1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
13 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
14 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
15 //! be made in responding to certain messages, see [`chain::Watch`] for more.
17 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
18 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
19 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
20 //! security-domain-separated system design, you should consider having multiple paths for
21 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
23 use bitcoin::blockdata::block::BlockHeader;
24 use bitcoin::blockdata::transaction::{OutPoint as BitcoinOutPoint, TxOut, Transaction};
25 use bitcoin::blockdata::script::{Script, Builder};
26 use bitcoin::blockdata::opcodes;
28 use bitcoin::hashes::Hash;
29 use bitcoin::hashes::sha256::Hash as Sha256;
30 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
32 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
33 use bitcoin::secp256k1::{SecretKey, PublicKey};
34 use bitcoin::secp256k1;
36 use crate::ln::{PaymentHash, PaymentPreimage};
37 use crate::ln::msgs::DecodeError;
38 use crate::ln::chan_utils;
39 use crate::ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, HTLCClaim, ChannelTransactionParameters, HolderCommitmentTransaction};
40 use crate::ln::channelmanager::{HTLCSource, SentHTLCId};
42 use crate::chain::{BestBlock, WatchedOutput};
43 use crate::chain::chaininterface::{BroadcasterInterface, FeeEstimator, LowerBoundedFeeEstimator};
44 use crate::chain::transaction::{OutPoint, TransactionData};
45 use crate::chain::keysinterface::{SpendableOutputDescriptor, StaticPaymentOutputDescriptor, DelayedPaymentOutputDescriptor, WriteableEcdsaChannelSigner, SignerProvider, EntropySource};
47 use crate::chain::onchaintx::ClaimEvent;
48 use crate::chain::onchaintx::OnchainTxHandler;
49 use crate::chain::package::{CounterpartyOfferedHTLCOutput, CounterpartyReceivedHTLCOutput, HolderFundingOutput, HolderHTLCOutput, PackageSolvingData, PackageTemplate, RevokedOutput, RevokedHTLCOutput};
50 use crate::chain::Filter;
51 use crate::util::logger::Logger;
52 use crate::util::ser::{Readable, ReadableArgs, RequiredWrapper, MaybeReadable, UpgradableRequired, Writer, Writeable, U48};
53 use crate::util::byte_utils;
54 use crate::util::events::Event;
56 use crate::util::events::{AnchorDescriptor, HTLCDescriptor, BumpTransactionEvent};
58 use crate::prelude::*;
60 use crate::io::{self, Error};
61 use core::convert::TryInto;
63 use crate::sync::{Mutex, LockTestExt};
65 /// An update generated by the underlying channel itself which contains some new information the
66 /// [`ChannelMonitor`] should be made aware of.
68 /// Because this represents only a small number of updates to the underlying state, it is generally
69 /// much smaller than a full [`ChannelMonitor`]. However, for large single commitment transaction
70 /// updates (e.g. ones during which there are hundreds of HTLCs pending on the commitment
71 /// transaction), a single update may reach upwards of 1 MiB in serialized size.
72 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq, Eq))]
75 pub struct ChannelMonitorUpdate {
76 pub(crate) updates: Vec<ChannelMonitorUpdateStep>,
77 /// The sequence number of this update. Updates *must* be replayed in-order according to this
78 /// sequence number (and updates may panic if they are not). The update_id values are strictly
79 /// increasing and increase by one for each new update, with one exception specified below.
81 /// This sequence number is also used to track up to which points updates which returned
82 /// [`ChannelMonitorUpdateStatus::InProgress`] have been applied to all copies of a given
83 /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
85 /// The only instance where update_id values are not strictly increasing is the case where we
86 /// allow post-force-close updates with a special update ID of [`CLOSED_CHANNEL_UPDATE_ID`]. See
87 /// its docs for more details.
89 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
94 /// (1) a channel has been force closed and
95 /// (2) we receive a preimage from a forward link that allows us to spend an HTLC output on
96 /// this channel's (the backward link's) broadcasted commitment transaction
97 /// then we allow the `ChannelManager` to send a `ChannelMonitorUpdate` with this update ID,
98 /// with the update providing said payment preimage. No other update types are allowed after
100 pub const CLOSED_CHANNEL_UPDATE_ID: u64 = core::u64::MAX;
102 impl Writeable for ChannelMonitorUpdate {
103 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
104 write_ver_prefix!(w, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
105 self.update_id.write(w)?;
106 (self.updates.len() as u64).write(w)?;
107 for update_step in self.updates.iter() {
108 update_step.write(w)?;
110 write_tlv_fields!(w, {});
114 impl Readable for ChannelMonitorUpdate {
115 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
116 let _ver = read_ver_prefix!(r, SERIALIZATION_VERSION);
117 let update_id: u64 = Readable::read(r)?;
118 let len: u64 = Readable::read(r)?;
119 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<ChannelMonitorUpdateStep>()));
121 if let Some(upd) = MaybeReadable::read(r)? {
125 read_tlv_fields!(r, {});
126 Ok(Self { update_id, updates })
130 /// An event to be processed by the ChannelManager.
131 #[derive(Clone, PartialEq, Eq)]
132 pub enum MonitorEvent {
133 /// A monitor event containing an HTLCUpdate.
134 HTLCEvent(HTLCUpdate),
136 /// A monitor event that the Channel's commitment transaction was confirmed.
137 CommitmentTxConfirmed(OutPoint),
139 /// Indicates a [`ChannelMonitor`] update has completed. See
140 /// [`ChannelMonitorUpdateStatus::InProgress`] for more information on how this is used.
142 /// [`ChannelMonitorUpdateStatus::InProgress`]: super::ChannelMonitorUpdateStatus::InProgress
144 /// The funding outpoint of the [`ChannelMonitor`] that was updated
145 funding_txo: OutPoint,
146 /// The Update ID from [`ChannelMonitorUpdate::update_id`] which was applied or
147 /// [`ChannelMonitor::get_latest_update_id`].
149 /// Note that this should only be set to a given update's ID if all previous updates for the
150 /// same [`ChannelMonitor`] have been applied and persisted.
151 monitor_update_id: u64,
154 /// Indicates a [`ChannelMonitor`] update has failed. See
155 /// [`ChannelMonitorUpdateStatus::PermanentFailure`] for more information on how this is used.
157 /// [`ChannelMonitorUpdateStatus::PermanentFailure`]: super::ChannelMonitorUpdateStatus::PermanentFailure
158 UpdateFailed(OutPoint),
160 impl_writeable_tlv_based_enum_upgradable!(MonitorEvent,
161 // Note that Completed and UpdateFailed are currently never serialized to disk as they are
162 // generated only in ChainMonitor
164 (0, funding_txo, required),
165 (2, monitor_update_id, required),
169 (4, CommitmentTxConfirmed),
173 /// Simple structure sent back by `chain::Watch` when an HTLC from a forward channel is detected on
174 /// chain. Used to update the corresponding HTLC in the backward channel. Failing to pass the
175 /// preimage claim backward will lead to loss of funds.
176 #[derive(Clone, PartialEq, Eq)]
177 pub struct HTLCUpdate {
178 pub(crate) payment_hash: PaymentHash,
179 pub(crate) payment_preimage: Option<PaymentPreimage>,
180 pub(crate) source: HTLCSource,
181 pub(crate) htlc_value_satoshis: Option<u64>,
183 impl_writeable_tlv_based!(HTLCUpdate, {
184 (0, payment_hash, required),
185 (1, htlc_value_satoshis, option),
186 (2, source, required),
187 (4, payment_preimage, option),
190 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
191 /// instead claiming it in its own individual transaction.
192 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
193 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
194 /// HTLC-Success transaction.
195 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
196 /// transaction confirmed (and we use it in a few more, equivalent, places).
197 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 18;
198 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
199 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
200 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
201 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
202 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
203 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
204 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
205 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
206 /// accurate block height.
207 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
208 /// with at worst this delay, so we are not only using this value as a mercy for them but also
209 /// us as a safeguard to delay with enough time.
210 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
211 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding
212 /// inbound HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us
215 /// Note that this is a library-wide security assumption. If a reorg deeper than this number of
216 /// blocks occurs, counterparties may be able to steal funds or claims made by and balances exposed
217 /// by a [`ChannelMonitor`] may be incorrect.
218 // We also use this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
219 // It may cause spurious generation of bumped claim txn but that's alright given the outpoint is already
220 // solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
221 // keep bumping another claim tx to solve the outpoint.
222 pub const ANTI_REORG_DELAY: u32 = 6;
223 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
224 /// refuse to accept a new HTLC.
226 /// This is used for a few separate purposes:
227 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
228 /// waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
230 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
231 /// condition with the above), we will fail this HTLC without telling the user we received it,
233 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
234 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
236 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
237 /// in a race condition between the user connecting a block (which would fail it) and the user
238 /// providing us the preimage (which would claim it).
239 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
241 // TODO(devrandom) replace this with HolderCommitmentTransaction
242 #[derive(Clone, PartialEq, Eq)]
243 struct HolderSignedTx {
244 /// txid of the transaction in tx, just used to make comparison faster
246 revocation_key: PublicKey,
247 a_htlc_key: PublicKey,
248 b_htlc_key: PublicKey,
249 delayed_payment_key: PublicKey,
250 per_commitment_point: PublicKey,
251 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
252 to_self_value_sat: u64,
255 impl_writeable_tlv_based!(HolderSignedTx, {
257 // Note that this is filled in with data from OnchainTxHandler if it's missing.
258 // For HolderSignedTx objects serialized with 0.0.100+, this should be filled in.
259 (1, to_self_value_sat, (default_value, u64::max_value())),
260 (2, revocation_key, required),
261 (4, a_htlc_key, required),
262 (6, b_htlc_key, required),
263 (8, delayed_payment_key, required),
264 (10, per_commitment_point, required),
265 (12, feerate_per_kw, required),
266 (14, htlc_outputs, vec_type)
270 impl HolderSignedTx {
271 fn non_dust_htlcs(&self) -> Vec<HTLCOutputInCommitment> {
272 self.htlc_outputs.iter().filter_map(|(htlc, _, _)| {
273 if let Some(_) = htlc.transaction_output_index {
283 /// We use this to track static counterparty commitment transaction data and to generate any
284 /// justice or 2nd-stage preimage/timeout transactions.
285 #[derive(PartialEq, Eq)]
286 struct CounterpartyCommitmentParameters {
287 counterparty_delayed_payment_base_key: PublicKey,
288 counterparty_htlc_base_key: PublicKey,
289 on_counterparty_tx_csv: u16,
292 impl Writeable for CounterpartyCommitmentParameters {
293 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
294 w.write_all(&(0 as u64).to_be_bytes())?;
295 write_tlv_fields!(w, {
296 (0, self.counterparty_delayed_payment_base_key, required),
297 (2, self.counterparty_htlc_base_key, required),
298 (4, self.on_counterparty_tx_csv, required),
303 impl Readable for CounterpartyCommitmentParameters {
304 fn read<R: io::Read>(r: &mut R) -> Result<Self, DecodeError> {
305 let counterparty_commitment_transaction = {
306 // Versions prior to 0.0.100 had some per-HTLC state stored here, which is no longer
307 // used. Read it for compatibility.
308 let per_htlc_len: u64 = Readable::read(r)?;
309 for _ in 0..per_htlc_len {
310 let _txid: Txid = Readable::read(r)?;
311 let htlcs_count: u64 = Readable::read(r)?;
312 for _ in 0..htlcs_count {
313 let _htlc: HTLCOutputInCommitment = Readable::read(r)?;
317 let mut counterparty_delayed_payment_base_key = RequiredWrapper(None);
318 let mut counterparty_htlc_base_key = RequiredWrapper(None);
319 let mut on_counterparty_tx_csv: u16 = 0;
320 read_tlv_fields!(r, {
321 (0, counterparty_delayed_payment_base_key, required),
322 (2, counterparty_htlc_base_key, required),
323 (4, on_counterparty_tx_csv, required),
325 CounterpartyCommitmentParameters {
326 counterparty_delayed_payment_base_key: counterparty_delayed_payment_base_key.0.unwrap(),
327 counterparty_htlc_base_key: counterparty_htlc_base_key.0.unwrap(),
328 on_counterparty_tx_csv,
331 Ok(counterparty_commitment_transaction)
335 /// An entry for an [`OnchainEvent`], stating the block height and hash when the event was
336 /// observed, as well as the transaction causing it.
338 /// Used to determine when the on-chain event can be considered safe from a chain reorganization.
339 #[derive(PartialEq, Eq)]
340 struct OnchainEventEntry {
343 block_hash: Option<BlockHash>, // Added as optional, will be filled in for any entry generated on 0.0.113 or after
345 transaction: Option<Transaction>, // Added as optional, but always filled in, in LDK 0.0.110
348 impl OnchainEventEntry {
349 fn confirmation_threshold(&self) -> u32 {
350 let mut conf_threshold = self.height + ANTI_REORG_DELAY - 1;
352 OnchainEvent::MaturingOutput {
353 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor)
355 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
356 // it's broadcastable when we see the previous block.
357 conf_threshold = cmp::max(conf_threshold, self.height + descriptor.to_self_delay as u32 - 1);
359 OnchainEvent::FundingSpendConfirmation { on_local_output_csv: Some(csv), .. } |
360 OnchainEvent::HTLCSpendConfirmation { on_to_local_output_csv: Some(csv), .. } => {
361 // A CSV'd transaction is confirmable in block (input height) + CSV delay, which means
362 // it's broadcastable when we see the previous block.
363 conf_threshold = cmp::max(conf_threshold, self.height + csv as u32 - 1);
370 fn has_reached_confirmation_threshold(&self, best_block: &BestBlock) -> bool {
371 best_block.height() >= self.confirmation_threshold()
375 /// The (output index, sats value) for the counterparty's output in a commitment transaction.
377 /// This was added as an `Option` in 0.0.110.
378 type CommitmentTxCounterpartyOutputInfo = Option<(u32, u64)>;
380 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
381 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
382 #[derive(PartialEq, Eq)]
384 /// An outbound HTLC failing after a transaction is confirmed. Used
385 /// * when an outbound HTLC output is spent by us after the HTLC timed out
386 /// * an outbound HTLC which was not present in the commitment transaction which appeared
387 /// on-chain (either because it was not fully committed to or it was dust).
388 /// Note that this is *not* used for preimage claims, as those are passed upstream immediately,
389 /// appearing only as an `HTLCSpendConfirmation`, below.
392 payment_hash: PaymentHash,
393 htlc_value_satoshis: Option<u64>,
394 /// None in the second case, above, ie when there is no relevant output in the commitment
395 /// transaction which appeared on chain.
396 commitment_tx_output_idx: Option<u32>,
398 /// An output waiting on [`ANTI_REORG_DELAY`] confirmations before we hand the user the
399 /// [`SpendableOutputDescriptor`].
401 descriptor: SpendableOutputDescriptor,
403 /// A spend of the funding output, either a commitment transaction or a cooperative closing
405 FundingSpendConfirmation {
406 /// The CSV delay for the output of the funding spend transaction (implying it is a local
407 /// commitment transaction, and this is the delay on the to_self output).
408 on_local_output_csv: Option<u16>,
409 /// If the funding spend transaction was a known remote commitment transaction, we track
410 /// the output index and amount of the counterparty's `to_self` output here.
412 /// This allows us to generate a [`Balance::CounterpartyRevokedOutputClaimable`] for the
413 /// counterparty output.
414 commitment_tx_to_counterparty_output: CommitmentTxCounterpartyOutputInfo,
416 /// A spend of a commitment transaction HTLC output, set in the cases where *no* `HTLCUpdate`
417 /// is constructed. This is used when
418 /// * an outbound HTLC is claimed by our counterparty with a preimage, causing us to
419 /// immediately claim the HTLC on the inbound edge and track the resolution here,
420 /// * an inbound HTLC is claimed by our counterparty (with a timeout),
421 /// * an inbound HTLC is claimed by us (with a preimage).
422 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by the revocation
424 /// * a revoked-state HTLC transaction was broadcasted, which was claimed by an
425 /// HTLC-Success/HTLC-Failure transaction (and is still claimable with a revocation
427 HTLCSpendConfirmation {
428 commitment_tx_output_idx: u32,
429 /// If the claim was made by either party with a preimage, this is filled in
430 preimage: Option<PaymentPreimage>,
431 /// If the claim was made by us on an inbound HTLC against a local commitment transaction,
432 /// we set this to the output CSV value which we will have to wait until to spend the
433 /// output (and generate a SpendableOutput event).
434 on_to_local_output_csv: Option<u16>,
438 impl Writeable for OnchainEventEntry {
439 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
440 write_tlv_fields!(writer, {
441 (0, self.txid, required),
442 (1, self.transaction, option),
443 (2, self.height, required),
444 (3, self.block_hash, option),
445 (4, self.event, required),
451 impl MaybeReadable for OnchainEventEntry {
452 fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
453 let mut txid = Txid::all_zeros();
454 let mut transaction = None;
455 let mut block_hash = None;
457 let mut event = UpgradableRequired(None);
458 read_tlv_fields!(reader, {
460 (1, transaction, option),
461 (2, height, required),
462 (3, block_hash, option),
463 (4, event, upgradable_required),
465 Ok(Some(Self { txid, transaction, height, block_hash, event: _init_tlv_based_struct_field!(event, upgradable_required) }))
469 impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
471 (0, source, required),
472 (1, htlc_value_satoshis, option),
473 (2, payment_hash, required),
474 (3, commitment_tx_output_idx, option),
476 (1, MaturingOutput) => {
477 (0, descriptor, required),
479 (3, FundingSpendConfirmation) => {
480 (0, on_local_output_csv, option),
481 (1, commitment_tx_to_counterparty_output, option),
483 (5, HTLCSpendConfirmation) => {
484 (0, commitment_tx_output_idx, required),
485 (2, preimage, option),
486 (4, on_to_local_output_csv, option),
491 #[cfg_attr(any(test, fuzzing, feature = "_test_utils"), derive(PartialEq, Eq))]
493 pub(crate) enum ChannelMonitorUpdateStep {
494 LatestHolderCommitmentTXInfo {
495 commitment_tx: HolderCommitmentTransaction,
496 /// Note that LDK after 0.0.115 supports this only containing dust HTLCs (implying the
497 /// `Signature` field is never filled in). At that point, non-dust HTLCs are implied by the
498 /// HTLC fields in `commitment_tx` and the sources passed via `nondust_htlc_sources`.
499 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
500 claimed_htlcs: Vec<(SentHTLCId, PaymentPreimage)>,
501 nondust_htlc_sources: Vec<HTLCSource>,
503 LatestCounterpartyCommitmentTXInfo {
504 commitment_txid: Txid,
505 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
506 commitment_number: u64,
507 their_per_commitment_point: PublicKey,
510 payment_preimage: PaymentPreimage,
516 /// Used to indicate that the no future updates will occur, and likely that the latest holder
517 /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
519 /// If set to false, we shouldn't broadcast the latest holder commitment transaction as we
520 /// think we've fallen behind!
521 should_broadcast: bool,
524 scriptpubkey: Script,
528 impl ChannelMonitorUpdateStep {
529 fn variant_name(&self) -> &'static str {
531 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { .. } => "LatestHolderCommitmentTXInfo",
532 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } => "LatestCounterpartyCommitmentTXInfo",
533 ChannelMonitorUpdateStep::PaymentPreimage { .. } => "PaymentPreimage",
534 ChannelMonitorUpdateStep::CommitmentSecret { .. } => "CommitmentSecret",
535 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => "ChannelForceClosed",
536 ChannelMonitorUpdateStep::ShutdownScript { .. } => "ShutdownScript",
541 impl_writeable_tlv_based_enum_upgradable!(ChannelMonitorUpdateStep,
542 (0, LatestHolderCommitmentTXInfo) => {
543 (0, commitment_tx, required),
544 (1, claimed_htlcs, vec_type),
545 (2, htlc_outputs, vec_type),
546 (4, nondust_htlc_sources, optional_vec),
548 (1, LatestCounterpartyCommitmentTXInfo) => {
549 (0, commitment_txid, required),
550 (2, commitment_number, required),
551 (4, their_per_commitment_point, required),
552 (6, htlc_outputs, vec_type),
554 (2, PaymentPreimage) => {
555 (0, payment_preimage, required),
557 (3, CommitmentSecret) => {
559 (2, secret, required),
561 (4, ChannelForceClosed) => {
562 (0, should_broadcast, required),
564 (5, ShutdownScript) => {
565 (0, scriptpubkey, required),
569 /// Details about the balance(s) available for spending once the channel appears on chain.
571 /// See [`ChannelMonitor::get_claimable_balances`] for more details on when these will or will not
573 #[derive(Clone, Debug, PartialEq, Eq)]
574 #[cfg_attr(test, derive(PartialOrd, Ord))]
576 /// The channel is not yet closed (or the commitment or closing transaction has not yet
577 /// appeared in a block). The given balance is claimable (less on-chain fees) if the channel is
578 /// force-closed now.
579 ClaimableOnChannelClose {
580 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
581 /// required to do so.
582 claimable_amount_satoshis: u64,
584 /// The channel has been closed, and the given balance is ours but awaiting confirmations until
585 /// we consider it spendable.
586 ClaimableAwaitingConfirmations {
587 /// The amount available to claim, in satoshis, possibly excluding the on-chain fees which
588 /// were spent in broadcasting the transaction.
589 claimable_amount_satoshis: u64,
590 /// The height at which an [`Event::SpendableOutputs`] event will be generated for this
592 confirmation_height: u32,
594 /// The channel has been closed, and the given balance should be ours but awaiting spending
595 /// transaction confirmation. If the spending transaction does not confirm in time, it is
596 /// possible our counterparty can take the funds by broadcasting an HTLC timeout on-chain.
598 /// Once the spending transaction confirms, before it has reached enough confirmations to be
599 /// considered safe from chain reorganizations, the balance will instead be provided via
600 /// [`Balance::ClaimableAwaitingConfirmations`].
601 ContentiousClaimable {
602 /// The amount available to claim, in satoshis, excluding the on-chain fees which will be
603 /// required to do so.
604 claimable_amount_satoshis: u64,
605 /// The height at which the counterparty may be able to claim the balance if we have not
609 /// HTLCs which we sent to our counterparty which are claimable after a timeout (less on-chain
610 /// fees) if the counterparty does not know the preimage for the HTLCs. These are somewhat
611 /// likely to be claimed by our counterparty before we do.
612 MaybeTimeoutClaimableHTLC {
613 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
614 /// which will be required to do so.
615 claimable_amount_satoshis: u64,
616 /// The height at which we will be able to claim the balance if our counterparty has not
618 claimable_height: u32,
620 /// HTLCs which we received from our counterparty which are claimable with a preimage which we
621 /// do not currently have. This will only be claimable if we receive the preimage from the node
622 /// to which we forwarded this HTLC before the timeout.
623 MaybePreimageClaimableHTLC {
624 /// The amount potentially available to claim, in satoshis, excluding the on-chain fees
625 /// which will be required to do so.
