Update bitcoin crate to 0.29.0
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, TxIn, EcdsaSighashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::sighash;
20
21 use bitcoin::bech32::u5;
22 use bitcoin::hashes::{Hash, HashEngine};
23 use bitcoin::hashes::sha256::HashEngine as Sha256State;
24 use bitcoin::hashes::sha256::Hash as Sha256;
25 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
26 use bitcoin::hash_types::WPubkeyHash;
27
28 use bitcoin::secp256k1::{SecretKey, PublicKey, Scalar};
29 use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature, Signing};
30 use bitcoin::secp256k1::ecdh::SharedSecret;
31 use bitcoin::secp256k1::ecdsa::RecoverableSignature;
32 use bitcoin::{PackedLockTime, secp256k1, Sequence, Witness};
33
34 use util::{byte_utils, transaction_utils};
35 use util::crypto::{hkdf_extract_expand_twice, sign};
36 use util::ser::{Writeable, Writer, Readable, ReadableArgs};
37
38 use chain::transaction::OutPoint;
39 use ln::{chan_utils, PaymentPreimage};
40 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction, ClosingTransaction};
41 use ln::msgs::UnsignedChannelAnnouncement;
42 use ln::script::ShutdownScript;
43
44 use prelude::*;
45 use core::sync::atomic::{AtomicUsize, Ordering};
46 use io::{self, Error};
47 use ln::msgs::{DecodeError, MAX_VALUE_MSAT};
48 use util::invoice::construct_invoice_preimage;
49
50 /// Used as initial key material, to be expanded into multiple secret keys (but not to be used
51 /// directly). This is used within LDK to encrypt/decrypt inbound payment data.
52 /// (C-not exported) as we just use [u8; 32] directly
53 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
54 pub struct KeyMaterial(pub [u8; 32]);
55
56 /// Information about a spendable output to a P2WSH script. See
57 /// SpendableOutputDescriptor::DelayedPaymentOutput for more details on how to spend this.
58 #[derive(Clone, Debug, PartialEq)]
59 pub struct DelayedPaymentOutputDescriptor {
60         /// The outpoint which is spendable
61         pub outpoint: OutPoint,
62         /// Per commitment point to derive delayed_payment_key by key holder
63         pub per_commitment_point: PublicKey,
64         /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
65         /// the witness_script.
66         pub to_self_delay: u16,
67         /// The output which is referenced by the given outpoint
68         pub output: TxOut,
69         /// The revocation point specific to the commitment transaction which was broadcast. Used to
70         /// derive the witnessScript for this output.
71         pub revocation_pubkey: PublicKey,
72         /// Arbitrary identification information returned by a call to
73         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
74         /// the channel to spend the output.
75         pub channel_keys_id: [u8; 32],
76         /// The value of the channel which this output originated from, possibly indirectly.
77         pub channel_value_satoshis: u64,
78 }
79 impl DelayedPaymentOutputDescriptor {
80         /// The maximum length a well-formed witness spending one of these should have.
81         // Calculated as 1 byte length + 73 byte signature, 1 byte empty vec push, 1 byte length plus
82         // redeemscript push length.
83         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 1 + chan_utils::REVOKEABLE_REDEEMSCRIPT_MAX_LENGTH + 1;
84 }
85
86 impl_writeable_tlv_based!(DelayedPaymentOutputDescriptor, {
87         (0, outpoint, required),
88         (2, per_commitment_point, required),
89         (4, to_self_delay, required),
90         (6, output, required),
91         (8, revocation_pubkey, required),
92         (10, channel_keys_id, required),
93         (12, channel_value_satoshis, required),
94 });
95
96 /// Information about a spendable output to our "payment key". See
97 /// SpendableOutputDescriptor::StaticPaymentOutput for more details on how to spend this.
98 #[derive(Clone, Debug, PartialEq)]
99 pub struct StaticPaymentOutputDescriptor {
100         /// The outpoint which is spendable
101         pub outpoint: OutPoint,
102         /// The output which is referenced by the given outpoint
103         pub output: TxOut,
104         /// Arbitrary identification information returned by a call to
105         /// `Sign::channel_keys_id()`. This may be useful in re-deriving keys used in
106         /// the channel to spend the output.
107         pub channel_keys_id: [u8; 32],
108         /// The value of the channel which this transactions spends.
109         pub channel_value_satoshis: u64,
110 }
111 impl StaticPaymentOutputDescriptor {
112         /// The maximum length a well-formed witness spending one of these should have.
113         // Calculated as 1 byte legnth + 73 byte signature, 1 byte empty vec push, 1 byte length plus
114         // redeemscript push length.
115         pub const MAX_WITNESS_LENGTH: usize = 1 + 73 + 34;
116 }
117 impl_writeable_tlv_based!(StaticPaymentOutputDescriptor, {
118         (0, outpoint, required),
119         (2, output, required),
120         (4, channel_keys_id, required),
121         (6, channel_value_satoshis, required),
122 });
123
124 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
125 /// claim at any point in the future) an event is generated which you must track and be able to
126 /// spend on-chain. The information needed to do this is provided in this enum, including the
127 /// outpoint describing which txid and output index is available, the full output which exists at
128 /// that txid/index, and any keys or other information required to sign.
129 #[derive(Clone, Debug, PartialEq)]
130 pub enum SpendableOutputDescriptor {
131         /// An output to a script which was provided via KeysInterface directly, either from
132         /// `get_destination_script()` or `get_shutdown_scriptpubkey()`, thus you should already know
133         /// how to spend it. No secret keys are provided as rust-lightning was never given any key.
134         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
135         /// on-chain using the payment preimage or after it has timed out.
136         StaticOutput {
137                 /// The outpoint which is spendable
138                 outpoint: OutPoint,
139                 /// The output which is referenced by the given outpoint.
140                 output: TxOut,
141         },
142         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
143         ///
144         /// The witness in the spending input should be:
145         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
146         ///
147         /// Note that the nSequence field in the spending input must be set to to_self_delay
148         /// (which means the transaction is not broadcastable until at least to_self_delay
149         /// blocks after the outpoint confirms).
