1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::{Block, BlockHeader};
24 use bitcoin::blockdata::transaction::{TxOut,Transaction};
25 use bitcoin::blockdata::script::{Script, Builder};
26 use bitcoin::blockdata::opcodes;
28 use bitcoin::hashes::Hash;
29 use bitcoin::hashes::sha256::Hash as Sha256;
30 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32 use bitcoin::secp256k1::{Secp256k1,Signature};
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1;
36 use ln::{PaymentHash, PaymentPreimage};
37 use ln::msgs::DecodeError;
39 use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCType, ChannelTransactionParameters, HolderCommitmentTransaction};
40 use ln::channelmanager::{BestBlock, HTLCSource};
42 use chain::WatchedOutput;
43 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
44 use chain::transaction::{OutPoint, TransactionData};
45 use chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, Sign, KeysInterface};
46 use chain::onchaintx::OnchainTxHandler;
47 use chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
49 use util::logger::Logger;
50 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writer, Writeable, U48};
52 use util::events::Event;
55 use std::collections::{HashMap, HashSet};
61 /// An update generated by the underlying Channel itself which contains some new information the
62 /// ChannelMonitor should be made aware of.
63 #[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
66 pub struct ChannelMonitorUpdate {
67 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
68 /// The sequence number of this update. Updates *must* be replayed in-order according to this
69 /// sequence number (and updates may panic if they are not). The update_id values are strictly
70 /// increasing and increase by one for each new update, with one exception specified below.
72 /// This sequence number is also used to track up to which points updates which returned
73 /// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
74 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
76 /// The only instance where update_id values are not strictly increasing is the case where we
77 /// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
78 /// its docs for more details.
83 /// (1) a channel has been force closed and
84 /// (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
85 /// this channel's (the backward link's) broadcasted commitment transaction
86 /// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
87 /// with the update providing said payment preimage. No other update types are allowed after
89 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
91 impl Writeable for ChannelMonitorUpdate {
92 fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
93 self.update_id.write(w)?;
94 (self.updates.len() as u64).write(w)?;
95 for update_step in self.updates.iter() {
96 update_step.write(w)?;
101 impl Readable for ChannelMonitorUpdate {
102 fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
103 let update_id: u64 = Readable::read(r)?;
104 let len: u64 = Readable::read(r)?;
105 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
107 updates.push(Readable::read(r)?);
109 Ok(Self { update_id, updates })
113 /// An error enum representing a failure to persist a channel monitor update.
114 #[derive(Clone, Debug)]
115 pub enum ChannelMonitorUpdateErr {
116 /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
117 /// our state failed, but is expected to succeed at some point in the future).
119 /// Such a failure will "freeze" a channel, preventing us from revoking old states or
120 /// submitting new commitment transactions to the counterparty. Once the update(s) which failed
121 /// have been successfully applied, ChannelManager::channel_monitor_updated can be used to
122 /// restore the channel to an operational state.
124 /// Note that a given ChannelManager will *never* re-generate a given ChannelMonitorUpdate. If
125 /// you return a TemporaryFailure you must ensure that it is written to disk safely before
126 /// writing out the latest ChannelManager state.
128 /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
129 /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
130 /// to claim it on this channel) and those updates must be applied wherever they can be. At
131 /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
132 /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
133 /// the channel which would invalidate previous ChannelMonitors are not made when a channel has
136 /// Note that even if updates made after TemporaryFailure succeed you must still call
137 /// channel_monitor_updated to ensure you have the latest monitor and re-enable normal channel
140 /// Note that the update being processed here will not be replayed for you when you call
141 /// ChannelManager::channel_monitor_updated, so you must store the update itself along
142 /// with the persisted ChannelMonitor on your own local disk prior to returning a
143 /// TemporaryFailure. You may, of course, employ a journaling approach, storing only the
144 /// ChannelMonitorUpdate on disk without updating the monitor itself, replaying the journal at
147 /// For deployments where a copy of ChannelMonitors and other local state are backed up in a
148 /// remote location (with local copies persisted immediately), it is anticipated that all
149 /// updates will return TemporaryFailure until the remote copies could be updated.
151 /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
152 /// different watchtower and cannot update with all watchtowers that were previously informed
153 /// of this channel).
155 /// At reception of this error, ChannelManager will force-close the channel and return at
156 /// least a final ChannelMonitorUpdate::ChannelForceClosed which must be delivered to at
157 /// least one ChannelMonitor copy. Revocation secret MUST NOT be released and offchain channel
158 /// update must be rejected.
160 /// This failure may also signal a failure to update the local persisted copy of one of
161 /// the channel monitor instance.
163 /// Note that even when you fail a holder commitment transaction update, you must store the
164 /// update to ensure you can claim from it in case of a duplicate copy of this ChannelMonitor
165 /// broadcasts it (e.g distributed channel-monitor deployment)
167 /// In case of distributed watchtowers deployment, the new version must be written to disk, as
168 /// state may have been stored but rejected due to a block forcing a commitment broadcast. This
169 /// storage is used to claim outputs of rejected state confirmed onchain by another watchtower,
170 /// lagging behind on block processing.
174 /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
175 /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::update_monitor this
176 /// means you tried to update a monitor for a different channel or the ChannelMonitorUpdate was
178 /// Contains a developer-readable error message.
179 #[derive(Clone, Debug)]
180 pub struct MonitorUpdateError(pub &'static str);
182 /// An event to be processed by the ChannelManager.
183 #[derive(Clone, PartialEq)]
184 pub enum MonitorEvent {
185 /// A monitor event containing an HTLCUpdate.
186 HTLCEvent(HTLCUpdate),
188 /// A monitor event that the Channel's commitment transaction was broadcasted.
189 CommitmentTxBroadcasted(OutPoint),
192 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
193 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
194 /// preimage claim backward will lead to loss of funds.
195 #[derive(Clone, PartialEq)]
196 pub struct HTLCUpdate {
197 pub(crate) payment_hash: PaymentHash,
198 pub(crate) payment_preimage: Option<PaymentPreimage>,
199 pub(crate) source: HTLCSource
201 impl_writeable!(HTLCUpdate, 0, { payment_hash, payment_preimage, source });
203 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
204 /// instead claiming it in its own individual transaction.
205 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
206 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
207 /// HTLC-Success transaction.
208 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
209 /// transaction confirmed (and we use it in a few more, equivalent, places).
210 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
211 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
212 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
213 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
214 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
215 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
216 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
217 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
218 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
219 /// accurate block height.
220 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
221 /// with at worst this delay, so we are not only using this value as a mercy for them but also
222 /// us as a safeguard to delay with enough time.
223 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
224 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound
225 /// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money.
226 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
227 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
228 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
229 // keep bumping another claim tx to solve the outpoint.
230 pub const ANTI_REORG_DELAY: u32 = 6;
231 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
232 /// refuse to accept a new HTLC.
234 /// This is used for a few separate purposes:
235 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
236 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
238 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
239 /// condition with the above), we will fail this HTLC without telling the user we received it,
240 /// 3) if we are waiting on a connection or a channel state update to send an HTLC to a peer, and
241 /// that HTLC expires within this many blocks, we will simply fail the HTLC instead.
243 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
244 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
246 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
247 /// in a race condition between the user connecting a block (which would fail it) and the user
248 /// providing us the preimage (which would claim it).
250 /// (3) is about our counterparty - we don't want to relay an HTLC to a counterparty when they may
251 /// end up force-closing the channel on us to claim it.
252 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
254 // TODO(devrandom) replace this with HolderCommitmentTransaction
255 #[derive(Clone, PartialEq)]
256 struct HolderSignedTx {
257 /// txid of the transaction in tx, just used to make comparison faster
259 revocation_key: PublicKey,
260 a_htlc_key: PublicKey,
261 b_htlc_key: PublicKey,
262 delayed_payment_key: PublicKey,
263 per_commitment_point: PublicKey,
265 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
268 /// We use this to track counterparty commitment transactions and htlcs outputs and
269 /// use it to generate any justice or 2nd-stage preimage/timeout transactions.
271 struct CounterpartyCommitmentTransaction {
272 counterparty_delayed_payment_base_key: PublicKey,
273 counterparty_htlc_base_key: PublicKey,
274 on_counterparty_tx_csv: u16,
275 per_htlc: HashMap<Txid, Vec<HTLCOutputInCommitment>>
278 impl Writeable for CounterpartyCommitmentTransaction {
279 fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
280 self.counterparty_delayed_payment_base_key.write(w)?;
281 self.counterparty_htlc_base_key.write(w)?;
282 w.write_all(&byte_utils::be16_to_array(self.on_counterparty_tx_csv))?;
283 w.write_all(&byte_utils::be64_to_array(self.per_htlc.len() as u64))?;
284 for (ref txid, ref htlcs) in self.per_htlc.iter() {
285 w.write_all(&txid[..])?;
286 w.write_all(&byte_utils::be64_to_array(htlcs.len() as u64))?;
287 for &ref htlc in htlcs.iter() {
294 impl Readable for CounterpartyCommitmentTransaction {
295 fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
296 let counterparty_commitment_transaction = {
297 let counterparty_delayed_payment_base_key = Readable::read(r)?;
298 let counterparty_htlc_base_key = Readable::read(r)?;
299 let on_counterparty_tx_csv: u16 = Readable::read(r)?;
300 let per_htlc_len: u64 = Readable::read(r)?;
301 let mut per_htlc = HashMap::with_capacity(cmp::min(per_htlc_len as usize, MAX_ALLOC_SIZE / 64));
302 for _ in 0..per_htlc_len {
303 let txid: Txid = Readable::read(r)?;
304 let htlcs_count: u64 = Readable::read(r)?;
305 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
306 for _ in 0..htlcs_count {
307 let htlc = Readable::read(r)?;
310 if let Some(_) = per_htlc.insert(txid, htlcs) {
311 return Err(DecodeError::InvalidValue);
314 CounterpartyCommitmentTransaction {
315 counterparty_delayed_payment_base_key,
316 counterparty_htlc_base_key,
317 on_counterparty_tx_csv,
321 Ok(counterparty_commitment_transaction)
325 /// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
326 /// transaction causing it.
328 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
330 struct OnchainEventEntry {
336 impl OnchainEventEntry {
337 fn confirmation_threshold(&self) -> u32 {
338 self.height + ANTI_REORG_DELAY - 1
341 fn has_reached_confirmation_threshold(&self, height: u32) -> bool {
342 height >= self.confirmation_threshold()
346 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
347 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
350 /// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve
351 /// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can
352 /// only win from it, so it's never an OnchainEvent
354 htlc_update: (HTLCSource, PaymentHash),
357 descriptor: SpendableOutputDescriptor,
361 #[cfg_attr(any(test, feature = "fuzztarget", feature = "_test_utils"), derive(PartialEq))]
363 pub(crate) enum ChannelMonitorUpdateStep {
364 LatestHolderCommitmentTXInfo {
365 commitment_tx: HolderCommitmentTransaction,
366 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
368 LatestCounterpartyCommitmentTXInfo {
369 commitment_txid: Txid,
370 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
371 commitment_number: u64,
372 their_revocation_point: PublicKey,
375 payment_preimage: PaymentPreimage,
381 /// Used to indicate that the no future updates will occur, and likely that the latest holder
382 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
384 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
385 /// think we've fallen behind!
