registered outputs previously,
3206 // make sure the registered scriptpubkey at the expected index match
3207 // the actual transaction output one. We failed this case before #653.
3208 for tx in &txn_matched {
3209 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
3210 for idx_and_script in outputs.iter() {
3211 assert!((idx_and_script.0 as usize) < tx.output.len());
3212 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
3220 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
3221 where B::Target: BroadcasterInterface,
3222 F::Target: FeeEstimator,
3225 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
3228 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
3229 //- maturing spendable output has transaction paying us has been disconnected
3230 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
3232 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
3233 self.onchain_tx_handler.block_disconnected(height, broadcaster, &bounded_fee_estimator, logger);
3235 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
3238 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
3242 fee_estimator: &LowerBoundedFeeEstimator<F>,
3245 B::Target: BroadcasterInterface,
3246 F::Target: FeeEstimator,
3249 let mut removed_height = None;
3250 for entry in self.onchain_events_awaiting_threshold_conf.iter() {
3251 if entry.txid == *txid {
3252 removed_height = Some(entry.height);
3257 if let Some(removed_height) = removed_height {
3258 log_info!(logger, "transaction_unconfirmed of txid {} implies height {} was reorg'd out", txid, removed_height);
3259 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| if entry.height >= removed_height {
3260 log_info!(logger, "Transaction {} reorg'd out", entry.txid);
3265 debug_assert!(!self.onchain_events_awaiting_threshold_conf.iter().any(|ref entry| entry.txid == *txid));
3267 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
3270 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
3271 /// transactions thereof.
3272 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
3273 let mut matched_txn = HashSet::new();
3274 txdata.iter().filter(|&&(_, tx)| {
3275 let mut matches = self.spends_watched_output(tx);
3276 for input in tx.input.iter() {
3277 if matches { break; }
3278 if matched_txn.contains(&input.previous_output.txid) {
3283 matched_txn.insert(tx.txid());
3286 }).map(|(_, tx)| *tx).collect()
3289 /// Checks if a given transaction spends any watched outputs.
3290 fn spends_watched_output(&self, tx: &Transaction) -> bool {
3291 for input in tx.input.iter() {
3292 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
3293 for (idx, _script_pubkey) in outputs.iter() {
3294 if *idx == input.previous_output.vout {
3297 // If the expected script is a known type, check that the witness
3298 // appears to be spending the correct type (ie that the match would
3299 // actually succeed in BIP 158/159-style filters).
3300 if _script_pubkey.is_v0_p2wsh() {
3301 if input.witness.last().unwrap().to_vec() == deliberately_bogus_accepted_htlc_witness_program() {
3302 // In at least one test we use a deliberately bogus witness
3303 // script which hit an old panic. Thus, we check for that here
3304 // and avoid the assert if its the expected bogus script.
3308 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().to_vec()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
3309 } else if _script_pubkey.is_v0_p2wpkh() {
3310 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
3311 } else { panic!(); }
3322 fn should_broadcast_holder_commitment_txn<L: Deref>(&self, logger: &L) -> bool where L::Target: Logger {
3323 // There's no need to broadcast our commitment transaction if we've seen one confirmed (even
3324 // with 1 confirmation) as it'll be rejected as duplicate/conflicting.
3325 if self.funding_spend_confirmed.is_some() ||
3326 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
3327 OnchainEvent::FundingSpendConfirmation { .. } => true,
3333 // We need to consider all HTLCs which are:
3334 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
3335 // transactions and we'd end up in a race, or
3336 // * are in our latest holder commitment transaction, as this is the thing we will
3337 // broadcast if we go on-chain.
3338 // Note that we consider HTLCs which were below dust threshold here - while they don't
3339 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
3340 // to the source, and if we don't fail the channel we will have to ensure that the next
3341 // updates that peer sends us are update_fails, failing the channel if not. It's probably
3342 // easier to just fail the channel as this case should be rare enough anyway.
3343 let height = self.best_block.height();
3344 macro_rules! scan_commitment {
3345 ($htlcs: expr, $holder_tx: expr) => {
3346 for ref htlc in $htlcs {
3347 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
3348 // chain with enough room to claim the HTLC without our counterparty being able to
3349 // time out the HTLC first.
3350 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
3351 // concern is being able to claim the corresponding inbound HTLC (on another
3352 // channel) before it expires. In fact, we don't even really care if our
3353 // counterparty here claims such an outbound HTLC after it expired as long as we
3354 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
3355 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
3356 // we give ourselves a few blocks of headroom after expiration before going
3357 // on-chain for an expired HTLC.
3358 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
3359 // from us until we've reached the point where we go on-chain with the
3360 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
3361 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
3362 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
3363 // inbound_cltv == height + CLTV_CLAIM_BUFFER
3364 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
3365 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
3366 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
3367 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
3368 // The final, above, condition is checked for statically in channelmanager
3369 // with CHECK_CLTV_EXPIRY_SANITY_2.