626 claimable_amount_satoshis: u64,
627 /// The height at which our counterparty will be able to claim the balance if we have not
628 /// yet received the preimage and claimed it ourselves.
631 /// The channel has been closed, and our counterparty broadcasted a revoked commitment
634 /// Thus, we're able to claim all outputs in the commitment transaction, one of which has the
635 /// following amount.
636 CounterpartyRevokedOutputClaimable {
637 /// The amount, in satoshis, of the output which we can claim.
639 /// Note that for outputs from HTLC balances this may be excluding some on-chain fees that
640 /// were already spent.
641 claimable_amount_satoshis: u64,
645 /// An HTLC which has been irrevocably resolved on-chain, and has reached ANTI_REORG_DELAY.
646 #[derive(PartialEq, Eq)]
647 struct IrrevocablyResolvedHTLC {
648 commitment_tx_output_idx: Option<u32>,
649 /// The txid of the transaction which resolved the HTLC, this may be a commitment (if the HTLC
650 /// was not present in the confirmed commitment transaction), HTLC-Success, or HTLC-Timeout
652 resolving_txid: Option<Txid>, // Added as optional, but always filled in, in 0.0.110
653 resolving_tx: Option<Transaction>,
654 /// Only set if the HTLC claim was ours using a payment preimage
655 payment_preimage: Option<PaymentPreimage>,
658 // In LDK versions prior to 0.0.111 commitment_tx_output_idx was not Option-al and
659 // IrrevocablyResolvedHTLC objects only existed for non-dust HTLCs. This was a bug, but to maintain
660 // backwards compatibility we must ensure we always write out a commitment_tx_output_idx field,
661 // using `u32::max_value()` as a sentinal to indicate the HTLC was dust.
662 impl Writeable for IrrevocablyResolvedHTLC {
663 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
664 let mapped_commitment_tx_output_idx = self.commitment_tx_output_idx.unwrap_or(u32::max_value());
665 write_tlv_fields!(writer, {
666 (0, mapped_commitment_tx_output_idx, required),
667 (1, self.resolving_txid, option),
668 (2, self.payment_preimage, option),
669 (3, self.resolving_tx, option),
675 impl Readable for IrrevocablyResolvedHTLC {
676 fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
677 let mut mapped_commitment_tx_output_idx = 0;
678 let mut resolving_txid = None;
679 let mut payment_preimage = None;
680 let mut resolving_tx = None;
681 read_tlv_fields!(reader, {
682 (0, mapped_commitment_tx_output_idx, required),
683 (1, resolving_txid, option),
684 (2, payment_preimage, option),
685 (3, resolving_tx, option),
688 commitment_tx_output_idx: if mapped_commitment_tx_output_idx == u32::max_value() { None } else { Some(mapped_commitment_tx_output_idx) },
696 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
697 /// on-chain transactions to ensure no loss of funds occurs.
699 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
700 /// information and are actively monitoring the chain.
702 /// Pending Events or updated HTLCs which have not yet been read out by
703 /// get_and_clear_pending_monitor_events or get_and_clear_pending_events are serialized to disk and
704 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
705 /// gotten are fully handled before re-serializing the new state.
707 /// Note that the deserializer is only implemented for (BlockHash, ChannelMonitor), which
708 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
709 /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
710 /// returned block hash and the the current chain and then reconnecting blocks to get to the
711 /// best chain) upon deserializing the object!
712 pub struct ChannelMonitor<Signer: WriteableEcdsaChannelSigner> {
714 pub(crate) inner: Mutex<ChannelMonitorImpl<Signer>>,
716 inner: Mutex<ChannelMonitorImpl<Signer>>,
720 pub(crate) struct ChannelMonitorImpl<Signer: WriteableEcdsaChannelSigner> {
721 latest_update_id: u64,
722 commitment_transaction_number_obscure_factor: u64,
724 destination_script: Script,
725 broadcasted_holder_revokable_script: Option<(Script, PublicKey, PublicKey)>,
726 counterparty_payment_script: Script,
727 shutdown_script: Option<Script>,
729 channel_keys_id: [u8; 32],
730 holder_revocation_basepoint: PublicKey,
731 funding_info: (OutPoint, Script),
732 current_counterparty_commitment_txid: Option<Txid>,
733 prev_counterparty_commitment_txid: Option<Txid>,
735 counterparty_commitment_params: CounterpartyCommitmentParameters,
736 funding_redeemscript: Script,
737 channel_value_satoshis: u64,
738 // first is the idx of the first of the two per-commitment points
739 their_cur_per_commitment_points: Option<(u64, PublicKey, Option<PublicKey>)>,
741 on_holder_tx_csv: u16,
743 commitment_secrets: CounterpartyCommitmentSecrets,
744 /// The set of outpoints in each counterparty commitment transaction. We always need at least
745 /// the payment hash from `HTLCOutputInCommitment` to claim even a revoked commitment
746 /// transaction broadcast as we need to be able to construct the witness script in all cases.
747 counterparty_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
748 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
749 /// Nor can we figure out their commitment numbers without the commitment transaction they are
750 /// spending. Thus, in order to claim them via revocation key, we track all the counterparty
751 /// commitment transactions which we find on-chain, mapping them to the commitment number which
752 /// can be used to derive the revocation key and claim the transactions.
753 counterparty_commitment_txn_on_chain: HashMap<Txid, u64>,
754 /// Cache used to make pruning of payment_preimages faster.
755 /// Maps payment_hash values to commitment numbers for counterparty transactions for non-revoked
756 /// counterparty transactions (ie should remain pretty small).
757 /// Serialized to disk but should generally not be sent to Watchtowers.
758 counterparty_hash_commitment_number: HashMap<PaymentHash, u64>,
760 counterparty_fulfilled_htlcs: HashMap<SentHTLCId, PaymentPreimage>,
762 // We store two holder commitment transactions to avoid any race conditions where we may update
763 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
764 // various monitors for one channel being out of sync, and us broadcasting a holder
765 // transaction for which we have deleted claim information on some watchtowers.
766 prev_holder_signed_commitment_tx: Option<HolderSignedTx>,
767 current_holder_commitment_tx: HolderSignedTx,
769 // Used just for ChannelManager to make sure it has the latest channel data during
771 current_counterparty_commitment_number: u64,
772 // Used just for ChannelManager to make sure it has the latest channel data during
774 current_holder_commitment_number: u64,
776 /// The set of payment hashes from inbound payments for which we know the preimage. Payment
777 /// preimages that are not included in any unrevoked local commitment transaction or unrevoked
778 /// remote commitment transactions are automatically removed when commitment transactions are
780 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
782 // Note that `MonitorEvent`s MUST NOT be generated during update processing, only generated
783 // during chain data processing. This prevents a race in `ChainMonitor::update_channel` (and
784 // presumably user implementations thereof as well) where we update the in-memory channel
785 // object, then before the persistence finishes (as it's all under a read-lock), we return
786 // pending events to the user or to the relevant `ChannelManager`. Then, on reload, we'll have
787 // the pre-event state here, but have processed the event in the `ChannelManager`.
788 // Note that because the `event_lock` in `ChainMonitor` is only taken in
789 // block/transaction-connected events and *not* during block/transaction-disconnected events,
790 // we further MUST NOT generate events during block/transaction-disconnection.
791 pending_monitor_events: Vec<MonitorEvent>,
793 pending_events: Vec<Event>,
795 // Used to track on-chain events (i.e., transactions part of channels confirmed on chain) on
796 // which to take actions once they reach enough confirmations. Each entry includes the
797 // transaction's id and the height when the transaction was confirmed on chain.
798 onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
800 // If we get serialized out and re-read, we need to make sure that the chain monitoring
801 // interface knows about the TXOs that we want to be notified of spends of. We could probably
802 // be smart and derive them from the above storage fields, but its much simpler and more
803 // Obviously Correct (tm) if we just keep track of them explicitly.
804 outputs_to_watch: HashMap<Txid, Vec<(u32, Script)>>,
807 pub onchain_tx_handler: OnchainTxHandler<Signer>,
809 onchain_tx_handler: OnchainTxHandler<Signer>,
811 // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
812 // channel has been force-closed. After this is set, no further holder commitment transaction
813 // updates may occur, and we panic!() if one is provided.
814 lockdown_from_offchain: bool,
816 // Set once we've signed a holder commitment transaction and handed it over to our
817 // OnchainTxHandler. After this is set, no future updates to our holder commitment transactions
818 // may occur, and we fail any such monitor updates.
820 // In case of update rejection due to a locally already signed commitment transaction, we
821 // nevertheless store update content to track in case of concurrent broadcast by another
822 // remote monitor out-of-order with regards to the block view.
823 holder_tx_signed: bool,
825 // If a spend of the funding output is seen, we set this to true and reject any further
826 // updates. This prevents any further changes in the offchain state no matter the order
827 // of block connection between ChannelMonitors and the ChannelManager.
828 funding_spend_seen: bool,
830 /// Set to `Some` of the confirmed transaction spending the funding input of the channel after
831 /// reaching `ANTI_REORG_DELAY` confirmations.
832 funding_spend_confirmed: Option<Txid>,
834 confirmed_commitment_tx_counterparty_output: CommitmentTxCounterpartyOutputInfo,
835 /// The set of HTLCs which have been either claimed or failed on chain and have reached
836 /// the requisite confirmations on the claim/fail transaction (either ANTI_REORG_DELAY or the
837 /// spending CSV for revocable outputs).
838 htlcs_resolved_on_chain: Vec<IrrevocablyResolvedHTLC>,
840 /// The set of `SpendableOutput` events which we have already passed upstream to be claimed.
841 /// These are tracked explicitly to ensure that we don't generate the same events redundantly
842 /// if users duplicatively confirm old transactions. Specifically for transactions claiming a
843 /// revoked remote outpoint we otherwise have no tracking at all once they've reached
844 /// [`ANTI_REORG_DELAY`], so we have to track them here.
845 spendable_txids_confirmed: Vec<Txid>,
847 // We simply modify best_block in Channel's block_connected so that serialization is
848 // consistent but hopefully the users' copy handles block_connected in a consistent way.
849 // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
850 // their best_block from its state and not based on updated copies that didn't run through
851 // the full block_connected).
852 best_block: BestBlock,
854 /// The node_id of our counterparty
855 counterparty_node_id: Option<PublicKey>,
858 /// Transaction outputs to watch for on-chain spends.
859 pub type TransactionOutputs = (Txid, Vec<(u32, TxOut)>);
861 impl<Signer: WriteableEcdsaChannelSigner> PartialEq for ChannelMonitor<Signer> where Signer: PartialEq {
862 fn eq(&self, other: &Self) -> bool {
863 // We need some kind of total lockorder. Absent a better idea, we sort by position in
864 // memory and take locks in that order (assuming that we can't move within memory while a
866 let ord = ((self as *const _) as usize) < ((other as *const _) as usize);
867 let a = if ord { self.inner.unsafe_well_ordered_double_lock_self() } else { other.inner.unsafe_well_ordered_double_lock_self() };
868 let b = if ord { other.inner.unsafe_well_ordered_double_lock_self() } else { self.inner.unsafe_well_ordered_double_lock_self() };
873 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitor<Signer> {
874 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
875 self.inner.lock().unwrap().write(writer)
879 // These are also used for ChannelMonitorUpdate, above.
880 const SERIALIZATION_VERSION: u8 = 1;
881 const MIN_SERIALIZATION_VERSION: u8 = 1;
883 impl<Signer: WriteableEcdsaChannelSigner> Writeable for ChannelMonitorImpl<Signer> {
884 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
885 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
887 self.latest_update_id.write(writer)?;
889 // Set in initial Channel-object creation, so should always be set by now:
890 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
892 self.destination_script.write(writer)?;
893 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
894 writer.write_all(&[0; 1])?;
895 broadcasted_holder_revokable_script.0.write(writer)?;
896 broadcasted_holder_revokable_script.1.write(writer)?;
897 broadcasted_holder_revokable_script.2.write(writer)?;
899 writer.write_all(&[1; 1])?;
902 self.counterparty_payment_script.write(writer)?;
903 match &self.shutdown_script {
904 Some(script) => script.write(writer)?,
905 None => Script::new().write(writer)?,
908 self.channel_keys_id.write(writer)?;
909 self.holder_revocation_basepoint.write(writer)?;
910 writer.write_all(&self.funding_info.0.txid[..])?;
911 writer.write_all(&self.funding_info.0.index.to_be_bytes())?;
912 self.funding_info.1.write(writer)?;
913 self.current_counterparty_commitment_txid.write(writer)?;
914 self.prev_counterparty_commitment_txid.write(writer)?;
916 self.counterparty_commitment_params.write(writer)?;
917 self.funding_redeemscript.write(writer)?;
918 self.channel_value_satoshis.write(writer)?;
920 match self.their_cur_per_commitment_points {
921 Some((idx, pubkey, second_option)) => {
922 writer.write_all(&byte_utils::be48_to_array(idx))?;
923 writer.write_all(&pubkey.serialize())?;
924 match second_option {
925 Some(second_pubkey) => {
926 writer.write_all(&second_pubkey.serialize())?;
929 writer.write_all(&[0; 33])?;
934 writer.write_all(&byte_utils::be48_to_array(0))?;
938 writer.write_all(&self.on_holder_tx_csv.to_be_bytes())?;
940 self.commitment_secrets.write(writer)?;
942 macro_rules! serialize_htlc_in_commitment {
943 ($htlc_output: expr) => {
944 writer.write_all(&[$htlc_output.offered as u8; 1])?;
945 writer.write_all(&$htlc_output.amount_msat.to_be_bytes())?;
946 writer.write_all(&$htlc_output.cltv_expiry.to_be_bytes())?;
947 writer.write_all(&$htlc_output.payment_hash.0[..])?;
948 $htlc_output.transaction_output_index.write(writer)?;
952 writer.write_all(&(self.counterparty_claimable_outpoints.len() as u64).to_be_bytes())?;
953 for (ref txid, ref htlc_infos) in self.counterparty_claimable_outpoints.iter() {
954 writer.write_all(&txid[..])?;
955 writer.write_all(&(htlc_infos.len() as u64).to_be_bytes())?;
956 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
957 debug_assert!(htlc_source.is_none() || Some(**txid) == self.current_counterparty_commitment_txid
958 || Some(**txid) == self.prev_counterparty_commitment_txid,
959 "HTLC Sources for all revoked commitment transactions should be none!");
960 serialize_htlc_in_commitment!(htlc_output);
961 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
965 writer.write_all(&(self.counterparty_commitment_txn_on_chain.len() as u64).to_be_bytes())?;
966 for (ref txid, commitment_number) in self.counterparty_commitment_txn_on_chain.iter() {
967 writer.write_all(&txid[..])?;
968 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
971 writer.write_all(&(self.counterparty_hash_commitment_number.len() as u64).to_be_bytes())?;
972 for (ref payment_hash, commitment_number) in self.counterparty_hash_commitment_number.iter() {
973 writer.write_all(&payment_hash.0[..])?;
974 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
977 if let Some(ref prev_holder_tx) = self.prev_holder_signed_commitment_tx {
978 writer.write_all(&[1; 1])?;
979 prev_holder_tx.write(writer)?;
981 writer.write_all(&[0; 1])?;
984 self.current_holder_commitment_tx.write(writer)?;
986 writer.write_all(&byte_utils::be48_to_array(self.current_counterparty_commitment_number))?;
987 writer.write_all(&byte_utils::be48_to_array(self.current_holder_commitment_number))?;
989 writer.write_all(&(self.payment_preimages.len() as u64).to_be_bytes())?;
990 for payment_preimage in self.payment_preimages.values() {
991 writer.write_all(&payment_preimage.0[..])?;
994 writer.write_all(&(self.pending_monitor_events.iter().filter(|ev| match ev {
995 MonitorEvent::HTLCEvent(_) => true,
996 MonitorEvent::CommitmentTxConfirmed(_) => true,
998 }).count() as u64).to_be_bytes())?;
999 for event in self.pending_monitor_events.iter() {
1001 MonitorEvent::HTLCEvent(upd) => {
1005 MonitorEvent::CommitmentTxConfirmed(_) => 1u8.write(writer)?,
1006 _ => {}, // Covered in the TLV writes below
1010 writer.write_all(&(self.pending_events.len() as u64).to_be_bytes())?;
1011 for event in self.pending_events.iter() {
1012 event.write(writer)?;
1015 self.best_block.block_hash().write(writer)?;
1016 writer.write_all(&self.best_block.height().to_be_bytes())?;
1018 writer.write_all(&(self.onchain_events_awaiting_threshold_conf.len() as u64).to_be_bytes())?;
1019 for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
1020 entry.write(writer)?;
1023 (self.outputs_to_watch.len() as u64).write(writer)?;
1024 for (txid, idx_scripts) in self.outputs_to_watch.iter() {
1025 txid.write(writer)?;
1026 (idx_scripts.len() as u64).write(writer)?;
1027 for (idx, script) in idx_scripts.iter() {
1029 script.write(writer)?;
1032 self.onchain_tx_handler.write(writer)?;
1034 self.lockdown_from_offchain.write(writer)?;
1035 self.holder_tx_signed.write(writer)?;
1037 write_tlv_fields!(writer, {
1038 (1, self.funding_spend_confirmed, option),
1039 (3, self.htlcs_resolved_on_chain, vec_type),
1040 (5, self.pending_monitor_events, vec_type),
1041 (7, self.funding_spend_seen, required),
1042 (9, self.counterparty_node_id, option),
1043 (11, self.confirmed_commitment_tx_counterparty_output, option),
1044 (13, self.spendable_txids_confirmed, vec_type),
1045 (15, self.counterparty_fulfilled_htlcs, required),
1052 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1053 /// For lockorder enforcement purposes, we need to have a single site which constructs the
1054 /// `inner` mutex, otherwise cases where we lock two monitors at the same time (eg in our
1055 /// PartialEq implementation) we may decide a lockorder violation has occurred.
1056 fn from_impl(imp: ChannelMonitorImpl<Signer>) -> Self {
1057 ChannelMonitor { inner: Mutex::new(imp) }
1060 pub(crate) fn new(secp_ctx: Secp256k1<secp256k1::All>, keys: Signer, shutdown_script: Option<Script>,
1061 on_counterparty_tx_csv: u16, destination_script: &Script, funding_info: (OutPoint, Script),
1062 channel_parameters: &ChannelTransactionParameters,
1063 funding_redeemscript: Script, channel_value_satoshis: u64,
1064 commitment_transaction_number_obscure_factor: u64,
1065 initial_holder_commitment_tx: HolderCommitmentTransaction,
1066 best_block: BestBlock, counterparty_node_id: PublicKey) -> ChannelMonitor<Signer> {
1068 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1069 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
1070 let counterparty_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
1072 let counterparty_channel_parameters = channel_parameters.counterparty_parameters.as_ref().unwrap();
1073 let counterparty_delayed_payment_base_key = counterparty_channel_parameters.pubkeys.delayed_payment_basepoint;
1074 let counterparty_htlc_base_key = counterparty_channel_parameters.pubkeys.htlc_basepoint;
1075 let counterparty_commitment_params = CounterpartyCommitmentParameters { counterparty_delayed_payment_base_key, counterparty_htlc_base_key, on_counterparty_tx_csv };
1077 let channel_keys_id = keys.channel_keys_id();
1078 let holder_revocation_basepoint = keys.pubkeys().revocation_basepoint;
1080 // block for Rust 1.34 compat
1081 let (holder_commitment_tx, current_holder_commitment_number) = {
1082 let trusted_tx = initial_holder_commitment_tx.trust();
1083 let txid = trusted_tx.txid();
1085 let tx_keys = trusted_tx.keys();
1086 let holder_commitment_tx = HolderSignedTx {
1088 revocation_key: tx_keys.revocation_key,
1089 a_htlc_key: tx_keys.broadcaster_htlc_key,
1090 b_htlc_key: tx_keys.countersignatory_htlc_key,
1091 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
1092 per_commitment_point: tx_keys.per_commitment_point,
1093 htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1094 to_self_value_sat: initial_holder_commitment_tx.to_broadcaster_value_sat(),
1095 feerate_per_kw: trusted_tx.feerate_per_kw(),
1097 (holder_commitment_tx, trusted_tx.commitment_number())
1100 let onchain_tx_handler =
1101 OnchainTxHandler::new(destination_script.clone(), keys,
1102 channel_parameters.clone(), initial_holder_commitment_tx, secp_ctx);
1104 let mut outputs_to_watch = HashMap::new();
1105 outputs_to_watch.insert(funding_info.0.txid, vec![(funding_info.0.index as u32, funding_info.1.clone())]);
1107 Self::from_impl(ChannelMonitorImpl {
1108 latest_update_id: 0,
1109 commitment_transaction_number_obscure_factor,
1111 destination_script: destination_script.clone(),
1112 broadcasted_holder_revokable_script: None,
1113 counterparty_payment_script,
1117 holder_revocation_basepoint,
1119 current_counterparty_commitment_txid: None,
1120 prev_counterparty_commitment_txid: None,
1122 counterparty_commitment_params,
1123 funding_redeemscript,
1124 channel_value_satoshis,
1125 their_cur_per_commitment_points: None,
1127 on_holder_tx_csv: counterparty_channel_parameters.selected_contest_delay,
1129 commitment_secrets: CounterpartyCommitmentSecrets::new(),
1130 counterparty_claimable_outpoints: HashMap::new(),
1131 counterparty_commitment_txn_on_chain: HashMap::new(),
1132 counterparty_hash_commitment_number: HashMap::new(),
1133 counterparty_fulfilled_htlcs: HashMap::new(),
1135 prev_holder_signed_commitment_tx: None,
1136 current_holder_commitment_tx: holder_commitment_tx,
1137 current_counterparty_commitment_number: 1 << 48,
1138 current_holder_commitment_number,
1140 payment_preimages: HashMap::new(),
1141 pending_monitor_events: Vec::new(),
1142 pending_events: Vec::new(),
1144 onchain_events_awaiting_threshold_conf: Vec::new(),
1149 lockdown_from_offchain: false,
1150 holder_tx_signed: false,
1151 funding_spend_seen: false,
1152 funding_spend_confirmed: None,
1153 confirmed_commitment_tx_counterparty_output: None,
1154 htlcs_resolved_on_chain: Vec::new(),
1155 spendable_txids_confirmed: Vec::new(),
1158 counterparty_node_id: Some(counterparty_node_id),
1163 fn provide_secret(&self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
1164 self.inner.lock().unwrap().provide_secret(idx, secret)
1167 /// Informs this monitor of the latest counterparty (ie non-broadcastable) commitment transaction.
1168 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1169 /// possibly future revocation/preimage information) to claim outputs where possible.