386 should_broadcast: bool,
390 impl Writeable for ChannelMonitorUpdateStep {
391 fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
393 &ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { ref commitment_tx, ref htlc_outputs } => {
395 commitment_tx.write(w)?;
396 (htlc_outputs.len() as u64).write(w)?;
397 for &(ref output, ref signature, ref source) in htlc_outputs.iter() {
403 &ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, ref htlc_outputs, ref commitment_number, ref their_revocation_point } => {
405 commitment_txid.write(w)?;
406 commitment_number.write(w)?;
407 their_revocation_point.write(w)?;
408 (htlc_outputs.len() as u64).write(w)?;
409 for &(ref output, ref source) in htlc_outputs.iter() {
411 source.as_ref().map(|b| b.as_ref()).write(w)?;
414 &ChannelMonitorUpdateStep::PaymentPreimage { ref payment_preimage } => {
416 payment_preimage.write(w)?;
418 &ChannelMonitorUpdateStep::CommitmentSecret { ref idx, ref secret } => {
423 &ChannelMonitorUpdateStep::ChannelForceClosed { ref should_broadcast } => {
425 should_broadcast.write(w)?;
431 impl Readable for ChannelMonitorUpdateStep {
432 fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
433 match Readable::read(r)? {
435 Ok(ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo {
436 commitment_tx: Readable::read(r)?,
438 let len: u64 = Readable::read(r)?;
439 let mut res = Vec::new();
441 res.push((Readable::read(r)?, Readable::read(r)?, Readable::read(r)?));
448 Ok(ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo {
449 commitment_txid: Readable::read(r)?,
450 commitment_number: Readable::read(r)?,
451 their_revocation_point: Readable::read(r)?,
453 let len: u64 = Readable::read(r)?;
454 let mut res = Vec::new();
456 res.push((Readable::read(r)?, <Option<HTLCSource> as Readable>::read(r)?.map(|o| Box::new(o))));
463 Ok(ChannelMonitorUpdateStep::PaymentPreimage {
464 payment_preimage: Readable::read(r)?,
468 Ok(ChannelMonitorUpdateStep::CommitmentSecret {
469 idx: Readable::read(r)?,
470 secret: Readable::read(r)?,
474 Ok(ChannelMonitorUpdateStep::ChannelForceClosed {
475 should_broadcast: Readable::read(r)?
478 _ => Err(DecodeError::InvalidValue),
483 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
484 /// on-chain transactions to ensure no loss of funds occurs.
486 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
487 /// information and are actively monitoring the chain.
489 /// Pending Events or updated HTLCs which have not yet been read out by
490 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
491 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
492 /// gotten are fully handled before re-serializing the new state.
494 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
495 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
496 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
497 /// returned block hash and the the current chain and then reconnecting blocks to get to the
498 /// best chain) upon deserializing the object!
499 pub struct ChannelMonitor<Signer: Sign> {
501 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
503 inner: Mutex<ChannelMonitorImpl<Signer>>,
506 pub(crate) struct ChannelMonitorImpl<Signer: Sign> {
507 latest_update_id: u64,
508 commitment_transaction_number_obscure_factor: u64,
510 destination_script: Script,
511 broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
512 counterparty_payment_script: Script,
513 shutdown_script: Script,
515 channel_keys_id: [u8; 32],
516 holder_revocation_basepoint: PublicKey,
517 funding_info: (OutPoint, Script),
518 current_counterparty_commitment_txid: Option<Txid>,
519 prev_counterparty_commitment_txid: Option<Txid>,
521 counterparty_tx_cache: CounterpartyCommitmentTransaction,
522 funding_redeemscript: Script,
523 channel_value_satoshis: u64,
524 // first is the idx of the first of the two revocation points
525 their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
527 on_holder_tx_csv: u16,
529 commitment_secrets: CounterpartyCommitmentSecrets,
530 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
531 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
532 /// Nor can we figure out their commitment numbers without the commitment transaction they are
533 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
534 /// commitment transactions which we find on-chain, mapping them to the commitment number which
535 /// can be used to derive the revocation key and claim the transactions.
536 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
537 /// Cache used to make pruning of payment_preimages faster.
538 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
539 /// counterparty transactions (ie should remain pretty small).
540 /// Serialized to disk but should generally not be sent to Watchtowers.
541 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
543 // We store two holder commitment transactions to avoid any race conditions where we may update
544 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
545 // various monitors for one channel being out of sync, and us broadcasting a holder
546 // transaction for which we have deleted claim information on some watchtowers.
547 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
548 current_holder_commitment_tx: HolderSignedTx,
550 // Used just for ChannelManager to make sure it has the latest channel data during
552 current_counterparty_commitment_number: u64,
553 // Used just for ChannelManager to make sure it has the latest channel data during
555 current_holder_commitment_number: u64,
557 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
559 pending_monitor_events: Vec<MonitorEvent>,
560 pending_events: Vec<Event>,
562 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
563 // which to take actions once they reach enough confirmations. Each entry includes the
564 // transaction's id and the height when the transaction was confirmed on chain.
565 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
567 // If we get serialized out and re-read, we need to make sure that the chain monitoring
568 // interface knows about the TXOs that we want to be notified of spends of. We could probably
569 // be smart and derive them from the above storage fields, but its much simpler and more
570 // Obviously Correct (tm) if we just keep track of them explicitly.
571 outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
574 pub onchain_tx_handler: OnchainTxHandler<Signer>,
576 onchain_tx_handler: OnchainTxHandler<Signer>,
578 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
579 // channel has been force-closed. After this is set, no further holder commitment transaction
580 // updates may occur, and we panic!() if one is provided.
581 lockdown_from_offchain: bool,
583 // Set once we've signed a holder commitment transaction and handed it over to our
584 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
585 // may occur, and we fail any such monitor updates.
587 // In case of update rejection due to a locally already signed commitment transaction, we
588 // nevertheless store update content to track in case of concurrent broadcast by another
589 // remote monitor out-of-order with regards to the block view.
590 holder_tx_signed: bool,
592 // We simply modify best_block in Channel's block_connected so that serialization is
593 // consistent but hopefully the users' copy handles block_connected in a consistent way.
594 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
595 // their best_block from its state and not based on updated copies that didn't run through
596 // the full block_connected).
597 best_block: BestBlock,
599 secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
602 /// Transaction outputs to watch for on-chain spends.
603 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
605 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
606 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
607 /// underlying object
608 impl<Signer: Sign> PartialEq for ChannelMonitor<Signer> {
609 fn eq(&self, other: &Self) -> bool {
610 let inner = self.inner.lock().unwrap();
611 let other = other.inner.lock().unwrap();
616 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
617 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
618 /// underlying object
619 impl<Signer: Sign> PartialEq for ChannelMonitorImpl<Signer> {
620 fn eq(&self, other: &Self) -> bool {
621 if self.latest_update_id != other.latest_update_id ||
622 self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
623 self.destination_script != other.destination_script ||
624 self.broadcasted_holder_revokable_script != other.broadcasted_holder_revokable_script ||
625 self.counterparty_payment_script != other.counterparty_payment_script ||
626 self.channel_keys_id != other.channel_keys_id ||
627 self.holder_revocation_basepoint != other.holder_revocation_basepoint ||
628 self.funding_info != other.funding_info ||
629 self.current_counterparty_commitment_txid != other.current_counterparty_commitment_txid ||
630 self.prev_counterparty_commitment_txid != other.prev_counterparty_commitment_txid ||
631 self.counterparty_tx_cache != other.counterparty_tx_cache ||
632 self.funding_redeemscript != other.funding_redeemscript ||
633 self.channel_value_satoshis != other.channel_value_satoshis ||
634 self.their_cur_revocation_points != other.their_cur_revocation_points ||
635 self.on_holder_tx_csv != other.on_holder_tx_csv ||
636 self.commitment_secrets != other.commitment_secrets ||
637 self.counterparty_claimable_outpoints != other.counterparty_claimable_outpoints ||
638 self.counterparty_commitment_txn_on_chain != other.counterparty_commitment_txn_on_chain ||
639 self.counterparty_hash_commitment_number != other.counterparty_hash_commitment_number ||
640 self.prev_holder_signed_commitment_tx != other.prev_holder_signed_commitment_tx ||
641 self.current_counterparty_commitment_number != other.current_counterparty_commitment_number ||
642 self.current_holder_commitment_number != other.current_holder_commitment_number ||
643 self.current_holder_commitment_tx != other.current_holder_commitment_tx ||
644 self.payment_preimages != other.payment_preimages ||
645 self.pending_monitor_events != other.pending_monitor_events ||
646 self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly
647 self.onchain_events_awaiting_threshold_conf != other.onchain_events_awaiting_threshold_conf ||
648 self.outputs_to_watch != other.outputs_to_watch ||
649 self.lockdown_from_offchain != other.lockdown_from_offchain ||
650 self.holder_tx_signed != other.holder_tx_signed
659 impl<Signer: Sign> Writeable for ChannelMonitor<Signer> {
660 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
661 self.inner.lock().unwrap().write(writer)
665 const SERIALIZATION_VERSION: u8 = 1;
666 const MIN_SERIALIZATION_VERSION: u8 = 1;
668 impl<Signer: Sign> Writeable for ChannelMonitorImpl<Signer> {
669 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
670 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
672 self.latest_update_id.write(writer)?;
674 // Set in initial Channel-object creation, so should always be set by now:
675 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
677 self.destination_script.write(writer)?;
678 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
679 writer.write_all(&[0; 1])?;
680 broadcasted_holder_revokable_script.0.write(writer)?;
681 broadcasted_holder_revokable_script.1.write(writer)?;
682 broadcasted_holder_revokable_script.2.write(writer)?;
684 writer.write_all(&[1; 1])?;
687 self.counterparty_payment_script.write(writer)?;
688 self.shutdown_script.write(writer)?;
690 self.channel_keys_id.write(writer)?;
691 self.holder_revocation_basepoint.write(writer)?;
692 writer.write_all(&self.funding_info.0.txid[..])?;
693 writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?;
694 self.funding_info.1.write(writer)?;
695 self.current_counterparty_commitment_txid.write(writer)?;
696 self.prev_counterparty_commitment_txid.write(writer)?;
698 self.counterparty_tx_cache.write(writer)?;
699 self.funding_redeemscript.write(writer)?;
700 self.channel_value_satoshis.write(writer)?;
702 match self.their_cur_revocation_points {
703 Some((idx, pubkey, second_option)) => {
704 writer.write_all(&byte_utils::be48_to_array(idx))?;
705 writer.write_all(&pubkey.serialize())?;
706 match second_option {
707 Some(second_pubkey) => {
708 writer.write_all(&second_pubkey.serialize())?;
711 writer.write_all(&[0; 33])?;
716 writer.write_all(&byte_utils::be48_to_array(0))?;
720 writer.write_all(&byte_utils::be16_to_array(self.on_holder_tx_csv))?;
722 self.commitment_secrets.write(writer)?;
724 macro_rules! serialize_htlc_in_commitment {
725 ($htlc_output: expr) => {
726 writer.write_all(&[$htlc_output.offered as u8; 1])?;
727 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
728 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
729 writer.write_all(&$htlc_output.payment_hash.0[..])?;
730 $htlc_output.transaction_output_index.write(writer)?;
734 writer.write_all(&byte_utils::be64_to_array(self.counterparty_claimable_outpoints.len() as u64))?;
735 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
736 writer.write_all(&txid[..])?;
737 writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
738 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
739 serialize_htlc_in_commitment!(htlc_output);
740 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
744 writer.write_all(&byte_utils::be64_to_array(self.counterparty_commitment_txn_on_chain.len() as u64))?;
745 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
746 writer.write_all(&txid[..])?;
747 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
750 writer.write_all(&byte_utils::be64_to_array(self.counterparty_hash_commitment_number.len() as u64))?;
751 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
752 writer.write_all(&payment_hash.0[..])?;
753 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
756 macro_rules! serialize_holder_tx {
757 ($holder_tx: expr) => {
758 $holder_tx.txid.write(writer)?;
759 writer.write_all(&$holder_tx.revocation_key.serialize())?;
760 writer.write_all(&$holder_tx.a_htlc_key.serialize())?;
761 writer.write_all(&$holder_tx.b_htlc_key.serialize())?;
762 writer.write_all(&$holder_tx.delayed_payment_key.serialize())?;
763 writer.write_all(&$holder_tx.per_commitment_point.serialize())?;
765 writer.write_all(&byte_utils::be32_to_array($holder_tx.feerate_per_kw))?;
766 writer.write_all(&byte_utils::be64_to_array($holder_tx.htlc_outputs.len() as u64))?;
767 for &(ref htlc_output, ref sig, ref htlc_source) in $holder_tx.htlc_outputs.iter() {
768 serialize_htlc_in_commitment!(htlc_output);
769 if let &Some(ref their_sig) = sig {
771 writer.write_all(&their_sig.serialize_compact())?;
775 htlc_source.write(writer)?;
780 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
781 writer.write_all(&[1; 1])?;
782 serialize_holder_tx!(prev_holder_tx);
784 writer.write_all(&[0; 1])?;
787 serialize_holder_tx!(self.current_holder_commitment_tx);
789 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
790 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
792 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
793 for payment_preimage in self.payment_preimages.values() {
794 writer.write_all(&payment_preimage.0[..])?;
797 writer.write_all(&byte_utils::be64_to_array(self.pending_monitor_events.len() as u64))?;