3370 let htlc_outbound = $holder_tx == htlc.offered;
3371 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
3372 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
3373 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
3380 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
3382 if let Some(ref txid) = self.current_counterparty_commitment_txid {
3383 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
3384 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
3387 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
3388 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
3389 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
3396 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
3397 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
3398 fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) where L::Target: Logger {
3399 'outer_loop: for input in &tx.input {
3400 let mut payment_data = None;
3401 let htlc_claim = HTLCClaim::from_witness(&input.witness);
3402 let revocation_sig_claim = htlc_claim == Some(HTLCClaim::Revocation);
3403 let accepted_preimage_claim = htlc_claim == Some(HTLCClaim::AcceptedPreimage);
3404 #[cfg(not(fuzzing))]
3405 let accepted_timeout_claim = htlc_claim == Some(HTLCClaim::AcceptedTimeout);
3406 let offered_preimage_claim = htlc_claim == Some(HTLCClaim::OfferedPreimage);
3407 #[cfg(not(fuzzing))]
3408 let offered_timeout_claim = htlc_claim == Some(HTLCClaim::OfferedTimeout);
3410 let mut payment_preimage = PaymentPreimage([0; 32]);
3411 if offered_preimage_claim || accepted_preimage_claim {
3412 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
3415 macro_rules! log_claim {
3416 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
3417 let outbound_htlc = $holder_tx == $htlc.offered;
3418 // HTLCs must either be claimed by a matching script type or through the
3420 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3421 debug_assert!(!$htlc.offered || offered_preimage_claim || offered_timeout_claim || revocation_sig_claim);
3422 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3423 debug_assert!($htlc.offered || accepted_preimage_claim || accepted_timeout_claim || revocation_sig_claim);
3424 // Further, only exactly one of the possible spend paths should have been
3425 // matched by any HTLC spend:
3426 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3427 debug_assert_eq!(accepted_preimage_claim as u8 + accepted_timeout_claim as u8 +
3428 offered_preimage_claim as u8 + offered_timeout_claim as u8 +
3429 revocation_sig_claim as u8, 1);
3430 if ($holder_tx && revocation_sig_claim) ||
3431 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
3432 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
3433 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
3434 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
3435 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back. We can likely claim the HTLC output with a revocation claim" });
3437 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
3438 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
3439 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
3440 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
3445 macro_rules! check_htlc_valid_counterparty {
3446 ($counterparty_txid: expr, $htlc_output: expr) => {
3447 if let Some(txid) = $counterparty_txid {
3448 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
3449 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
3450 if let &Some(ref source) = pending_source {
3451 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
3452 payment_data = Some(((**source).clone(), $htlc_output.payment_hash, $htlc_output.amount_msat));
3461 macro_rules! scan_commitment {
3462 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
3463 for (ref htlc_output, source_option) in $htlcs {
3464 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
3465 if let Some(ref source) = source_option {
3466 log_claim!($tx_info, $holder_tx, htlc_output, true);
3467 // We have a resolution of an HTLC either from one of our latest
3468 // holder commitment transactions or an unrevoked counterparty commitment
3469 // transaction. This implies we either learned a preimage, the HTLC
3470 // has timed out, or we screwed up. In any case, we should now
3471 // resolve the source HTLC with the original sender.
3472 payment_data = Some(((*source).clone(), htlc_output.payment_hash, htlc_output.amount_msat));
3473 } else if !$holder_tx {
3474 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
3475 if payment_data.is_none() {
3476 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
3479 if payment_data.is_none() {
3480 log_claim!($tx_info, $holder_tx, htlc_output, false);
3481 let outbound_htlc = $holder_tx == htlc_output.offered;
3482 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3483 txid: tx.txid(), height, block_hash: Some(*block_hash), transaction: Some(tx.clone()),
3484 event: OnchainEvent::HTLCSpendConfirmation {
3485 commitment_tx_output_idx: input.previous_output.vout,
3486 preimage: if accepted_preimage_claim || offered_preimage_claim {
3487 Some(payment_preimage) } else { None },
3488 // If this is a payment to us (ie !outbound_htlc), wait for
3489 // the CSV delay before dropping the HTLC from claimable
3490 // balance if the claim was an HTLC-Success transaction (ie
3491 // accepted_preimage_claim).