1170 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1171 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(
1174 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
1175 commitment_number: u64,
1176 their_per_commitment_point: PublicKey,
1178 ) where L::Target: Logger {
1179 self.inner.lock().unwrap().provide_latest_counterparty_commitment_tx(
1180 txid, htlc_outputs, commitment_number, their_per_commitment_point, logger)
1184 fn provide_latest_holder_commitment_tx(
1185 &self, holder_commitment_tx: HolderCommitmentTransaction,
1186 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
1187 ) -> Result<(), ()> {
1188 self.inner.lock().unwrap().provide_latest_holder_commitment_tx(holder_commitment_tx, htlc_outputs, &Vec::new(), Vec::new()).map_err(|_| ())
1191 /// This is used to provide payment preimage(s) out-of-band during startup without updating the
1192 /// off-chain state with a new commitment transaction.
1193 pub(crate) fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
1195 payment_hash: &PaymentHash,
1196 payment_preimage: &PaymentPreimage,
1198 fee_estimator: &LowerBoundedFeeEstimator<F>,
1201 B::Target: BroadcasterInterface,
1202 F::Target: FeeEstimator,
1205 self.inner.lock().unwrap().provide_payment_preimage(
1206 payment_hash, payment_preimage, broadcaster, fee_estimator, logger)
1209 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(
1214 B::Target: BroadcasterInterface,
1217 self.inner.lock().unwrap().broadcast_latest_holder_commitment_txn(broadcaster, logger);
1220 /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1223 /// panics if the given update is not the next update by update_id.
1224 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(
1226 updates: &ChannelMonitorUpdate,
1232 B::Target: BroadcasterInterface,
1233 F::Target: FeeEstimator,
1236 self.inner.lock().unwrap().update_monitor(updates, broadcaster, fee_estimator, logger)
1239 /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1241 pub fn get_latest_update_id(&self) -> u64 {
1242 self.inner.lock().unwrap().get_latest_update_id()
1245 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1246 pub fn get_funding_txo(&self) -> (OutPoint, Script) {
1247 self.inner.lock().unwrap().get_funding_txo().clone()
1250 /// Gets a list of txids, with their output scripts (in the order they appear in the
1251 /// transaction), which we must learn about spends of via block_connected().
1252 pub fn get_outputs_to_watch(&self) -> Vec<(Txid, Vec<(u32, Script)>)> {
1253 self.inner.lock().unwrap().get_outputs_to_watch()
1254 .iter().map(|(txid, outputs)| (*txid, outputs.clone())).collect()
1257 /// Loads the funding txo and outputs to watch into the given `chain::Filter` by repeatedly
1258 /// calling `chain::Filter::register_output` and `chain::Filter::register_tx` until all outputs
1259 /// have been registered.
1260 pub fn load_outputs_to_watch<F: Deref>(&self, filter: &F) where F::Target: chain::Filter {
1261 let lock = self.inner.lock().unwrap();
1262 filter.register_tx(&lock.get_funding_txo().0.txid, &lock.get_funding_txo().1);
1263 for (txid, outputs) in lock.get_outputs_to_watch().iter() {
1264 for (index, script_pubkey) in outputs.iter() {
1265 assert!(*index <= u16::max_value() as u32);
1266 filter.register_output(WatchedOutput {
1268 outpoint: OutPoint { txid: *txid, index: *index as u16 },
1269 script_pubkey: script_pubkey.clone(),
1275 /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1276 /// ChannelManager via [`chain::Watch::release_pending_monitor_events`].
1277 pub fn get_and_clear_pending_monitor_events(&self) -> Vec<MonitorEvent> {
1278 self.inner.lock().unwrap().get_and_clear_pending_monitor_events()
1281 /// Gets the list of pending events which were generated by previous actions, clearing the list
1284 /// This is called by the [`EventsProvider::process_pending_events`] implementation for
1285 /// [`ChainMonitor`].
1287 /// [`EventsProvider::process_pending_events`]: crate::util::events::EventsProvider::process_pending_events
1288 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1289 pub fn get_and_clear_pending_events(&self) -> Vec<Event> {
1290 self.inner.lock().unwrap().get_and_clear_pending_events()
1293 pub(crate) fn get_min_seen_secret(&self) -> u64 {
1294 self.inner.lock().unwrap().get_min_seen_secret()
1297 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
1298 self.inner.lock().unwrap().get_cur_counterparty_commitment_number()
1301 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
1302 self.inner.lock().unwrap().get_cur_holder_commitment_number()
1305 /// Gets the `node_id` of the counterparty for this channel.
1307 /// Will be `None` for channels constructed on LDK versions prior to 0.0.110 and always `Some`
1309 pub fn get_counterparty_node_id(&self) -> Option<PublicKey> {
1310 self.inner.lock().unwrap().counterparty_node_id
1313 /// Used by ChannelManager deserialization to broadcast the latest holder state if its copy of
1314 /// the Channel was out-of-date.
1316 /// You may also use this to broadcast the latest local commitment transaction, either because
1317 /// a monitor update failed with [`ChannelMonitorUpdateStatus::PermanentFailure`] or because we've
1318 /// fallen behind (i.e. we've received proof that our counterparty side knows a revocation
1319 /// secret we gave them that they shouldn't know).
1321 /// Broadcasting these transactions in the second case is UNSAFE, as they allow counterparty
1322 /// side to punish you. Nevertheless you may want to broadcast them if counterparty doesn't
1323 /// close channel with their commitment transaction after a substantial amount of time. Best
1324 /// may be to contact the other node operator out-of-band to coordinate other options available
1325 /// to you. In any-case, the choice is up to you.
1327 /// [`ChannelMonitorUpdateStatus::PermanentFailure`]: super::ChannelMonitorUpdateStatus::PermanentFailure
1328 pub fn get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1329 where L::Target: Logger {
1330 self.inner.lock().unwrap().get_latest_holder_commitment_txn(logger)
1333 /// Unsafe test-only version of get_latest_holder_commitment_txn used by our test framework
1334 /// to bypass HolderCommitmentTransaction state update lockdown after signature and generate
1335 /// revoked commitment transaction.
1336 #[cfg(any(test, feature = "unsafe_revoked_tx_signing"))]
1337 pub fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&self, logger: &L) -> Vec<Transaction>
1338 where L::Target: Logger {
1339 self.inner.lock().unwrap().unsafe_get_latest_holder_commitment_txn(logger)
1342 /// Processes transactions in a newly connected block, which may result in any of the following:
1343 /// - update the monitor's state against resolved HTLCs
1344 /// - punish the counterparty in the case of seeing a revoked commitment transaction
1345 /// - force close the channel and claim/timeout incoming/outgoing HTLCs if near expiration
1346 /// - detect settled outputs for later spending
1347 /// - schedule and bump any in-flight claims
1349 /// Returns any new outputs to watch from `txdata`; after called, these are also included in
1350 /// [`get_outputs_to_watch`].
1352 /// [`get_outputs_to_watch`]: #method.get_outputs_to_watch
1353 pub fn block_connected<B: Deref, F: Deref, L: Deref>(
1355 header: &BlockHeader,
1356 txdata: &TransactionData,
1361 ) -> Vec<TransactionOutputs>
1363 B::Target: BroadcasterInterface,
1364 F::Target: FeeEstimator,
1367 self.inner.lock().unwrap().block_connected(
1368 header, txdata, height, broadcaster, fee_estimator, logger)
1371 /// Determines if the disconnected block contained any transactions of interest and updates
1373 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(
1375 header: &BlockHeader,
1381 B::Target: BroadcasterInterface,
1382 F::Target: FeeEstimator,
1385 self.inner.lock().unwrap().block_disconnected(
1386 header, height, broadcaster, fee_estimator, logger)
1389 /// Processes transactions confirmed in a block with the given header and height, returning new
1390 /// outputs to watch. See [`block_connected`] for details.
1392 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1393 /// blocks. See [`chain::Confirm`] for calling expectations.
1395 /// [`block_connected`]: Self::block_connected
1396 pub fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
1398 header: &BlockHeader,
1399 txdata: &TransactionData,
1404 ) -> Vec<TransactionOutputs>
1406 B::Target: BroadcasterInterface,
1407 F::Target: FeeEstimator,
1410 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1411 self.inner.lock().unwrap().transactions_confirmed(
1412 header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
1415 /// Processes a transaction that was reorganized out of the chain.
1417 /// Used instead of [`block_disconnected`] by clients that are notified of transactions rather
1418 /// than blocks. See [`chain::Confirm`] for calling expectations.
1420 /// [`block_disconnected`]: Self::block_disconnected
1421 pub fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
1428 B::Target: BroadcasterInterface,
1429 F::Target: FeeEstimator,
1432 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1433 self.inner.lock().unwrap().transaction_unconfirmed(
1434 txid, broadcaster, &bounded_fee_estimator, logger);
1437 /// Updates the monitor with the current best chain tip, returning new outputs to watch. See
1438 /// [`block_connected`] for details.
1440 /// Used instead of [`block_connected`] by clients that are notified of transactions rather than
1441 /// blocks. See [`chain::Confirm`] for calling expectations.
1443 /// [`block_connected`]: Self::block_connected
1444 pub fn best_block_updated<B: Deref, F: Deref, L: Deref>(
1446 header: &BlockHeader,
1451 ) -> Vec<TransactionOutputs>
1453 B::Target: BroadcasterInterface,
1454 F::Target: FeeEstimator,
1457 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
1458 self.inner.lock().unwrap().best_block_updated(
1459 header, height, broadcaster, &bounded_fee_estimator, logger)
1462 /// Returns the set of txids that should be monitored for re-organization out of the chain.
1463 pub fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
1464 let inner = self.inner.lock().unwrap();
1465 let mut txids: Vec<(Txid, Option<BlockHash>)> = inner.onchain_events_awaiting_threshold_conf
1467 .map(|entry| (entry.txid, entry.block_hash))
1468 .chain(inner.onchain_tx_handler.get_relevant_txids().into_iter())
1470 txids.sort_unstable();
1475 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
1476 /// [`chain::Confirm`] interfaces.
1477 pub fn current_best_block(&self) -> BestBlock {
1478 self.inner.lock().unwrap().best_block.clone()
1482 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
1483 /// Helper for get_claimable_balances which does the work for an individual HTLC, generating up
1484 /// to one `Balance` for the HTLC.
1485 fn get_htlc_balance(&self, htlc: &HTLCOutputInCommitment, holder_commitment: bool,
1486 counterparty_revoked_commitment: bool, confirmed_txid: Option<Txid>)
1487 -> Option<Balance> {
1488 let htlc_commitment_tx_output_idx =
1489 if let Some(v) = htlc.transaction_output_index { v } else { return None; };
1491 let mut htlc_spend_txid_opt = None;
1492 let mut htlc_spend_tx_opt = None;
1493 let mut holder_timeout_spend_pending = None;
1494 let mut htlc_spend_pending = None;
1495 let mut holder_delayed_output_pending = None;
1496 for event in self.onchain_events_awaiting_threshold_conf.iter() {
1498 OnchainEvent::HTLCUpdate { commitment_tx_output_idx, htlc_value_satoshis, .. }
1499 if commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) => {
1500 debug_assert!(htlc_spend_txid_opt.is_none());
1501 htlc_spend_txid_opt = Some(&event.txid);
1502 debug_assert!(htlc_spend_tx_opt.is_none());
1503 htlc_spend_tx_opt = event.transaction.as_ref();
1504 debug_assert!(holder_timeout_spend_pending.is_none());
1505 debug_assert_eq!(htlc_value_satoshis.unwrap(), htlc.amount_msat / 1000);
1506 holder_timeout_spend_pending = Some(event.confirmation_threshold());
1508 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. }
1509 if commitment_tx_output_idx == htlc_commitment_tx_output_idx => {
1510 debug_assert!(htlc_spend_txid_opt.is_none());
1511 htlc_spend_txid_opt = Some(&event.txid);
1512 debug_assert!(htlc_spend_tx_opt.is_none());
1513 htlc_spend_tx_opt = event.transaction.as_ref();
1514 debug_assert!(htlc_spend_pending.is_none());
1515 htlc_spend_pending = Some((event.confirmation_threshold(), preimage.is_some()));
1517 OnchainEvent::MaturingOutput {
1518 descriptor: SpendableOutputDescriptor::DelayedPaymentOutput(ref descriptor) }
1519 if descriptor.outpoint.index as u32 == htlc_commitment_tx_output_idx => {
1520 debug_assert!(holder_delayed_output_pending.is_none());
1521 holder_delayed_output_pending = Some(event.confirmation_threshold());
1526 let htlc_resolved = self.htlcs_resolved_on_chain.iter()
1527 .find(|v| if v.commitment_tx_output_idx == Some(htlc_commitment_tx_output_idx) {
1528 debug_assert!(htlc_spend_txid_opt.is_none());
1529 htlc_spend_txid_opt = v.resolving_txid.as_ref();
1530 debug_assert!(htlc_spend_tx_opt.is_none());
1531 htlc_spend_tx_opt = v.resolving_tx.as_ref();
1534 debug_assert!(holder_timeout_spend_pending.is_some() as u8 + htlc_spend_pending.is_some() as u8 + htlc_resolved.is_some() as u8 <= 1);
1536 let htlc_commitment_outpoint = BitcoinOutPoint::new(confirmed_txid.unwrap(), htlc_commitment_tx_output_idx);
1537 let htlc_output_to_spend =
1538 if let Some(txid) = htlc_spend_txid_opt {
1539 // Because HTLC transactions either only have 1 input and 1 output (pre-anchors) or
1540 // are signed with SIGHASH_SINGLE|ANYONECANPAY under BIP-0143 (post-anchors), we can
1541 // locate the correct output by ensuring its adjacent input spends the HTLC output
1542 // in the commitment.
1543 if let Some(ref tx) = htlc_spend_tx_opt {
1544 let htlc_input_idx_opt = tx.input.iter().enumerate()
1545 .find(|(_, input)| input.previous_output == htlc_commitment_outpoint)
1546 .map(|(idx, _)| idx as u32);
1547 debug_assert!(htlc_input_idx_opt.is_some());
1548 BitcoinOutPoint::new(*txid, htlc_input_idx_opt.unwrap_or(0))
1550 debug_assert!(!self.onchain_tx_handler.opt_anchors());
1551 BitcoinOutPoint::new(*txid, 0)
1554 htlc_commitment_outpoint
1556 let htlc_output_spend_pending = self.onchain_tx_handler.is_output_spend_pending(&htlc_output_to_spend);
1558 if let Some(conf_thresh) = holder_delayed_output_pending {
1559 debug_assert!(holder_commitment);
1560 return Some(Balance::ClaimableAwaitingConfirmations {
1561 claimable_amount_satoshis: htlc.amount_msat / 1000,
1562 confirmation_height: conf_thresh,
1564 } else if htlc_resolved.is_some() && !htlc_output_spend_pending {
1565 // Funding transaction spends should be fully confirmed by the time any
1566 // HTLC transactions are resolved, unless we're talking about a holder
1567 // commitment tx, whose resolution is delayed until the CSV timeout is
1568 // reached, even though HTLCs may be resolved after only
1569 // ANTI_REORG_DELAY confirmations.
1570 debug_assert!(holder_commitment || self.funding_spend_confirmed.is_some());
1571 } else if counterparty_revoked_commitment {
1572 let htlc_output_claim_pending = self.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1573 if let OnchainEvent::MaturingOutput {
1574 descriptor: SpendableOutputDescriptor::StaticOutput { .. }
1576 if event.transaction.as_ref().map(|tx| tx.input.iter().any(|inp| {
1577 if let Some(htlc_spend_txid) = htlc_spend_txid_opt {
1578 tx.txid() == *htlc_spend_txid || inp.previous_output.txid == *htlc_spend_txid
1580 Some(inp.previous_output.txid) == confirmed_txid &&
1581 inp.previous_output.vout == htlc_commitment_tx_output_idx
1583 })).unwrap_or(false) {
1588 if htlc_output_claim_pending.is_some() {
1589 // We already push `Balance`s onto the `res` list for every
1590 // `StaticOutput` in a `MaturingOutput` in the revoked
1591 // counterparty commitment transaction case generally, so don't
1592 // need to do so again here.
1594 debug_assert!(holder_timeout_spend_pending.is_none(),
1595 "HTLCUpdate OnchainEvents should never appear for preimage claims");
1596 debug_assert!(!htlc.offered || htlc_spend_pending.is_none() || !htlc_spend_pending.unwrap().1,
1597 "We don't (currently) generate preimage claims against revoked outputs, where did you get one?!");
1598 return Some(Balance::CounterpartyRevokedOutputClaimable {
1599 claimable_amount_satoshis: htlc.amount_msat / 1000,
1602 } else if htlc.offered == holder_commitment {
1603 // If the payment was outbound, check if there's an HTLCUpdate
1604 // indicating we have spent this HTLC with a timeout, claiming it back
1605 // and awaiting confirmations on it.
1606 if let Some(conf_thresh) = holder_timeout_spend_pending {
1607 return Some(Balance::ClaimableAwaitingConfirmations {
1608 claimable_amount_satoshis: htlc.amount_msat / 1000,
1609 confirmation_height: conf_thresh,
1612 return Some(Balance::MaybeTimeoutClaimableHTLC {
1613 claimable_amount_satoshis: htlc.amount_msat / 1000,
1614 claimable_height: htlc.cltv_expiry,
1617 } else if self.payment_preimages.get(&htlc.payment_hash).is_some() {
1618 // Otherwise (the payment was inbound), only expose it as claimable if
1619 // we know the preimage.
1620 // Note that if there is a pending claim, but it did not use the
1621 // preimage, we lost funds to our counterparty! We will then continue
1622 // to show it as ContentiousClaimable until ANTI_REORG_DELAY.
1623 debug_assert!(holder_timeout_spend_pending.is_none());
1624 if let Some((conf_thresh, true)) = htlc_spend_pending {
1625 return Some(Balance::ClaimableAwaitingConfirmations {
1626 claimable_amount_satoshis: htlc.amount_msat / 1000,
1627 confirmation_height: conf_thresh,
1630 return Some(Balance::ContentiousClaimable {
1631 claimable_amount_satoshis: htlc.amount_msat / 1000,
1632 timeout_height: htlc.cltv_expiry,
1635 } else if htlc_resolved.is_none() {
1636 return Some(Balance::MaybePreimageClaimableHTLC {
1637 claimable_amount_satoshis: htlc.amount_msat / 1000,
1638 expiry_height: htlc.cltv_expiry,
1645 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitor<Signer> {
1646 /// Gets the balances in this channel which are either claimable by us if we were to
1647 /// force-close the channel now or which are claimable on-chain (possibly awaiting
1650 /// Any balances in the channel which are available on-chain (excluding on-chain fees) are
1651 /// included here until an [`Event::SpendableOutputs`] event has been generated for the
1652 /// balance, or until our counterparty has claimed the balance and accrued several
1653 /// confirmations on the claim transaction.
1655 /// Note that for `ChannelMonitors` which track a channel which went on-chain with versions of
1656 /// LDK prior to 0.0.111, balances may not be fully captured if our counterparty broadcasted
1657 /// a revoked state.
1659 /// See [`Balance`] for additional details on the types of claimable balances which
1660 /// may be returned here and their meanings.
1661 pub fn get_claimable_balances(&self) -> Vec<Balance> {
1662 let mut res = Vec::new();
1663 let us = self.inner.lock().unwrap();
1665 let mut confirmed_txid = us.funding_spend_confirmed;
1666 let mut confirmed_counterparty_output = us.confirmed_commitment_tx_counterparty_output;
1667 let mut pending_commitment_tx_conf_thresh = None;
1668 let funding_spend_pending = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1669 if let OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } =
1672 confirmed_counterparty_output = commitment_tx_to_counterparty_output;
1673 Some((event.txid, event.confirmation_threshold()))
1676 if let Some((txid, conf_thresh)) = funding_spend_pending {
1677 debug_assert!(us.funding_spend_confirmed.is_none(),
1678 "We have a pending funding spend awaiting anti-reorg confirmation, we can't have confirmed it already!");
1679 confirmed_txid = Some(txid);
1680 pending_commitment_tx_conf_thresh = Some(conf_thresh);
1683 macro_rules! walk_htlcs {
1684 ($holder_commitment: expr, $counterparty_revoked_commitment: expr, $htlc_iter: expr) => {
1685 for htlc in $htlc_iter {
1686 if htlc.transaction_output_index.is_some() {
1688 if let Some(bal) = us.get_htlc_balance(htlc, $holder_commitment, $counterparty_revoked_commitment, confirmed_txid) {
1696 if let Some(txid) = confirmed_txid {
1697 let mut found_commitment_tx = false;
1698 if let Some(counterparty_tx_htlcs) = us.counterparty_claimable_outpoints.get(&txid) {
1699 // First look for the to_remote output back to us.
1700 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1701 if let Some(value) = us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1702 if let OnchainEvent::MaturingOutput {
1703 descriptor: SpendableOutputDescriptor::StaticPaymentOutput(descriptor)
1705 Some(descriptor.output.value)
1708 res.push(Balance::ClaimableAwaitingConfirmations {
1709 claimable_amount_satoshis: value,
1710 confirmation_height: conf_thresh,
1713 // If a counterparty commitment transaction is awaiting confirmation, we
1714 // should either have a StaticPaymentOutput MaturingOutput event awaiting
1715 // confirmation with the same height or have never met our dust amount.
1718 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1719 walk_htlcs!(false, false, counterparty_tx_htlcs.iter().map(|(a, _)| a));
1721 walk_htlcs!(false, true, counterparty_tx_htlcs.iter().map(|(a, _)| a));
1722 // The counterparty broadcasted a revoked state!
1723 // Look for any StaticOutputs first, generating claimable balances for those.
1724 // If any match the confirmed counterparty revoked to_self output, skip
1725 // generating a CounterpartyRevokedOutputClaimable.
1726 let mut spent_counterparty_output = false;
1727 for event in us.onchain_events_awaiting_threshold_conf.iter() {
1728 if let OnchainEvent::MaturingOutput {
1729 descriptor: SpendableOutputDescriptor::StaticOutput { output, .. }
1731 res.push(Balance::ClaimableAwaitingConfirmations {
1732 claimable_amount_satoshis: output.value,
1733 confirmation_height: event.confirmation_threshold(),
1735 if let Some(confirmed_to_self_idx) = confirmed_counterparty_output.map(|(idx, _)| idx) {
1736 if event.transaction.as_ref().map(|tx|
1737 tx.input.iter().any(|inp| inp.previous_output.vout == confirmed_to_self_idx)
1738 ).unwrap_or(false) {
1739 spent_counterparty_output = true;
1745 if spent_counterparty_output {
1746 } else if let Some((confirmed_to_self_idx, amt)) = confirmed_counterparty_output {
1747 let output_spendable = us.onchain_tx_handler
1748 .is_output_spend_pending(&BitcoinOutPoint::new(txid, confirmed_to_self_idx));
1749 if output_spendable {
1750 res.push(Balance::CounterpartyRevokedOutputClaimable {
1751 claimable_amount_satoshis: amt,
1755 // Counterparty output is missing, either it was broadcasted on a
1756 // previous version of LDK or the counterparty hadn't met dust.