150         ///
151         /// These are generally the result of a "revocable" output to us, spendable only by us unless
152         /// it is an output from an old state which we broadcast (which should never happen).
153         ///
154         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
155         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
156         /// Sign::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
157         /// chan_utils::derive_private_key. The public key can be generated without the secret key
158         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
159         /// Sign::pubkeys().
160         ///
161         /// To derive the revocation_pubkey provided here (which is used in the witness
162         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
163         /// call to Sign::ready_channel) and the provided per_commitment point
164         /// to chan_utils::derive_public_revocation_key.
165         ///
166         /// The witness script which is hashed and included in the output script_pubkey may be
167         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
168         /// (derived as above), and the to_self_delay contained here to
169         /// chan_utils::get_revokeable_redeemscript.
170         DelayedPaymentOutput(DelayedPaymentOutputDescriptor),
171         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
172         /// corresponds to the public key in Sign::pubkeys().payment_point).
173         /// The witness in the spending input, is, thus, simply:
174         /// <BIP 143 signature> <payment key>
175         ///
176         /// These are generally the result of our counterparty having broadcast the current state,
177         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
178         StaticPaymentOutput(StaticPaymentOutputDescriptor),
179 }
180
181 impl_writeable_tlv_based_enum!(SpendableOutputDescriptor,
182         (0, StaticOutput) => {
183                 (0, outpoint, required),
184                 (2, output, required),
185         },
186 ;
187         (1, DelayedPaymentOutput),
188         (2, StaticPaymentOutput),
189 );
190
191 /// A trait to sign lightning channel transactions as described in BOLT 3.
192 ///
193 /// Signing services could be implemented on a hardware wallet. In this case,
194 /// the current Sign would be a front-end on top of a communication
195 /// channel connected to your secure device and lightning key material wouldn't
196 /// reside on a hot server. Nevertheless, a this deployment would still need
197 /// to trust the ChannelManager to avoid loss of funds as this latest component
198 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
199 ///
200 /// A more secure iteration would be to use hashlock (or payment points) to pair
201 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
202 /// at the price of more state and computation on the hardware wallet side. In the future,
203 /// we are looking forward to design such interface.
204 ///
205 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
206 /// to act, as liveness and breach reply correctness are always going to be hard requirements
207 /// of LN security model, orthogonal of key management issues.
208 // TODO: We should remove Clone by instead requesting a new Sign copy when we create
209 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
210 pub trait BaseSign {
211         /// Gets the per-commitment point for a specific commitment number
212         ///
213         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
214         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey;
215         /// Gets the commitment secret for a specific commitment number as part of the revocation process
216         ///
217         /// An external signer implementation should error here if the commitment was already signed
218         /// and should refuse to sign it in the future.
219         ///
220         /// May be called more than once for the same index.
221         ///
222         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
223         // TODO: return a Result so we can signal a validation error
224         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
225         /// Validate the counterparty's signatures on the holder commitment transaction and HTLCs.
226         ///
227         /// This is required in order for the signer to make sure that releasing a commitment
228         /// secret won't leave us without a broadcastable holder transaction.
229         /// Policy checks should be implemented in this function, including checking the amount
230         /// sent to us and checking the HTLCs.
231         ///
232         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
233         /// A validating signer should ensure that an HTLC output is removed only when the matching
234         /// preimage is provided, or when the value to holder is restored.
235         ///
236         /// NOTE: all the relevant preimages will be provided, but there may also be additional
237         /// irrelevant or duplicate preimages.
238         fn validate_holder_commitment(&self, holder_tx: &HolderCommitmentTransaction, preimages: Vec<PaymentPreimage>) -> Result<(), ()>;
239         /// Gets the holder's channel public keys and basepoints
240         fn pubkeys(&self) -> &ChannelPublicKeys;
241         /// Gets an arbitrary identifier describing the set of keys which are provided back to you in
242         /// some SpendableOutputDescriptor types. This should be sufficient to identify this
243         /// Sign object uniquely and lookup or re-derive its keys.
244         fn channel_keys_id(&self) -> [u8; 32];
245
246         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
247         ///
248         /// Note that if signing fails or is rejected, the channel will be force-closed.
249         ///
250         /// Policy checks should be implemented in this function, including checking the amount
251         /// sent to us and checking the HTLCs.
252         ///
253         /// The preimages of outgoing HTLCs that were fulfilled since the last commitment are provided.
254         /// A validating signer should ensure that an HTLC output is removed only when the matching
255         /// preimage is provided, or when the value to holder is restored.
256         ///
257         /// NOTE: all the relevant preimages will be provided, but there may also be additional
258         /// irrelevant or duplicate preimages.
259         //
260         // TODO: Document the things someone using this interface should enforce before signing.
261         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
262         /// Validate the counterparty's revocation.
263         ///
264         /// This is required in order for the signer to make sure that the state has moved
265         /// forward and it is safe to sign the next counterparty commitment.
266         fn validate_counterparty_revocation(&self, idx: u64, secret: &SecretKey) -> Result<(), ()>;
267
268         /// Create a signatures for a holder's commitment transaction and its claiming HTLC transactions.
269         /// This will only ever be called with a non-revoked commitment_tx.  This will be called with the
270         /// latest commitment_tx when we initiate a force-close.
271         /// This will be called with the previous latest, just to get claiming HTLC signatures, if we are
272         /// reacting to a ChannelMonitor replica that decided to broadcast before it had been updated to
273         /// the latest.
274         /// This may be called multiple times for the same transaction.
275         ///
276         /// An external signer implementation should check that the commitment has not been revoked.
277         ///
278         /// May return Err if key derivation fails.  Callers, such as ChannelMonitor, will panic in such a case.
279         //
280         // TODO: Document the things someone using this interface should enforce before signing.
281         // TODO: Key derivation failure should panic rather than Err
282         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
283
284         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
285         /// transactions which will be broadcasted later, after the channel has moved on to a newer
286         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
287         /// get called once.