3492 on_to_local_output_csv: if accepted_preimage_claim && !outbound_htlc {
3493 Some(self.on_holder_tx_csv) } else { None },
3496 continue 'outer_loop;
3503 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
3504 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
3505 "our latest holder commitment tx", true);
3507 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
3508 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
3509 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
3510 "our previous holder commitment tx", true);
3513 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
3514 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
3515 "counterparty commitment tx", false);
3518 // Check that scan_commitment, above, decided there is some source worth relaying an
3519 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
3520 if let Some((source, payment_hash, amount_msat)) = payment_data {
3521 if accepted_preimage_claim {
3522 if !self.pending_monitor_events.iter().any(
3523 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
3524 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3527 block_hash: Some(*block_hash),
3528 transaction: Some(tx.clone()),
3529 event: OnchainEvent::HTLCSpendConfirmation {
3530 commitment_tx_output_idx: input.previous_output.vout,
3531 preimage: Some(payment_preimage),
3532 on_to_local_output_csv: None,
3535 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3537 payment_preimage: Some(payment_preimage),
3539 htlc_value_satoshis: Some(amount_msat / 1000),
3542 } else if offered_preimage_claim {
3543 if !self.pending_monitor_events.iter().any(
3544 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
3545 upd.source == source
3547 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3549 transaction: Some(tx.clone()),
3551 block_hash: Some(*block_hash),
3552 event: OnchainEvent::HTLCSpendConfirmation {
3553 commitment_tx_output_idx: input.previous_output.vout,
3554 preimage: Some(payment_preimage),
3555 on_to_local_output_csv: None,
3558 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3560 payment_preimage: Some(payment_preimage),
3562 htlc_value_satoshis: Some(amount_msat / 1000),
3566 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
3567 if entry.height != height { return true; }
3569 OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
3570 *htlc_source != source
3575 let entry = OnchainEventEntry {
3577 transaction: Some(tx.clone()),
3579 block_hash: Some(*block_hash),
3580 event: OnchainEvent::HTLCUpdate {
3581 source, payment_hash,
3582 htlc_value_satoshis: Some(amount_msat / 1000),
3583 commitment_tx_output_idx: Some(input.previous_output.vout),
3586 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
3587 self.onchain_events_awaiting_threshold_conf.push(entry);
3593 /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
3594 fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) where L::Target: Logger {
3595 let mut spendable_output = None;
3596 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
3597 if i > ::core::u16::MAX as usize {
3598 // While it is possible that an output exists on chain which is greater than the
3599 // 2^16th output in a given transaction, this is only possible if the output is not
3600 // in a lightning transaction and was instead placed there by some third party who
3601 // wishes to give us money for no reason.
3602 // Namely, any lightning transactions which we pre-sign will never have anywhere
3603 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
3604 // scripts are not longer than one byte in length and because they are inherently
3605 // non-standard due to their size.
3606 // Thus, it is completely safe to ignore such outputs, and while it may result in
3607 // us ignoring non-lightning fund to us, that is only possible if someone fills
3608 // nearly a full block with garbage just to hit this case.
3611 if outp.script_pubkey == self.destination_script {
3612 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3613 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3614 output: outp.clone(),
3618 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
3619 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
3620 spendable_output = Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
3621 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3622 per_commitment_point: broadcasted_holder_revokable_script.1,
3623 to_self_delay: self.on_holder_tx_csv,
3624 output: outp.clone(),
3625 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
3626 channel_keys_id: self.channel_keys_id,
3627 channel_value_satoshis: self.channel_value_satoshis,
3632 if self.counterparty_payment_script == outp.script_pubkey {
3633 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
3634 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3635 output: outp.clone(),
3636 channel_keys_id: self.channel_keys_id,
3637 channel_value_satoshis: self.channel_value_satoshis,
3641 if self.shutdown_script.as_ref() == Some(&outp.script_pubkey) {
3642 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3643 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3644 output: outp.clone(),
3649 if let Some(spendable_output) = spendable_output {
3650 let entry = OnchainEventEntry {
3652 transaction: Some(tx.clone()),
3654 block_hash: Some(*block_hash),
3655 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
3657 log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
3658 self.onchain_events_awaiting_threshold_conf.push(entry);
3663 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
3665 T::Target: BroadcasterInterface,
3666 F::Target: FeeEstimator,
3669 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3670 self.0.block_connected(header, txdata, height, &*self.1, &*self.2, &*self.3);
3673 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3674 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
3678 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Confirm for (ChannelMonitor<Signer>, T, F, L)
3680 T::Target: BroadcasterInterface,
3681 F::Target: FeeEstimator,
3684 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3685 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
3688 fn transaction_unconfirmed(&self, txid: &Txid) {
3689 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
3692 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3693 self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
3696 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
3697 self.0.get_relevant_txids()
3701 const MAX_ALLOC_SIZE: usize = 64*1024;
3703 impl<'a, 'b, ES: EntropySource, SP: SignerProvider> ReadableArgs<(&'a ES, &'b SP)>
3704 for (BlockHash, ChannelMonitor<SP::Signer>) {
3705 fn read<R: io::Read>(reader: &mut R, args: (&'a ES, &'b SP)) -> Result<Self, DecodeError> {
3706 macro_rules! unwrap_obj {
3710 Err(_) => return Err(DecodeError::InvalidValue),
3715 let (entropy_source, signer_provider) = args;
3717 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
3719 let latest_update_id: u64 = Readable::read(reader)?;
3720 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
3722 let destination_script = Readable::read(reader)?;
3723 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
3725 let revokable_address = Readable::read(reader)?;
3726 let per_commitment_point = Readable::read(reader)?;
3727 let revokable_script = Readable::read(reader)?;
3728 Some((revokable_address, per_commitment_point, revokable_script))
3731 _ => return Err(DecodeError::InvalidValue),
3733 let counterparty_payment_script = Readable::read(reader)?;
3734 let shutdown_script = {
3735 let script = <Script as Readable>::read(reader)?;
3736 if script.is_empty() { None } else { Some(script) }
3739 let channel_keys_id = Readable::read(reader)?;
3740 let holder_revocation_basepoint = Readable::read(reader)?;
3741 // Technically this can fail and serialize fail a round-trip, but only for serialization of
3742 // barely-init'd ChannelMonitors that we can't do anything with.