1759 found_commitment_tx = true;
1760 } else if txid == us.current_holder_commitment_tx.txid {
1761 walk_htlcs!(true, false, us.current_holder_commitment_tx.htlc_outputs.iter().map(|(a, _, _)| a));
1762 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1763 res.push(Balance::ClaimableAwaitingConfirmations {
1764 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1765 confirmation_height: conf_thresh,
1768 found_commitment_tx = true;
1769 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1770 if txid == prev_commitment.txid {
1771 walk_htlcs!(true, false, prev_commitment.htlc_outputs.iter().map(|(a, _, _)| a));
1772 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1773 res.push(Balance::ClaimableAwaitingConfirmations {
1774 claimable_amount_satoshis: prev_commitment.to_self_value_sat,
1775 confirmation_height: conf_thresh,
1778 found_commitment_tx = true;
1781 if !found_commitment_tx {
1782 if let Some(conf_thresh) = pending_commitment_tx_conf_thresh {
1783 // We blindly assume this is a cooperative close transaction here, and that
1784 // neither us nor our counterparty misbehaved. At worst we've under-estimated
1785 // the amount we can claim as we'll punish a misbehaving counterparty.
1786 res.push(Balance::ClaimableAwaitingConfirmations {
1787 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat,
1788 confirmation_height: conf_thresh,
1793 let mut claimable_inbound_htlc_value_sat = 0;
1794 for (htlc, _, _) in us.current_holder_commitment_tx.htlc_outputs.iter() {
1795 if htlc.transaction_output_index.is_none() { continue; }
1797 res.push(Balance::MaybeTimeoutClaimableHTLC {
1798 claimable_amount_satoshis: htlc.amount_msat / 1000,
1799 claimable_height: htlc.cltv_expiry,
1801 } else if us.payment_preimages.get(&htlc.payment_hash).is_some() {
1802 claimable_inbound_htlc_value_sat += htlc.amount_msat / 1000;
1804 // As long as the HTLC is still in our latest commitment state, treat
1805 // it as potentially claimable, even if it has long-since expired.
1806 res.push(Balance::MaybePreimageClaimableHTLC {
1807 claimable_amount_satoshis: htlc.amount_msat / 1000,
1808 expiry_height: htlc.cltv_expiry,
1812 res.push(Balance::ClaimableOnChannelClose {
1813 claimable_amount_satoshis: us.current_holder_commitment_tx.to_self_value_sat + claimable_inbound_htlc_value_sat,
1820 /// Gets the set of outbound HTLCs which can be (or have been) resolved by this
1821 /// `ChannelMonitor`. This is used to determine if an HTLC was removed from the channel prior
1822 /// to the `ChannelManager` having been persisted.
1824 /// This is similar to [`Self::get_pending_or_resolved_outbound_htlcs`] except it includes
1825 /// HTLCs which were resolved on-chain (i.e. where the final HTLC resolution was done by an
1826 /// event from this `ChannelMonitor`).
1827 pub(crate) fn get_all_current_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
1828 let mut res = HashMap::new();
1829 // Just examine the available counterparty commitment transactions. See docs on
1830 // `fail_unbroadcast_htlcs`, below, for justification.
1831 let us = self.inner.lock().unwrap();
1832 macro_rules! walk_counterparty_commitment {
1834 if let Some(ref latest_outpoints) = us.counterparty_claimable_outpoints.get($txid) {
1835 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1836 if let &Some(ref source) = source_option {
1837 res.insert((**source).clone(), (htlc.clone(),
1838 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned()));
1844 if let Some(ref txid) = us.current_counterparty_commitment_txid {
1845 walk_counterparty_commitment!(txid);
1847 if let Some(ref txid) = us.prev_counterparty_commitment_txid {
1848 walk_counterparty_commitment!(txid);
1853 /// Gets the set of outbound HTLCs which are pending resolution in this channel or which were
1854 /// resolved with a preimage from our counterparty.
1856 /// This is used to reconstruct pending outbound payments on restart in the ChannelManager.
1858 /// Currently, the preimage is unused, however if it is present in the relevant internal state
1859 /// an HTLC is always included even if it has been resolved.
1860 pub(crate) fn get_pending_or_resolved_outbound_htlcs(&self) -> HashMap<HTLCSource, (HTLCOutputInCommitment, Option<PaymentPreimage>)> {
1861 let us = self.inner.lock().unwrap();
1862 // We're only concerned with the confirmation count of HTLC transactions, and don't
1863 // actually care how many confirmations a commitment transaction may or may not have. Thus,
1864 // we look for either a FundingSpendConfirmation event or a funding_spend_confirmed.
1865 let confirmed_txid = us.funding_spend_confirmed.or_else(|| {
1866 us.onchain_events_awaiting_threshold_conf.iter().find_map(|event| {
1867 if let OnchainEvent::FundingSpendConfirmation { .. } = event.event {
1873 if confirmed_txid.is_none() {
1874 // If we have not seen a commitment transaction on-chain (ie the channel is not yet
1875 // closed), just get the full set.
1877 return self.get_all_current_outbound_htlcs();
1880 let mut res = HashMap::new();
1881 macro_rules! walk_htlcs {
1882 ($holder_commitment: expr, $htlc_iter: expr) => {
1883 for (htlc, source) in $htlc_iter {
1884 if us.htlcs_resolved_on_chain.iter().any(|v| v.commitment_tx_output_idx == htlc.transaction_output_index) {
1885 // We should assert that funding_spend_confirmed is_some() here, but we
1886 // have some unit tests which violate HTLC transaction CSVs entirely and
1888 // TODO: Once tests all connect transactions at consensus-valid times, we
1889 // should assert here like we do in `get_claimable_balances`.
1890 } else if htlc.offered == $holder_commitment {
1891 // If the payment was outbound, check if there's an HTLCUpdate
1892 // indicating we have spent this HTLC with a timeout, claiming it back
1893 // and awaiting confirmations on it.
1894 let htlc_update_confd = us.onchain_events_awaiting_threshold_conf.iter().any(|event| {
1895 if let OnchainEvent::HTLCUpdate { commitment_tx_output_idx: Some(commitment_tx_output_idx), .. } = event.event {
1896 // If the HTLC was timed out, we wait for ANTI_REORG_DELAY blocks
1897 // before considering it "no longer pending" - this matches when we
1898 // provide the ChannelManager an HTLC failure event.
1899 Some(commitment_tx_output_idx) == htlc.transaction_output_index &&
1900 us.best_block.height() >= event.height + ANTI_REORG_DELAY - 1
1901 } else if let OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, .. } = event.event {
1902 // If the HTLC was fulfilled with a preimage, we consider the HTLC
1903 // immediately non-pending, matching when we provide ChannelManager
1905 Some(commitment_tx_output_idx) == htlc.transaction_output_index
1908 let counterparty_resolved_preimage_opt =
1909 us.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).cloned();
1910 if !htlc_update_confd || counterparty_resolved_preimage_opt.is_some() {
1911 res.insert(source.clone(), (htlc.clone(), counterparty_resolved_preimage_opt));
1918 let txid = confirmed_txid.unwrap();
1919 if Some(txid) == us.current_counterparty_commitment_txid || Some(txid) == us.prev_counterparty_commitment_txid {
1920 walk_htlcs!(false, us.counterparty_claimable_outpoints.get(&txid).unwrap().iter().filter_map(|(a, b)| {
1921 if let &Some(ref source) = b {
1922 Some((a, &**source))
1925 } else if txid == us.current_holder_commitment_tx.txid {
1926 walk_htlcs!(true, us.current_holder_commitment_tx.htlc_outputs.iter().filter_map(|(a, _, c)| {
1927 if let Some(source) = c { Some((a, source)) } else { None }
1929 } else if let Some(prev_commitment) = &us.prev_holder_signed_commitment_tx {
1930 if txid == prev_commitment.txid {
1931 walk_htlcs!(true, prev_commitment.htlc_outputs.iter().filter_map(|(a, _, c)| {
1932 if let Some(source) = c { Some((a, source)) } else { None }
1940 pub(crate) fn get_stored_preimages(&self) -> HashMap<PaymentHash, PaymentPreimage> {
1941 self.inner.lock().unwrap().payment_preimages.clone()
1945 /// Compares a broadcasted commitment transaction's HTLCs with those in the latest state,
1946 /// failing any HTLCs which didn't make it into the broadcasted commitment transaction back
1947 /// after ANTI_REORG_DELAY blocks.
1949 /// We always compare against the set of HTLCs in counterparty commitment transactions, as those
1950 /// are the commitment transactions which are generated by us. The off-chain state machine in
1951 /// `Channel` will automatically resolve any HTLCs which were never included in a commitment
1952 /// transaction when it detects channel closure, but it is up to us to ensure any HTLCs which were
1953 /// included in a remote commitment transaction are failed back if they are not present in the
1954 /// broadcasted commitment transaction.
1956 /// Specifically, the removal process for HTLCs in `Channel` is always based on the counterparty
1957 /// sending a `revoke_and_ack`, which causes us to clear `prev_counterparty_commitment_txid`. Thus,
1958 /// as long as we examine both the current counterparty commitment transaction and, if it hasn't
1959 /// been revoked yet, the previous one, we we will never "forget" to resolve an HTLC.
1960 macro_rules! fail_unbroadcast_htlcs {
1961 ($self: expr, $commitment_tx_type: expr, $commitment_txid_confirmed: expr, $commitment_tx_confirmed: expr,
1962 $commitment_tx_conf_height: expr, $commitment_tx_conf_hash: expr, $confirmed_htlcs_list: expr, $logger: expr) => { {
1963 debug_assert_eq!($commitment_tx_confirmed.txid(), $commitment_txid_confirmed);
1965 macro_rules! check_htlc_fails {
1966 ($txid: expr, $commitment_tx: expr) => {
1967 if let Some(ref latest_outpoints) = $self.counterparty_claimable_outpoints.get($txid) {
1968 for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1969 if let &Some(ref source) = source_option {
1970 // Check if the HTLC is present in the commitment transaction that was
1971 // broadcast, but not if it was below the dust limit, which we should
1972 // fail backwards immediately as there is no way for us to learn the
1973 // payment_preimage.
1974 // Note that if the dust limit were allowed to change between
1975 // commitment transactions we'd want to be check whether *any*
1976 // broadcastable commitment transaction has the HTLC in it, but it
1977 // cannot currently change after channel initialization, so we don't
1979 let confirmed_htlcs_iter: &mut Iterator<Item = (&HTLCOutputInCommitment, Option<&HTLCSource>)> = &mut $confirmed_htlcs_list;
1981 let mut matched_htlc = false;
1982 for (ref broadcast_htlc, ref broadcast_source) in confirmed_htlcs_iter {
1983 if broadcast_htlc.transaction_output_index.is_some() &&
1984 (Some(&**source) == *broadcast_source ||
1985 (broadcast_source.is_none() &&
1986 broadcast_htlc.payment_hash == htlc.payment_hash &&
1987 broadcast_htlc.amount_msat == htlc.amount_msat)) {
1988 matched_htlc = true;
1992 if matched_htlc { continue; }
1993 if $self.counterparty_fulfilled_htlcs.get(&SentHTLCId::from_source(source)).is_some() {
1996 $self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
1997 if entry.height != $commitment_tx_conf_height { return true; }
1999 OnchainEvent::HTLCUpdate { source: ref update_source, .. } => {
2000 *update_source != **source
2005 let entry = OnchainEventEntry {
2006 txid: $commitment_txid_confirmed,
2007 transaction: Some($commitment_tx_confirmed.clone()),
2008 height: $commitment_tx_conf_height,
2009 block_hash: Some(*$commitment_tx_conf_hash),
2010 event: OnchainEvent::HTLCUpdate {
2011 source: (**source).clone(),
2012 payment_hash: htlc.payment_hash.clone(),
2013 htlc_value_satoshis: Some(htlc.amount_msat / 1000),
2014 commitment_tx_output_idx: None,
2017 log_trace!($logger, "Failing HTLC with payment_hash {} from {} counterparty commitment tx due to broadcast of {} commitment transaction {}, waiting for confirmation (at height {})",
2018 log_bytes!(htlc.payment_hash.0), $commitment_tx, $commitment_tx_type,
2019 $commitment_txid_confirmed, entry.confirmation_threshold());
2020 $self.onchain_events_awaiting_threshold_conf.push(entry);
2026 if let Some(ref txid) = $self.current_counterparty_commitment_txid {
2027 check_htlc_fails!(txid, "current");
2029 if let Some(ref txid) = $self.prev_counterparty_commitment_txid {
2030 check_htlc_fails!(txid, "previous");
2035 // In the `test_invalid_funding_tx` test, we need a bogus script which matches the HTLC-Accepted
2036 // witness length match (ie is 136 bytes long). We generate one here which we also use in some
2037 // in-line tests later.
2040 pub fn deliberately_bogus_accepted_htlc_witness_program() -> Vec<u8> {
2041 let mut ret = [opcodes::all::OP_NOP.to_u8(); 136];
2042 ret[131] = opcodes::all::OP_DROP.to_u8();
2043 ret[132] = opcodes::all::OP_DROP.to_u8();
2044 ret[133] = opcodes::all::OP_DROP.to_u8();
2045 ret[134] = opcodes::all::OP_DROP.to_u8();
2046 ret[135] = opcodes::OP_TRUE.to_u8();
2051 pub fn deliberately_bogus_accepted_htlc_witness() -> Vec<Vec<u8>> {
2052 vec![Vec::new(), Vec::new(), Vec::new(), Vec::new(), deliberately_bogus_accepted_htlc_witness_program().into()].into()
2055 impl<Signer: WriteableEcdsaChannelSigner> ChannelMonitorImpl<Signer> {
2056 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
2057 /// needed by holder commitment transactions HTCLs nor by counterparty ones. Unless we haven't already seen
2058 /// counterparty commitment transaction's secret, they are de facto pruned (we can use revocation key).
2059 fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), &'static str> {
2060 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
2061 return Err("Previous secret did not match new one");
2064 // Prune HTLCs from the previous counterparty commitment tx so we don't generate failure/fulfill
2065 // events for now-revoked/fulfilled HTLCs.
2066 if let Some(txid) = self.prev_counterparty_commitment_txid.take() {
2067 if self.current_counterparty_commitment_txid.unwrap() != txid {
2068 let cur_claimables = self.counterparty_claimable_outpoints.get(
2069 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2070 for (_, ref source_opt) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
2071 if let Some(source) = source_opt {
2072 if !cur_claimables.iter()
2073 .any(|(_, cur_source_opt)| cur_source_opt == source_opt)
2075 self.counterparty_fulfilled_htlcs.remove(&SentHTLCId::from_source(source));
2079 for &mut (_, ref mut source_opt) in self.counterparty_claimable_outpoints.get_mut(&txid).unwrap() {
2083 assert!(cfg!(fuzzing), "Commitment txids are unique outside of fuzzing, where hashes can collide");
2087 if !self.payment_preimages.is_empty() {
2088 let cur_holder_signed_commitment_tx = &self.current_holder_commitment_tx;
2089 let prev_holder_signed_commitment_tx = self.prev_holder_signed_commitment_tx.as_ref();
2090 let min_idx = self.get_min_seen_secret();
2091 let counterparty_hash_commitment_number = &mut self.counterparty_hash_commitment_number;
2093 self.payment_preimages.retain(|&k, _| {
2094 for &(ref htlc, _, _) in cur_holder_signed_commitment_tx.htlc_outputs.iter() {
2095 if k == htlc.payment_hash {
2099 if let Some(prev_holder_commitment_tx) = prev_holder_signed_commitment_tx {
2100 for &(ref htlc, _, _) in prev_holder_commitment_tx.htlc_outputs.iter() {
2101 if k == htlc.payment_hash {
2106 let contains = if let Some(cn) = counterparty_hash_commitment_number.get(&k) {
2113 counterparty_hash_commitment_number.remove(&k);
2122 pub(crate) fn provide_latest_counterparty_commitment_tx<L: Deref>(&mut self, txid: Txid, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_per_commitment_point: PublicKey, logger: &L) where L::Target: Logger {
2123 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
2124 // so that a remote monitor doesn't learn anything unless there is a malicious close.
2125 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
2127 for &(ref htlc, _) in &htlc_outputs {
2128 self.counterparty_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
2131 log_trace!(logger, "Tracking new counterparty commitment transaction with txid {} at commitment number {} with {} HTLC outputs", txid, commitment_number, htlc_outputs.len());
2132 self.prev_counterparty_commitment_txid = self.current_counterparty_commitment_txid.take();
2133 self.current_counterparty_commitment_txid = Some(txid);
2134 self.counterparty_claimable_outpoints.insert(txid, htlc_outputs.clone());
2135 self.current_counterparty_commitment_number = commitment_number;
2136 //TODO: Merge this into the other per-counterparty-transaction output storage stuff
2137 match self.their_cur_per_commitment_points {
2138 Some(old_points) => {
2139 if old_points.0 == commitment_number + 1 {
2140 self.their_cur_per_commitment_points = Some((old_points.0, old_points.1, Some(their_per_commitment_point)));
2141 } else if old_points.0 == commitment_number + 2 {
2142 if let Some(old_second_point) = old_points.2 {
2143 self.their_cur_per_commitment_points = Some((old_points.0 - 1, old_second_point, Some(their_per_commitment_point)));
2145 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2148 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2152 self.their_cur_per_commitment_points = Some((commitment_number, their_per_commitment_point, None));
2155 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
2156 for htlc in htlc_outputs {
2157 if htlc.0.transaction_output_index.is_some() {
2163 /// Informs this monitor of the latest holder (ie broadcastable) commitment transaction. The
2164 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
2165 /// is important that any clones of this channel monitor (including remote clones) by kept
2166 /// up-to-date as our holder commitment transaction is updated.
2167 /// Panics if set_on_holder_tx_csv has never been called.
2168 fn provide_latest_holder_commitment_tx(&mut self, holder_commitment_tx: HolderCommitmentTransaction, mut htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>, claimed_htlcs: &[(SentHTLCId, PaymentPreimage)], nondust_htlc_sources: Vec<HTLCSource>) -> Result<(), &'static str> {
2169 if htlc_outputs.iter().any(|(_, s, _)| s.is_some()) {
2170 // If we have non-dust HTLCs in htlc_outputs, ensure they match the HTLCs in the
2171 // `holder_commitment_tx`. In the future, we'll no longer provide the redundant data
2172 // and just pass in source data via `nondust_htlc_sources`.
2173 debug_assert_eq!(htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).count(), holder_commitment_tx.trust().htlcs().len());
2174 for (a, b) in htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).map(|(h, _, _)| h).zip(holder_commitment_tx.trust().htlcs().iter()) {
2175 debug_assert_eq!(a, b);
2177 debug_assert_eq!(htlc_outputs.iter().filter(|(_, s, _)| s.is_some()).count(), holder_commitment_tx.counterparty_htlc_sigs.len());
2178 for (a, b) in htlc_outputs.iter().filter_map(|(_, s, _)| s.as_ref()).zip(holder_commitment_tx.counterparty_htlc_sigs.iter()) {
2179 debug_assert_eq!(a, b);
2181 debug_assert!(nondust_htlc_sources.is_empty());
2183 // If we don't have any non-dust HTLCs in htlc_outputs, assume they were all passed via
2184 // `nondust_htlc_sources`, building up the final htlc_outputs by combining
2185 // `nondust_htlc_sources` and the `holder_commitment_tx`
2186 #[cfg(debug_assertions)] {
2188 for htlc in holder_commitment_tx.trust().htlcs().iter() {
2189 assert!(htlc.transaction_output_index.unwrap() as i32 > prev);
2190 prev = htlc.transaction_output_index.unwrap() as i32;
2193 debug_assert!(htlc_outputs.iter().all(|(htlc, _, _)| htlc.transaction_output_index.is_none()));
2194 debug_assert!(htlc_outputs.iter().all(|(_, sig_opt, _)| sig_opt.is_none()));
2195 debug_assert_eq!(holder_commitment_tx.trust().htlcs().len(), holder_commitment_tx.counterparty_htlc_sigs.len());
2197 let mut sources_iter = nondust_htlc_sources.into_iter();
2199 for (htlc, counterparty_sig) in holder_commitment_tx.trust().htlcs().iter()
2200 .zip(holder_commitment_tx.counterparty_htlc_sigs.iter())
2203 let source = sources_iter.next().expect("Non-dust HTLC sources didn't match commitment tx");
2204 #[cfg(debug_assertions)] {
2205 assert!(source.possibly_matches_output(htlc));
2207 htlc_outputs.push((htlc.clone(), Some(counterparty_sig.clone()), Some(source)));
2209 htlc_outputs.push((htlc.clone(), Some(counterparty_sig.clone()), None));
2212 debug_assert!(sources_iter.next().is_none());
2215 let trusted_tx = holder_commitment_tx.trust();
2216 let txid = trusted_tx.txid();
2217 let tx_keys = trusted_tx.keys();
2218 self.current_holder_commitment_number = trusted_tx.commitment_number();
2219 let mut new_holder_commitment_tx = HolderSignedTx {
2221 revocation_key: tx_keys.revocation_key,
2222 a_htlc_key: tx_keys.broadcaster_htlc_key,
2223 b_htlc_key: tx_keys.countersignatory_htlc_key,
2224 delayed_payment_key: tx_keys.broadcaster_delayed_payment_key,
2225 per_commitment_point: tx_keys.per_commitment_point,
2227 to_self_value_sat: holder_commitment_tx.to_broadcaster_value_sat(),
2228 feerate_per_kw: trusted_tx.feerate_per_kw(),
2230 self.onchain_tx_handler.provide_latest_holder_tx(holder_commitment_tx);
2231 mem::swap(&mut new_holder_commitment_tx, &mut self.current_holder_commitment_tx);
2232 self.prev_holder_signed_commitment_tx = Some(new_holder_commitment_tx);
2233 for (claimed_htlc_id, claimed_preimage) in claimed_htlcs {
2234 #[cfg(debug_assertions)] {
2235 let cur_counterparty_htlcs = self.counterparty_claimable_outpoints.get(
2236 &self.current_counterparty_commitment_txid.unwrap()).unwrap();
2237 assert!(cur_counterparty_htlcs.iter().any(|(_, source_opt)| {
2238 if let Some(source) = source_opt {
2239 SentHTLCId::from_source(source) == *claimed_htlc_id
2243 self.counterparty_fulfilled_htlcs.insert(*claimed_htlc_id, *claimed_preimage);
2245 if self.holder_tx_signed {
2246 return Err("Latest holder commitment signed has already been signed, update is rejected");
2251 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
2252 /// commitment_tx_infos which contain the payment hash have been revoked.
2253 fn provide_payment_preimage<B: Deref, F: Deref, L: Deref>(
2254 &mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage, broadcaster: &B,
2255 fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L)
2256 where B::Target: BroadcasterInterface,
2257 F::Target: FeeEstimator,
2260 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
2262 // If the channel is force closed, try to claim the output from this preimage.