288         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
289         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()>;
290
291         /// Create a signature for the given input in a transaction spending an HTLC transaction output
292         /// or a commitment transaction `to_local` output when our counterparty broadcasts an old state.
293         ///
294         /// A justice transaction may claim multiple outputs at the same time if timelocks are
295         /// similar, but only a signature for the input at index `input` should be signed for here.
296         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
297         /// to an upcoming timelock expiration.
298         ///
299         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
300         ///
301         /// per_commitment_key is revocation secret which was provided by our counterparty when they
302         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
303         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
304         /// so).
305         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
306
307         /// Create a signature for the given input in a transaction spending a commitment transaction
308         /// HTLC output when our counterparty broadcasts an old state.
309         ///
310         /// A justice transaction may claim multiple outputs at the same time if timelocks are
311         /// similar, but only a signature for the input at index `input` should be signed for here.
312         /// It may be called multiple times for same output(s) if a fee-bump is needed with regards
313         /// to an upcoming timelock expiration.
314         ///
315         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
316         ///
317         /// per_commitment_key is revocation secret which was provided by our counterparty when they
318         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
319         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
320         /// so).
321         ///
322         /// htlc holds HTLC elements (hash, timelock), thus changing the format of the witness script
323         /// (which is committed to in the BIP 143 signatures).
324         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
325
326         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
327         /// transaction, either offered or received.
328         ///
329         /// Such a transaction may claim multiples offered outputs at same time if we know the
330         /// preimage for each when we create it, but only the input at index `input` should be
331         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
332         /// needed with regards to an upcoming timelock expiration.
333         ///
334         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
335         /// outputs.
336         ///
337         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
338         ///
339         /// Per_commitment_point is the dynamic point corresponding to the channel state
340         /// detected onchain. It has been generated by our counterparty and is used to derive
341         /// channel state keys, which are then included in the witness script and committed to in the
342         /// BIP 143 signature.
343         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
344
345         /// Create a signature for a (proposed) closing transaction.
346         ///
347         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
348         /// chosen to forgo their output as dust.
349         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()>;
350
351         /// Signs a channel announcement message with our funding key and our node secret key (aka
352         /// node_id or network_key), proving it comes from one of the channel participants.
353         ///
354         /// The first returned signature should be from our node secret key, the second from our
355         /// funding key.
356         ///
357         /// Note that if this fails or is rejected, the channel will not be publicly announced and
358         /// our counterparty may (though likely will not) close the channel on us for violating the
359         /// protocol.
360         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
361                 -> Result<(Signature, Signature), ()>;
362
363         /// Set the counterparty static channel data, including basepoints,
364         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
365         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
366         /// they MUST NOT be allowed to change to different values once set.
367         ///
368         /// channel_parameters.is_populated() MUST be true.
369         ///
370         /// We bind holder_selected_contest_delay late here for API convenience.
371         ///
372         /// Will be called before any signatures are applied.
373         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
374 }
375
376 /// A cloneable signer.
377 ///
378 /// Although we require signers to be cloneable, it may be useful for developers to be able to use
379 /// signers in an un-sized way, for example as `dyn BaseSign`. Therefore we separate the Clone trait,
380 /// which implies Sized, into this derived trait.
381 pub trait Sign: BaseSign + Writeable + Clone {
382 }
383
384 /// Specifies the recipient of an invoice, to indicate to [`KeysInterface::sign_invoice`] what node
385 /// secret key should be used to sign the invoice.
386 pub enum Recipient {
387         /// The invoice should be signed with the local node secret key.
388         Node,
389         /// The invoice should be signed with the phantom node secret key. This secret key must be the
390         /// same for all nodes participating in the [phantom node payment].
391         ///
392         /// [phantom node payment]: PhantomKeysManager
393         PhantomNode,
394 }
395
396 /// A trait to describe an object which can get user secrets and key material.
397 pub trait KeysInterface {
398         /// A type which implements Sign which will be returned by get_channel_signer.
399         type Signer : Sign;
400
401         /// Get node secret key based on the provided [`Recipient`].
402         ///
403         /// The node_id/network_key is the public key that corresponds to this secret key.
404         ///
405         /// This method must return the same value each time it is called with a given `Recipient`
406         /// parameter.
407         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()>;
408         /// Gets the ECDH shared secret of our [`node secret`] and `other_key`, multiplying by `tweak` if
409         /// one is provided. Note that this tweak can be applied to `other_key` instead of our node
410         /// secret, though this is less efficient.
411         ///
412         /// [`node secret`]: Self::get_node_secret
413         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&[u8; 32]>) -> Result<SharedSecret, ()>;
414         /// Get a script pubkey which we send funds to when claiming on-chain contestable outputs.
415         ///
416         /// This method should return a different value each time it is called, to avoid linking
417         /// on-chain funds across channels as controlled to the same user.
418         fn get_destination_script(&self) -> Script;
419         /// Get a script pubkey which we will send funds to when closing a channel.
420         ///
421         /// This method should return a different value each time it is called, to avoid linking
422         /// on-chain funds across channels as controlled to the same user.
423         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript;
424         /// Get a new set of Sign for per-channel secrets. These MUST be unique even if you
425         /// restarted with some stale data!
426         ///
427         /// This method must return a different value each time it is called.
428         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer;
429         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
430         /// onion packets and for temporary channel IDs. There is no requirement that these be
431         /// persisted anywhere, though they must be unique across restarts.
432         ///
433         /// This method must return a different value each time it is called.
434         fn get_secure_random_bytes(&self) -> [u8; 32];
435
436         /// Reads a `Signer` for this `KeysInterface` from the given input stream.
437         /// This is only called during deserialization of other objects which contain
438         /// `Sign`-implementing objects (ie `ChannelMonitor`s and `ChannelManager`s).
439         /// The bytes are exactly those which `<Self::Signer as Writeable>::write()` writes, and
440         /// contain no versioning scheme. You may wish to include your own version prefix and ensure
441         /// you've read all of the provided bytes to ensure no corruption occurred.