798 for event in self.pending_monitor_events.iter() {
800 MonitorEvent::HTLCEvent(upd) => {
804 MonitorEvent::CommitmentTxBroadcasted(_) => 1u8.write(writer)?
808 writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?;
809 for event in self.pending_events.iter() {
810 event.write(writer)?;
813 self.best_block.block_hash().write(writer)?;
814 writer.write_all(&byte_utils::be32_to_array(self.best_block.height()))?;
816 writer.write_all(&byte_utils::be64_to_array(self.onchain_events_awaiting_threshold_conf.len() as u64))?;
817 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
818 entry.txid.write(writer)?;
819 writer.write_all(&byte_utils::be32_to_array(entry.height))?;
821 OnchainEvent::HTLCUpdate { ref htlc_update } => {
823 htlc_update.0.write(writer)?;
824 htlc_update.1.write(writer)?;
826 OnchainEvent::MaturingOutput { ref descriptor } => {
828 descriptor.write(writer)?;
833 (self.outputs_to_watch.len() as u64).write(writer)?;
834 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
836 (idx_scripts.len() as u64).write(writer)?;
837 for (idx, script) in idx_scripts.iter() {
839 script.write(writer)?;
842 self.onchain_tx_handler.write(writer)?;
844 self.lockdown_from_offchain.write(writer)?;
845 self.holder_tx_signed.write(writer)?;
847 write_tlv_fields!(writer, {}, {});
853 impl<Signer: Sign> ChannelMonitor<Signer> {
854 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_pubkey: &PublicKey,
855 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
856 channel_parameters: &ChannelTransactionParameters,
857 funding_redeemscript: Script, channel_value_satoshis: u64,
858 commitment_transaction_number_obscure_factor: u64,
859 initial_holder_commitment_tx: HolderCommitmentTransaction,
860 best_block: BestBlock) -> ChannelMonitor<Signer> {
862 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
863 let our_channel_close_key_hash = WPubkeyHash::hash(&shutdown_pubkey.serialize());
864 let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
865 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
866 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
868 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
869 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
870 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
871 let counterparty_tx_cache = CounterpartyCommitmentTransaction { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv, per_htlc: HashMap::new() };
873 let channel_keys_id = keys.channel_keys_id();
874 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
876 // block for Rust 1.34 compat
877 let (holder_commitment_tx, current_holder_commitment_number) = {
878 let trusted_tx = initial_holder_commitment_tx.trust();
879 let txid = trusted_tx.txid();
881 let tx_keys = trusted_tx.keys();
882 let holder_commitment_tx = HolderSignedTx {
884 revocation_key: tx_keys.revocation_key,
885 a_htlc_key: tx_keys.broadcaster_htlc_key,
886 b_htlc_key: tx_keys.countersignatory_htlc_key,
887 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
888 per_commitment_point: tx_keys.per_commitment_point,
889 feerate_per_kw: trusted_tx.feerate_per_kw(),
890 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
892 (holder_commitment_tx, trusted_tx.commitment_number())
895 let onchain_tx_handler =
896 OnchainTxHandler::new(destination_script.clone(), keys,
897 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx.clone());
899 let mut outputs_to_watch = HashMap::new();
900 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
903 inner: Mutex::new(ChannelMonitorImpl {
905 commitment_transaction_number_obscure_factor,
907 destination_script: destination_script.clone(),
908 broadcasted_holder_revokable_script: None,
909 counterparty_payment_script,
913 holder_revocation_basepoint,
915 current_counterparty_commitment_txid: None,
916 prev_counterparty_commitment_txid: None,
918 counterparty_tx_cache,
919 funding_redeemscript,
920 channel_value_satoshis,
921 their_cur_revocation_points: None,
923 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
925 commitment_secrets: CounterpartyCommitmentSecrets::new(),
926 counterparty_claimable_outpoints: HashMap::new(),
927 counterparty_commitment_txn_on_chain: HashMap::new(),
928 counterparty_hash_commitment_number: HashMap::new(),
930 prev_holder_signed_commitment_tx: None,
931 current_holder_commitment_tx: holder_commitment_tx,
932 current_counterparty_commitment_number: 1 << 48,
933 current_holder_commitment_number,
935 payment_preimages: HashMap::new(),
936 pending_monitor_events: Vec::new(),
937 pending_events: Vec::new(),
939 onchain_events_awaiting_threshold_conf: Vec::new(),
944 lockdown_from_offchain: false,
945 holder_tx_signed: false,
955 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
956 self.inner.lock().unwrap().provide_secret(idx, secret)
959 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
960 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
961 /// possibly future revocation/preimage information) to claim outputs where possible.
962 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
963 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
966 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
967 commitment_number: u64,
968 their_revocation_point: PublicKey,
970 ) where L::Target: Logger {
971 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
972 txid, htlc_outputs, commitment_number, their_revocation_point, logger)
976 fn provide_latest_holder_commitment_tx(
978 holder_commitment_tx: HolderCommitmentTransaction,
979 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
980 ) -> Result<(), MonitorUpdateError> {
981 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(
982 holder_commitment_tx, htlc_outputs)
986 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
988 payment_hash: &PaymentHash,
989 payment_preimage: &PaymentPreimage,
994 B::Target: BroadcasterInterface,
995 F::Target: FeeEstimator,
998 self.inner.lock().unwrap().provide_payment_preimage(
999 payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1002 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1007 B::Target: BroadcasterInterface,
1010 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger)
1013 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1016 /// panics if the given update is not the next update by update_id.
1017 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1019 updates: &ChannelMonitorUpdate,
1023 ) -> Result<(), MonitorUpdateError>
1025 B::Target: BroadcasterInterface,
1026 F::Target: FeeEstimator,
1029 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1032 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1034 pub fn get_latest_update_id(&self) -> u64 {
1035 self.inner.lock().unwrap().get_latest_update_id()
1038 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1039 pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1040 self.inner.lock().unwrap().get_funding_txo().clone()
1043 /// Gets a list of txids, with their output scripts (in the order they appear in the
1044 /// transaction), which we must learn about spends of via block_connected().
1045 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1046 self.inner.lock().unwrap().get_outputs_to_watch()
1047 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1050 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1051 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1052 /// have been registered.
1053 pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1054 let lock = self.inner.lock().unwrap();
1055 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1056 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1057 for (index, script_pubkey) in outputs.iter() {
1058 assert!(*index <= u16::max_value() as u32);
1059 filter.register_output(WatchedOutput {
1061 outpoint: OutPoint { txid: *txid, index: *index as u16 },
1062 script_pubkey: script_pubkey.clone(),
1068 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1069 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1070 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1071 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1074 /// Gets the list of pending events which were generated by previous actions, clearing the list
1077 /// This is called by ChainMonitor::get_and_clear_pending_events() and is equivalent to
1078 /// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
1079 /// no internal locking in ChannelMonitors.
1080 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1081 self.inner.lock().unwrap().get_and_clear_pending_events()
1084 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1085 self.inner.lock().unwrap().get_min_seen_secret()
1088 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1089 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1092 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1093 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1096 /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1097 /// the Channel was out-of-date. You may use it to get a broadcastable holder toxic tx in case of
1098 /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our counterparty side knows
1099 /// a higher revocation secret than the holder commitment number we are aware of. Broadcasting these
1100 /// transactions are UNSAFE, as they allow counterparty side to punish you. Nevertheless you may want to
1101 /// broadcast them if counterparty don't close channel with his higher commitment transaction after a
1102 /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
1103 /// out-of-band the other node operator to coordinate with him if option is available to you.
1104 /// In any-case, choice is up to the user.
1105 pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1106 where L::Target: Logger {
1107 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1110 /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1111 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1112 /// revoked commitment transaction.
1113 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1114 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1115 where L::Target: Logger {
1116 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1119 /// Processes transactions in a newly connected block, which may result in any of the following:
1120 /// - update the monitor's state against resolved HTLCs
1121 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1122 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1123 /// - detect settled outputs for later spending
1124 /// - schedule and bump any in-flight claims
1126 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1127 /// [`get_outputs_to_watch`].
1129 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1130 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1132 header: &BlockHeader,
1133 txdata: &TransactionData,
1138 ) -> Vec<TransactionOutputs>
1140 B::Target: BroadcasterInterface,
1141 F::Target: FeeEstimator,
1144 self.inner.lock().unwrap().block_connected(
1145 header, txdata, height, broadcaster, fee_estimator, logger)
1148 /// Determines if the disconnected block contained any transactions of interest and updates
1150 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1152 header: &BlockHeader,
1158 B::Target: BroadcasterInterface,
1159 F::Target: FeeEstimator,
1162 self.inner.lock().unwrap().block_disconnected(
1163 header, height, broadcaster, fee_estimator, logger)
1166 /// Processes transactions confirmed in a block with the given header and height, returning new
1167 /// outputs to watch. See [`block_connected`] for details.
1169 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1170 /// blocks. See [`chain::Confirm`] for calling expectations.
1172 /// [`block_connected`]: Self::block_connected
1173 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1175 header: &BlockHeader,
1176 txdata: &TransactionData,
1181 ) -> Vec<TransactionOutputs>
1183 B::Target: BroadcasterInterface,
1184 F::Target: FeeEstimator,
1187 self.inner.lock().unwrap().transactions_confirmed(
1188 header, txdata, height, broadcaster, fee_estimator, logger)
1191 /// Processes a transaction that was reorganized out of the chain.
1193 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1194 /// than blocks. See [`chain::Confirm`] for calling expectations.
1196 /// [`block_disconnected`]: Self::block_disconnected
1197 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1204 B::Target: BroadcasterInterface,
1205 F::Target: FeeEstimator,
1208 self.inner.lock().unwrap().transaction_unconfirmed(
1209 txid, broadcaster, fee_estimator, logger);
1212 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1213 /// [`block_connected`] for details.
1215 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1216 /// blocks. See [`chain::Confirm`] for calling expectations.