2263 // First check if a counterparty commitment transaction has been broadcasted:
2264 macro_rules! claim_htlcs {
2265 ($commitment_number: expr, $txid: expr) => {
2266 let (htlc_claim_reqs, _) = self.get_counterparty_output_claim_info($commitment_number, $txid, None);
2267 self.onchain_tx_handler.update_claims_view_from_requests(htlc_claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2270 if let Some(txid) = self.current_counterparty_commitment_txid {
2271 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2272 claim_htlcs!(*commitment_number, txid);
2276 if let Some(txid) = self.prev_counterparty_commitment_txid {
2277 if let Some(commitment_number) = self.counterparty_commitment_txn_on_chain.get(&txid) {
2278 claim_htlcs!(*commitment_number, txid);
2283 // Then if a holder commitment transaction has been seen on-chain, broadcast transactions
2284 // claiming the HTLC output from each of the holder commitment transactions.
2285 // Note that we can't just use `self.holder_tx_signed`, because that only covers the case where
2286 // *we* sign a holder commitment transaction, not when e.g. a watchtower broadcasts one of our
2287 // holder commitment transactions.
2288 if self.broadcasted_holder_revokable_script.is_some() {
2289 // Assume that the broadcasted commitment transaction confirmed in the current best
2290 // block. Even if not, its a reasonable metric for the bump criteria on the HTLC
2292 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
2293 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2294 if let Some(ref tx) = self.prev_holder_signed_commitment_tx {
2295 let (claim_reqs, _) = self.get_broadcasted_holder_claims(&tx, self.best_block.height());
2296 self.onchain_tx_handler.update_claims_view_from_requests(claim_reqs, self.best_block.height(), self.best_block.height(), broadcaster, fee_estimator, logger);
2301 pub(crate) fn broadcast_latest_holder_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
2302 where B::Target: BroadcasterInterface,
2305 for tx in self.get_latest_holder_commitment_txn(logger).iter() {
2306 log_info!(logger, "Broadcasting local {}", log_tx!(tx));
2307 broadcaster.broadcast_transaction(tx);
2309 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
2312 pub fn update_monitor<B: Deref, F: Deref, L: Deref>(&mut self, updates: &ChannelMonitorUpdate, broadcaster: &B, fee_estimator: F, logger: &L) -> Result<(), ()>
2313 where B::Target: BroadcasterInterface,
2314 F::Target: FeeEstimator,
2317 log_info!(logger, "Applying update to monitor {}, bringing update_id from {} to {} with {} changes.",
2318 log_funding_info!(self), self.latest_update_id, updates.update_id, updates.updates.len());
2319 // ChannelMonitor updates may be applied after force close if we receive a
2320 // preimage for a broadcasted commitment transaction HTLC output that we'd
2321 // like to claim on-chain. If this is the case, we no longer have guaranteed
2322 // access to the monitor's update ID, so we use a sentinel value instead.
2323 if updates.update_id == CLOSED_CHANNEL_UPDATE_ID {
2324 assert_eq!(updates.updates.len(), 1);
2325 match updates.updates[0] {
2326 ChannelMonitorUpdateStep::PaymentPreimage { .. } => {},
2328 log_error!(logger, "Attempted to apply post-force-close ChannelMonitorUpdate of type {}", updates.updates[0].variant_name());
2329 panic!("Attempted to apply post-force-close ChannelMonitorUpdate that wasn't providing a payment preimage");
2332 } else if self.latest_update_id + 1 != updates.update_id {
2333 panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
2335 let mut ret = Ok(());
2336 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&*fee_estimator);
2337 for update in updates.updates.iter() {
2339 ChannelMonitorUpdateStep::LatestHolderCommitmentTXInfo { commitment_tx, htlc_outputs, claimed_htlcs, nondust_htlc_sources } => {
2340 log_trace!(logger, "Updating ChannelMonitor with latest holder commitment transaction info");
2341 if self.lockdown_from_offchain { panic!(); }
2342 if let Err(e) = self.provide_latest_holder_commitment_tx(commitment_tx.clone(), htlc_outputs.clone(), &claimed_htlcs, nondust_htlc_sources.clone()) {
2343 log_error!(logger, "Providing latest holder commitment transaction failed/was refused:");
2344 log_error!(logger, " {}", e);
2348 ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { commitment_txid, htlc_outputs, commitment_number, their_per_commitment_point } => {
2349 log_trace!(logger, "Updating ChannelMonitor with latest counterparty commitment transaction info");
2350 self.provide_latest_counterparty_commitment_tx(*commitment_txid, htlc_outputs.clone(), *commitment_number, *their_per_commitment_point, logger)
2352 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } => {
2353 log_trace!(logger, "Updating ChannelMonitor with payment preimage");
2354 self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage, broadcaster, &bounded_fee_estimator, logger)
2356 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } => {
2357 log_trace!(logger, "Updating ChannelMonitor with commitment secret");
2358 if let Err(e) = self.provide_secret(*idx, *secret) {
2359 log_error!(logger, "Providing latest counterparty commitment secret failed/was refused:");
2360 log_error!(logger, " {}", e);
2364 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
2365 log_trace!(logger, "Updating ChannelMonitor: channel force closed, should broadcast: {}", should_broadcast);
2366 self.lockdown_from_offchain = true;
2367 if *should_broadcast {
2368 // There's no need to broadcast our commitment transaction if we've seen one
2369 // confirmed (even with 1 confirmation) as it'll be rejected as
2370 // duplicate/conflicting.
2371 let detected_funding_spend = self.funding_spend_confirmed.is_some() ||
2372 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
2373 OnchainEvent::FundingSpendConfirmation { .. } => true,
2376 if detected_funding_spend {
2379 self.broadcast_latest_holder_commitment_txn(broadcaster, logger);
2380 // If the channel supports anchor outputs, we'll need to emit an external
2381 // event to be consumed such that a child transaction is broadcast with a
2382 // high enough feerate for the parent commitment transaction to confirm.
2383 if self.onchain_tx_handler.opt_anchors() {
2384 let funding_output = HolderFundingOutput::build(
2385 self.funding_redeemscript.clone(), self.channel_value_satoshis,
2386 self.onchain_tx_handler.opt_anchors(),
2388 let best_block_height = self.best_block.height();
2389 let commitment_package = PackageTemplate::build_package(
2390 self.funding_info.0.txid.clone(), self.funding_info.0.index as u32,
2391 PackageSolvingData::HolderFundingOutput(funding_output),
2392 best_block_height, false, best_block_height,
2394 self.onchain_tx_handler.update_claims_view_from_requests(
2395 vec![commitment_package], best_block_height, best_block_height,
2396 broadcaster, &bounded_fee_estimator, logger,
2399 } else if !self.holder_tx_signed {
2400 log_error!(logger, "WARNING: You have a potentially-unsafe holder commitment transaction available to broadcast");
2401 log_error!(logger, " in channel monitor for channel {}!", log_bytes!(self.funding_info.0.to_channel_id()));
2402 log_error!(logger, " Read the docs for ChannelMonitor::get_latest_holder_commitment_txn and take manual action!");
2404 // If we generated a MonitorEvent::CommitmentTxConfirmed, the ChannelManager
2405 // will still give us a ChannelForceClosed event with !should_broadcast, but we
2406 // shouldn't print the scary warning above.
2407 log_info!(logger, "Channel off-chain state closed after we broadcasted our latest commitment transaction.");
2410 ChannelMonitorUpdateStep::ShutdownScript { scriptpubkey } => {
2411 log_trace!(logger, "Updating ChannelMonitor with shutdown script");
2412 if let Some(shutdown_script) = self.shutdown_script.replace(scriptpubkey.clone()) {
2413 panic!("Attempted to replace shutdown script {} with {}", shutdown_script, scriptpubkey);
2418 self.latest_update_id = updates.update_id;
2420 if ret.is_ok() && self.funding_spend_seen {
2421 log_error!(logger, "Refusing Channel Monitor Update as counterparty attempted to update commitment after funding was spent");
2426 pub fn get_latest_update_id(&self) -> u64 {
2427 self.latest_update_id
2430 pub fn get_funding_txo(&self) -> &(OutPoint, Script) {
2434 pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<(u32, Script)>> {
2435 // If we've detected a counterparty commitment tx on chain, we must include it in the set
2436 // of outputs to watch for spends of, otherwise we're likely to lose user funds. Because
2437 // its trivial to do, double-check that here.
2438 for (txid, _) in self.counterparty_commitment_txn_on_chain.iter() {
2439 self.outputs_to_watch.get(txid).expect("Counterparty commitment txn which have been broadcast should have outputs registered");
2441 &self.outputs_to_watch
2444 pub fn get_and_clear_pending_monitor_events(&mut self) -> Vec<MonitorEvent> {
2445 let mut ret = Vec::new();
2446 mem::swap(&mut ret, &mut self.pending_monitor_events);
2450 pub fn get_and_clear_pending_events(&mut self) -> Vec<Event> {
2451 let mut ret = Vec::new();
2452 mem::swap(&mut ret, &mut self.pending_events);
2454 for claim_event in self.onchain_tx_handler.get_and_clear_pending_claim_events().drain(..) {
2456 ClaimEvent::BumpCommitment {
2457 package_target_feerate_sat_per_1000_weight, commitment_tx, anchor_output_idx,
2459 let commitment_txid = commitment_tx.txid();
2460 debug_assert_eq!(self.current_holder_commitment_tx.txid, commitment_txid);
2461 let pending_htlcs = self.current_holder_commitment_tx.non_dust_htlcs();
2462 let commitment_tx_fee_satoshis = self.channel_value_satoshis -
2463 commitment_tx.output.iter().fold(0u64, |sum, output| sum + output.value);
2464 ret.push(Event::BumpTransaction(BumpTransactionEvent::ChannelClose {
2465 package_target_feerate_sat_per_1000_weight,
2467 commitment_tx_fee_satoshis,
2468 anchor_descriptor: AnchorDescriptor {
2469 channel_keys_id: self.channel_keys_id,
2470 channel_value_satoshis: self.channel_value_satoshis,
2471 outpoint: BitcoinOutPoint {
2472 txid: commitment_txid,
2473 vout: anchor_output_idx,
2479 ClaimEvent::BumpHTLC {
2480 target_feerate_sat_per_1000_weight, htlcs,
2482 let mut htlc_descriptors = Vec::with_capacity(htlcs.len());
2484 htlc_descriptors.push(HTLCDescriptor {
2485 channel_keys_id: self.channel_keys_id,
2486 channel_value_satoshis: self.channel_value_satoshis,
2487 channel_parameters: self.onchain_tx_handler.channel_transaction_parameters.clone(),
2488 commitment_txid: htlc.commitment_txid,
2489 per_commitment_number: htlc.per_commitment_number,
2491 preimage: htlc.preimage,
2492 counterparty_sig: htlc.counterparty_sig,
2495 ret.push(Event::BumpTransaction(BumpTransactionEvent::HTLCResolution {
2496 target_feerate_sat_per_1000_weight,
2505 /// Can only fail if idx is < get_min_seen_secret
2506 fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
2507 self.commitment_secrets.get_secret(idx)
2510 pub(crate) fn get_min_seen_secret(&self) -> u64 {
2511 self.commitment_secrets.get_min_seen_secret()
2514 pub(crate) fn get_cur_counterparty_commitment_number(&self) -> u64 {
2515 self.current_counterparty_commitment_number
2518 pub(crate) fn get_cur_holder_commitment_number(&self) -> u64 {
2519 self.current_holder_commitment_number
2522 /// Attempts to claim a counterparty commitment transaction's outputs using the revocation key and
2523 /// data in counterparty_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
2524 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
2525 /// HTLC-Success/HTLC-Timeout transactions.
2527 /// Returns packages to claim the revoked output(s), as well as additional outputs to watch and
2528 /// general information about the output that is to the counterparty in the commitment
2530 fn check_spend_counterparty_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L)
2531 -> (Vec<PackageTemplate>, TransactionOutputs, CommitmentTxCounterpartyOutputInfo)
2532 where L::Target: Logger {
2533 // Most secp and related errors trying to create keys means we have no hope of constructing
2534 // a spend transaction...so we return no transactions to broadcast
2535 let mut claimable_outpoints = Vec::new();
2536 let mut watch_outputs = Vec::new();
2537 let mut to_counterparty_output_info = None;
2539 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
2540 let per_commitment_option = self.counterparty_claimable_outpoints.get(&commitment_txid);
2542 macro_rules! ignore_error {
2543 ( $thing : expr ) => {
2546 Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
2551 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence.0 as u64 & 0xffffff) << 3*8) | (tx.lock_time.0 as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
2552 if commitment_number >= self.get_min_seen_secret() {
2553 let secret = self.get_secret(commitment_number).unwrap();
2554 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2555 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
2556 let revocation_pubkey = chan_utils::derive_public_revocation_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint);
2557 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx, &PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key), &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
2559 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.counterparty_commitment_params.on_counterparty_tx_csv, &delayed_key);
2560 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
2562 // First, process non-htlc outputs (to_holder & to_counterparty)
2563 for (idx, outp) in tx.output.iter().enumerate() {
2564 if outp.script_pubkey == revokeable_p2wsh {
2565 let revk_outp = RevokedOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, outp.value, self.counterparty_commitment_params.on_counterparty_tx_csv);
2566 let justice_package = PackageTemplate::build_package(commitment_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp), height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height);
2567 claimable_outpoints.push(justice_package);
2568 to_counterparty_output_info =
2569 Some((idx.try_into().expect("Txn can't have more than 2^32 outputs"), outp.value));
2573 // Then, try to find revoked htlc outputs
2574 if let Some(ref per_commitment_data) = per_commitment_option {
2575 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
2576 if let Some(transaction_output_index) = htlc.transaction_output_index {
2577 if transaction_output_index as usize >= tx.output.len() ||
2578 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2579 // per_commitment_data is corrupt or our commitment signing key leaked!
2580 return (claimable_outpoints, (commitment_txid, watch_outputs),
2581 to_counterparty_output_info);
2583 let revk_htlc_outp = RevokedHTLCOutput::build(per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key, self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key, htlc.amount_msat / 1000, htlc.clone(), self.onchain_tx_handler.channel_transaction_parameters.opt_anchors.is_some());
2584 let justice_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, PackageSolvingData::RevokedHTLCOutput(revk_htlc_outp), htlc.cltv_expiry, true, height);
2585 claimable_outpoints.push(justice_package);
2590 // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
2591 if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
2592 // We're definitely a counterparty commitment transaction!
2593 log_error!(logger, "Got broadcast of revoked counterparty commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
2594 for (idx, outp) in tx.output.iter().enumerate() {
2595 watch_outputs.push((idx as u32, outp.clone()));
2597 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2599 if let Some(per_commitment_data) = per_commitment_option {
2600 fail_unbroadcast_htlcs!(self, "revoked_counterparty", commitment_txid, tx, height,
2601 block_hash, per_commitment_data.iter().map(|(htlc, htlc_source)|
2602 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2605 debug_assert!(false, "We should have per-commitment option for any recognized old commitment txn");
2606 fail_unbroadcast_htlcs!(self, "revoked counterparty", commitment_txid, tx, height,
2607 block_hash, [].iter().map(|reference| *reference), logger);
2610 } else if let Some(per_commitment_data) = per_commitment_option {
2611 // While this isn't useful yet, there is a potential race where if a counterparty
2612 // revokes a state at the same time as the commitment transaction for that state is
2613 // confirmed, and the watchtower receives the block before the user, the user could
2614 // upload a new ChannelMonitor with the revocation secret but the watchtower has
2615 // already processed the block, resulting in the counterparty_commitment_txn_on_chain entry
2616 // not being generated by the above conditional. Thus, to be safe, we go ahead and
2618 for (idx, outp) in tx.output.iter().enumerate() {
2619 watch_outputs.push((idx as u32, outp.clone()));
2621 self.counterparty_commitment_txn_on_chain.insert(commitment_txid, commitment_number);
2623 log_info!(logger, "Got broadcast of non-revoked counterparty commitment transaction {}", commitment_txid);
2624 fail_unbroadcast_htlcs!(self, "counterparty", commitment_txid, tx, height, block_hash,
2625 per_commitment_data.iter().map(|(htlc, htlc_source)|
2626 (htlc, htlc_source.as_ref().map(|htlc_source| htlc_source.as_ref()))
2629 let (htlc_claim_reqs, counterparty_output_info) =
2630 self.get_counterparty_output_claim_info(commitment_number, commitment_txid, Some(tx));
2631 to_counterparty_output_info = counterparty_output_info;
2632 for req in htlc_claim_reqs {
2633 claimable_outpoints.push(req);
2637 (claimable_outpoints, (commitment_txid, watch_outputs), to_counterparty_output_info)
2640 /// Returns the HTLC claim package templates and the counterparty output info
2641 fn get_counterparty_output_claim_info(&self, commitment_number: u64, commitment_txid: Txid, tx: Option<&Transaction>)
2642 -> (Vec<PackageTemplate>, CommitmentTxCounterpartyOutputInfo) {
2643 let mut claimable_outpoints = Vec::new();
2644 let mut to_counterparty_output_info: CommitmentTxCounterpartyOutputInfo = None;
2646 let htlc_outputs = match self.counterparty_claimable_outpoints.get(&commitment_txid) {
2647 Some(outputs) => outputs,
2648 None => return (claimable_outpoints, to_counterparty_output_info),
2650 let per_commitment_points = match self.their_cur_per_commitment_points {
2651 Some(points) => points,
2652 None => return (claimable_outpoints, to_counterparty_output_info),
2655 let per_commitment_point =
2656 // If the counterparty commitment tx is the latest valid state, use their latest
2657 // per-commitment point
2658 if per_commitment_points.0 == commitment_number { &per_commitment_points.1 }
2659 else if let Some(point) = per_commitment_points.2.as_ref() {
2660 // If counterparty commitment tx is the state previous to the latest valid state, use
2661 // their previous per-commitment point (non-atomicity of revocation means it's valid for
2662 // them to temporarily have two valid commitment txns from our viewpoint)
2663 if per_commitment_points.0 == commitment_number + 1 {
2665 } else { return (claimable_outpoints, to_counterparty_output_info); }
2666 } else { return (claimable_outpoints, to_counterparty_output_info); };
2668 if let Some(transaction) = tx {
2669 let revocation_pubkey = chan_utils::derive_public_revocation_key(
2670 &self.onchain_tx_handler.secp_ctx, &per_commitment_point, &self.holder_revocation_basepoint);
2671 let delayed_key = chan_utils::derive_public_key(&self.onchain_tx_handler.secp_ctx,
2672 &per_commitment_point,
2673 &self.counterparty_commitment_params.counterparty_delayed_payment_base_key);
2674 let revokeable_p2wsh = chan_utils::get_revokeable_redeemscript(&revocation_pubkey,
2675 self.counterparty_commitment_params.on_counterparty_tx_csv,
2676 &delayed_key).to_v0_p2wsh();
2677 for (idx, outp) in transaction.output.iter().enumerate() {
2678 if outp.script_pubkey == revokeable_p2wsh {
2679 to_counterparty_output_info =
2680 Some((idx.try_into().expect("Can't have > 2^32 outputs"), outp.value));
2685 for (_, &(ref htlc, _)) in htlc_outputs.iter().enumerate() {
2686 if let Some(transaction_output_index) = htlc.transaction_output_index {
2687 if let Some(transaction) = tx {
2688 if transaction_output_index as usize >= transaction.output.len() ||
2689 transaction.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
2690 // per_commitment_data is corrupt or our commitment signing key leaked!
2691 return (claimable_outpoints, to_counterparty_output_info);
2694 let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
2695 if preimage.is_some() || !htlc.offered {
2696 let counterparty_htlc_outp = if htlc.offered {
2697 PackageSolvingData::CounterpartyOfferedHTLCOutput(
2698 CounterpartyOfferedHTLCOutput::build(*per_commitment_point,
2699 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2700 self.counterparty_commitment_params.counterparty_htlc_base_key,
2701 preimage.unwrap(), htlc.clone(), self.onchain_tx_handler.opt_anchors()))
2703 PackageSolvingData::CounterpartyReceivedHTLCOutput(
2704 CounterpartyReceivedHTLCOutput::build(*per_commitment_point,
2705 self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2706 self.counterparty_commitment_params.counterparty_htlc_base_key,
2707 htlc.clone(), self.onchain_tx_handler.opt_anchors()))
2709 let aggregation = if !htlc.offered { false } else { true };
2710 let counterparty_package = PackageTemplate::build_package(commitment_txid, transaction_output_index, counterparty_htlc_outp, htlc.cltv_expiry,aggregation, 0);
2711 claimable_outpoints.push(counterparty_package);
2716 (claimable_outpoints, to_counterparty_output_info)
2719 /// Attempts to claim a counterparty HTLC-Success/HTLC-Timeout's outputs using the revocation key
2720 fn check_spend_counterparty_htlc<L: Deref>(
2721 &mut self, tx: &Transaction, commitment_number: u64, commitment_txid: &Txid, height: u32, logger: &L
2722 ) -> (Vec<PackageTemplate>, Option<TransactionOutputs>) where L::Target: Logger {
2723 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
2724 let per_commitment_key = match SecretKey::from_slice(&secret) {
2726 Err(_) => return (Vec::new(), None)
2728 let per_commitment_point = PublicKey::from_secret_key(&self.onchain_tx_handler.secp_ctx, &per_commitment_key);
2730 let htlc_txid = tx.txid();
2731 let mut claimable_outpoints = vec![];
2732 let mut outputs_to_watch = None;
2733 // Previously, we would only claim HTLCs from revoked HTLC transactions if they had 1 input
2734 // with a witness of 5 elements and 1 output. This wasn't enough for anchor outputs, as the
2735 // counterparty can now aggregate multiple HTLCs into a single transaction thanks to
2736 // `SIGHASH_SINGLE` remote signatures, leading us to not claim any HTLCs upon seeing a
2737 // confirmed revoked HTLC transaction (for more details, see
2738 // https://lists.linuxfoundation.org/pipermail/lightning-dev/2022-April/003561.html).
2740 // We make sure we're not vulnerable to this case by checking all inputs of the transaction,
2741 // and claim those which spend the commitment transaction, have a witness of 5 elements, and
2742 // have a corresponding output at the same index within the transaction.
2743 for (idx, input) in tx.input.iter().enumerate() {
2744 if input.previous_output.txid == *commitment_txid && input.witness.len() == 5 && tx.output.get(idx).is_some() {
2745 log_error!(logger, "Got broadcast of revoked counterparty HTLC transaction, spending {}:{}", htlc_txid, idx);
2746 let revk_outp = RevokedOutput::build(
2747 per_commitment_point, self.counterparty_commitment_params.counterparty_delayed_payment_base_key,
2748 self.counterparty_commitment_params.counterparty_htlc_base_key, per_commitment_key,
2749 tx.output[idx].value, self.counterparty_commitment_params.on_counterparty_tx_csv
2751 let justice_package = PackageTemplate::build_package(
2752 htlc_txid, idx as u32, PackageSolvingData::RevokedOutput(revk_outp),
2753 height + self.counterparty_commitment_params.on_counterparty_tx_csv as u32, true, height
2755 claimable_outpoints.push(justice_package);
2756 if outputs_to_watch.is_none() {
2757 outputs_to_watch = Some((htlc_txid, vec![]));
2759 outputs_to_watch.as_mut().unwrap().1.push((idx as u32, tx.output[idx].clone()));
2762 (claimable_outpoints, outputs_to_watch)
2765 // Returns (1) `PackageTemplate`s that can be given to the OnchainTxHandler, so that the handler can
2766 // broadcast transactions claiming holder HTLC commitment outputs and (2) a holder revokable
2767 // script so we can detect whether a holder transaction has been seen on-chain.