3743 let outpoint = OutPoint {
3744 txid: Readable::read(reader)?,
3745 index: Readable::read(reader)?,
3747 let funding_info = (outpoint, Readable::read(reader)?);
3748 let current_counterparty_commitment_txid = Readable::read(reader)?;
3749 let prev_counterparty_commitment_txid = Readable::read(reader)?;
3751 let counterparty_commitment_params = Readable::read(reader)?;
3752 let funding_redeemscript = Readable::read(reader)?;
3753 let channel_value_satoshis = Readable::read(reader)?;
3755 let their_cur_per_commitment_points = {
3756 let first_idx = <U48 as Readable>::read(reader)?.0;
3760 let first_point = Readable::read(reader)?;
3761 let second_point_slice: [u8; 33] = Readable::read(reader)?;
3762 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
3763 Some((first_idx, first_point, None))
3765 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
3770 let on_holder_tx_csv: u16 = Readable::read(reader)?;
3772 let commitment_secrets = Readable::read(reader)?;
3774 macro_rules! read_htlc_in_commitment {
3777 let offered: bool = Readable::read(reader)?;
3778 let amount_msat: u64 = Readable::read(reader)?;
3779 let cltv_expiry: u32 = Readable::read(reader)?;
3780 let payment_hash: PaymentHash = Readable::read(reader)?;
3781 let transaction_output_index: Option<u32> = Readable::read(reader)?;
3783 HTLCOutputInCommitment {
3784 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
3790 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
3791 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
3792 for _ in 0..counterparty_claimable_outpoints_len {
3793 let txid: Txid = Readable::read(reader)?;
3794 let htlcs_count: u64 = Readable::read(reader)?;
3795 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
3796 for _ in 0..htlcs_count {
3797 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
3799 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
3800 return Err(DecodeError::InvalidValue);
3804 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
3805 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
3806 for _ in 0..counterparty_commitment_txn_on_chain_len {
3807 let txid: Txid = Readable::read(reader)?;
3808 let commitment_number = <U48 as Readable>::read(reader)?.0;
3809 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
3810 return Err(DecodeError::InvalidValue);
3814 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
3815 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
3816 for _ in 0..counterparty_hash_commitment_number_len {
3817 let payment_hash: PaymentHash = Readable::read(reader)?;
3818 let commitment_number = <U48 as Readable>::read(reader)?.0;
3819 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
3820 return Err(DecodeError::InvalidValue);