1218 /// [`block_connected`]: Self::block_connected
1219 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1221 header: &BlockHeader,
1226 ) -> Vec<TransactionOutputs>
1228 B::Target: BroadcasterInterface,
1229 F::Target: FeeEstimator,
1232 self.inner.lock().unwrap().best_block_updated(
1233 header, height, broadcaster, fee_estimator, logger)
1236 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1237 pub fn get_relevant_txids(&self) -> Vec<Txid> {
1238 let inner = self.inner.lock().unwrap();
1239 let mut txids: Vec<Txid> = inner.onchain_events_awaiting_threshold_conf
1241 .map(|entry| entry.txid)
1242 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1244 txids.sort_unstable();
1250 impl<Signer: Sign> ChannelMonitorImpl<Signer> {
1251 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
1252 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
1253 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
1254 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
1255 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
1256 return Err(MonitorUpdateError("Previous secret did not match new one"));
1259 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
1260 // events for now-revoked/fulfilled HTLCs.
1261 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
1262 for &mut (_, ref mut source) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
1267 if !self.payment_preimages.is_empty() {
1268 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
1269 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
1270 let min_idx = self.get_min_seen_secret();
1271 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
1273 self.payment_preimages.retain(|&k, _| {
1274 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
1275 if k == htlc.payment_hash {
1279 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
1280 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
1281 if k == htlc.payment_hash {
1286 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
1293 counterparty_hash_commitment_number.remove(&k);
1302 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey, logger: &L) where L::Target: Logger {
1303 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
1304 // so that a remote monitor doesn't learn anything unless there is a malicious close.
1305 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
1307 for &(ref htlc, _) in &htlc_outputs {
1308 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
1311 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
1312 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
1313 self.current_counterparty_commitment_txid = Some(txid);
1314 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
1315 self.current_counterparty_commitment_number = commitment_number;
1316 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
1317 match self.their_cur_revocation_points {
1318 Some(old_points) => {
1319 if old_points.0 == commitment_number + 1 {
1320 self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
1321 } else if old_points.0 == commitment_number + 2 {
1322 if let Some(old_second_point) = old_points.2 {
1323 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
1325 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1328 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1332 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1335 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
1336 for htlc in htlc_outputs {
1337 if htlc.0.transaction_output_index.is_some() {
1341 self.counterparty_tx_cache.per_htlc.insert(txid, htlcs);
1344 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
1345 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
1346 /// is important that any clones of this channel monitor (including remote clones) by kept
1347 /// up-to-date as our holder commitment transaction is updated.
1348 /// Panics if set_on_holder_tx_csv has never been called.
1349 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>) -> Result<(), MonitorUpdateError> {
1350 // block for Rust 1.34 compat
1351 let mut new_holder_commitment_tx = {
1352 let trusted_tx = holder_commitment_tx.trust();
1353 let txid = trusted_tx.txid();
1354 let tx_keys = trusted_tx.keys();
1355 self.current_holder_commitment_number = trusted_tx.commitment_number();
1358 revocation_key: tx_keys.revocation_key,
1359 a_htlc_key: tx_keys.broadcaster_htlc_key,
1360 b_htlc_key: tx_keys.countersignatory_htlc_key,
1361 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1362 per_commitment_point: tx_keys.per_commitment_point,
1363 feerate_per_kw: trusted_tx.feerate_per_kw(),
1367 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
1368 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
1369 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
1370 if self.holder_tx_signed {
1371 return Err(MonitorUpdateError("Latest holder commitment signed has already been signed, update is rejected"));
1376 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
1377 /// commitment_tx_infos which contain the payment hash have been revoked.
1378 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B, fee_estimator: &F, logger: &L)
1379 where B::Target: BroadcasterInterface,
1380 F::Target: FeeEstimator,
1383 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
1385 // If the channel is force closed, try to claim the output from this preimage.
1386 // First check if a counterparty commitment transaction has been broadcasted:
1387 macro_rules! claim_htlcs {
1388 ($commitment_number: expr, $txid: expr) => {
1389 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs($commitment_number, $txid, None);
1390 self.onchain_tx_handler.update_claims_view(&Vec::new(), htlc_claim_reqs, self.best_block.height(), broadcaster, fee_estimator, logger);
1393 if let Some(txid) = self.current_counterparty_commitment_txid {
1394 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1395 claim_htlcs!(*commitment_number, txid);
1399 if let Some(txid) = self.prev_counterparty_commitment_txid {
1400 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
1401 claim_htlcs!(*commitment_number, txid);
1406 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
1407 // claiming the HTLC output from each of the holder commitment transactions.
1408 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
1409 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
1410 // holder commitment transactions.
1411 if self.broadcasted_holder_revokable_script.is_some() {
1412 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, 0);
1413 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, self.best_block.height(), broadcaster, fee_estimator, logger);
1414 if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
1415 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx, 0);
1416 self.onchain_tx_handler.update_claims_view(&Vec::new(), claim_reqs, self.best_block.height(), broadcaster, fee_estimator, logger);
1421 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
1422 where B::Target: BroadcasterInterface,
1425 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
1426 log_info!(logger, "Broadcasting local {}", log_tx!(tx));
1427 broadcaster.broadcast_transaction(tx);
1429 self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
1432 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: &F, logger: &L) -> Result<(), MonitorUpdateError>
1433 where B::Target: BroadcasterInterface,
1434 F::Target: FeeEstimator,
1437 // ChannelMonitor updates may be applied after force close if we receive a
1438 // preimage for a broadcasted commitment transaction HTLC output that we'd
1439 // like to claim on-chain. If this is the case, we no longer have guaranteed
1440 // access to the monitor's update ID, so we use a sentinel value instead.
1441 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
1442 match updates.updates[0] {
1443 ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
1444 _ => panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage"),
1446 assert_eq!(updates.updates.len(), 1);
1447 } else if self.latest_update_id + 1 != updates.update_id {
1448 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
1450 for update in updates.updates.iter() {
1452 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs } => {
1453 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
1454 if self.lockdown_from_offchain { panic!(); }
1455 self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone())?
1457 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_revocation_point } => {
1458 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
1459 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_revocation_point, logger)
1461 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
1462 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
1463 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, fee_estimator, logger)
1465 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
1466 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
1467 self.provide_secret(*idx, *secret)?
1469 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
1470 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
1471 self.lockdown_from_offchain = true;
1472 if *should_broadcast {
1473 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
1474 } else if !self.holder_tx_signed {
1475 log_error!(logger, "You have a toxic holder commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_holder_commitment_txn to be informed of manual action to take");
1477 // If we generated a MonitorEvent::CommitmentTxBroadcasted, the ChannelManager
1478 // will still give us a ChannelForceClosed event with !should_broadcast, but we
1479 // shouldn't print the scary warning above.
1480 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
1485 self.latest_update_id = updates.update_id;
1489 pub fn get_latest_update_id(&self) -> u64 {
1490 self.latest_update_id
1493 pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
1497 pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
1498 // If we've detected a counterparty commitment tx on chain, we must include it in the set
1499 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
1500 // its trivial to do, double-check that here.
1501 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
1502 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
1504 &self.outputs_to_watch
1507 pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
1508 let mut ret = Vec::new();
1509 mem::swap(&mut ret, &mut self.pending_monitor_events);
1513 pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
1514 let mut ret = Vec::new();
1515 mem::swap(&mut ret, &mut self.pending_events);
1519 /// Can only fail if idx is < get_min_seen_secret
1520 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
1521 self.commitment_secrets.get_secret(idx)
1524 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1525 self.commitment_secrets.get_min_seen_secret()
1528 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1529 self.current_counterparty_commitment_number
1532 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1533 self.current_holder_commitment_number
1536 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
1537 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
1538 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
1539 /// HTLC-Success/HTLC-Timeout transactions.
1540 /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
1541 /// revoked counterparty commitment tx
1542 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<PackageTemplate>, TransactionOutputs) where L::Target: Logger {
1543 // Most secp and related errors trying to create keys means we have no hope of constructing
1544 // a spend transaction...so we return no transactions to broadcast
1545 let mut claimable_outpoints = Vec::new();
1546 let mut watch_outputs = Vec::new();
1548 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1549 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
1551 macro_rules! ignore_error {
1552 ( $thing : expr ) => {
1555 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs))
1560 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1561 if commitment_number >= self.get_min_seen_secret() {
1562 let secret = self.get_secret(commitment_number).unwrap();
1563 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1564 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1565 let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint));
1566 let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.counterparty_tx_cache.counterparty_delayed_payment_base_key));
1568 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_tx_cache.on_counterparty_tx_csv, &delayed_key);
1569 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
1571 // First, process non-htlc outputs (to_holder & to_counterparty)
1572 for (idx, outp) in tx.output.iter().enumerate() {
1573 if outp.script_pubkey == revokeable_p2wsh {
1574 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_tx_cache.on_counterparty_tx_csv);
1575 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, true, height);
1576 claimable_outpoints.push(justice_package);
1580 // Then, try to find revoked htlc outputs
1581 if let Some(ref per_commitment_data) = per_commitment_option {
1582 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1583 if let Some(transaction_output_index) = htlc.transaction_output_index {
1584 if transaction_output_index as usize >= tx.output.len() ||
1585 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1586 return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
1588 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone());
1589 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, true, height);
1590 claimable_outpoints.push(justice_package);
1595 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
1596 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
1597 // We're definitely a counterparty commitment transaction!
1598 log_trace!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
1599 for (idx, outp) in tx.output.iter().enumerate() {
1600 watch_outputs.push((idx as u32, outp.clone()));
1602 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
1604 macro_rules! check_htlc_fails {
1605 ($txid: expr, $commitment_tx: expr) => {
1606 if let Some(ref outpoints) = self.counterparty_claimable_outpoints.get($txid) {
1607 for &(ref htlc, ref source_option) in outpoints.iter() {
1608 if let &Some(ref source) = source_option {
1609 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1610 if entry.height != height { return true; }
1612 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1613 htlc_update.0 != **source
1618 let entry = OnchainEventEntry {
1621 event: OnchainEvent::HTLCUpdate {
1622 htlc_update: ((**source).clone(), htlc.payment_hash.clone())
1625 log_info!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of revoked counterparty commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, entry.confirmation_threshold());
1626 self.onchain_events_awaiting_threshold_conf.push(entry);
1632 if let Some(ref txid) = self.current_counterparty_commitment_txid {
1633 check_htlc_fails!(txid, "current");
1635 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
1636 check_htlc_fails!(txid, "counterparty");
1638 // No need to check holder commitment txn, symmetric HTLCSource must be present as per-htlc data on counterparty commitment tx
1640 } else if let Some(per_commitment_data) = per_commitment_option {
1641 // While this isn't useful yet, there is a potential race where if a counterparty
1642 // revokes a state at the same time as the commitment transaction for that state is
1643 // confirmed, and the watchtower receives the block before the user, the user could
1644 // upload a new ChannelMonitor with the revocation secret but the watchtower has
1645 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
1646 // not being generated by the above conditional. Thus, to be safe, we go ahead and
1648 for (idx, outp) in tx.output.iter().enumerate() {
1649 watch_outputs.push((idx as u32, outp.clone()));
1651 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
1653 log_trace!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
1655 macro_rules! check_htlc_fails {
1656 ($txid: expr, $commitment_tx: expr, $id: tt) => {
1657 if let Some(ref latest_outpoints) = self.counterparty_claimable_outpoints.get($txid) {
1658 $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1659 if let &Some(ref source) = source_option {
1660 // Check if the HTLC is present in the commitment transaction that was
1661 // broadcast, but not if it was below the dust limit, which we should
1662 // fail backwards immediately as there is no way for us to learn the
1663 // payment_preimage.