2768 fn get_broadcasted_holder_claims(&self, holder_tx: &HolderSignedTx, conf_height: u32) -> (Vec<PackageTemplate>, Option<(Script, PublicKey, PublicKey)>) {
2769 let mut claim_requests = Vec::with_capacity(holder_tx.htlc_outputs.len());
2771 let redeemscript = chan_utils::get_revokeable_redeemscript(&holder_tx.revocation_key, self.on_holder_tx_csv, &holder_tx.delayed_payment_key);
2772 let broadcasted_holder_revokable_script = Some((redeemscript.to_v0_p2wsh(), holder_tx.per_commitment_point.clone(), holder_tx.revocation_key.clone()));
2774 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2775 if let Some(transaction_output_index) = htlc.transaction_output_index {
2776 let (htlc_output, aggregable) = if htlc.offered {
2777 let htlc_output = HolderHTLCOutput::build_offered(
2778 htlc.amount_msat, htlc.cltv_expiry, self.onchain_tx_handler.opt_anchors()
2780 (htlc_output, false)
2782 let payment_preimage = if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
2785 // We can't build an HTLC-Success transaction without the preimage
2788 let htlc_output = HolderHTLCOutput::build_accepted(
2789 payment_preimage, htlc.amount_msat, self.onchain_tx_handler.opt_anchors()
2791 (htlc_output, self.onchain_tx_handler.opt_anchors())
2793 let htlc_package = PackageTemplate::build_package(
2794 holder_tx.txid, transaction_output_index,
2795 PackageSolvingData::HolderHTLCOutput(htlc_output),
2796 htlc.cltv_expiry, aggregable, conf_height
2798 claim_requests.push(htlc_package);
2802 (claim_requests, broadcasted_holder_revokable_script)
2805 // Returns holder HTLC outputs to watch and react to in case of spending.
2806 fn get_broadcasted_holder_watch_outputs(&self, holder_tx: &HolderSignedTx, commitment_tx: &Transaction) -> Vec<(u32, TxOut)> {
2807 let mut watch_outputs = Vec::with_capacity(holder_tx.htlc_outputs.len());
2808 for &(ref htlc, _, _) in holder_tx.htlc_outputs.iter() {
2809 if let Some(transaction_output_index) = htlc.transaction_output_index {
2810 watch_outputs.push((transaction_output_index, commitment_tx.output[transaction_output_index as usize].clone()));
2816 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
2817 /// revoked using data in holder_claimable_outpoints.
2818 /// Should not be used if check_spend_revoked_transaction succeeds.
2819 /// Returns None unless the transaction is definitely one of our commitment transactions.
2820 fn check_spend_holder_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) -> Option<(Vec<PackageTemplate>, TransactionOutputs)> where L::Target: Logger {
2821 let commitment_txid = tx.txid();
2822 let mut claim_requests = Vec::new();
2823 let mut watch_outputs = Vec::new();
2825 macro_rules! append_onchain_update {
2826 ($updates: expr, $to_watch: expr) => {
2827 claim_requests = $updates.0;
2828 self.broadcasted_holder_revokable_script = $updates.1;
2829 watch_outputs.append(&mut $to_watch);
2833 // HTLCs set may differ between last and previous holder commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
2834 let mut is_holder_tx = false;
2836 if self.current_holder_commitment_tx.txid == commitment_txid {
2837 is_holder_tx = true;
2838 log_info!(logger, "Got broadcast of latest holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2839 let res = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, height);
2840 let mut to_watch = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, tx);
2841 append_onchain_update!(res, to_watch);
2842 fail_unbroadcast_htlcs!(self, "latest holder", commitment_txid, tx, height,
2843 block_hash, self.current_holder_commitment_tx.htlc_outputs.iter()
2844 .map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())), logger);
2845 } else if let &Some(ref holder_tx) = &self.prev_holder_signed_commitment_tx {
2846 if holder_tx.txid == commitment_txid {
2847 is_holder_tx = true;
2848 log_info!(logger, "Got broadcast of previous holder commitment tx {}, searching for available HTLCs to claim", commitment_txid);
2849 let res = self.get_broadcasted_holder_claims(holder_tx, height);
2850 let mut to_watch = self.get_broadcasted_holder_watch_outputs(holder_tx, tx);
2851 append_onchain_update!(res, to_watch);
2852 fail_unbroadcast_htlcs!(self, "previous holder", commitment_txid, tx, height, block_hash,
2853 holder_tx.htlc_outputs.iter().map(|(htlc, _, htlc_source)| (htlc, htlc_source.as_ref())),
2859 Some((claim_requests, (commitment_txid, watch_outputs)))
2865 pub fn get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2866 log_debug!(logger, "Getting signed latest holder commitment transaction!");
2867 self.holder_tx_signed = true;
2868 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
2869 let txid = commitment_tx.txid();
2870 let mut holder_transactions = vec![commitment_tx];
2871 // When anchor outputs are present, the HTLC transactions are only valid once the commitment
2872 // transaction confirms.
2873 if self.onchain_tx_handler.opt_anchors() {
2874 return holder_transactions;
2876 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2877 if let Some(vout) = htlc.0.transaction_output_index {
2878 let preimage = if !htlc.0.offered {
2879 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2880 // We can't build an HTLC-Success transaction without the preimage
2883 } else if htlc.0.cltv_expiry > self.best_block.height() + 1 {
2884 // Don't broadcast HTLC-Timeout transactions immediately as they don't meet the
2885 // current locktime requirements on-chain. We will broadcast them in
2886 // `block_confirmed` when `should_broadcast_holder_commitment_txn` returns true.
2887 // Note that we add + 1 as transactions are broadcastable when they can be
2888 // confirmed in the next block.
2891 if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
2892 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2893 holder_transactions.push(htlc_tx);
2897 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
2898 // The data will be re-generated and tracked in check_spend_holder_transaction if we get a confirmation.
2902 #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
2903 /// Note that this includes possibly-locktimed-in-the-future transactions!
2904 fn unsafe_get_latest_holder_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
2905 log_debug!(logger, "Getting signed copy of latest holder commitment transaction!");
2906 let commitment_tx = self.onchain_tx_handler.get_fully_signed_copy_holder_tx(&self.funding_redeemscript);
2907 let txid = commitment_tx.txid();
2908 let mut holder_transactions = vec![commitment_tx];
2909 // When anchor outputs are present, the HTLC transactions are only final once the commitment
2910 // transaction confirms due to the CSV 1 encumberance.
2911 if self.onchain_tx_handler.opt_anchors() {
2912 return holder_transactions;
2914 for htlc in self.current_holder_commitment_tx.htlc_outputs.iter() {
2915 if let Some(vout) = htlc.0.transaction_output_index {
2916 let preimage = if !htlc.0.offered {
2917 if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
2918 // We can't build an HTLC-Success transaction without the preimage
2922 if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
2923 &::bitcoin::OutPoint { txid, vout }, &preimage) {
2924 holder_transactions.push(htlc_tx);
2931 pub fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, txdata: &TransactionData, height: u32, broadcaster: B, fee_estimator: F, logger: L) -> Vec<TransactionOutputs>
2932 where B::Target: BroadcasterInterface,
2933 F::Target: FeeEstimator,
2936 let block_hash = header.block_hash();
2937 self.best_block = BestBlock::new(block_hash, height);
2939 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
2940 self.transactions_confirmed(header, txdata, height, broadcaster, &bounded_fee_estimator, logger)
2943 fn best_block_updated<B: Deref, F: Deref, L: Deref>(
2945 header: &BlockHeader,
2948 fee_estimator: &LowerBoundedFeeEstimator<F>,
2950 ) -> Vec<TransactionOutputs>
2952 B::Target: BroadcasterInterface,
2953 F::Target: FeeEstimator,
2956 let block_hash = header.block_hash();
2958 if height > self.best_block.height() {
2959 self.best_block = BestBlock::new(block_hash, height);
2960 self.block_confirmed(height, block_hash, vec![], vec![], vec![], &broadcaster, &fee_estimator, &logger)
2961 } else if block_hash != self.best_block.block_hash() {
2962 self.best_block = BestBlock::new(block_hash, height);
2963 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height <= height);
2964 self.onchain_tx_handler.block_disconnected(height + 1, broadcaster, fee_estimator, logger);
2966 } else { Vec::new() }
2969 fn transactions_confirmed<B: Deref, F: Deref, L: Deref>(
2971 header: &BlockHeader,
2972 txdata: &TransactionData,
2975 fee_estimator: &LowerBoundedFeeEstimator<F>,
2977 ) -> Vec<TransactionOutputs>
2979 B::Target: BroadcasterInterface,
2980 F::Target: FeeEstimator,
2983 let txn_matched = self.filter_block(txdata);
2984 for tx in &txn_matched {
2985 let mut output_val = 0;
2986 for out in tx.output.iter() {
2987 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2988 output_val += out.value;
2989 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
2993 let block_hash = header.block_hash();
2995 let mut watch_outputs = Vec::new();
2996 let mut claimable_outpoints = Vec::new();
2997 'tx_iter: for tx in &txn_matched {
2998 let txid = tx.txid();
2999 // If a transaction has already been confirmed, ensure we don't bother processing it duplicatively.
3000 if Some(txid) == self.funding_spend_confirmed {
3001 log_debug!(logger, "Skipping redundant processing of funding-spend tx {} as it was previously confirmed", txid);
3004 for ev in self.onchain_events_awaiting_threshold_conf.iter() {
3005 if ev.txid == txid {
3006 if let Some(conf_hash) = ev.block_hash {
3007 assert_eq!(header.block_hash(), conf_hash,
3008 "Transaction {} was already confirmed and is being re-confirmed in a different block.\n\
3009 This indicates a severe bug in the transaction connection logic - a reorg should have been processed first!", ev.txid);
3011 log_debug!(logger, "Skipping redundant processing of confirming tx {} as it was previously confirmed", txid);
3015 for htlc in self.htlcs_resolved_on_chain.iter() {
3016 if Some(txid) == htlc.resolving_txid {
3017 log_debug!(logger, "Skipping redundant processing of HTLC resolution tx {} as it was previously confirmed", txid);
3021 for spendable_txid in self.spendable_txids_confirmed.iter() {
3022 if txid == *spendable_txid {
3023 log_debug!(logger, "Skipping redundant processing of spendable tx {} as it was previously confirmed", txid);
3028 if tx.input.len() == 1 {
3029 // Assuming our keys were not leaked (in which case we're screwed no matter what),
3030 // commitment transactions and HTLC transactions will all only ever have one input
3031 // (except for HTLC transactions for channels with anchor outputs), which is an easy
3032 // way to filter out any potential non-matching txn for lazy filters.
3033 let prevout = &tx.input[0].previous_output;
3034 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
3035 let mut balance_spendable_csv = None;
3036 log_info!(logger, "Channel {} closed by funding output spend in txid {}.",
3037 log_bytes!(self.funding_info.0.to_channel_id()), txid);
3038 self.funding_spend_seen = true;
3039 let mut commitment_tx_to_counterparty_output = None;
3040 if (tx.input[0].sequence.0 >> 8*3) as u8 == 0x80 && (tx.lock_time.0 >> 8*3) as u8 == 0x20 {
3041 let (mut new_outpoints, new_outputs, counterparty_output_idx_sats) =
3042 self.check_spend_counterparty_transaction(&tx, height, &block_hash, &logger);
3043 commitment_tx_to_counterparty_output = counterparty_output_idx_sats;
3044 if !new_outputs.1.is_empty() {
3045 watch_outputs.push(new_outputs);
3047 claimable_outpoints.append(&mut new_outpoints);
3048 if new_outpoints.is_empty() {
3049 if let Some((mut new_outpoints, new_outputs)) = self.check_spend_holder_transaction(&tx, height, &block_hash, &logger) {
3050 debug_assert!(commitment_tx_to_counterparty_output.is_none(),
3051 "A commitment transaction matched as both a counterparty and local commitment tx?");
3052 if !new_outputs.1.is_empty() {
3053 watch_outputs.push(new_outputs);
3055 claimable_outpoints.append(&mut new_outpoints);
3056 balance_spendable_csv = Some(self.on_holder_tx_csv);
3060 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3062 transaction: Some((*tx).clone()),
3064 block_hash: Some(block_hash),
3065 event: OnchainEvent::FundingSpendConfirmation {
3066 on_local_output_csv: balance_spendable_csv,
3067 commitment_tx_to_counterparty_output,
3072 if tx.input.len() >= 1 {
3073 // While all commitment transactions have one input, HTLC transactions may have more
3074 // if the HTLC was present in an anchor channel. HTLCs can also be resolved in a few
3075 // other ways which can have more than one output.
3076 for tx_input in &tx.input {
3077 let commitment_txid = tx_input.previous_output.txid;
3078 if let Some(&commitment_number) = self.counterparty_commitment_txn_on_chain.get(&commitment_txid) {
3079 let (mut new_outpoints, new_outputs_option) = self.check_spend_counterparty_htlc(
3080 &tx, commitment_number, &commitment_txid, height, &logger
3082 claimable_outpoints.append(&mut new_outpoints);
3083 if let Some(new_outputs) = new_outputs_option {
3084 watch_outputs.push(new_outputs);
3086 // Since there may be multiple HTLCs for this channel (all spending the
3087 // same commitment tx) being claimed by the counterparty within the same
3088 // transaction, and `check_spend_counterparty_htlc` already checks all the
3089 // ones relevant to this channel, we can safely break from our loop.
3093 self.is_resolving_htlc_output(&tx, height, &block_hash, &logger);
3095 self.is_paying_spendable_output(&tx, height, &block_hash, &logger);
3099 if height > self.best_block.height() {
3100 self.best_block = BestBlock::new(block_hash, height);
3103 self.block_confirmed(height, block_hash, txn_matched, watch_outputs, claimable_outpoints, &broadcaster, &fee_estimator, &logger)
3106 /// Update state for new block(s)/transaction(s) confirmed. Note that the caller must update
3107 /// `self.best_block` before calling if a new best blockchain tip is available. More
3108 /// concretely, `self.best_block` must never be at a lower height than `conf_height`, avoiding
3109 /// complexity especially in
3110 /// `OnchainTx::update_claims_view_from_requests`/`OnchainTx::update_claims_view_from_matched_txn`.
3112 /// `conf_height` should be set to the height at which any new transaction(s)/block(s) were
3113 /// confirmed at, even if it is not the current best height.
3114 fn block_confirmed<B: Deref, F: Deref, L: Deref>(
3117 conf_hash: BlockHash,
3118 txn_matched: Vec<&Transaction>,
3119 mut watch_outputs: Vec<TransactionOutputs>,
3120 mut claimable_outpoints: Vec<PackageTemplate>,
3122 fee_estimator: &LowerBoundedFeeEstimator<F>,
3124 ) -> Vec<TransactionOutputs>
3126 B::Target: BroadcasterInterface,
3127 F::Target: FeeEstimator,
3130 log_trace!(logger, "Processing {} matched transactions for block at height {}.", txn_matched.len(), conf_height);
3131 debug_assert!(self.best_block.height() >= conf_height);
3133 let should_broadcast = self.should_broadcast_holder_commitment_txn(logger);
3134 if should_broadcast {
3135 let funding_outp = HolderFundingOutput::build(self.funding_redeemscript.clone(), self.channel_value_satoshis, self.onchain_tx_handler.opt_anchors());
3136 let commitment_package = PackageTemplate::build_package(self.funding_info.0.txid.clone(), self.funding_info.0.index as u32, PackageSolvingData::HolderFundingOutput(funding_outp), self.best_block.height(), false, self.best_block.height());
3137 claimable_outpoints.push(commitment_package);
3138 self.pending_monitor_events.push(MonitorEvent::CommitmentTxConfirmed(self.funding_info.0));
3139 let commitment_tx = self.onchain_tx_handler.get_fully_signed_holder_tx(&self.funding_redeemscript);
3140 self.holder_tx_signed = true;
3141 // We can't broadcast our HTLC transactions while the commitment transaction is
3142 // unconfirmed. We'll delay doing so until we detect the confirmed commitment in
3143 // `transactions_confirmed`.
3144 if !self.onchain_tx_handler.opt_anchors() {
3145 // Because we're broadcasting a commitment transaction, we should construct the package
3146 // assuming it gets confirmed in the next block. Sadly, we have code which considers
3147 // "not yet confirmed" things as discardable, so we cannot do that here.
3148 let (mut new_outpoints, _) = self.get_broadcasted_holder_claims(&self.current_holder_commitment_tx, self.best_block.height());
3149 let new_outputs = self.get_broadcasted_holder_watch_outputs(&self.current_holder_commitment_tx, &commitment_tx);
3150 if !new_outputs.is_empty() {
3151 watch_outputs.push((self.current_holder_commitment_tx.txid.clone(), new_outputs));
3153 claimable_outpoints.append(&mut new_outpoints);
3157 // Find which on-chain events have reached their confirmation threshold.
3158 let onchain_events_awaiting_threshold_conf =
3159 self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
3160 let mut onchain_events_reaching_threshold_conf = Vec::new();
3161 for entry in onchain_events_awaiting_threshold_conf {
3162 if entry.has_reached_confirmation_threshold(&self.best_block) {
3163 onchain_events_reaching_threshold_conf.push(entry);
3165 self.onchain_events_awaiting_threshold_conf.push(entry);
3169 // Used to check for duplicate HTLC resolutions.
3170 #[cfg(debug_assertions)]
3171 let unmatured_htlcs: Vec<_> = self.onchain_events_awaiting_threshold_conf
3173 .filter_map(|entry| match &entry.event {
3174 OnchainEvent::HTLCUpdate { source, .. } => Some(source),
3178 #[cfg(debug_assertions)]
3179 let mut matured_htlcs = Vec::new();
3181 // Produce actionable events from on-chain events having reached their threshold.
3182 for entry in onchain_events_reaching_threshold_conf.drain(..) {
3184 OnchainEvent::HTLCUpdate { ref source, payment_hash, htlc_value_satoshis, commitment_tx_output_idx } => {
3185 // Check for duplicate HTLC resolutions.
3186 #[cfg(debug_assertions)]
3189 unmatured_htlcs.iter().find(|&htlc| htlc == &source).is_none(),
3190 "An unmature HTLC transaction conflicts with a maturing one; failed to \
3191 call either transaction_unconfirmed for the conflicting transaction \
3192 or block_disconnected for a block containing it.");
3194 matured_htlcs.iter().find(|&htlc| htlc == source).is_none(),
3195 "A matured HTLC transaction conflicts with a maturing one; failed to \
3196 call either transaction_unconfirmed for the conflicting transaction \
3197 or block_disconnected for a block containing it.");
3198 matured_htlcs.push(source.clone());
3201 log_debug!(logger, "HTLC {} failure update in {} has got enough confirmations to be passed upstream",
3202 log_bytes!(payment_hash.0), entry.txid);
3203 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3205 payment_preimage: None,
3206 source: source.clone(),
3207 htlc_value_satoshis,
3209 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3210 commitment_tx_output_idx,
3211 resolving_txid: Some(entry.txid),
3212 resolving_tx: entry.transaction,
3213 payment_preimage: None,
3216 OnchainEvent::MaturingOutput { descriptor } => {
3217 log_debug!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
3218 self.pending_events.push(Event::SpendableOutputs {
3219 outputs: vec![descriptor]
3221 self.spendable_txids_confirmed.push(entry.txid);
3223 OnchainEvent::HTLCSpendConfirmation { commitment_tx_output_idx, preimage, .. } => {
3224 self.htlcs_resolved_on_chain.push(IrrevocablyResolvedHTLC {
3225 commitment_tx_output_idx: Some(commitment_tx_output_idx),
3226 resolving_txid: Some(entry.txid),
3227 resolving_tx: entry.transaction,
3228 payment_preimage: preimage,
3231 OnchainEvent::FundingSpendConfirmation { commitment_tx_to_counterparty_output, .. } => {
3232 self.funding_spend_confirmed = Some(entry.txid);
3233 self.confirmed_commitment_tx_counterparty_output = commitment_tx_to_counterparty_output;
3238 self.onchain_tx_handler.update_claims_view_from_requests(claimable_outpoints, conf_height, self.best_block.height(), broadcaster, fee_estimator, logger);
3239 self.onchain_tx_handler.update_claims_view_from_matched_txn(&txn_matched, conf_height, conf_hash, self.best_block.height(), broadcaster, fee_estimator, logger);
3241 // Determine new outputs to watch by comparing against previously known outputs to watch,
3242 // updating the latter in the process.
3243 watch_outputs.retain(|&(ref txid, ref txouts)| {
3244 let idx_and_scripts = txouts.iter().map(|o| (o.0, o.1.script_pubkey.clone())).collect();
3245 self.outputs_to_watch.insert(txid.clone(), idx_and_scripts).is_none()
3249 // If we see a transaction for which we registered outputs previously,
3250 // make sure the registered scriptpubkey at the expected index match
3251 // the actual transaction output one. We failed this case before #653.
3252 for tx in &txn_matched {
3253 if let Some(outputs) = self.get_outputs_to_watch().get(&tx.txid()) {
3254 for idx_and_script in outputs.iter() {
3255 assert!((idx_and_script.0 as usize) < tx.output.len());
3256 assert_eq!(tx.output[idx_and_script.0 as usize].script_pubkey, idx_and_script.1);
3264 pub fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, header: &BlockHeader, height: u32, broadcaster: B, fee_estimator: F, logger: L)
3265 where B::Target: BroadcasterInterface,
3266 F::Target: FeeEstimator,
3269 log_trace!(logger, "Block {} at height {} disconnected", header.block_hash(), height);
3272 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
3273 //- maturing spendable output has transaction paying us has been disconnected
3274 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| entry.height < height);
3276 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(fee_estimator);
3277 self.onchain_tx_handler.block_disconnected(height, broadcaster, &bounded_fee_estimator, logger);
3279 self.best_block = BestBlock::new(header.prev_blockhash, height - 1);
3282 fn transaction_unconfirmed<B: Deref, F: Deref, L: Deref>(
3286 fee_estimator: &LowerBoundedFeeEstimator<F>,
3289 B::Target: BroadcasterInterface,
3290 F::Target: FeeEstimator,
3293 let mut removed_height = None;
3294 for entry in self.onchain_events_awaiting_threshold_conf.iter() {
3295 if entry.txid == *txid {
3296 removed_height = Some(entry.height);
3301 if let Some(removed_height) = removed_height {
3302 log_info!(logger, "transaction_unconfirmed of txid {} implies height {} was reorg'd out", txid, removed_height);
3303 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| if entry.height >= removed_height {
3304 log_info!(logger, "Transaction {} reorg'd out", entry.txid);
3309 debug_assert!(!self.onchain_events_awaiting_threshold_conf.iter().any(|ref entry| entry.txid == *txid));
3311 self.onchain_tx_handler.transaction_unconfirmed(txid, broadcaster, fee_estimator, logger);
3314 /// Filters a block's `txdata` for transactions spending watched outputs or for any child
3315 /// transactions thereof.