442         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError>;
443
444         /// Sign an invoice.
445         /// By parameterizing by the raw invoice bytes instead of the hash, we allow implementors of
446         /// this trait to parse the invoice and make sure they're signing what they expect, rather than
447         /// blindly signing the hash.
448         /// The hrp is ascii bytes, while the invoice data is base32.
449         ///
450         /// The secret key used to sign the invoice is dependent on the [`Recipient`].
451         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], receipient: Recipient) -> Result<RecoverableSignature, ()>;
452
453         /// Get secret key material as bytes for use in encrypting and decrypting inbound payment data.
454         ///
455         /// If the implementor of this trait supports [phantom node payments], then every node that is
456         /// intended to be included in the phantom invoice route hints must return the same value from
457         /// this method.
458         //  This is because LDK avoids storing inbound payment data by encrypting payment data in the
459         //  payment hash and/or payment secret, therefore for a payment to be receivable by multiple
460         //  nodes, they must share the key that encrypts this payment data.
461         ///
462         /// This method must return the same value each time it is called.
463         ///
464         /// [phantom node payments]: PhantomKeysManager
465         fn get_inbound_payment_key_material(&self) -> KeyMaterial;
466 }
467
468 #[derive(Clone)]
469 /// A simple implementation of Sign that just keeps the private keys in memory.
470 ///
471 /// This implementation performs no policy checks and is insufficient by itself as
472 /// a secure external signer.
473 pub struct InMemorySigner {
474         /// Private key of anchor tx
475         pub funding_key: SecretKey,
476         /// Holder secret key for blinded revocation pubkey
477         pub revocation_base_key: SecretKey,
478         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
479         pub payment_key: SecretKey,
480         /// Holder secret key used in HTLC tx
481         pub delayed_payment_base_key: SecretKey,
482         /// Holder htlc secret key used in commitment tx htlc outputs
483         pub htlc_base_key: SecretKey,
484         /// Commitment seed
485         pub commitment_seed: [u8; 32],
486         /// Holder public keys and basepoints
487         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
488         /// Private key of our node secret, used for signing channel announcements
489         node_secret: SecretKey,
490         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
491         channel_parameters: Option<ChannelTransactionParameters>,
492         /// The total value of this channel
493         channel_value_satoshis: u64,
494         /// Key derivation parameters
495         channel_keys_id: [u8; 32],
496 }
497
498 impl InMemorySigner {
499         /// Create a new InMemorySigner
500         pub fn new<C: Signing>(
501                 secp_ctx: &Secp256k1<C>,
502                 node_secret: SecretKey,
503                 funding_key: SecretKey,
504                 revocation_base_key: SecretKey,
505                 payment_key: SecretKey,
506                 delayed_payment_base_key: SecretKey,
507                 htlc_base_key: SecretKey,
508                 commitment_seed: [u8; 32],
509                 channel_value_satoshis: u64,
510                 channel_keys_id: [u8; 32]) -> InMemorySigner {
511                 let holder_channel_pubkeys =
512                         InMemorySigner::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
513                                                              &payment_key, &delayed_payment_base_key,
514                                                              &htlc_base_key);
515                 InMemorySigner {
516                         funding_key,
517                         revocation_base_key,
518                         payment_key,
519                         delayed_payment_base_key,
520                         htlc_base_key,
521                         commitment_seed,
522                         node_secret,
523                         channel_value_satoshis,
524                         holder_channel_pubkeys,
525                         channel_parameters: None,
526                         channel_keys_id,
527                 }
528         }
529
530         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
531                                        funding_key: &SecretKey,
532                                        revocation_base_key: &SecretKey,
533                                        payment_key: &SecretKey,
534                                        delayed_payment_base_key: &SecretKey,
535                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
536                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
537                 ChannelPublicKeys {
538                         funding_pubkey: from_secret(&funding_key),
539                         revocation_basepoint: from_secret(&revocation_base_key),
540                         payment_point: from_secret(&payment_key),
541                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
542                         htlc_basepoint: from_secret(&htlc_base_key),
543                 }
544         }
545
546         /// Counterparty pubkeys.
547         /// Will panic if ready_channel wasn't called.
548         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
549
550         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
551         /// transactions, ie the amount of time that we have to wait to recover our funds if we
552         /// broadcast a transaction.
553         /// Will panic if ready_channel wasn't called.
554         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
555
556         /// The contest_delay value specified by us and applied on transactions broadcastable
557         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
558         /// if they broadcast a transaction.
559         /// Will panic if ready_channel wasn't called.
560         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
561
562         /// Whether the holder is the initiator
563         /// Will panic if ready_channel wasn't called.
564         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
565
566         /// Funding outpoint
567         /// Will panic if ready_channel wasn't called.
568         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
569
570         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
571         /// building transactions.
572         ///
573         /// Will panic if ready_channel wasn't called.
574         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
575                 self.channel_parameters.as_ref().unwrap()
576         }
577
578         /// Whether anchors should be used.
579         /// Will panic if ready_channel wasn't called.
580         pub fn opt_anchors(&self) -> bool {
581                 self.get_channel_parameters().opt_anchors.is_some()
582         }
583
584         /// Sign the single input of spend_tx at index `input_idx` which spends the output
585         /// described by descriptor, returning the witness stack for the input.
586         ///
587         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
588         /// is not spending the outpoint described by `descriptor.outpoint`,
589         /// or if an output descriptor script_pubkey does not match the one we can spend.
590         pub fn sign_counterparty_payment_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &StaticPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
591                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
592                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
593                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
594                 // bindings updates to support SigHashCache objects).