1664 // Note that if the dust limit were allowed to change between
1665 // commitment transactions we'd want to be check whether *any*
1666 // broadcastable commitment transaction has the HTLC in it, but it
1667 // cannot currently change after channel initialization, so we don't
1669 for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
1670 if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
1674 log_trace!(logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of counterparty commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1675 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1676 if entry.height != height { return true; }
1678 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1679 htlc_update.0 != **source
1684 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
1687 event: OnchainEvent::HTLCUpdate {
1688 htlc_update: ((**source).clone(), htlc.payment_hash.clone())
1696 if let Some(ref txid) = self.current_counterparty_commitment_txid {
1697 check_htlc_fails!(txid, "current", 'current_loop);
1699 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
1700 check_htlc_fails!(txid, "previous", 'prev_loop);
1703 let htlc_claim_reqs = self.get_counterparty_htlc_output_claim_reqs(commitment_number, commitment_txid, Some(tx));
1704 for req in htlc_claim_reqs {
1705 claimable_outpoints.push(req);
1709 (claimable_outpoints, (commitment_txid, watch_outputs))
1712 fn get_counterparty_htlc_output_claim_reqs(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>) -> Vec<PackageTemplate> {
1713 let mut claimable_outpoints = Vec::new();
1714 if let Some(htlc_outputs) = self.counterparty_claimable_outpoints.get(&commitment_txid) {
1715 if let Some(revocation_points) = self.their_cur_revocation_points {
1716 let revocation_point_option =
1717 // If the counterparty commitment tx is the latest valid state, use their latest
1718 // per-commitment point
1719 if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
1720 else if let Some(point) = revocation_points.2.as_ref() {
1721 // If counterparty commitment tx is the state previous to the latest valid state, use
1722 // their previous per-commitment point (non-atomicity of revocation means it's valid for
1723 // them to temporarily have two valid commitment txns from our viewpoint)
1724 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
1726 if let Some(revocation_point) = revocation_point_option {
1727 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
1728 if let Some(transaction_output_index) = htlc.transaction_output_index {
1729 if let Some(transaction) = tx {
1730 if transaction_output_index as usize >= transaction.output.len() ||
1731 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1732 return claimable_outpoints; // Corrupted per_commitment_data, fuck this user
1735 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
1736 if preimage.is_some() || !htlc.offered {
1737 let counterparty_htlc_outp = if htlc.offered { PackageSolvingData::CounterpartyOfferedHTLCOutput(CounterpartyOfferedHTLCOutput::build(*revocation_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, preimage.unwrap(), htlc.clone())) } else { PackageSolvingData::CounterpartyReceivedHTLCOutput(CounterpartyReceivedHTLCOutput::build(*revocation_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, htlc.clone())) };
1738 let aggregation = if !htlc.offered { false } else { true };
1739 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry,aggregation, 0);
1740 claimable_outpoints.push(counterparty_package);
1750 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
1751 fn check_spend_counterparty_htlc<L: Deref>(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
1752 let htlc_txid = tx.txid();
1753 if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 {
1754 return (Vec::new(), None)
1757 macro_rules! ignore_error {
1758 ( $thing : expr ) => {
1761 Err(_) => return (Vec::new(), None)
1766 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
1767 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1768 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1770 log_trace!(logger, "Counterparty HTLC broadcast {}:{}", htlc_txid, 0);
1771 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_tx_cache.counterparty_delayed_payment_base_key, self.counterparty_tx_cache.counterparty_htlc_base_key, per_commitment_key, tx.output[0].value, self.counterparty_tx_cache.on_counterparty_tx_csv);
1772 let justice_package = PackageTemplate::build_package(htlc_txid, 0, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_tx_cache.on_counterparty_tx_csv as u32, true, height);
1773 let claimable_outpoints = vec!(justice_package);
1774 let outputs = vec![(0, tx.output[0].clone())];
1775 (claimable_outpoints, Some((htlc_txid, outputs)))
1778 // Returns (1) `PackageTemplate`s that can be given to the OnChainTxHandler, so that the handler can
1779 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
1780 // script so we can detect whether a holder transaction has been seen on-chain.
1781 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, height: u32) -> (Vec<PackageTemplate>, Option<(Script, PublicKey, PublicKey)>) {
1782 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
1784 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
1785 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
1787 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
1788 if let Some(transaction_output_index) = htlc.transaction_output_index {
1789 let htlc_output = if htlc.offered {
1790 HolderHTLCOutput::build_offered(htlc.amount_msat, htlc.cltv_expiry)
1792 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1795 // We can't build an HTLC-Success transaction without the preimage
1798 HolderHTLCOutput::build_accepted(payment_preimage, htlc.amount_msat)
1800 let htlc_package = PackageTemplate::build_package(holder_tx.txid, transaction_output_index, PackageSolvingData::HolderHTLCOutput(htlc_output), height, false, height);
1801 claim_requests.push(htlc_package);
1805 (claim_requests, broadcasted_holder_revokable_script)
1808 // Returns holder HTLC outputs to watch and react to in case of spending.
1809 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
1810 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
1811 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
1812 if let Some(transaction_output_index) = htlc.transaction_output_index {
1813 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
1819 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
1820 /// revoked using data in holder_claimable_outpoints.
1821 /// Should not be used if check_spend_revoked_transaction succeeds.
1822 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<PackageTemplate>, TransactionOutputs) where L::Target: Logger {
1823 let commitment_txid = tx.txid();
1824 let mut claim_requests = Vec::new();
1825 let mut watch_outputs = Vec::new();
1827 macro_rules! wait_threshold_conf {
1828 ($source: expr, $commitment_tx: expr, $payment_hash: expr) => {
1829 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1830 if entry.height != height { return true; }
1832 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1833 htlc_update.0 != $source
1838 let entry = OnchainEventEntry {
1839 txid: commitment_txid,
1841 event: OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash) },
1843 log_trace!(logger, "Failing HTLC with payment_hash {} from {} holder commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, entry.confirmation_threshold());
1844 self.onchain_events_awaiting_threshold_conf.push(entry);
1848 macro_rules! append_onchain_update {
1849 ($updates: expr, $to_watch: expr) => {
1850 claim_requests = $updates.0;
1851 self.broadcasted_holder_revokable_script = $updates.1;
1852 watch_outputs.append(&mut $to_watch);
1856 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
1857 let mut is_holder_tx = false;
1859 if self.current_holder_commitment_tx.txid == commitment_txid {
1860 is_holder_tx = true;
1861 log_trace!(logger, "Got latest holder commitment tx broadcast, searching for available HTLCs to claim");
1862 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
1863 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
1864 append_onchain_update!(res, to_watch);
1865 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
1866 if holder_tx.txid == commitment_txid {
1867 is_holder_tx = true;
1868 log_trace!(logger, "Got previous holder commitment tx broadcast, searching for available HTLCs to claim");
1869 let res = self.get_broadcasted_holder_claims(holder_tx, height);
1870 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
1871 append_onchain_update!(res, to_watch);
1875 macro_rules! fail_dust_htlcs_after_threshold_conf {
1876 ($holder_tx: expr) => {
1877 for &(ref htlc, _, ref source) in &$holder_tx.htlc_outputs {
1878 if htlc.transaction_output_index.is_none() {
1879 if let &Some(ref source) = source {
1880 wait_threshold_conf!(source.clone(), "lastest", htlc.payment_hash.clone());
1888 fail_dust_htlcs_after_threshold_conf!(self.current_holder_commitment_tx);
1889 if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
1890 fail_dust_htlcs_after_threshold_conf!(holder_tx);
1894 (claim_requests, (commitment_txid, watch_outputs))
1897 pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
1898 log_trace!(logger, "Getting signed latest holder commitment transaction!");
1899 self.holder_tx_signed = true;
1900 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
1901 let txid = commitment_tx.txid();
1902 let mut holder_transactions = vec![commitment_tx];
1903 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
1904 if let Some(vout) = htlc.0.transaction_output_index {
1905 let preimage = if !htlc.0.offered {
1906 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
1907 // We can't build an HTLC-Success transaction without the preimage
1910 } else if htlc.0.cltv_expiry > self.best_block.height() + 1 {
1911 // Don't broadcast HTLC-Timeout transactions immediately as they don't meet the
1912 // current locktime requirements on-chain. We will broadcast them in
1913 // `block_confirmed` when `would_broadcast_at_height` returns true.
1914 // Note that we add + 1 as transactions are broadcastable when they can be
1915 // confirmed in the next block.
1918 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
1919 &::bitcoin::OutPoint { txid, vout }, &preimage) {
1920 holder_transactions.push(htlc_tx);
1924 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
1925 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
1929 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
1930 /// Note that this includes possibly-locktimed-in-the-future transactions!
1931 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
1932 log_trace!(logger, "Getting signed copy of latest holder commitment transaction!");
1933 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
1934 let txid = commitment_tx.txid();
1935 let mut holder_transactions = vec![commitment_tx];
1936 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
1937 if let Some(vout) = htlc.0.transaction_output_index {
1938 let preimage = if !htlc.0.offered {
1939 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
1940 // We can't build an HTLC-Success transaction without the preimage
1944 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
1945 &::bitcoin::OutPoint { txid, vout }, &preimage) {
1946 holder_transactions.push(htlc_tx);
1953 pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
1954 where B::Target: BroadcasterInterface,
1955 F::Target: FeeEstimator,
1958 let block_hash = header.block_hash();
1959 log_trace!(logger, "New best block {} at height {}", block_hash, height);
1960 self.best_block = BestBlock::new(block_hash, height);
1962 self.transactions_confirmed(header, txdata, height, broadcaster, fee_estimator, logger)
1965 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1967 header: &BlockHeader,
1972 ) -> Vec<TransactionOutputs>
1974 B::Target: BroadcasterInterface,
1975 F::Target: FeeEstimator,
1978 let block_hash = header.block_hash();
1979 log_trace!(logger, "New best block {} at height {}", block_hash, height);
1981 if height > self.best_block.height() {
1982 self.best_block = BestBlock::new(block_hash, height);
1983 self.block_confirmed(height, vec![], vec![], vec![], broadcaster, fee_estimator, logger)
1985 self.best_block = BestBlock::new(block_hash, height);
1986 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
1987 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
1992 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1994 header: &BlockHeader,
1995 txdata: &TransactionData,
2000 ) -> Vec<TransactionOutputs>
2002 B::Target: BroadcasterInterface,
2003 F::Target: FeeEstimator,
2006 let txn_matched = self.filter_block(txdata);
2007 for tx in &txn_matched {
2008 let mut output_val = 0;
2009 for out in tx.output.iter() {
2010 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2011 output_val += out.value;
2012 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2016 let block_hash = header.block_hash();
2017 log_trace!(logger, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len());
2019 let mut watch_outputs = Vec::new();
2020 let mut claimable_outpoints = Vec::new();
2021 for tx in &txn_matched {
2022 if tx.input.len() == 1 {
2023 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2024 // commitment transactions and HTLC transactions will all only ever have one input,
2025 // which is an easy way to filter out any potential non-matching txn for lazy
2027 let prevout = &tx.input[0].previous_output;
2028 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
2029 if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
2030 let (mut new_outpoints, new_outputs) = self.check_spend_counterparty_transaction(&tx, height, &logger);
2031 if !new_outputs.1.is_empty() {
2032 watch_outputs.push(new_outputs);
2034 if new_outpoints.is_empty() {
2035 let (mut new_outpoints, new_outputs) = self.check_spend_holder_transaction(&tx, height, &logger);
2036 if !new_outputs.1.is_empty() {
2037 watch_outputs.push(new_outputs);
2039 claimable_outpoints.append(&mut new_outpoints);
2041 claimable_outpoints.append(&mut new_outpoints);
2044 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&prevout.txid) {
2045 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(&tx, commitment_number, height, &logger);
2046 claimable_outpoints.append(&mut new_outpoints);
2047 if let Some(new_outputs) = new_outputs_option {
2048 watch_outputs.push(new_outputs);
2053 // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
2054 // can also be resolved in a few other ways which can have more than one output. Thus,
2055 // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
2056 self.is_resolving_htlc_output(&tx, height, &logger);
2058 self.is_paying_spendable_output(&tx, height, &logger);
2061 self.block_confirmed(height, txn_matched, watch_outputs, claimable_outpoints, broadcaster, fee_estimator, logger)
2064 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
2067 txn_matched: Vec<&Transaction>,
2068 mut watch_outputs: Vec<TransactionOutputs>,
2069 mut claimable_outpoints: Vec<PackageTemplate>,
2073 ) -> Vec<TransactionOutputs>
2075 B::Target: BroadcasterInterface,
2076 F::Target: FeeEstimator,
2079 let should_broadcast = self.would_broadcast_at_height(height, &logger);
2080 if should_broadcast {
2081 let funding_outp = HolderFundingOutput::build(self.funding_redeemscript.clone());
2082 let commitment_package = PackageTemplate::build_package(self.funding_info.0.txid.clone(), self.funding_info.0.index as u32, PackageSolvingData::HolderFundingOutput(funding_outp), height, false, height);
2083 claimable_outpoints.push(commitment_package);
2084 self.pending_monitor_events.push(MonitorEvent::CommitmentTxBroadcasted(self.funding_info.0));
2085 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2086 self.holder_tx_signed = true;
2087 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
2088 let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
2089 if !new_outputs.is_empty() {
2090 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
2092 claimable_outpoints.append(&mut new_outpoints);
2095 // Find which on-chain events have reached their confirmation threshold.