3824 let mut prev_holder_signed_commitment_tx: Option<HolderSignedTx> =
3825 match <u8 as Readable>::read(reader)? {
3828 Some(Readable::read(reader)?)
3830 _ => return Err(DecodeError::InvalidValue),
3832 let mut current_holder_commitment_tx: HolderSignedTx = Readable::read(reader)?;
3834 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
3835 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
3837 let payment_preimages_len: u64 = Readable::read(reader)?;
3838 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
3839 for _ in 0..payment_preimages_len {
3840 let preimage: PaymentPreimage = Readable::read(reader)?;
3841 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3842 if let Some(_) = payment_preimages.insert(hash, preimage) {
3843 return Err(DecodeError::InvalidValue);
3847 let pending_monitor_events_len: u64 = Readable::read(reader)?;
3848 let mut pending_monitor_events = Some(
3849 Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))));
3850 for _ in 0..pending_monitor_events_len {
3851 let ev = match <u8 as Readable>::read(reader)? {
3852 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
3853 1 => MonitorEvent::CommitmentTxConfirmed(funding_info.0),
3854 _ => return Err(DecodeError::InvalidValue)
3856 pending_monitor_events.as_mut().unwrap().push(ev);
3859 let pending_events_len: u64 = Readable::read(reader)?;
3860 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
3861 for _ in 0..pending_events_len {
3862 if let Some(event) = MaybeReadable::read(reader)? {
3863 pending_events.push(event);
3867 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
3869 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
3870 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
3871 for _ in 0..waiting_threshold_conf_len {
3872 if let Some(val) = MaybeReadable::read(reader)? {
3873 onchain_events_awaiting_threshold_conf.push(val);
3877 let outputs_to_watch_len: u64 = Readable::read(reader)?;
3878 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
3879 for _ in 0..outputs_to_watch_len {
3880 let txid = Readable::read(reader)?;
3881 let outputs_len: u64 = Readable::read(reader)?;
3882 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
3883 for _ in 0..outputs_len {
3884 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
3886 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
3887 return Err(DecodeError::InvalidValue);
3890 let onchain_tx_handler: OnchainTxHandler<SP::Signer> = ReadableArgs::read(
3891 reader, (entropy_source, signer_provider, channel_value_satoshis, channel_keys_id)
3894 let lockdown_from_offchain = Readable::read(reader)?;
3895 let holder_tx_signed = Readable::read(reader)?;
3897 if let Some(prev_commitment_tx) = prev_holder_signed_commitment_tx.as_mut() {
3898 let prev_holder_value = onchain_tx_handler.get_prev_holder_commitment_to_self_value();
3899 if prev_holder_value.is_none() { return Err(DecodeError::InvalidValue); }
3900 if prev_commitment_tx.to_self_value_sat == u64::max_value() {
3901 prev_commitment_tx.to_self_value_sat = prev_holder_value.unwrap();
3902 } else if prev_commitment_tx.to_self_value_sat != prev_holder_value.unwrap() {
3903 return Err(DecodeError::InvalidValue);
3907 let cur_holder_value = onchain_tx_handler.get_cur_holder_commitment_to_self_value();
3908 if current_holder_commitment_tx.to_self_value_sat == u64::max_value() {
3909 current_holder_commitment_tx.to_self_value_sat = cur_holder_value;
3910 } else if current_holder_commitment_tx.to_self_value_sat != cur_holder_value {
3911 return Err(DecodeError::InvalidValue);
3914 let mut funding_spend_confirmed = None;
3915 let mut htlcs_resolved_on_chain = Some(Vec::new());
3916 let mut funding_spend_seen = Some(false);
3917 let mut counterparty_node_id = None;
3918 let mut confirmed_commitment_tx_counterparty_output = None;
3919 let mut spendable_txids_confirmed = Some(Vec::new());
3920 let mut counterparty_fulfilled_htlcs = Some(HashMap::new());
3921 read_tlv_fields!(reader, {
3922 (1, funding_spend_confirmed, option),
3923 (3, htlcs_resolved_on_chain, vec_type),
3924 (5, pending_monitor_events, vec_type),
3925 (7, funding_spend_seen, option),
3926 (9, counterparty_node_id, option),
3927 (11, confirmed_commitment_tx_counterparty_output, option),
3928 (13, spendable_txids_confirmed, vec_type),
3929 (15, counterparty_fulfilled_htlcs, option),
3932 Ok((best_block.block_hash(), ChannelMonitor::from_impl(ChannelMonitorImpl {
3934 commitment_transaction_number_obscure_factor,
3937 broadcasted_holder_revokable_script,
3938 counterparty_payment_script,
3942 holder_revocation_basepoint,
3944 current_counterparty_commitment_txid,
3945 prev_counterparty_commitment_txid,
3947 counterparty_commitment_params,
3948 funding_redeemscript,
3949 channel_value_satoshis,
3950 their_cur_per_commitment_points,
3955 counterparty_claimable_outpoints,
3956 counterparty_commitment_txn_on_chain,
3957 counterparty_hash_commitment_number,
3958 counterparty_fulfilled_htlcs: counterparty_fulfilled_htlcs.unwrap(),
3960 prev_holder_signed_commitment_tx,
3961 current_holder_commitment_tx,
3962 current_counterparty_commitment_number,
3963 current_holder_commitment_number,
3966 pending_monitor_events: pending_monitor_events.unwrap(),
3969 onchain_events_awaiting_threshold_conf,
3974 lockdown_from_offchain,
3976 funding_spend_seen: funding_spend_seen.unwrap(),
3977 funding_spend_confirmed,
3978 confirmed_commitment_tx_counterparty_output,
3979 htlcs_resolved_on_chain: htlcs_resolved_on_chain.unwrap(),
3980 spendable_txids_confirmed: spendable_txids_confirmed.unwrap(),
3983 counterparty_node_id,