595                 if spend_tx.input.len() <= input_idx { return Err(()); }
596                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
597                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
598
599                 let remotepubkey = self.pubkeys().payment_point;
600                 let witness_script = bitcoin::Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Testnet).script_pubkey();
601                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
602                 let remotesig = sign(secp_ctx, &sighash, &self.payment_key);
603                 let payment_script = bitcoin::Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: remotepubkey}, Network::Bitcoin).unwrap().script_pubkey();
604
605                 if payment_script != descriptor.output.script_pubkey  { return Err(()); }
606
607                 let mut witness = Vec::with_capacity(2);
608                 witness.push(remotesig.serialize_der().to_vec());
609                 witness[0].push(EcdsaSighashType::All as u8);
610                 witness.push(remotepubkey.serialize().to_vec());
611                 Ok(witness)
612         }
613
614         /// Sign the single input of spend_tx at index `input_idx` which spends the output
615         /// described by descriptor, returning the witness stack for the input.
616         ///
617         /// Returns an Err if the input at input_idx does not exist, has a non-empty script_sig,
618         /// is not spending the outpoint described by `descriptor.outpoint`, does not have a
619         /// sequence set to `descriptor.to_self_delay`, or if an output descriptor
620         /// script_pubkey does not match the one we can spend.
621         pub fn sign_dynamic_p2wsh_input<C: Signing>(&self, spend_tx: &Transaction, input_idx: usize, descriptor: &DelayedPaymentOutputDescriptor, secp_ctx: &Secp256k1<C>) -> Result<Vec<Vec<u8>>, ()> {
622                 // TODO: We really should be taking the SigHashCache as a parameter here instead of
623                 // spend_tx, but ideally the SigHashCache would expose the transaction's inputs read-only
624                 // so that we can check them. This requires upstream rust-bitcoin changes (as well as
625                 // bindings updates to support SigHashCache objects).
626                 if spend_tx.input.len() <= input_idx { return Err(()); }
627                 if !spend_tx.input[input_idx].script_sig.is_empty() { return Err(()); }
628                 if spend_tx.input[input_idx].previous_output != descriptor.outpoint.into_bitcoin_outpoint() { return Err(()); }
629                 if spend_tx.input[input_idx].sequence.0 != descriptor.to_self_delay as u32 { return Err(()); }
630
631                 let delayed_payment_key = chan_utils::derive_private_key(&secp_ctx, &descriptor.per_commitment_point, &self.delayed_payment_base_key)
632                         .expect("We constructed the payment_base_key, so we can only fail here if the RNG is busted.");
633                 let delayed_payment_pubkey = PublicKey::from_secret_key(&secp_ctx, &delayed_payment_key);
634                 let witness_script = chan_utils::get_revokeable_redeemscript(&descriptor.revocation_pubkey, descriptor.to_self_delay, &delayed_payment_pubkey);
635                 let sighash = hash_to_message!(&sighash::SighashCache::new(spend_tx).segwit_signature_hash(input_idx, &witness_script, descriptor.output.value, EcdsaSighashType::All).unwrap()[..]);
636                 let local_delayedsig = sign(secp_ctx, &sighash, &delayed_payment_key);
637                 let payment_script = bitcoin::Address::p2wsh(&witness_script, Network::Bitcoin).script_pubkey();
638
639                 if descriptor.output.script_pubkey != payment_script { return Err(()); }
640
641                 let mut witness = Vec::with_capacity(3);
642                 witness.push(local_delayedsig.serialize_der().to_vec());
643                 witness[0].push(EcdsaSighashType::All as u8);
644                 witness.push(vec!()); //MINIMALIF
645                 witness.push(witness_script.clone().into_bytes());
646                 Ok(witness)
647         }
648 }
649
650 impl BaseSign for InMemorySigner {
651         fn get_per_commitment_point(&self, idx: u64, secp_ctx: &Secp256k1<secp256k1::All>) -> PublicKey {
652                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
653                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
654         }
655
656         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
657                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
658         }
659
660         fn validate_holder_commitment(&self, _holder_tx: &HolderCommitmentTransaction, _preimages: Vec<PaymentPreimage>) -> Result<(), ()> {
661                 Ok(())
662         }
663
664         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
665         fn channel_keys_id(&self) -> [u8; 32] { self.channel_keys_id }
666
667         fn sign_counterparty_commitment(&self, commitment_tx: &CommitmentTransaction, _preimages: Vec<PaymentPreimage>, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
668                 let trusted_tx = commitment_tx.trust();
669                 let keys = trusted_tx.keys();
670
671                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
672                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
673
674                 let built_tx = trusted_tx.built_transaction();
675                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
676                 let commitment_txid = built_tx.txid;
677
678                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
679                 for htlc in commitment_tx.htlcs() {
680                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, self.opt_anchors(), &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
681                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, self.opt_anchors(), &keys);
682                         let htlc_sighashtype = if self.opt_anchors() { EcdsaSighashType::SinglePlusAnyoneCanPay } else { EcdsaSighashType::All };
683                         let htlc_sighash = hash_to_message!(&sighash::SighashCache::new(&htlc_tx).segwit_signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, htlc_sighashtype).unwrap()[..]);
684                         let holder_htlc_key = chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key).map_err(|_| ())?;
685                         htlc_sigs.push(sign(secp_ctx, &htlc_sighash, &holder_htlc_key));
686                 }
687
688                 Ok((commitment_sig, htlc_sigs))
689         }
690
691         fn validate_counterparty_revocation(&self, _idx: u64, _secret: &SecretKey) -> Result<(), ()> {
692                 Ok(())
693         }
694
695         fn sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
696                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
697                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
698                 let trusted_tx = commitment_tx.trust();
699                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
700                 let channel_parameters = self.get_channel_parameters();
701                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
702                 Ok((sig, htlc_sigs))
703         }
704
705         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
706         fn unsafe_sign_holder_commitment_and_htlcs(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<(Signature, Vec<Signature>), ()> {
707                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
708                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
709                 let trusted_tx = commitment_tx.trust();
710                 let sig = trusted_tx.built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
711                 let channel_parameters = self.get_channel_parameters();
712                 let htlc_sigs = trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)?;
713                 Ok((sig, htlc_sigs))
714         }
715
716         fn sign_justice_revoked_output(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
717                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
718                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
719                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
720                 let witness_script = {
721                         let counterparty_delayedpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint).map_err(|_| ())?;
722                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
723                 };
724                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