2096 let onchain_events_awaiting_threshold_conf =
2097 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
2098 let mut onchain_events_reaching_threshold_conf = Vec::new();
2099 for entry in onchain_events_awaiting_threshold_conf {
2100 if entry.has_reached_confirmation_threshold(height) {
2101 onchain_events_reaching_threshold_conf.push(entry);
2103 self.onchain_events_awaiting_threshold_conf.push(entry);
2107 // Used to check for duplicate HTLC resolutions.
2108 #[cfg(debug_assertions)]
2109 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
2111 .filter_map(|entry| match &entry.event {
2112 OnchainEvent::HTLCUpdate { htlc_update } => Some(htlc_update.0.clone()),
2113 OnchainEvent::MaturingOutput { .. } => None,
2116 #[cfg(debug_assertions)]
2117 let mut matured_htlcs = Vec::new();
2119 // Produce actionable events from on-chain events having reached their threshold.
2120 for entry in onchain_events_reaching_threshold_conf.drain(..) {
2122 OnchainEvent::HTLCUpdate { htlc_update } => {
2123 // Check for duplicate HTLC resolutions.
2124 #[cfg(debug_assertions)]
2127 unmatured_htlcs.iter().find(|&htlc| htlc == &htlc_update.0).is_none(),
2128 "An unmature HTLC transaction conflicts with a maturing one; failed to \
2129 call either transaction_unconfirmed for the conflicting transaction \
2130 or block_disconnected for a block containing it.");
2132 matured_htlcs.iter().find(|&htlc| htlc == &htlc_update.0).is_none(),
2133 "A matured HTLC transaction conflicts with a maturing one; failed to \
2134 call either transaction_unconfirmed for the conflicting transaction \
2135 or block_disconnected for a block containing it.");
2136 matured_htlcs.push(htlc_update.0.clone());
2139 log_trace!(logger, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!((htlc_update.1).0));
2140 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2141 payment_hash: htlc_update.1,
2142 payment_preimage: None,
2143 source: htlc_update.0,
2146 OnchainEvent::MaturingOutput { descriptor } => {
2147 log_trace!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
2148 self.pending_events.push(Event::SpendableOutputs {
2149 outputs: vec![descriptor]
2155 self.onchain_tx_handler.update_claims_view(&txn_matched, claimable_outpoints, height, &&*broadcaster, &&*fee_estimator, &&*logger);
2157 // Determine new outputs to watch by comparing against previously known outputs to watch,
2158 // updating the latter in the process.
2159 watch_outputs.retain(|&(ref txid, ref txouts)| {
2160 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
2161 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
2165 // If we see a transaction for which we registered outputs previously,
2166 // make sure the registered scriptpubkey at the expected index match
2167 // the actual transaction output one. We failed this case before #653.
2168 for tx in &txn_matched {
2169 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
2170 for idx_and_script in outputs.iter() {
2171 assert!((idx_and_script.0 as usize) < tx.output.len());
2172 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
2180 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
2181 where B::Target: BroadcasterInterface,
2182 F::Target: FeeEstimator,
2185 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
2188 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
2189 //- maturing spendable output has transaction paying us has been disconnected
2190 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
2192 self.onchain_tx_handler.block_disconnected(height, broadcaster, fee_estimator, logger);
2194 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
2197 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
2204 B::Target: BroadcasterInterface,
2205 F::Target: FeeEstimator,
2208 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.txid != *txid);
2209 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
2212 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
2213 /// transactions thereof.
2214 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
2215 let mut matched_txn = HashSet::new();
2216 txdata.iter().filter(|&&(_, tx)| {
2217 let mut matches = self.spends_watched_output(tx);
2218 for input in tx.input.iter() {
2219 if matches { break; }
2220 if matched_txn.contains(&input.previous_output.txid) {
2225 matched_txn.insert(tx.txid());
2228 }).map(|(_, tx)| *tx).collect()
2231 /// Checks if a given transaction spends any watched outputs.
2232 fn spends_watched_output(&self, tx: &Transaction) -> bool {
2233 for input in tx.input.iter() {
2234 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
2235 for (idx, _script_pubkey) in outputs.iter() {
2236 if *idx == input.previous_output.vout {
2239 // If the expected script is a known type, check that the witness
2240 // appears to be spending the correct type (ie that the match would
2241 // actually succeed in BIP 158/159-style filters).
2242 if _script_pubkey.is_v0_p2wsh() {
2243 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().clone()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
2244 } else if _script_pubkey.is_v0_p2wpkh() {
2245 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
2246 } else { panic!(); }
2257 fn would_broadcast_at_height<L: Deref>(&self, height: u32, logger: &L) -> bool where L::Target: Logger {
2258 // We need to consider all HTLCs which are:
2259 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
2260 // transactions and we'd end up in a race, or
2261 // * are in our latest holder commitment transaction, as this is the thing we will
2262 // broadcast if we go on-chain.
2263 // Note that we consider HTLCs which were below dust threshold here - while they don't
2264 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
2265 // to the source, and if we don't fail the channel we will have to ensure that the next
2266 // updates that peer sends us are update_fails, failing the channel if not. It's probably
2267 // easier to just fail the channel as this case should be rare enough anyway.
2268 macro_rules! scan_commitment {
2269 ($htlcs: expr, $holder_tx: expr) => {
2270 for ref htlc in $htlcs {
2271 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
2272 // chain with enough room to claim the HTLC without our counterparty being able to
2273 // time out the HTLC first.
2274 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
2275 // concern is being able to claim the corresponding inbound HTLC (on another
2276 // channel) before it expires. In fact, we don't even really care if our
2277 // counterparty here claims such an outbound HTLC after it expired as long as we
2278 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
2279 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
2280 // we give ourselves a few blocks of headroom after expiration before going
2281 // on-chain for an expired HTLC.
2282 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
2283 // from us until we've reached the point where we go on-chain with the
2284 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
2285 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
2286 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
2287 // inbound_cltv == height + CLTV_CLAIM_BUFFER
2288 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
2289 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
2290 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
2291 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
2292 // The final, above, condition is checked for statically in channelmanager
2293 // with CHECK_CLTV_EXPIRY_SANITY_2.
2294 let htlc_outbound = $holder_tx == htlc.offered;
2295 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
2296 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
2297 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
2304 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
2306 if let Some(ref txid) = self.current_counterparty_commitment_txid {
2307 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2308 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2311 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
2312 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
2313 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2320 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
2321 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
2322 fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2323 'outer_loop: for input in &tx.input {
2324 let mut payment_data = None;
2325 let revocation_sig_claim = (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC) && input.witness[1].len() == 33)
2326 || (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::AcceptedHTLC) && input.witness[1].len() == 33);
2327 let accepted_preimage_claim = input.witness.len() == 5 && HTLCType::scriptlen_to_htlctype(input.witness[4].len()) == Some(HTLCType::AcceptedHTLC);
2328 let offered_preimage_claim = input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC);
2330 macro_rules! log_claim {
2331 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
2332 // We found the output in question, but aren't failing it backwards
2333 // as we have no corresponding source and no valid counterparty commitment txid
2334 // to try a weak source binding with same-hash, same-value still-valid offered HTLC.
2335 // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction.
2336 let outbound_htlc = $holder_tx == $htlc.offered;
2337 if ($holder_tx && revocation_sig_claim) ||
2338 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
2339 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
2340 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2341 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2342 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
2344 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
2345 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2346 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2347 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2352 macro_rules! check_htlc_valid_counterparty {
2353 ($counterparty_txid: expr, $htlc_output: expr) => {
2354 if let Some(txid) = $counterparty_txid {
2355 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2356 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2357 if let &Some(ref source) = pending_source {
2358 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
2359 payment_data = Some(((**source).clone(), $htlc_output.payment_hash));
2368 macro_rules! scan_commitment {
2369 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
2370 for (ref htlc_output, source_option) in $htlcs {
2371 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2372 if let Some(ref source) = source_option {
2373 log_claim!($tx_info, $holder_tx, htlc_output, true);
2374 // We have a resolution of an HTLC either from one of our latest
2375 // holder commitment transactions or an unrevoked counterparty commitment
2376 // transaction. This implies we either learned a preimage, the HTLC
2377 // has timed out, or we screwed up. In any case, we should now
2378 // resolve the source HTLC with the original sender.
2379 payment_data = Some(((*source).clone(), htlc_output.payment_hash));
2380 } else if !$holder_tx {
2381 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
2382 if payment_data.is_none() {
2383 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
2386 if payment_data.is_none() {
2387 log_claim!($tx_info, $holder_tx, htlc_output, false);
2388 continue 'outer_loop;
2395 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
2396 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2397 "our latest holder commitment tx", true);
2399 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
2400 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
2401 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2402 "our previous holder commitment tx", true);
2405 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
2406 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2407 "counterparty commitment tx", false);
2410 // Check that scan_commitment, above, decided there is some source worth relaying an
2411 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2412 if let Some((source, payment_hash)) = payment_data {
2413 let mut payment_preimage = PaymentPreimage([0; 32]);
2414 if accepted_preimage_claim {
2415 if !self.pending_monitor_events.iter().any(
2416 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
2417 payment_preimage.0.copy_from_slice(&input.witness[3]);
2418 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2420 payment_preimage: Some(payment_preimage),
2424 } else if offered_preimage_claim {
2425 if !self.pending_monitor_events.iter().any(
2426 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
2427 upd.source == source
2429 payment_preimage.0.copy_from_slice(&input.witness[1]);
2430 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
2432 payment_preimage: Some(payment_preimage),
2437 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
2438 if entry.height != height { return true; }
2440 OnchainEvent::HTLCUpdate { ref htlc_update } => {
2441 htlc_update.0 != source
2446 let entry = OnchainEventEntry {
2449 event: OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash) },
2451 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height{})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
2452 self.onchain_events_awaiting_threshold_conf.push(entry);
2458 /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
2459 fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2460 let mut spendable_output = None;
2461 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
2462 if i > ::core::u16::MAX as usize {
2463 // While it is possible that an output exists on chain which is greater than the
2464 // 2^16th output in a given transaction, this is only possible if the output is not
2465 // in a lightning transaction and was instead placed there by some third party who
2466 // wishes to give us money for no reason.