3316 fn filter_block<'a>(&self, txdata: &TransactionData<'a>) -> Vec<&'a Transaction> {
3317 let mut matched_txn = HashSet::new();
3318 txdata.iter().filter(|&&(_, tx)| {
3319 let mut matches = self.spends_watched_output(tx);
3320 for input in tx.input.iter() {
3321 if matches { break; }
3322 if matched_txn.contains(&input.previous_output.txid) {
3327 matched_txn.insert(tx.txid());
3330 }).map(|(_, tx)| *tx).collect()
3333 /// Checks if a given transaction spends any watched outputs.
3334 fn spends_watched_output(&self, tx: &Transaction) -> bool {
3335 for input in tx.input.iter() {
3336 if let Some(outputs) = self.get_outputs_to_watch().get(&input.previous_output.txid) {
3337 for (idx, _script_pubkey) in outputs.iter() {
3338 if *idx == input.previous_output.vout {
3341 // If the expected script is a known type, check that the witness
3342 // appears to be spending the correct type (ie that the match would
3343 // actually succeed in BIP 158/159-style filters).
3344 if _script_pubkey.is_v0_p2wsh() {
3345 if input.witness.last().unwrap().to_vec() == deliberately_bogus_accepted_htlc_witness_program() {
3346 // In at least one test we use a deliberately bogus witness
3347 // script which hit an old panic. Thus, we check for that here
3348 // and avoid the assert if its the expected bogus script.
3352 assert_eq!(&bitcoin::Address::p2wsh(&Script::from(input.witness.last().unwrap().to_vec()), bitcoin::Network::Bitcoin).script_pubkey(), _script_pubkey);
3353 } else if _script_pubkey.is_v0_p2wpkh() {
3354 assert_eq!(&bitcoin::Address::p2wpkh(&bitcoin::PublicKey::from_slice(&input.witness.last().unwrap()).unwrap(), bitcoin::Network::Bitcoin).unwrap().script_pubkey(), _script_pubkey);
3355 } else { panic!(); }
3366 fn should_broadcast_holder_commitment_txn<L: Deref>(&self, logger: &L) -> bool where L::Target: Logger {
3367 // There's no need to broadcast our commitment transaction if we've seen one confirmed (even
3368 // with 1 confirmation) as it'll be rejected as duplicate/conflicting.
3369 if self.funding_spend_confirmed.is_some() ||
3370 self.onchain_events_awaiting_threshold_conf.iter().find(|event| match event.event {
3371 OnchainEvent::FundingSpendConfirmation { .. } => true,
3377 // We need to consider all HTLCs which are:
3378 // * in any unrevoked counterparty commitment transaction, as they could broadcast said
3379 // transactions and we'd end up in a race, or
3380 // * are in our latest holder commitment transaction, as this is the thing we will
3381 // broadcast if we go on-chain.
3382 // Note that we consider HTLCs which were below dust threshold here - while they don't
3383 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
3384 // to the source, and if we don't fail the channel we will have to ensure that the next
3385 // updates that peer sends us are update_fails, failing the channel if not. It's probably
3386 // easier to just fail the channel as this case should be rare enough anyway.
3387 let height = self.best_block.height();
3388 macro_rules! scan_commitment {
3389 ($htlcs: expr, $holder_tx: expr) => {
3390 for ref htlc in $htlcs {
3391 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
3392 // chain with enough room to claim the HTLC without our counterparty being able to
3393 // time out the HTLC first.
3394 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
3395 // concern is being able to claim the corresponding inbound HTLC (on another
3396 // channel) before it expires. In fact, we don't even really care if our
3397 // counterparty here claims such an outbound HTLC after it expired as long as we
3398 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
3399 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
3400 // we give ourselves a few blocks of headroom after expiration before going
3401 // on-chain for an expired HTLC.
3402 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
3403 // from us until we've reached the point where we go on-chain with the
3404 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
3405 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
3406 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
3407 // inbound_cltv == height + CLTV_CLAIM_BUFFER
3408 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
3409 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
3410 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
3411 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
3412 // The final, above, condition is checked for statically in channelmanager
3413 // with CHECK_CLTV_EXPIRY_SANITY_2.
3414 let htlc_outbound = $holder_tx == htlc.offered;
3415 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
3416 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
3417 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
3424 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
3426 if let Some(ref txid) = self.current_counterparty_commitment_txid {
3427 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
3428 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
3431 if let Some(ref txid) = self.prev_counterparty_commitment_txid {
3432 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(txid) {
3433 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
3440 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a holder
3441 /// or counterparty commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
3442 fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) where L::Target: Logger {
3443 'outer_loop: for input in &tx.input {
3444 let mut payment_data = None;
3445 let htlc_claim = HTLCClaim::from_witness(&input.witness);
3446 let revocation_sig_claim = htlc_claim == Some(HTLCClaim::Revocation);
3447 let accepted_preimage_claim = htlc_claim == Some(HTLCClaim::AcceptedPreimage);
3448 #[cfg(not(fuzzing))]
3449 let accepted_timeout_claim = htlc_claim == Some(HTLCClaim::AcceptedTimeout);
3450 let offered_preimage_claim = htlc_claim == Some(HTLCClaim::OfferedPreimage);
3451 #[cfg(not(fuzzing))]
3452 let offered_timeout_claim = htlc_claim == Some(HTLCClaim::OfferedTimeout);
3454 let mut payment_preimage = PaymentPreimage([0; 32]);
3455 if offered_preimage_claim || accepted_preimage_claim {
3456 payment_preimage.0.copy_from_slice(input.witness.second_to_last().unwrap());
3459 macro_rules! log_claim {
3460 ($tx_info: expr, $holder_tx: expr, $htlc: expr, $source_avail: expr) => {
3461 let outbound_htlc = $holder_tx == $htlc.offered;
3462 // HTLCs must either be claimed by a matching script type or through the
3464 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3465 debug_assert!(!$htlc.offered || offered_preimage_claim || offered_timeout_claim || revocation_sig_claim);
3466 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3467 debug_assert!($htlc.offered || accepted_preimage_claim || accepted_timeout_claim || revocation_sig_claim);
3468 // Further, only exactly one of the possible spend paths should have been
3469 // matched by any HTLC spend:
3470 #[cfg(not(fuzzing))] // Note that the fuzzer is not bound by pesky things like "signatures"
3471 debug_assert_eq!(accepted_preimage_claim as u8 + accepted_timeout_claim as u8 +
3472 offered_preimage_claim as u8 + offered_timeout_claim as u8 +
3473 revocation_sig_claim as u8, 1);
3474 if ($holder_tx && revocation_sig_claim) ||
3475 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
3476 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
3477 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
3478 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
3479 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back. We can likely claim the HTLC output with a revocation claim" });
3481 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
3482 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
3483 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
3484 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
3489 macro_rules! check_htlc_valid_counterparty {
3490 ($counterparty_txid: expr, $htlc_output: expr) => {
3491 if let Some(txid) = $counterparty_txid {
3492 for &(ref pending_htlc, ref pending_source) in self.counterparty_claimable_outpoints.get(&txid).unwrap() {
3493 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
3494 if let &Some(ref source) = pending_source {
3495 log_claim!("revoked counterparty commitment tx", false, pending_htlc, true);
3496 payment_data = Some(((**source).clone(), $htlc_output.payment_hash, $htlc_output.amount_msat));
3505 macro_rules! scan_commitment {
3506 ($htlcs: expr, $tx_info: expr, $holder_tx: expr) => {
3507 for (ref htlc_output, source_option) in $htlcs {
3508 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
3509 if let Some(ref source) = source_option {
3510 log_claim!($tx_info, $holder_tx, htlc_output, true);
3511 // We have a resolution of an HTLC either from one of our latest
3512 // holder commitment transactions or an unrevoked counterparty commitment
3513 // transaction. This implies we either learned a preimage, the HTLC
3514 // has timed out, or we screwed up. In any case, we should now
3515 // resolve the source HTLC with the original sender.
3516 payment_data = Some(((*source).clone(), htlc_output.payment_hash, htlc_output.amount_msat));
3517 } else if !$holder_tx {
3518 check_htlc_valid_counterparty!(self.current_counterparty_commitment_txid, htlc_output);
3519 if payment_data.is_none() {
3520 check_htlc_valid_counterparty!(self.prev_counterparty_commitment_txid, htlc_output);
3523 if payment_data.is_none() {
3524 log_claim!($tx_info, $holder_tx, htlc_output, false);
3525 let outbound_htlc = $holder_tx == htlc_output.offered;
3526 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3527 txid: tx.txid(), height, block_hash: Some(*block_hash), transaction: Some(tx.clone()),
3528 event: OnchainEvent::HTLCSpendConfirmation {
3529 commitment_tx_output_idx: input.previous_output.vout,
3530 preimage: if accepted_preimage_claim || offered_preimage_claim {
3531 Some(payment_preimage) } else { None },
3532 // If this is a payment to us (ie !outbound_htlc), wait for
3533 // the CSV delay before dropping the HTLC from claimable
3534 // balance if the claim was an HTLC-Success transaction (ie
3535 // accepted_preimage_claim).
3536 on_to_local_output_csv: if accepted_preimage_claim && !outbound_htlc {
3537 Some(self.on_holder_tx_csv) } else { None },
3540 continue 'outer_loop;
3547 if input.previous_output.txid == self.current_holder_commitment_tx.txid {
3548 scan_commitment!(self.current_holder_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
3549 "our latest holder commitment tx", true);
3551 if let Some(ref prev_holder_signed_commitment_tx) = self.prev_holder_signed_commitment_tx {
3552 if input.previous_output.txid == prev_holder_signed_commitment_tx.txid {
3553 scan_commitment!(prev_holder_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
3554 "our previous holder commitment tx", true);
3557 if let Some(ref htlc_outputs) = self.counterparty_claimable_outpoints.get(&input.previous_output.txid) {
3558 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
3559 "counterparty commitment tx", false);
3562 // Check that scan_commitment, above, decided there is some source worth relaying an
3563 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
3564 if let Some((source, payment_hash, amount_msat)) = payment_data {
3565 if accepted_preimage_claim {
3566 if !self.pending_monitor_events.iter().any(
3567 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update { upd.source == source } else { false }) {
3568 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3571 block_hash: Some(*block_hash),
3572 transaction: Some(tx.clone()),
3573 event: OnchainEvent::HTLCSpendConfirmation {
3574 commitment_tx_output_idx: input.previous_output.vout,
3575 preimage: Some(payment_preimage),
3576 on_to_local_output_csv: None,
3579 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3581 payment_preimage: Some(payment_preimage),
3583 htlc_value_satoshis: Some(amount_msat / 1000),
3586 } else if offered_preimage_claim {
3587 if !self.pending_monitor_events.iter().any(
3588 |update| if let &MonitorEvent::HTLCEvent(ref upd) = update {
3589 upd.source == source
3591 self.onchain_events_awaiting_threshold_conf.push(OnchainEventEntry {
3593 transaction: Some(tx.clone()),
3595 block_hash: Some(*block_hash),
3596 event: OnchainEvent::HTLCSpendConfirmation {
3597 commitment_tx_output_idx: input.previous_output.vout,
3598 preimage: Some(payment_preimage),
3599 on_to_local_output_csv: None,
3602 self.pending_monitor_events.push(MonitorEvent::HTLCEvent(HTLCUpdate {
3604 payment_preimage: Some(payment_preimage),
3606 htlc_value_satoshis: Some(amount_msat / 1000),
3610 self.onchain_events_awaiting_threshold_conf.retain(|ref entry| {
3611 if entry.height != height { return true; }
3613 OnchainEvent::HTLCUpdate { source: ref htlc_source, .. } => {
3614 *htlc_source != source
3619 let entry = OnchainEventEntry {
3621 transaction: Some(tx.clone()),
3623 block_hash: Some(*block_hash),
3624 event: OnchainEvent::HTLCUpdate {
3625 source, payment_hash,
3626 htlc_value_satoshis: Some(amount_msat / 1000),
3627 commitment_tx_output_idx: Some(input.previous_output.vout),
3630 log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height {})", log_bytes!(payment_hash.0), entry.confirmation_threshold());
3631 self.onchain_events_awaiting_threshold_conf.push(entry);
3637 /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
3638 fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, block_hash: &BlockHash, logger: &L) where L::Target: Logger {
3639 let mut spendable_output = None;
3640 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
3641 if i > ::core::u16::MAX as usize {
3642 // While it is possible that an output exists on chain which is greater than the
3643 // 2^16th output in a given transaction, this is only possible if the output is not
3644 // in a lightning transaction and was instead placed there by some third party who
3645 // wishes to give us money for no reason.
3646 // Namely, any lightning transactions which we pre-sign will never have anywhere
3647 // near 2^16 outputs both because such transactions must have ~2^16 outputs who's
3648 // scripts are not longer than one byte in length and because they are inherently
3649 // non-standard due to their size.
3650 // Thus, it is completely safe to ignore such outputs, and while it may result in
3651 // us ignoring non-lightning fund to us, that is only possible if someone fills
3652 // nearly a full block with garbage just to hit this case.
3655 if outp.script_pubkey == self.destination_script {
3656 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3657 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3658 output: outp.clone(),
3662 if let Some(ref broadcasted_holder_revokable_script) = self.broadcasted_holder_revokable_script {
3663 if broadcasted_holder_revokable_script.0 == outp.script_pubkey {
3664 spendable_output = Some(SpendableOutputDescriptor::DelayedPaymentOutput(DelayedPaymentOutputDescriptor {
3665 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3666 per_commitment_point: broadcasted_holder_revokable_script.1,
3667 to_self_delay: self.on_holder_tx_csv,
3668 output: outp.clone(),
3669 revocation_pubkey: broadcasted_holder_revokable_script.2.clone(),
3670 channel_keys_id: self.channel_keys_id,
3671 channel_value_satoshis: self.channel_value_satoshis,
3676 if self.counterparty_payment_script == outp.script_pubkey {
3677 spendable_output = Some(SpendableOutputDescriptor::StaticPaymentOutput(StaticPaymentOutputDescriptor {
3678 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3679 output: outp.clone(),
3680 channel_keys_id: self.channel_keys_id,
3681 channel_value_satoshis: self.channel_value_satoshis,
3685 if self.shutdown_script.as_ref() == Some(&outp.script_pubkey) {
3686 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
3687 outpoint: OutPoint { txid: tx.txid(), index: i as u16 },
3688 output: outp.clone(),
3693 if let Some(spendable_output) = spendable_output {
3694 let entry = OnchainEventEntry {
3696 transaction: Some(tx.clone()),
3698 block_hash: Some(*block_hash),
3699 event: OnchainEvent::MaturingOutput { descriptor: spendable_output.clone() },
3701 log_info!(logger, "Received spendable output {}, spendable at height {}", log_spendable!(spendable_output), entry.confirmation_threshold());
3702 self.onchain_events_awaiting_threshold_conf.push(entry);
3707 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Listen for (ChannelMonitor<Signer>, T, F, L)
3709 T::Target: BroadcasterInterface,
3710 F::Target: FeeEstimator,
3713 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3714 self.0.block_connected(header, txdata, height, &*self.1, &*self.2, &*self.3);
3717 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3718 self.0.block_disconnected(header, height, &*self.1, &*self.2, &*self.3);
3722 impl<Signer: WriteableEcdsaChannelSigner, T: Deref, F: Deref, L: Deref> chain::Confirm for (ChannelMonitor<Signer>, T, F, L)
3724 T::Target: BroadcasterInterface,
3725 F::Target: FeeEstimator,
3728 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3729 self.0.transactions_confirmed(header, txdata, height, &*self.1, &*self.2, &*self.3);
3732 fn transaction_unconfirmed(&self, txid: &Txid) {
3733 self.0.transaction_unconfirmed(txid, &*self.1, &*self.2, &*self.3);
3736 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3737 self.0.best_block_updated(header, height, &*self.1, &*self.2, &*self.3);
3740 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
3741 self.0.get_relevant_txids()
3745 const MAX_ALLOC_SIZE: usize = 64*1024;
3747 impl<'a, 'b, ES: EntropySource, SP: SignerProvider> ReadableArgs<(&'a ES, &'b SP)>
3748 for (BlockHash, ChannelMonitor<SP::Signer>) {
3749 fn read<R: io::Read>(reader: &mut R, args: (&'a ES, &'b SP)) -> Result<Self, DecodeError> {
3750 macro_rules! unwrap_obj {
3754 Err(_) => return Err(DecodeError::InvalidValue),
3759 let (entropy_source, signer_provider) = args;
3761 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
3763 let latest_update_id: u64 = Readable::read(reader)?;
3764 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
3766 let destination_script = Readable::read(reader)?;
3767 let broadcasted_holder_revokable_script = match <u8 as Readable>::read(reader)? {
3769 let revokable_address = Readable::read(reader)?;
3770 let per_commitment_point = Readable::read(reader)?;
3771 let revokable_script = Readable::read(reader)?;
3772 Some((revokable_address, per_commitment_point, revokable_script))
3775 _ => return Err(DecodeError::InvalidValue),
3777 let counterparty_payment_script = Readable::read(reader)?;
3778 let shutdown_script = {
3779 let script = <Script as Readable>::read(reader)?;
3780 if script.is_empty() { None } else { Some(script) }
3783 let channel_keys_id = Readable::read(reader)?;
3784 let holder_revocation_basepoint = Readable::read(reader)?;
3785 // Technically this can fail and serialize fail a round-trip, but only for serialization of
3786 // barely-init'd ChannelMonitors that we can't do anything with.
3787 let outpoint = OutPoint {
3788 txid: Readable::read(reader)?,
3789 index: Readable::read(reader)?,
3791 let funding_info = (outpoint, Readable::read(reader)?);
3792 let current_counterparty_commitment_txid = Readable::read(reader)?;
3793 let prev_counterparty_commitment_txid = Readable::read(reader)?;
3795 let counterparty_commitment_params = Readable::read(reader)?;
3796 let funding_redeemscript = Readable::read(reader)?;
3797 let channel_value_satoshis = Readable::read(reader)?;
3799 let their_cur_per_commitment_points = {
3800 let first_idx = <U48 as Readable>::read(reader)?.0;
3804 let first_point = Readable::read(reader)?;
3805 let second_point_slice: [u8; 33] = Readable::read(reader)?;
3806 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
3807 Some((first_idx, first_point, None))
3809 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
3814 let on_holder_tx_csv: u16 = Readable::read(reader)?;
3816 let commitment_secrets = Readable::read(reader)?;
3818 macro_rules! read_htlc_in_commitment {
3821 let offered: bool = Readable::read(reader)?;
3822 let amount_msat: u64 = Readable::read(reader)?;
3823 let cltv_expiry: u32 = Readable::read(reader)?;
3824 let payment_hash: PaymentHash = Readable::read(reader)?;
3825 let transaction_output_index: Option<u32> = Readable::read(reader)?;
3827 HTLCOutputInCommitment {
3828 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
3834 let counterparty_claimable_outpoints_len: u64 = Readable::read(reader)?;
3835 let mut counterparty_claimable_outpoints = HashMap::with_capacity(cmp::min(counterparty_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
3836 for _ in 0..counterparty_claimable_outpoints_len {
3837 let txid: Txid = Readable::read(reader)?;
3838 let htlcs_count: u64 = Readable::read(reader)?;
3839 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
3840 for _ in 0..htlcs_count {
3841 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
3843 if let Some(_) = counterparty_claimable_outpoints.insert(txid, htlcs) {
3844 return Err(DecodeError::InvalidValue);
3848 let counterparty_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
3849 let mut counterparty_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(counterparty_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
3850 for _ in 0..counterparty_commitment_txn_on_chain_len {
3851 let txid: Txid = Readable::read(reader)?;
3852 let commitment_number = <U48 as Readable>::read(reader)?.0;
3853 if let Some(_) = counterparty_commitment_txn_on_chain.insert(txid, commitment_number) {
3854 return Err(DecodeError::InvalidValue);
3858 let counterparty_hash_commitment_number_len: u64 = Readable::read(reader)?;
3859 let mut counterparty_hash_commitment_number = HashMap::with_capacity(cmp::min(counterparty_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
3860 for _ in 0..counterparty_hash_commitment_number_len {
3861 let payment_hash: PaymentHash = Readable::read(reader)?;
3862 let commitment_number = <U48 as Readable>::read(reader)?.0;
3863 if let Some(_) = counterparty_hash_commitment_number.insert(payment_hash, commitment_number) {
3864 return Err(DecodeError::InvalidValue);