725                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
726                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
727         }
728
729         fn sign_justice_revoked_htlc(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
730                 let revocation_key = chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key).map_err(|_| ())?;
731                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
732                 let revocation_pubkey = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint).map_err(|_| ())?;
733                 let witness_script = {
734                         let counterparty_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint).map_err(|_| ())?;
735                         let holder_htlcpubkey = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint).map_err(|_| ())?;
736                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
737                 };
738                 let mut sighash_parts = sighash::SighashCache::new(justice_tx);
739                 let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
740                 return Ok(sign(secp_ctx, &sighash, &revocation_key))
741         }
742
743         fn sign_counterparty_htlc_transaction(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
744                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
745                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
746                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
747                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
748                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, self.opt_anchors(), &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
749                                         } else { return Err(()) }
750                                 } else { return Err(()) }
751                         } else { return Err(()) };
752                         let mut sighash_parts = sighash::SighashCache::new(htlc_tx);
753                         let sighash = hash_to_message!(&sighash_parts.segwit_signature_hash(input, &witness_script, amount, EcdsaSighashType::All).unwrap()[..]);
754                         return Ok(sign(secp_ctx, &sighash, &htlc_key))
755                 }
756                 Err(())
757         }
758
759         fn sign_closing_transaction(&self, closing_tx: &ClosingTransaction, secp_ctx: &Secp256k1<secp256k1::All>) -> Result<Signature, ()> {
760                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
761                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
762                 Ok(closing_tx.trust().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
763         }
764
765         fn sign_channel_announcement(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<secp256k1::All>)
766         -> Result<(Signature, Signature), ()> {
767                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
768                 Ok((sign(secp_ctx, &msghash, &self.node_secret), sign(secp_ctx, &msghash, &self.funding_key)))
769         }
770
771         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
772                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
773                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
774                 self.channel_parameters = Some(channel_parameters.clone());
775         }
776 }
777
778 const SERIALIZATION_VERSION: u8 = 1;
779 const MIN_SERIALIZATION_VERSION: u8 = 1;
780
781 impl Sign for InMemorySigner {}
782
783 impl Writeable for InMemorySigner {
784         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
785                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
786
787                 self.funding_key.write(writer)?;
788                 self.revocation_base_key.write(writer)?;
789                 self.payment_key.write(writer)?;
790                 self.delayed_payment_base_key.write(writer)?;
791                 self.htlc_base_key.write(writer)?;
792                 self.commitment_seed.write(writer)?;
793                 self.channel_parameters.write(writer)?;
794                 self.channel_value_satoshis.write(writer)?;
795                 self.channel_keys_id.write(writer)?;
796
797                 write_tlv_fields!(writer, {});
798
799                 Ok(())
800         }
801 }
802
803 impl ReadableArgs<SecretKey> for InMemorySigner {
804         fn read<R: io::Read>(reader: &mut R, node_secret: SecretKey) -> Result<Self, DecodeError> {
805                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
806
807                 let funding_key = Readable::read(reader)?;
808                 let revocation_base_key = Readable::read(reader)?;
809                 let payment_key = Readable::read(reader)?;
810                 let delayed_payment_base_key = Readable::read(reader)?;
811                 let htlc_base_key = Readable::read(reader)?;
812                 let commitment_seed = Readable::read(reader)?;
813                 let counterparty_channel_data = Readable::read(reader)?;
814                 let channel_value_satoshis = Readable::read(reader)?;
815                 let secp_ctx = Secp256k1::signing_only();
816                 let holder_channel_pubkeys =
817                         InMemorySigner::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
818                                                              &payment_key, &delayed_payment_base_key,
819                                                              &htlc_base_key);
820                 let keys_id = Readable::read(reader)?;
821
822                 read_tlv_fields!(reader, {});
823
824                 Ok(InMemorySigner {
825                         funding_key,
826                         revocation_base_key,
827                         payment_key,
828                         delayed_payment_base_key,
829                         htlc_base_key,
830                         node_secret,
831                         commitment_seed,
832                         channel_value_satoshis,
833                         holder_channel_pubkeys,
834                         channel_parameters: counterparty_channel_data,
835                         channel_keys_id: keys_id,
836                 })
837         }
838 }
839
840 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
841 /// and derives keys from that.
842 ///
843 /// Your node_id is seed/0'
844 /// ChannelMonitor closes may use seed/1'
845 /// Cooperative closes may use seed/2'
846 /// The two close keys may be needed to claim on-chain funds!
847 ///
848 /// This struct cannot be used for nodes that wish to support receiving phantom payments;
849 /// [`PhantomKeysManager`] must be used instead.
850 ///
851 /// Note that switching between this struct and [`PhantomKeysManager`] will invalidate any
852 /// previously issued invoices and attempts to pay previous invoices will fail.
853 pub struct KeysManager {
854         secp_ctx: Secp256k1<secp256k1::All>,
855         node_secret: SecretKey,
856         inbound_payment_key: KeyMaterial,
857         destination_script: Script,
858         shutdown_pubkey: PublicKey,
859         channel_master_key: ExtendedPrivKey,
860         channel_child_index: AtomicUsize,
861
862         rand_bytes_master_key: ExtendedPrivKey,
863         rand_bytes_child_index: AtomicUsize,
864         rand_bytes_unique_start: Sha256State,
865
866         seed: [u8; 32],
867         starting_time_secs: u64,
868         starting_time_nanos: u32,
869 }
870
871 impl KeysManager {
872         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
873         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
874         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
875         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
876         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
877         /// simply use the current time (with very high precision).
878         ///
879         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
880         /// obviously, starting_time should be unique every time you reload the library - it is only
881         /// used to generate new ephemeral key data (which will be stored by the individual channel if
882         /// necessary).
883         ///
884         /// Note that the seed is required to recover certain on-chain funds independent of
885         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
886         /// channel, and some on-chain during-closing funds.
887         ///
888         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
889         /// versions. Once the library is more fully supported, the docs will be updated to include a
890         /// detailed description of the guarantee.