3990 use bitcoin::blockdata::block::BlockHeader;
3991 use bitcoin::blockdata::script::{Script, Builder};
3992 use bitcoin::blockdata::opcodes;
3993 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, EcdsaSighashType};
3994 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
3995 use bitcoin::util::sighash;
3996 use bitcoin::hashes::Hash;
3997 use bitcoin::hashes::sha256::Hash as Sha256;
3998 use bitcoin::hashes::hex::FromHex;
3999 use bitcoin::hash_types::{BlockHash, Txid};
4000 use bitcoin::network::constants::Network;
4001 use bitcoin::secp256k1::{SecretKey,PublicKey};
4002 use bitcoin::secp256k1::Secp256k1;
4006 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
4008 use super::ChannelMonitorUpdateStep;
4009 use crate::{check_added_monitors, check_closed_broadcast, check_closed_event, check_spends, get_local_commitment_txn, get_monitor, get_route_and_payment_hash, unwrap_send_err};
4010 use crate::chain::{BestBlock, Confirm};
4011 use crate::chain::channelmonitor::ChannelMonitor;
4012 use crate::chain::package::{weight_offered_htlc, weight_received_htlc, weight_revoked_offered_htlc, weight_revoked_received_htlc, WEIGHT_REVOKED_OUTPUT};
4013 use crate::chain::transaction::OutPoint;
4014 use crate::chain::keysinterface::InMemorySigner;
4015 use crate::ln::{PaymentPreimage, PaymentHash};
4016 use crate::ln::chan_utils;
4017 use crate::ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
4018 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId};
4019 use crate::ln::functional_test_utils::*;
4020 use crate::ln::script::ShutdownScript;
4021 use crate::util::errors::APIError;
4022 use crate::util::events::ClosureReason;
4023 use crate::util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
4024 use crate::util::ser::{ReadableArgs, Writeable};
4025 use crate::sync::{Arc, Mutex};
4027 use bitcoin::{PackedLockTime, Sequence, TxMerkleNode, Witness};
4028 use crate::prelude::*;
4030 fn do_test_funding_spend_refuses_updates(use_local_txn: bool) {
4031 // Previously, monitor updates were allowed freely even after a funding-spend transaction
4032 // confirmed. This would allow a race condition where we could receive a payment (including
4033 // the counterparty revoking their broadcasted state!) and accept it without recourse as
4034 // long as the ChannelMonitor receives the block first, the full commitment update dance
4035 // occurs after the block is connected, and before the ChannelManager receives the block.
4036 // Obviously this is an incredibly contrived race given the counterparty would be risking
4037 // their full channel balance for it, but its worth fixing nonetheless as it makes the
4038 // potential ChannelMonitor states simpler to reason about.
4040 // This test checks said behavior, as well as ensuring a ChannelMonitorUpdate with multiple
4041 // updates is handled correctly in such conditions.
4042 let chanmon_cfgs = create_chanmon_cfgs(3);
4043 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
4044 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
4045 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
4046 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
4047 create_announced_chan_between_nodes(&nodes, 1, 2);
4049 // Rebalance somewhat
4050 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
4052 // First route two payments for testing at the end
4053 let payment_preimage_1 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4054 let payment_preimage_2 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4056 let local_txn = get_local_commitment_txn!(nodes[1], channel.2);
4057 assert_eq!(local_txn.len(), 1);
4058 let remote_txn = get_local_commitment_txn!(nodes[0], channel.2);
4059 assert_eq!(remote_txn.len(), 3); // Commitment and two HTLC-Timeouts
4060 check_spends!(remote_txn[1], remote_txn[0]);
4061 check_spends!(remote_txn[2], remote_txn[0]);
4062 let broadcast_tx = if use_local_txn { &local_txn[0] } else { &remote_txn[0] };
4064 // Connect a commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
4065 // channel is now closed, but the ChannelManager doesn't know that yet.
4066 let new_header = BlockHeader {
4067 version: 2, time: 0, bits: 0, nonce: 0,
4068 prev_blockhash: nodes[0].best_block_info().0,
4069 merkle_root: TxMerkleNode::all_zeros() };
4070 let conf_height = nodes[0].best_block_info().1 + 1;
4071 nodes[1].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
4072 &[(0, broadcast_tx)], conf_height);
4074 let (_, pre_update_monitor) = <(BlockHash, ChannelMonitor<InMemorySigner>)>::read(
4075 &mut io::Cursor::new(&get_monitor!(nodes[1], channel.2).encode()),
4076 (&nodes[1].keys_manager.backing, &nodes[1].keys_manager.backing)).unwrap();
4078 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
4079 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
4080 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 100_000);
4081 unwrap_send_err!(nodes[1].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
4082 true, APIError::ChannelUnavailable { ref err },
4083 assert!(err.contains("ChannelMonitor storage failure")));
4084 check_added_monitors!(nodes[1], 2); // After the failure we generate a close-channel monitor update
4085 check_closed_broadcast!(nodes[1], true);
4086 check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "ChannelMonitor storage failure".to_string() });
4088 // Build a new ChannelMonitorUpdate which contains both the failing commitment tx update
4089 // and provides the claim preimages for the two pending HTLCs. The first update generates
4090 // an error, but the point of this test is to ensure the later updates are still applied.