3868 let mut prev_holder_signed_commitment_tx: Option<HolderSignedTx> =
3869 match <u8 as Readable>::read(reader)? {
3872 Some(Readable::read(reader)?)
3874 _ => return Err(DecodeError::InvalidValue),
3876 let mut current_holder_commitment_tx: HolderSignedTx = Readable::read(reader)?;
3878 let current_counterparty_commitment_number = <U48 as Readable>::read(reader)?.0;
3879 let current_holder_commitment_number = <U48 as Readable>::read(reader)?.0;
3881 let payment_preimages_len: u64 = Readable::read(reader)?;
3882 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
3883 for _ in 0..payment_preimages_len {
3884 let preimage: PaymentPreimage = Readable::read(reader)?;
3885 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3886 if let Some(_) = payment_preimages.insert(hash, preimage) {
3887 return Err(DecodeError::InvalidValue);
3891 let pending_monitor_events_len: u64 = Readable::read(reader)?;
3892 let mut pending_monitor_events = Some(
3893 Vec::with_capacity(cmp::min(pending_monitor_events_len as usize, MAX_ALLOC_SIZE / (32 + 8*3))));
3894 for _ in 0..pending_monitor_events_len {
3895 let ev = match <u8 as Readable>::read(reader)? {
3896 0 => MonitorEvent::HTLCEvent(Readable::read(reader)?),
3897 1 => MonitorEvent::CommitmentTxConfirmed(funding_info.0),
3898 _ => return Err(DecodeError::InvalidValue)
3900 pending_monitor_events.as_mut().unwrap().push(ev);
3903 let pending_events_len: u64 = Readable::read(reader)?;
3904 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Event>()));
3905 for _ in 0..pending_events_len {
3906 if let Some(event) = MaybeReadable::read(reader)? {
3907 pending_events.push(event);
3911 let best_block = BestBlock::new(Readable::read(reader)?, Readable::read(reader)?);
3913 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
3914 let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
3915 for _ in 0..waiting_threshold_conf_len {
3916 if let Some(val) = MaybeReadable::read(reader)? {
3917 onchain_events_awaiting_threshold_conf.push(val);
3921 let outputs_to_watch_len: u64 = Readable::read(reader)?;
3922 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<u32>() + mem::size_of::<Vec<Script>>())));
3923 for _ in 0..outputs_to_watch_len {
3924 let txid = Readable::read(reader)?;
3925 let outputs_len: u64 = Readable::read(reader)?;
3926 let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<u32>() + mem::size_of::<Script>())));
3927 for _ in 0..outputs_len {
3928 outputs.push((Readable::read(reader)?, Readable::read(reader)?));
3930 if let Some(_) = outputs_to_watch.insert(txid, outputs) {
3931 return Err(DecodeError::InvalidValue);
3934 let onchain_tx_handler: OnchainTxHandler<SP::Signer> = ReadableArgs::read(
3935 reader, (entropy_source, signer_provider, channel_value_satoshis, channel_keys_id)
3938 let lockdown_from_offchain = Readable::read(reader)?;
3939 let holder_tx_signed = Readable::read(reader)?;
3941 if let Some(prev_commitment_tx) = prev_holder_signed_commitment_tx.as_mut() {
3942 let prev_holder_value = onchain_tx_handler.get_prev_holder_commitment_to_self_value();
3943 if prev_holder_value.is_none() { return Err(DecodeError::InvalidValue); }
3944 if prev_commitment_tx.to_self_value_sat == u64::max_value() {
3945 prev_commitment_tx.to_self_value_sat = prev_holder_value.unwrap();
3946 } else if prev_commitment_tx.to_self_value_sat != prev_holder_value.unwrap() {
3947 return Err(DecodeError::InvalidValue);
3951 let cur_holder_value = onchain_tx_handler.get_cur_holder_commitment_to_self_value();
3952 if current_holder_commitment_tx.to_self_value_sat == u64::max_value() {
3953 current_holder_commitment_tx.to_self_value_sat = cur_holder_value;
3954 } else if current_holder_commitment_tx.to_self_value_sat != cur_holder_value {
3955 return Err(DecodeError::InvalidValue);
3958 let mut funding_spend_confirmed = None;
3959 let mut htlcs_resolved_on_chain = Some(Vec::new());
3960 let mut funding_spend_seen = Some(false);
3961 let mut counterparty_node_id = None;
3962 let mut confirmed_commitment_tx_counterparty_output = None;
3963 let mut spendable_txids_confirmed = Some(Vec::new());
3964 let mut counterparty_fulfilled_htlcs = Some(HashMap::new());
3965 read_tlv_fields!(reader, {
3966 (1, funding_spend_confirmed, option),
3967 (3, htlcs_resolved_on_chain, vec_type),
3968 (5, pending_monitor_events, vec_type),
3969 (7, funding_spend_seen, option),
3970 (9, counterparty_node_id, option),
3971 (11, confirmed_commitment_tx_counterparty_output, option),
3972 (13, spendable_txids_confirmed, vec_type),
3973 (15, counterparty_fulfilled_htlcs, option),
3976 Ok((best_block.block_hash(), ChannelMonitor::from_impl(ChannelMonitorImpl {
3978 commitment_transaction_number_obscure_factor,
3981 broadcasted_holder_revokable_script,
3982 counterparty_payment_script,
3986 holder_revocation_basepoint,
3988 current_counterparty_commitment_txid,
3989 prev_counterparty_commitment_txid,
3991 counterparty_commitment_params,
3992 funding_redeemscript,
3993 channel_value_satoshis,
3994 their_cur_per_commitment_points,
3999 counterparty_claimable_outpoints,
4000 counterparty_commitment_txn_on_chain,
4001 counterparty_hash_commitment_number,
4002 counterparty_fulfilled_htlcs: counterparty_fulfilled_htlcs.unwrap(),
4004 prev_holder_signed_commitment_tx,
4005 current_holder_commitment_tx,
4006 current_counterparty_commitment_number,
4007 current_holder_commitment_number,
4010 pending_monitor_events: pending_monitor_events.unwrap(),
4013 onchain_events_awaiting_threshold_conf,
4018 lockdown_from_offchain,
4020 funding_spend_seen: funding_spend_seen.unwrap(),
4021 funding_spend_confirmed,
4022 confirmed_commitment_tx_counterparty_output,
4023 htlcs_resolved_on_chain: htlcs_resolved_on_chain.unwrap(),
4024 spendable_txids_confirmed: spendable_txids_confirmed.unwrap(),
4027 counterparty_node_id,
4034 use bitcoin::blockdata::block::BlockHeader;
4035 use bitcoin::blockdata::script::{Script, Builder};
4036 use bitcoin::blockdata::opcodes;
4037 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, EcdsaSighashType};
4038 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
4039 use bitcoin::util::sighash;
4040 use bitcoin::hashes::Hash;
4041 use bitcoin::hashes::sha256::Hash as Sha256;
4042 use bitcoin::hashes::hex::FromHex;
4043 use bitcoin::hash_types::{BlockHash, Txid};
4044 use bitcoin::network::constants::Network;
4045 use bitcoin::secp256k1::{SecretKey,PublicKey};
4046 use bitcoin::secp256k1::Secp256k1;
4050 use crate::chain::chaininterface::LowerBoundedFeeEstimator;
4052 use super::ChannelMonitorUpdateStep;
4053 use crate::{check_added_monitors, check_closed_broadcast, check_closed_event, check_spends, get_local_commitment_txn, get_monitor, get_route_and_payment_hash, unwrap_send_err};
4054 use crate::chain::{BestBlock, Confirm};
4055 use crate::chain::channelmonitor::ChannelMonitor;
4056 use crate::chain::package::{weight_offered_htlc, weight_received_htlc, weight_revoked_offered_htlc, weight_revoked_received_htlc, WEIGHT_REVOKED_OUTPUT};
4057 use crate::chain::transaction::OutPoint;
4058 use crate::chain::keysinterface::InMemorySigner;
4059 use crate::ln::{PaymentPreimage, PaymentHash};
4060 use crate::ln::chan_utils;
4061 use crate::ln::chan_utils::{HTLCOutputInCommitment, ChannelPublicKeys, ChannelTransactionParameters, HolderCommitmentTransaction, CounterpartyChannelTransactionParameters};
4062 use crate::ln::channelmanager::{PaymentSendFailure, PaymentId};
4063 use crate::ln::functional_test_utils::*;
4064 use crate::ln::script::ShutdownScript;
4065 use crate::util::errors::APIError;
4066 use crate::util::events::{ClosureReason, MessageSendEventsProvider};
4067 use crate::util::test_utils::{TestLogger, TestBroadcaster, TestFeeEstimator};
4068 use crate::util::ser::{ReadableArgs, Writeable};
4069 use crate::sync::{Arc, Mutex};
4071 use bitcoin::{PackedLockTime, Sequence, TxMerkleNode, Witness};
4072 use crate::prelude::*;
4074 fn do_test_funding_spend_refuses_updates(use_local_txn: bool) {
4075 // Previously, monitor updates were allowed freely even after a funding-spend transaction
4076 // confirmed. This would allow a race condition where we could receive a payment (including
4077 // the counterparty revoking their broadcasted state!) and accept it without recourse as
4078 // long as the ChannelMonitor receives the block first, the full commitment update dance
4079 // occurs after the block is connected, and before the ChannelManager receives the block.
4080 // Obviously this is an incredibly contrived race given the counterparty would be risking
4081 // their full channel balance for it, but its worth fixing nonetheless as it makes the
4082 // potential ChannelMonitor states simpler to reason about.
4084 // This test checks said behavior, as well as ensuring a ChannelMonitorUpdate with multiple
4085 // updates is handled correctly in such conditions.
4086 let chanmon_cfgs = create_chanmon_cfgs(3);
4087 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
4088 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
4089 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
4090 let channel = create_announced_chan_between_nodes(&nodes, 0, 1);
4091 create_announced_chan_between_nodes(&nodes, 1, 2);
4093 // Rebalance somewhat
4094 send_payment(&nodes[0], &[&nodes[1]], 10_000_000);
4096 // First route two payments for testing at the end
4097 let payment_preimage_1 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4098 let payment_preimage_2 = route_payment(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000).0;
4100 let local_txn = get_local_commitment_txn!(nodes[1], channel.2);
4101 assert_eq!(local_txn.len(), 1);
4102 let remote_txn = get_local_commitment_txn!(nodes[0], channel.2);
4103 assert_eq!(remote_txn.len(), 3); // Commitment and two HTLC-Timeouts
4104 check_spends!(remote_txn[1], remote_txn[0]);
4105 check_spends!(remote_txn[2], remote_txn[0]);
4106 let broadcast_tx = if use_local_txn { &local_txn[0] } else { &remote_txn[0] };
4108 // Connect a commitment transaction, but only to the ChainMonitor/ChannelMonitor. The
4109 // channel is now closed, but the ChannelManager doesn't know that yet.
4110 let new_header = BlockHeader {
4111 version: 2, time: 0, bits: 0, nonce: 0,
4112 prev_blockhash: nodes[0].best_block_info().0,
4113 merkle_root: TxMerkleNode::all_zeros() };
4114 let conf_height = nodes[0].best_block_info().1 + 1;
4115 nodes[1].chain_monitor.chain_monitor.transactions_confirmed(&new_header,
4116 &[(0, broadcast_tx)], conf_height);
4118 let (_, pre_update_monitor) = <(BlockHash, ChannelMonitor<InMemorySigner>)>::read(
4119 &mut io::Cursor::new(&get_monitor!(nodes[1], channel.2).encode()),
4120 (&nodes[1].keys_manager.backing, &nodes[1].keys_manager.backing)).unwrap();
4122 // If the ChannelManager tries to update the channel, however, the ChainMonitor will pass
4123 // the update through to the ChannelMonitor which will refuse it (as the channel is closed).
4124 let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[1], nodes[0], 100_000);
4125 unwrap_send_err!(nodes[1].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)),
4126 true, APIError::ChannelUnavailable { ref err },
4127 assert!(err.contains("ChannelMonitor storage failure")));
4128 check_added_monitors!(nodes[1], 2); // After the failure we generate a close-channel monitor update
4129 check_closed_broadcast!(nodes[1], true);
4130 check_closed_event!(nodes[1], 1, ClosureReason::ProcessingError { err: "ChannelMonitor storage failure".to_string() });
4132 // Build a new ChannelMonitorUpdate which contains both the failing commitment tx update
4133 // and provides the claim preimages for the two pending HTLCs. The first update generates
4134 // an error, but the point of this test is to ensure the later updates are still applied.
4135 let monitor_updates = nodes[1].chain_monitor.monitor_updates.lock().unwrap();
4136 let mut replay_update = monitor_updates.get(&channel.2).unwrap().iter().rev().skip(1).next().unwrap().clone();
4137 assert_eq!(replay_update.updates.len(), 1);
4138 if let ChannelMonitorUpdateStep::LatestCounterpartyCommitmentTXInfo { .. } = replay_update.updates[0] {
4139 } else { panic!(); }
4140 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_1 });
4141 replay_update.updates.push(ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage: payment_preimage_2 });
4143 let broadcaster = TestBroadcaster::new(Arc::clone(&nodes[1].blocks));
4145 pre_update_monitor.update_monitor(&replay_update, &&broadcaster, &chanmon_cfgs[1].fee_estimator, &nodes[1].logger)
4147 // Even though we error'd on the first update, we should still have generated an HTLC claim
4149 let txn_broadcasted = broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
4150 assert!(txn_broadcasted.len() >= 2);
4151 let htlc_txn = txn_broadcasted.iter().filter(|tx| {
4152 assert_eq!(tx.input.len(), 1);
4153 tx.input[0].previous_output.txid == broadcast_tx.txid()
4154 }).collect::<Vec<_>>();
4155 assert_eq!(htlc_txn.len(), 2);
4156 check_spends!(htlc_txn[0], broadcast_tx);
4157 check_spends!(htlc_txn[1], broadcast_tx);
4160 fn test_funding_spend_refuses_updates() {
4161 do_test_funding_spend_refuses_updates(true);
4162 do_test_funding_spend_refuses_updates(false);
4166 fn test_prune_preimages() {
4167 let secp_ctx = Secp256k1::new();
4168 let logger = Arc::new(TestLogger::new());
4169 let broadcaster = Arc::new(TestBroadcaster {
4170 txn_broadcasted: Mutex::new(Vec::new()),
4171 blocks: Arc::new(Mutex::new(Vec::new()))
4173 let fee_estimator = TestFeeEstimator { sat_per_kw: Mutex::new(253) };
4175 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4177 let mut preimages = Vec::new();
4180 let preimage = PaymentPreimage([i; 32]);
4181 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
4182 preimages.push((preimage, hash));
4186 macro_rules! preimages_slice_to_htlcs {
4187 ($preimages_slice: expr) => {
4189 let mut res = Vec::new();
4190 for (idx, preimage) in $preimages_slice.iter().enumerate() {
4191 res.push((HTLCOutputInCommitment {
4195 payment_hash: preimage.1.clone(),
4196 transaction_output_index: Some(idx as u32),
4203 macro_rules! preimages_slice_to_htlc_outputs {
4204 ($preimages_slice: expr) => {
4205 preimages_slice_to_htlcs!($preimages_slice).into_iter().map(|(htlc, _)| (htlc, None)).collect()
4208 let dummy_sig = crate::util::crypto::sign(&secp_ctx,
4209 &bitcoin::secp256k1::Message::from_slice(&[42; 32]).unwrap(),
4210 &SecretKey::from_slice(&[42; 32]).unwrap());
4212 macro_rules! test_preimages_exist {
4213 ($preimages_slice: expr, $monitor: expr) => {
4214 for preimage in $preimages_slice {
4215 assert!($monitor.inner.lock().unwrap().payment_preimages.contains_key(&preimage.1));
4220 let keys = InMemorySigner::new(
4222 SecretKey::from_slice(&[41; 32]).unwrap(),
4223 SecretKey::from_slice(&[41; 32]).unwrap(),
4224 SecretKey::from_slice(&[41; 32]).unwrap(),
4225 SecretKey::from_slice(&[41; 32]).unwrap(),
4226 SecretKey::from_slice(&[41; 32]).unwrap(),
4232 let counterparty_pubkeys = ChannelPublicKeys {
4233 funding_pubkey: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
4234 revocation_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
4235 payment_point: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[46; 32]).unwrap()),
4236 delayed_payment_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[47; 32]).unwrap()),
4237 htlc_basepoint: PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[48; 32]).unwrap())
4239 let funding_outpoint = OutPoint { txid: Txid::all_zeros(), index: u16::max_value() };
4240 let channel_parameters = ChannelTransactionParameters {
4241 holder_pubkeys: keys.holder_channel_pubkeys.clone(),
4242 holder_selected_contest_delay: 66,
4243 is_outbound_from_holder: true,
4244 counterparty_parameters: Some(CounterpartyChannelTransactionParameters {
4245 pubkeys: counterparty_pubkeys,
4246 selected_contest_delay: 67,
4248 funding_outpoint: Some(funding_outpoint),
4250 opt_non_zero_fee_anchors: None,
4252 // Prune with one old state and a holder commitment tx holding a few overlaps with the
4254 let shutdown_pubkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
4255 let best_block = BestBlock::from_network(Network::Testnet);
4256 let monitor = ChannelMonitor::new(Secp256k1::new(), keys,
4257 Some(ShutdownScript::new_p2wpkh_from_pubkey(shutdown_pubkey).into_inner()), 0, &Script::new(),
4258 (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
4259 &channel_parameters, Script::new(), 46, 0, HolderCommitmentTransaction::dummy(&mut Vec::new()),
4260 best_block, dummy_key);
4262 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..10]);
4263 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4264 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx.clone(),
4265 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4266 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"1").into_inner()),
4267 preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
4268 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"2").into_inner()),
4269 preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
4270 for &(ref preimage, ref hash) in preimages.iter() {
4271 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(&fee_estimator);
4272 monitor.provide_payment_preimage(hash, preimage, &broadcaster, &bounded_fee_estimator, &logger);
4275 // Now provide a secret, pruning preimages 10-15
4276 let mut secret = [0; 32];
4277 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
4278 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
4279 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 15);
4280 test_preimages_exist!(&preimages[0..10], monitor);
4281 test_preimages_exist!(&preimages[15..20], monitor);
4283 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"3").into_inner()),
4284 preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
4286 // Now provide a further secret, pruning preimages 15-17
4287 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
4288 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
4289 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 13);
4290 test_preimages_exist!(&preimages[0..10], monitor);
4291 test_preimages_exist!(&preimages[17..20], monitor);
4293 monitor.provide_latest_counterparty_commitment_tx(Txid::from_inner(Sha256::hash(b"4").into_inner()),
4294 preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
4296 // Now update holder commitment tx info, pruning only element 18 as we still care about the
4297 // previous commitment tx's preimages too
4298 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..5]);
4299 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4300 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx.clone(),
4301 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4302 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
4303 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
4304 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 12);
4305 test_preimages_exist!(&preimages[0..10], monitor);
4306 test_preimages_exist!(&preimages[18..20], monitor);
4308 // But if we do it again, we'll prune 5-10
4309 let mut htlcs = preimages_slice_to_htlcs!(preimages[0..3]);
4310 let dummy_commitment_tx = HolderCommitmentTransaction::dummy(&mut htlcs);
4311 monitor.provide_latest_holder_commitment_tx(dummy_commitment_tx,
4312 htlcs.into_iter().map(|(htlc, _)| (htlc, Some(dummy_sig), None)).collect()).unwrap();
4313 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
4314 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
4315 assert_eq!(monitor.inner.lock().unwrap().payment_preimages.len(), 5);
4316 test_preimages_exist!(&preimages[0..5], monitor);
4320 fn test_claim_txn_weight_computation() {
4321 // We test Claim txn weight, knowing that we want expected weigth and
4322 // not actual case to avoid sigs and time-lock delays hell variances.
4324 let secp_ctx = Secp256k1::new();
4325 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
4326 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
4328 macro_rules! sign_input {
4329 ($sighash_parts: expr, $idx: expr, $amount: expr, $weight: expr, $sum_actual_sigs: expr, $opt_anchors: expr) => {
4330 let htlc = HTLCOutputInCommitment {
4331 offered: if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_offered_htlc($opt_anchors) { true } else { false },
4333 cltv_expiry: 2 << 16,
4334 payment_hash: PaymentHash([1; 32]),
4335 transaction_output_index: Some($idx as u32),
4337 let redeem_script = if *$weight == WEIGHT_REVOKED_OUTPUT { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, $opt_anchors, &pubkey, &pubkey, &pubkey) };
4338 let sighash = hash_to_message!(&$sighash_parts.segwit_signature_hash($idx, &redeem_script, $amount, EcdsaSighashType::All).unwrap()[..]);
4339 let sig = secp_ctx.sign_ecdsa(&sighash, &privkey);
4340 let mut ser_sig = sig.serialize_der().to_vec();
4341 ser_sig.push(EcdsaSighashType::All as u8);
4342 $sum_actual_sigs += ser_sig.len();
4343 let witness = $sighash_parts.witness_mut($idx).unwrap();
4344 witness.push(ser_sig);
4345 if *$weight == WEIGHT_REVOKED_OUTPUT {
4346 witness.push(vec!(1));
4347 } else if *$weight == weight_revoked_offered_htlc($opt_anchors) || *$weight == weight_revoked_received_htlc($opt_anchors) {
4348 witness.push(pubkey.clone().serialize().to_vec());
4349 } else if *$weight == weight_received_htlc($opt_anchors) {
4350 witness.push(vec![0]);
4352 witness.push(PaymentPreimage([1; 32]).0.to_vec());
4354 witness.push(redeem_script.into_bytes());
4355 let witness = witness.to_vec();
4356 println!("witness[0] {}", witness[0].len());
4357 println!("witness[1] {}", witness[1].len());
4358 println!("witness[2] {}", witness[2].len());
4362 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
4363 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
4365 // Justice tx with 1 to_holder, 2 revoked offered HTLCs, 1 revoked received HTLCs
4366 for &opt_anchors in [false, true].iter() {
4367 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4368 let mut sum_actual_sigs = 0;
4370 claim_tx.input.push(TxIn {
4371 previous_output: BitcoinOutPoint {
4375 script_sig: Script::new(),
4376 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4377 witness: Witness::new(),
4380 claim_tx.output.push(TxOut {
4381 script_pubkey: script_pubkey.clone(),
4384 let base_weight = claim_tx.weight();
4385 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT, weight_revoked_offered_htlc(opt_anchors), weight_revoked_offered_htlc(opt_anchors), weight_revoked_received_htlc(opt_anchors)];
4386 let mut inputs_total_weight = 2; // count segwit flags
4388 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4389 for (idx, inp) in inputs_weight.iter().enumerate() {
4390 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4391 inputs_total_weight += inp;
4394 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
4397 // Claim tx with 1 offered HTLCs, 3 received HTLCs
4398 for &opt_anchors in [false, true].iter() {
4399 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4400 let mut sum_actual_sigs = 0;
4402 claim_tx.input.push(TxIn {
4403 previous_output: BitcoinOutPoint {
4407 script_sig: Script::new(),
4408 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4409 witness: Witness::new(),
4412 claim_tx.output.push(TxOut {
4413 script_pubkey: script_pubkey.clone(),
4416 let base_weight = claim_tx.weight();
4417 let inputs_weight = vec![weight_offered_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors), weight_received_htlc(opt_anchors)];
4418 let mut inputs_total_weight = 2; // count segwit flags
4420 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4421 for (idx, inp) in inputs_weight.iter().enumerate() {
4422 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4423 inputs_total_weight += inp;
4426 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_sig */ (73 * inputs_weight.len() - sum_actual_sigs));
4429 // Justice tx with 1 revoked HTLC-Success tx output
4430 for &opt_anchors in [false, true].iter() {
4431 let mut claim_tx = Transaction { version: 0, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: Vec::new() };
4432 let mut sum_actual_sigs = 0;
4433 claim_tx.input.push(TxIn {
4434 previous_output: BitcoinOutPoint {
4438 script_sig: Script::new(),
4439 sequence: Sequence::ENABLE_RBF_NO_LOCKTIME,
4440 witness: Witness::new(),
4442 claim_tx.output.push(TxOut {
4443 script_pubkey: script_pubkey.clone(),
4446 let base_weight = claim_tx.weight();
4447 let inputs_weight = vec![WEIGHT_REVOKED_OUTPUT];
4448 let mut inputs_total_weight = 2; // count segwit flags
4450 let mut sighash_parts = sighash::SighashCache::new(&mut claim_tx);
4451 for (idx, inp) in inputs_weight.iter().enumerate() {
4452 sign_input!(sighash_parts, idx, 0, inp, sum_actual_sigs, opt_anchors);
4453 inputs_total_weight += inp;
4456 assert_eq!(base_weight + inputs_total_weight as usize, claim_tx.weight() + /* max_length_isg */ (73 * inputs_weight.len() - sum_actual_sigs));
4460 // Further testing is done in the ChannelManager integration tests.