891         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32) -> Self {
892                 let secp_ctx = Secp256k1::new();
893                 // Note that when we aren't serializing the key, network doesn't matter
894                 match ExtendedPrivKey::new_master(Network::Testnet, seed) {
895                         Ok(master_key) => {
896                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key;
897                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
898                                         Ok(destination_key) => {
899                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_priv(&secp_ctx, &destination_key).to_pub().to_bytes());
900                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
901                                                               .push_slice(&wpubkey_hash.into_inner())
902                                                               .into_script()
903                                         },
904                                         Err(_) => panic!("Your RNG is busted"),
905                                 };
906                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
907                                         Ok(shutdown_key) => ExtendedPubKey::from_priv(&secp_ctx, &shutdown_key).public_key,
908                                         Err(_) => panic!("Your RNG is busted"),
909                                 };
910                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
911                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
912                                 let inbound_payment_key: SecretKey = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted").private_key;
913                                 let mut inbound_pmt_key_bytes = [0; 32];
914                                 inbound_pmt_key_bytes.copy_from_slice(&inbound_payment_key[..]);
915
916                                 let mut rand_bytes_unique_start = Sha256::engine();
917                                 rand_bytes_unique_start.input(&byte_utils::be64_to_array(starting_time_secs));
918                                 rand_bytes_unique_start.input(&byte_utils::be32_to_array(starting_time_nanos));
919                                 rand_bytes_unique_start.input(seed);
920
921                                 let mut res = KeysManager {
922                                         secp_ctx,
923                                         node_secret,
924                                         inbound_payment_key: KeyMaterial(inbound_pmt_key_bytes),
925
926                                         destination_script,
927                                         shutdown_pubkey,
928
929                                         channel_master_key,
930                                         channel_child_index: AtomicUsize::new(0),
931
932                                         rand_bytes_master_key,
933                                         rand_bytes_child_index: AtomicUsize::new(0),
934                                         rand_bytes_unique_start,
935
936                                         seed: *seed,
937                                         starting_time_secs,
938                                         starting_time_nanos,
939                                 };
940                                 let secp_seed = res.get_secure_random_bytes();
941                                 res.secp_ctx.seeded_randomize(&secp_seed);
942                                 res
943                         },
944                         Err(_) => panic!("Your rng is busted"),
945                 }
946         }
947         /// Derive an old Sign containing per-channel secrets based on a key derivation parameters.
948         ///
949         /// Key derivation parameters are accessible through a per-channel secrets
950         /// Sign::channel_keys_id and is provided inside DynamicOuputP2WSH in case of
951         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
952         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
953                 let chan_id = byte_utils::slice_to_be64(&params[0..8]);
954                 assert!(chan_id <= core::u32::MAX as u64); // Otherwise the params field wasn't created by us
955                 let mut unique_start = Sha256::engine();
956                 unique_start.input(params);
957                 unique_start.input(&self.seed);
958
959                 // We only seriously intend to rely on the channel_master_key for true secure
960                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
961                 // starting_time provided in the constructor) to be unique.
962                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id as u32).expect("key space exhausted")).expect("Your RNG is busted");
963                 unique_start.input(&child_privkey.private_key[..]);
964
965                 let seed = Sha256::from_engine(unique_start).into_inner();
966
967                 let commitment_seed = {
968                         let mut sha = Sha256::engine();
969                         sha.input(&seed);
970                         sha.input(&b"commitment seed"[..]);
971                         Sha256::from_engine(sha).into_inner()
972                 };
973                 macro_rules! key_step {
974                         ($info: expr, $prev_key: expr) => {{
975                                 let mut sha = Sha256::engine();
976                                 sha.input(&seed);
977                                 sha.input(&$prev_key[..]);
978                                 sha.input(&$info[..]);
979                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
980                         }}
981                 }
982                 let funding_key = key_step!(b"funding key", commitment_seed);
983                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
984                 let payment_key = key_step!(b"payment key", revocation_base_key);
985                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
986                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
987
988                 InMemorySigner::new(
989                         &self.secp_ctx,
990                         self.node_secret,
991                         funding_key,
992                         revocation_base_key,
993                         payment_key,
994                         delayed_payment_base_key,
995                         htlc_base_key,
996                         commitment_seed,
997                         channel_value_satoshis,
998                         params.clone()
999                 )
1000         }
1001
1002         /// Creates a Transaction which spends the given descriptors to the given outputs, plus an
1003         /// output to the given change destination (if sufficient change value remains). The
1004         /// transaction will have a feerate, at least, of the given value.
1005         ///
1006         /// Returns `Err(())` if the output value is greater than the input value minus required fee,
1007         /// if a descriptor was duplicated, or if an output descriptor `script_pubkey`
1008         /// does not match the one we can spend.
1009         ///
1010         /// We do not enforce that outputs meet the dust limit or that any output scripts are standard.
1011         ///
1012         /// May panic if the `SpendableOutputDescriptor`s were not generated by Channels which used
1013         /// this KeysManager or one of the `InMemorySigner` created by this KeysManager.