4091 let monitor_updates = nodes[1].chain_monitor.monitor_updates.lock().unwrap();
4092 let mut replay_update = monitor_updates.get(&channel.2).unwrap().iter().rev().skip(1).next().unwrap().clone();
4093 assert_eq!(replay_update.updates.len(), 1);
4094 if let ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } = replay_update.updates[0] {
4095 } else { panic!(); }
4096 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_1 });
4097 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_2 });
4099 let broadcaster = TestBroadcaster::new(Arc::clone(&nodes[1].blocks));
4101 pre_update_monitor.update_monitor(&replay_update, &&broadcaster, &chanmon_cfgs[1].fee_estimator, &nodes[1].logger)
4103 // Even though we error'd on the first update, we should still have generated an HTLC claim
4105 let txn_broadcasted = broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
4106 assert!(txn_broadcasted.len() >= 2);
4107 let htlc_txn = txn_broadcasted.iter().filter(|tx| {
4108 assert_eq!(tx.input.len(), 1);
4109 tx.input[0].previous_output.txid == broadcast_tx.txid()
4110 }).collect::<Vec<_>>();
4111 assert_eq!(htlc_txn.len(), 2);
4112 check_spends!(htlc_txn[0], broadcast_tx);
4113 check_spends!(htlc_txn[1], broadcast_tx);
4116 fn test_funding_spend_refuses_updates() {
4117 do_test_funding_spend_refuses_updates(true);
4118 do_test_funding_spend_refuses_updates(false);
4122 fn test_prune_preimages() {
4123 let secp_ctx = Secp256k1::new();
4124 let logger = Arc::new(TestLogger::new());
4125 let broadcaster = Arc::new(TestBroadcaster {
4126 txn_broadcasted: Mutex::new(Vec::new()),
4127 blocks: Arc::new(Mutex::new(Vec::new()))
4129 let fee_estimator = TestFeeEstimator { sat_per_kw: Mutex::new(253) };
4131 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4133 let mut preimages = Vec::new();
4136 let preimage = PaymentPreimage([i; 32]);
4137 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
4138 preimages.push((preimage, hash));
4142 macro_rules! preimages_slice_to_htlc_outputs {
4143 ($preimages_slice: expr) => {
4145 let mut res = Vec::new();
4146 for (idx, preimage) in $preimages_slice.iter().enumerate() {
4147 res.push((HTLCOutputInCommitment {
4151 payment_hash: preimage.1.clone(),
4152 transaction_output_index: Some(idx as u32),
4159 macro_rules! preimages_to_holder_htlcs {
4160 ($preimages_slice: expr) => {
4162 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
4163 let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
4169 macro_rules! test_preimages_exist {
4170 ($preimages_slice: expr, $monitor: expr) => {
4171 for preimage in $preimages_slice {
4172 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
4177 let keys = InMemorySigner::new(
4179 SecretKey::from_slice(&[41; 32]).unwrap(),
4180 SecretKey::from_slice(&[41; 32]).unwrap(),
4181 SecretKey::from_slice(&[41; 32]).unwrap(),
4182 SecretKey::from_slice(&[41; 32]).unwrap(),
4183 SecretKey::from_slice(&[41; 32]).unwrap(),
4189 let counterparty_pubkeys = ChannelPublicKeys {
4190 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
4191 revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
4192 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
4193 delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
4194 htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
4196 let funding_outpoint = OutPoint { txid: Txid::all_zeros(), index: u16::max_value() };
4197 let channel_parameters = ChannelTransactionParameters {
4198 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
4199 holder_selected_contest_delay: 66,
4200 is_outbound_from_holder: true,
4201 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
4202 pubkeys: counterparty_pubkeys,
4203 selected_contest_delay: 67,
4205 funding_outpoint: Some(funding_outpoint),
4207 opt_non_zero_fee_anchors: None,
4209 // Prune with one old state and a holder commitment tx holding a few overlaps with the
4211 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4212 let best_block = BestBlock::from_network(Network::Testnet);
4213 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
4214 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &Script::new(),
4215 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
4216 &channel_parameters,
4217 Script::new(), 46, 0,
4218 HolderCommitmentTransaction::dummy(), best_block, dummy_key);
4220 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
4221 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"1").into_inner()),
4222 preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
4223 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"2").into_inner()),
4224 preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
4225 for &(ref preimage, ref hash) in preimages.iter() {
4226 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&fee_estimator);
4227 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &bounded_fee_estimator, &logger);
4230 // Now provide a secret, pruning preimages 10-15
4231 let mut secret = [0; 32];
4232 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
4233 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
4234 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
4235 test_preimages_exist!(&preimages[0..10], monitor);
4236 test_preimages_exist!(&preimages[15..20], monitor);
4238 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"3").into_inner()),
4239 preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
4241 // Now provide a further secret, pruning preimages 15-17
4242 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
4243 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
4244 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
4245 test_preimages_exist!(&preimages[0..10], monitor);
4246 test_preimages_exist!(&preimages[17..20], monitor);
4248 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"4").into_inner()),
4249 preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
4251 // Now update holder commitment tx info, pruning only element 18 as we still care about the
4252 // previous commitment tx's preimages too
4253 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
4254 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
4255 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
4256 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
4257 test_preimages_exist!(&preimages[0..10], monitor);
4258 test_preimages_exist!(&preimages[18..20], monitor);
4260 // But if we do it again, we'll prune 5-10
4261 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
4262 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
4263 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
4264 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
4265 test_preimages_exist!(&preimages[0..5], monitor);
4269 fn test_claim_txn_weight_computation() {
4270 // We test Claim txn weight, knowing that we want expected weigth and
4271 // not actual case to avoid sigs and time-lock delays hell variances.