2467 // Namely, any lightning transactions which we pre-sign will never have anywhere
2468 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
2469 // scripts are not longer than one byte in length and because they are inherently
2470 // non-standard due to their size.
2471 // Thus, it is completely safe to ignore such outputs, and while it may result in
2472 // us ignoring non-lightning fund to us, that is only possible if someone fills
2473 // nearly a full block with garbage just to hit this case.
2476 if outp.script_pubkey == self.destination_script {
2477 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
2478 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2479 output: outp.clone(),
2482 } else if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
2483 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
2484 spendable_output = Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
2485 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2486 per_commitment_point: broadcasted_holder_revokable_script.1,
2487 to_self_delay: self.on_holder_tx_csv,
2488 output: outp.clone(),
2489 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
2490 channel_keys_id: self.channel_keys_id,
2491 channel_value_satoshis: self.channel_value_satoshis,
2495 } else if self.counterparty_payment_script == outp.script_pubkey {
2496 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
2497 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2498 output: outp.clone(),
2499 channel_keys_id: self.channel_keys_id,
2500 channel_value_satoshis: self.channel_value_satoshis,
2503 } else if outp.script_pubkey == self.shutdown_script {
2504 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
2505 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
2506 output: outp.clone(),
2510 if let Some(spendable_output) = spendable_output {
2511 let entry = OnchainEventEntry {
2514 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
2516 log_trace!(logger, "Maturing {} until {}", log_spendable!(spendable_output), entry.confirmation_threshold());
2517 self.onchain_events_awaiting_threshold_conf.push(entry);
2522 /// `Persist` defines behavior for persisting channel monitors: this could mean
2523 /// writing once to disk, and/or uploading to one or more backup services.
2525 /// Note that for every new monitor, you **must** persist the new `ChannelMonitor`
2526 /// to disk/backups. And, on every update, you **must** persist either the
2527 /// `ChannelMonitorUpdate` or the updated monitor itself. Otherwise, there is risk
2528 /// of situations such as revoking a transaction, then crashing before this
2529 /// revocation can be persisted, then unintentionally broadcasting a revoked
2530 /// transaction and losing money. This is a risk because previous channel states
2531 /// are toxic, so it's important that whatever channel state is persisted is
2532 /// kept up-to-date.
2533 pub trait Persist<ChannelSigner: Sign> {
2534 /// Persist a new channel's data. The data can be stored any way you want, but
2535 /// the identifier provided by Rust-Lightning is the channel's outpoint (and
2536 /// it is up to you to maintain a correct mapping between the outpoint and the
2537 /// stored channel data). Note that you **must** persist every new monitor to
2538 /// disk. See the `Persist` trait documentation for more details.
2540 /// See [`ChannelMonitor::write`] for writing out a `ChannelMonitor`,
2541 /// and [`ChannelMonitorUpdateErr`] for requirements when returning errors.
2542 fn persist_new_channel(&self, id: OutPoint, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
2544 /// Update one channel's data. The provided `ChannelMonitor` has already
2545 /// applied the given update.
2547 /// Note that on every update, you **must** persist either the
2548 /// `ChannelMonitorUpdate` or the updated monitor itself to disk/backups. See
2549 /// the `Persist` trait documentation for more details.
2551 /// If an implementer chooses to persist the updates only, they need to make
2552 /// sure that all the updates are applied to the `ChannelMonitors` *before*
2553 /// the set of channel monitors is given to the `ChannelManager`
2554 /// deserialization routine. See [`ChannelMonitor::update_monitor`] for
2555 /// applying a monitor update to a monitor. If full `ChannelMonitors` are
2556 /// persisted, then there is no need to persist individual updates.
2558 /// Note that there could be a performance tradeoff between persisting complete
2559 /// channel monitors on every update vs. persisting only updates and applying
2560 /// them in batches. The size of each monitor grows `O(number of state updates)`
2561 /// whereas updates are small and `O(1)`.
2563 /// See [`ChannelMonitor::write`] for writing out a `ChannelMonitor`,
2564 /// [`ChannelMonitorUpdate::write`] for writing out an update, and
2565 /// [`ChannelMonitorUpdateErr`] for requirements when returning errors.
2566 fn update_persisted_channel(&self, id: OutPoint, update: &ChannelMonitorUpdate, data: &ChannelMonitor<ChannelSigner>) -> Result<(), ChannelMonitorUpdateErr>;
2569 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
2571 T::Target: BroadcasterInterface,
2572 F::Target: FeeEstimator,
2575 fn block_connected(&self, block: &Block, height: u32) {
2576 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
2577 self.0.block_connected(&block.header, &txdata, height, &*self.1, &*self.2, &*self.3);
2580 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
2581 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
2585 impl<Signer: Sign, T: Deref, F: Deref, L: Deref> chain::Confirm for (ChannelMonitor<Signer>, T, F, L)
2587 T::Target: BroadcasterInterface,
2588 F::Target: FeeEstimator,
2591 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
2592 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
2595 fn transaction_unconfirmed(&self, txid: &Txid) {
2596 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
2599 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
2600 self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
2603 fn get_relevant_txids(&self) -> Vec<Txid> {
2604 self.0.get_relevant_txids()
2608 const MAX_ALLOC_SIZE: usize = 64*1024;
2610 impl<'a, Signer: Sign, K: KeysInterface<Signer = Signer>> ReadableArgs<&'a K>
2611 for (BlockHash, ChannelMonitor<Signer>) {
2612 fn read<R: ::std::io::Read>(reader: &mut R, keys_manager: &'a K) -> Result<Self, DecodeError> {
2613 macro_rules! unwrap_obj {
2617 Err(_) => return Err(DecodeError::InvalidValue),
2622 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
2624 let latest_update_id: u64 = Readable::read(reader)?;
2625 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
2627 let destination_script = Readable::read(reader)?;
2628 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
2630 let revokable_address = Readable::read(reader)?;
2631 let per_commitment_point = Readable::read(reader)?;
2632 let revokable_script = Readable::read(reader)?;
2633 Some((revokable_address, per_commitment_point, revokable_script))
2636 _ => return Err(DecodeError::InvalidValue),
2638 let counterparty_payment_script = Readable::read(reader)?;
2639 let shutdown_script = Readable::read(reader)?;
2641 let channel_keys_id = Readable::read(reader)?;
2642 let holder_revocation_basepoint = Readable::read(reader)?;
2643 // Technically this can fail and serialize fail a round-trip, but only for serialization of
2644 // barely-init'd ChannelMonitors that we can't do anything with.
2645 let outpoint = OutPoint {
2646 txid: Readable::read(reader)?,
2647 index: Readable::read(reader)?,
2649 let funding_info = (outpoint, Readable::read(reader)?);
2650 let current_counterparty_commitment_txid = Readable::read(reader)?;
2651 let prev_counterparty_commitment_txid = Readable::read(reader)?;
2653 let counterparty_tx_cache = Readable::read(reader)?;
2654 let funding_redeemscript = Readable::read(reader)?;
2655 let channel_value_satoshis = Readable::read(reader)?;
2657 let their_cur_revocation_points = {
2658 let first_idx = <U48 as Readable>::read(reader)?.0;
2662 let first_point = Readable::read(reader)?;
2663 let second_point_slice: [u8; 33] = Readable::read(reader)?;
2664 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
2665 Some((first_idx, first_point, None))
2667 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
2672 let on_holder_tx_csv: u16 = Readable::read(reader)?;
2674 let commitment_secrets = Readable::read(reader)?;
2676 macro_rules! read_htlc_in_commitment {
2679 let offered: bool = Readable::read(reader)?;
2680 let amount_msat: u64 = Readable::read(reader)?;
2681 let cltv_expiry: u32 = Readable::read(reader)?;
2682 let payment_hash: PaymentHash = Readable::read(reader)?;
2683 let transaction_output_index: Option<u32> = Readable::read(reader)?;
2685 HTLCOutputInCommitment {
2686 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
2692 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
2693 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
2694 for _ in 0..counterparty_claimable_outpoints_len {
2695 let txid: Txid = Readable::read(reader)?;
2696 let htlcs_count: u64 = Readable::read(reader)?;
2697 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
2698 for _ in 0..htlcs_count {
2699 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
2701 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
2702 return Err(DecodeError::InvalidValue);
2706 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
2707 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
2708 for _ in 0..counterparty_commitment_txn_on_chain_len {
2709 let txid: Txid = Readable::read(reader)?;
2710 let commitment_number = <U48 as Readable>::read(reader)?.0;
2711 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
2712 return Err(DecodeError::InvalidValue);
2716 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
2717 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
2718 for _ in 0..counterparty_hash_commitment_number_len {
2719 let payment_hash: PaymentHash = Readable::read(reader)?;
2720 let commitment_number = <U48 as Readable>::read(reader)?.0;
2721 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
2722 return Err(DecodeError::InvalidValue);
2726 macro_rules! read_holder_tx {
2729 let txid = Readable::read(reader)?;
2730 let revocation_key = Readable::read(reader)?;
2731 let a_htlc_key = Readable::read(reader)?;
2732 let b_htlc_key = Readable::read(reader)?;
2733 let delayed_payment_key = Readable::read(reader)?;
2734 let per_commitment_point = Readable::read(reader)?;
2735 let feerate_per_kw: u32 = Readable::read(reader)?;
2737 let htlcs_len: u64 = Readable::read(reader)?;
2738 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128));
2739 for _ in 0..htlcs_len {
2740 let htlc = read_htlc_in_commitment!();
2741 let sigs = match <u8 as Readable>::read(reader)? {
2743 1 => Some(Readable::read(reader)?),
2744 _ => return Err(DecodeError::InvalidValue),
2746 htlcs.push((htlc, sigs, Readable::read(reader)?));
2751 revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, per_commitment_point, feerate_per_kw,
2758 let prev_holder_signed_commitment_tx = match <u8 as Readable>::read(reader)? {
2761 Some(read_holder_tx!())
2763 _ => return Err(DecodeError::InvalidValue),
2765 let current_holder_commitment_tx = read_holder_tx!();
2767 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
2768 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
2770 let payment_preimages_len: u64 = Readable::read(reader)?;
2771 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
2772 for _ in 0..payment_preimages_len {
2773 let preimage: PaymentPreimage = Readable::read(reader)?;
2774 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2775 if let Some(_) = payment_preimages.insert(hash, preimage) {
2776 return Err(DecodeError::InvalidValue);
2780 let pending_monitor_events_len: u64 = Readable::read(reader)?;
2781 let mut pending_monitor_events = Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3)));
2782 for _ in 0..pending_monitor_events_len {
2783 let ev = match <u8 as Readable>::read(reader)? {
2784 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
2785 1 => MonitorEvent::CommitmentTxBroadcasted(funding_info.0),
2786 _ => return Err(DecodeError::InvalidValue)
2788 pending_monitor_events.push(ev);
2791 let pending_events_len: u64 = Readable::read(reader)?;
2792 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
2793 for _ in 0..pending_events_len {
2794 if let Some(event) = MaybeReadable::read(reader)? {
2795 pending_events.push(event);
2799 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
2801 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
2802 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
2803 for _ in 0..waiting_threshold_conf_len {
2804 let txid = Readable::read(reader)?;
2805 let height = Readable::read(reader)?;