4273 let secp_ctx = Secp256k1::new();
4274 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
4275 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
4277 macro_rules! sign_input {
4278 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr, $opt_anchors: expr) => {
4279 let htlc = HTLCOutputInCommitment {
4280 offered: if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_offered_htlc($opt_anchors) { true } else { false },
4282 cltv_expiry: 2 << 16,
4283 payment_hash: PaymentHash([1; 32]),
4284 transaction_output_index: Some($idx as u32),
4286 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, $opt_anchors, &pubkey, &pubkey, &pubkey) };
4287 let sighash = hash_to_message!(&$sighash_parts.segwit_signature_hash($idx, &redeem_script, $amount, EcdsaSighashType::All).unwrap()[..]);
4288 let sig = secp_ctx.sign_ecdsa(&sighash, &privkey);
4289 let mut ser_sig = sig.serialize_der().to_vec();
4290 ser_sig.push(EcdsaSighashType::All as u8);
4291 $sum_actual_sigs += ser_sig.len();
4292 let witness = $sighash_parts.witness_mut($idx).unwrap();
4293 witness.push(ser_sig);
4294 if *$weight == WEIGHT_REVOKED_OUTPUT {
4295 witness.push(vec!(1));
4296 } else if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_revoked_received_htlc($opt_anchors) {
4297 witness.push(pubkey.clone().serialize().to_vec());
4298 } else if *$weight == weight_received_htlc($opt_anchors) {
4299 witness.push(vec![0]);
4301 witness.push(PaymentPreimage([1; 32]).0.to_vec());
4303 witness.push(redeem_script.into_bytes());
4304 let witness = witness.to_vec();
4305 println!("witness[0] {}", witness[0].len());
4306 println!("witness[1] {}", witness[1].len());
4307 println!("witness[2] {}", witness[2].len());
4311 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
4312 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
4314 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
4315 for &opt_anchors in [false, true].iter() {
4316 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4317 let mut sum_actual_sigs = 0;
4319 claim_tx.input.push(TxIn {
4320 previous_output: BitcoinOutPoint {
4324 script_sig: Script::new(),
4325 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4326 witness: Witness::new(),
4329 claim_tx.output.push(TxOut {
4330 script_pubkey: script_pubkey.clone(),
4333 let base_weight = claim_tx.weight();
4334 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, weight_revoked_offered_htlc(opt_anchors), weight_revoked_offered_htlc(opt_anchors), weight_revoked_received_htlc(opt_anchors)];
4335 let mut inputs_total_weight = 2; // count segwit flags
4337 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4338 for (idx, inp) in inputs_weight.iter().enumerate() {
4339 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4340 inputs_total_weight += inp;
4343 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
4346 // Claim tx with 1 offered HTLCs, 3 received HTLCs
4347 for &opt_anchors in [false, true].iter() {
4348 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4349 let mut sum_actual_sigs = 0;
4351 claim_tx.input.push(TxIn {
4352 previous_output: BitcoinOutPoint {
4356 script_sig: Script::new(),
4357 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4358 witness: Witness::new(),
4361 claim_tx.output.push(TxOut {
4362 script_pubkey: script_pubkey.clone(),
4365 let base_weight = claim_tx.weight();
4366 let inputs_weight = vec![weight_offered_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors)];
4367 let mut inputs_total_weight = 2; // count segwit flags
4369 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4370 for (idx, inp) in inputs_weight.iter().enumerate() {
4371 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4372 inputs_total_weight += inp;
4375 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
4378 // Justice tx with 1 revoked HTLC-Success tx output
4379 for &opt_anchors in [false, true].iter() {
4380 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4381 let mut sum_actual_sigs = 0;
4382 claim_tx.input.push(TxIn {
4383 previous_output: BitcoinOutPoint {
4387 script_sig: Script::new(),
4388 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4389 witness: Witness::new(),
4391 claim_tx.output.push(TxOut {
4392 script_pubkey: script_pubkey.clone(),
4395 let base_weight = claim_tx.weight();
4396 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
4397 let mut inputs_total_weight = 2; // count segwit flags
4399 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4400 for (idx, inp) in inputs_weight.iter().enumerate() {
4401 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4402 inputs_total_weight += inp;
4405 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_isg */ (73 * inputs_weight.len() - sum_actual_sigs));
4409 // Further testing is done in the ChannelManager integration tests.