2806 let event = match <u8 as Readable>::read(reader)? {
2808 let htlc_source = Readable::read(reader)?;
2809 let hash = Readable::read(reader)?;
2810 OnchainEvent::HTLCUpdate {
2811 htlc_update: (htlc_source, hash)
2815 let descriptor = Readable::read(reader)?;
2816 OnchainEvent::MaturingOutput {
2820 _ => return Err(DecodeError::InvalidValue),
2822 onchain_events_awaiting_threshold_conf.push(OnchainEventEntry { txid, height, event });
2825 let outputs_to_watch_len: u64 = Readable::read(reader)?;
2826 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
2827 for _ in 0..outputs_to_watch_len {
2828 let txid = Readable::read(reader)?;
2829 let outputs_len: u64 = Readable::read(reader)?;
2830 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
2831 for _ in 0..outputs_len {
2832 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
2834 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
2835 return Err(DecodeError::InvalidValue);
2838 let onchain_tx_handler = ReadableArgs::read(reader, keys_manager)?;
2840 let lockdown_from_offchain = Readable::read(reader)?;
2841 let holder_tx_signed = Readable::read(reader)?;
2843 read_tlv_fields!(reader, {}, {});
2845 let mut secp_ctx = Secp256k1::new();
2846 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
2848 Ok((best_block.block_hash(), ChannelMonitor {
2849 inner: Mutex::new(ChannelMonitorImpl {
2851 commitment_transaction_number_obscure_factor,
2854 broadcasted_holder_revokable_script,
2855 counterparty_payment_script,
2859 holder_revocation_basepoint,
2861 current_counterparty_commitment_txid,
2862 prev_counterparty_commitment_txid,
2864 counterparty_tx_cache,
2865 funding_redeemscript,
2866 channel_value_satoshis,
2867 their_cur_revocation_points,
2872 counterparty_claimable_outpoints,
2873 counterparty_commitment_txn_on_chain,
2874 counterparty_hash_commitment_number,
2876 prev_holder_signed_commitment_tx,
2877 current_holder_commitment_tx,
2878 current_counterparty_commitment_number,
2879 current_holder_commitment_number,
2882 pending_monitor_events,
2885 onchain_events_awaiting_threshold_conf,
2890 lockdown_from_offchain,
2903 use bitcoin::blockdata::script::{Script, Builder};
2904 use bitcoin::blockdata::opcodes;
2905 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
2906 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
2907 use bitcoin::util::bip143;
2908 use bitcoin::hashes::Hash;
2909 use bitcoin::hashes::sha256::Hash as Sha256;
2910 use bitcoin::hashes::hex::FromHex;
2911 use bitcoin::hash_types::Txid;
2912 use bitcoin::network::constants::Network;
2914 use chain::channelmonitor::ChannelMonitor;
2915 use chain::package::{WEIGHT_OFFERED_HTLC, WEIGHT_RECEIVED_HTLC, WEIGHT_REVOKED_OFFERED_HTLC, WEIGHT_REVOKED_RECEIVED_HTLC, WEIGHT_REVOKED_OUTPUT};
2916 use chain::transaction::OutPoint;
2917 use ln::{PaymentPreimage, PaymentHash};
2918 use ln::channelmanager::BestBlock;
2920 use ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
2921 use util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
2922 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
2923 use bitcoin::secp256k1::Secp256k1;
2924 use std::sync::{Arc, Mutex};
2925 use chain::keysinterface::InMemorySigner;
2929 fn test_prune_preimages() {
2930 let secp_ctx = Secp256k1::new();
2931 let logger = Arc::new(TestLogger::new());
2932 let broadcaster = Arc::new(TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))});
2933 let fee_estimator = Arc::new(TestFeeEstimator { sat_per_kw: 253 });
2935 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
2936 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
2938 let mut preimages = Vec::new();
2941 let preimage = PaymentPreimage([i; 32]);
2942 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2943 preimages.push((preimage, hash));
2947 macro_rules! preimages_slice_to_htlc_outputs {
2948 ($preimages_slice: expr) => {
2950 let mut res = Vec::new();
2951 for (idx, preimage) in $preimages_slice.iter().enumerate() {
2952 res.push((HTLCOutputInCommitment {
2956 payment_hash: preimage.1.clone(),
2957 transaction_output_index: Some(idx as u32),
2964 macro_rules! preimages_to_holder_htlcs {
2965 ($preimages_slice: expr) => {
2967 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
2968 let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
2974 macro_rules! test_preimages_exist {
2975 ($preimages_slice: expr, $monitor: expr) => {
2976 for preimage in $preimages_slice {
2977 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
2982 let keys = InMemorySigner::new(
2984 SecretKey::from_slice(&[41; 32]).unwrap(),
2985 SecretKey::from_slice(&[41; 32]).unwrap(),
2986 SecretKey::from_slice(&[41; 32]).unwrap(),
2987 SecretKey::from_slice(&[41; 32]).unwrap(),
2988 SecretKey::from_slice(&[41; 32]).unwrap(),
2994 let counterparty_pubkeys = ChannelPublicKeys {
2995 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
2996 revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
2997 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
2998 delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
2999 htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
3001 let funding_outpoint = OutPoint { txid: Default::default(), index: u16::max_value() };
3002 let channel_parameters = ChannelTransactionParameters {
3003 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
3004 holder_selected_contest_delay: 66,
3005 is_outbound_from_holder: true,
3006 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
3007 pubkeys: counterparty_pubkeys,
3008 selected_contest_delay: 67,
3010 funding_outpoint: Some(funding_outpoint),
3012 // Prune with one old state and a holder commitment tx holding a few overlaps with the
3014 let best_block = BestBlock::from_genesis(Network::Testnet);
3015 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
3016 &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()), 0, &Script::new(),
3017 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
3018 &channel_parameters,
3019 Script::new(), 46, 0,
3020 HolderCommitmentTransaction::dummy(), best_block);
3022 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..10])).unwrap();
3023 let dummy_txid = dummy_tx.txid();
3024 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
3025 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
3026 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
3027 monitor.provide_latest_counterparty_commitment_tx(dummy_txid, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
3028 for &(ref preimage, ref hash) in preimages.iter() {
3029 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &fee_estimator, &logger);
3032 // Now provide a secret, pruning preimages 10-15
3033 let mut secret = [0; 32];
3034 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3035 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
3036 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
3037 test_preimages_exist!(&preimages[0..10], monitor);
3038 test_preimages_exist!(&preimages[15..20], monitor);
3040 // Now provide a further secret, pruning preimages 15-17
3041 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3042 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
3043 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
3044 test_preimages_exist!(&preimages[0..10], monitor);
3045 test_preimages_exist!(&preimages[17..20], monitor);
3047 // Now update holder commitment tx info, pruning only element 18 as we still care about the
3048 // previous commitment tx's preimages too
3049 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..5])).unwrap();
3050 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3051 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
3052 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
3053 test_preimages_exist!(&preimages[0..10], monitor);
3054 test_preimages_exist!(&preimages[18..20], monitor);
3056 // But if we do it again, we'll prune 5-10
3057 monitor.provide_latest_holder_commitment_tx(HolderCommitmentTransaction::dummy(), preimages_to_holder_htlcs!(preimages[0..3])).unwrap();
3058 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3059 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
3060 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
3061 test_preimages_exist!(&preimages[0..5], monitor);
3065 fn test_claim_txn_weight_computation() {
3066 // We test Claim txn weight, knowing that we want expected weigth and
3067 // not actual case to avoid sigs and time-lock delays hell variances.
3069 let secp_ctx = Secp256k1::new();
3070 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
3071 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
3072 let mut sum_actual_sigs = 0;
3074 macro_rules! sign_input {
3075 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr) => {
3076 let htlc = HTLCOutputInCommitment {
3077 offered: if *$weight == WEIGHT_REVOKED_OFFERED_HTLC || *$weight == WEIGHT_OFFERED_HTLC { true } else { false },
3079 cltv_expiry: 2 << 16,
3080 payment_hash: PaymentHash([1; 32]),
3081 transaction_output_index: Some($idx as u32),
3083 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) };
3084 let sighash = hash_to_message!(&$sighash_parts.signature_hash($idx, &redeem_script, $amount, SigHashType::All)[..]);
3085 let sig = secp_ctx.sign(&sighash, &privkey);
3086 $sighash_parts.access_witness($idx).push(sig.serialize_der().to_vec());
3087 $sighash_parts.access_witness($idx)[0].push(SigHashType::All as u8);
3088 sum_actual_sigs += $sighash_parts.access_witness($idx)[0].len();
3089 if *$weight == WEIGHT_REVOKED_OUTPUT {
3090 $sighash_parts.access_witness($idx).push(vec!(1));
3091 } else if *$weight == WEIGHT_REVOKED_OFFERED_HTLC || *$weight == WEIGHT_REVOKED_RECEIVED_HTLC {
3092 $sighash_parts.access_witness($idx).push(pubkey.clone().serialize().to_vec());
3093 } else if *$weight == WEIGHT_RECEIVED_HTLC {
3094 $sighash_parts.access_witness($idx).push(vec![0]);
3096 $sighash_parts.access_witness($idx).push(PaymentPreimage([1; 32]).0.to_vec());
3098 $sighash_parts.access_witness($idx).push(redeem_script.into_bytes());
3099 println!("witness[0] {}", $sighash_parts.access_witness($idx)[0].len());
3100 println!("witness[1] {}", $sighash_parts.access_witness($idx)[1].len());
3101 println!("witness[2] {}", $sighash_parts.access_witness($idx)[2].len());
3105 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
3106 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
3108 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
3109 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3111 claim_tx.input.push(TxIn {
3112 previous_output: BitcoinOutPoint {
3116 script_sig: Script::new(),
3117 sequence: 0xfffffffd,
3118 witness: Vec::new(),
3121 claim_tx.output.push(TxOut {
3122 script_pubkey: script_pubkey.clone(),
3125 let base_weight = claim_tx.get_weight();
3126 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, WEIGHT_REVOKED_OFFERED_HTLC, WEIGHT_REVOKED_OFFERED_HTLC, WEIGHT_REVOKED_RECEIVED_HTLC];
3127 let mut inputs_total_weight = 2; // count segwit flags
3129 let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3130 for (idx, inp) in inputs_weight.iter().enumerate() {
3131 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3132 inputs_total_weight += inp;
3135 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
3137 // Claim tx with 1 offered HTLCs, 3 received HTLCs
3138 claim_tx.input.clear();
3139 sum_actual_sigs = 0;
3141 claim_tx.input.push(TxIn {
3142 previous_output: BitcoinOutPoint {
3146 script_sig: Script::new(),
3147 sequence: 0xfffffffd,
3148 witness: Vec::new(),
3151 let base_weight = claim_tx.get_weight();
3152 let inputs_weight = vec![WEIGHT_OFFERED_HTLC, WEIGHT_RECEIVED_HTLC, WEIGHT_RECEIVED_HTLC, WEIGHT_RECEIVED_HTLC];
3153 let mut inputs_total_weight = 2; // count segwit flags
3155 let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3156 for (idx, inp) in inputs_weight.iter().enumerate() {
3157 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3158 inputs_total_weight += inp;
3161 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
3163 // Justice tx with 1 revoked HTLC-Success tx output
3164 claim_tx.input.clear();
3165 sum_actual_sigs = 0;
3166 claim_tx.input.push(TxIn {
3167 previous_output: BitcoinOutPoint {
3171 script_sig: Script::new(),
3172 sequence: 0xfffffffd,
3173 witness: Vec::new(),
3175 let base_weight = claim_tx.get_weight();
3176 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
3177 let mut inputs_total_weight = 2; // count segwit flags
3179 let mut sighash_parts = bip143::SigHashCache::new(&mut claim_tx);
3180 for (idx, inp) in inputs_weight.iter().enumerate() {
3181 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs);
3182 inputs_total_weight += inp;
3185 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_weight.len() - sum_actual_sigs));
3188 // Further testing is done in the ChannelManager integration tests.