1014         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1015                 let mut input = Vec::new();
1016                 let mut input_value = 0;
1017                 let mut witness_weight = 0;
1018                 let mut output_set = HashSet::with_capacity(descriptors.len());
1019                 for outp in descriptors {
1020                         match outp {
1021                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1022                                         input.push(TxIn {
1023                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1024                                                 script_sig: Script::new(),
1025                                                 sequence: Sequence::ZERO,
1026                                                 witness: Witness::new(),
1027                                         });
1028                                         witness_weight += StaticPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1029                                         input_value += descriptor.output.value;
1030                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1031                                 },
1032                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1033                                         input.push(TxIn {
1034                                                 previous_output: descriptor.outpoint.into_bitcoin_outpoint(),
1035                                                 script_sig: Script::new(),
1036                                                 sequence: Sequence(descriptor.to_self_delay as u32),
1037                                                 witness: Witness::new(),
1038                                         });
1039                                         witness_weight += DelayedPaymentOutputDescriptor::MAX_WITNESS_LENGTH;
1040                                         input_value += descriptor.output.value;
1041                                         if !output_set.insert(descriptor.outpoint) { return Err(()); }
1042                                 },
1043                                 SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
1044                                         input.push(TxIn {
1045                                                 previous_output: outpoint.into_bitcoin_outpoint(),
1046                                                 script_sig: Script::new(),
1047                                                 sequence: Sequence::ZERO,
1048                                                 witness: Witness::new(),
1049                                         });
1050                                         witness_weight += 1 + 73 + 34;
1051                                         input_value += output.value;
1052                                         if !output_set.insert(*outpoint) { return Err(()); }
1053                                 }
1054                         }
1055                         if input_value > MAX_VALUE_MSAT / 1000 { return Err(()); }
1056                 }
1057                 let mut spend_tx = Transaction {
1058                         version: 2,
1059                         lock_time: PackedLockTime(0),
1060                         input,
1061                         output: outputs,
1062                 };
1063                 let expected_max_weight =
1064                         transaction_utils::maybe_add_change_output(&mut spend_tx, input_value, witness_weight, feerate_sat_per_1000_weight, change_destination_script)?;
1065
1066                 let mut keys_cache: Option<(InMemorySigner, [u8; 32])> = None;
1067                 let mut input_idx = 0;
1068                 for outp in descriptors {
1069                         match outp {
1070                                 SpendableOutputDescriptor::StaticPaymentOutput(descriptor) => {
1071                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1072                                                 keys_cache = Some((
1073                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1074                                                         descriptor.channel_keys_id));
1075                                         }
1076                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_counterparty_payment_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1077                                 },
1078                                 SpendableOutputDescriptor::DelayedPaymentOutput(descriptor) => {
1079                                         if keys_cache.is_none() || keys_cache.as_ref().unwrap().1 != descriptor.channel_keys_id {
1080                                                 keys_cache = Some((
1081                                                         self.derive_channel_keys(descriptor.channel_value_satoshis, &descriptor.channel_keys_id),
1082                                                         descriptor.channel_keys_id));
1083                                         }
1084                                         spend_tx.input[input_idx].witness = Witness::from_vec(keys_cache.as_ref().unwrap().0.sign_dynamic_p2wsh_input(&spend_tx, input_idx, &descriptor, &secp_ctx)?);
1085                                 },
1086                                 SpendableOutputDescriptor::StaticOutput { ref output, .. } => {
1087                                         let derivation_idx = if output.script_pubkey == self.destination_script {
1088                                                 1
1089                                         } else {
1090                                                 2
1091                                         };
1092                                         let secret = {
1093                                                 // Note that when we aren't serializing the key, network doesn't matter
1094                                                 match ExtendedPrivKey::new_master(Network::Testnet, &self.seed) {
1095                                                         Ok(master_key) => {
1096                                                                 match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(derivation_idx).expect("key space exhausted")) {
1097                                                                         Ok(key) => key,
1098                                                                         Err(_) => panic!("Your RNG is busted"),
1099                                                                 }
1100                                                         }
1101                                                         Err(_) => panic!("Your rng is busted"),
1102                                                 }
1103                                         };
1104                                         let pubkey = ExtendedPubKey::from_priv(&secp_ctx, &secret).to_pub();
1105                                         if derivation_idx == 2 {
1106                                                 assert_eq!(pubkey.inner, self.shutdown_pubkey);
1107                                         }
1108                                         let witness_script = bitcoin::Address::p2pkh(&pubkey, Network::Testnet).script_pubkey();
1109                                         let payment_script = bitcoin::Address::p2wpkh(&pubkey, Network::Testnet).expect("uncompressed key found").script_pubkey();
1110
1111                                         if payment_script != output.script_pubkey { return Err(()); };
1112
1113                                         let sighash = hash_to_message!(&sighash::SighashCache::new(&spend_tx).segwit_signature_hash(input_idx, &witness_script, output.value, EcdsaSighashType::All).unwrap()[..]);
1114                                         let sig = sign(secp_ctx, &sighash, &secret.private_key);
1115                                         let mut sig_ser = sig.serialize_der().to_vec();
1116                                         sig_ser.push(EcdsaSighashType::All as u8);
1117                                         spend_tx.input[input_idx].witness.push(sig_ser);
1118                                         spend_tx.input[input_idx].witness.push(pubkey.inner.serialize().to_vec());
1119                                 },
1120                         }
1121                         input_idx += 1;
1122                 }
1123
1124                 debug_assert!(expected_max_weight >= spend_tx.weight());
1125                 // Note that witnesses with a signature vary somewhat in size, so allow
1126                 // `expected_max_weight` to overshoot by up to 3 bytes per input.
1127                 debug_assert!(expected_max_weight <= spend_tx.weight() + descriptors.len() * 3);
1128
1129                 Ok(spend_tx)
1130         }
1131 }
1132
1133 impl KeysInterface for KeysManager {
1134         type Signer = InMemorySigner;
1135
1136         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1137                 match recipient {
1138                         Recipient::Node => Ok(self.node_secret.clone()),
1139                         Recipient::PhantomNode => Err(())
1140                 }
1141         }
1142
1143         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&[u8; 32]>) -> Result<SharedSecret, ()> {
1144                 let mut node_secret = self.get_node_secret(recipient)?;
1145                 if let Some(tweak) = tweak {
1146                         node_secret = node_secret.mul_tweak(&Scalar::from_be_bytes(*tweak).unwrap()).map_err(|_| ())?;
1147                 }
1148                 Ok(SharedSecret::new(other_key, &node_secret))
1149         }
1150
1151         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1152                 self.inbound_payment_key.clone()
1153         }
1154
1155         fn get_destination_script(&self) -> Script {
1156                 self.destination_script.clone()
1157         }
1158
1159         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1160                 ShutdownScript::new_p2wpkh_from_pubkey(self.shutdown_pubkey.clone())
1161         }
1162
1163         fn get_channel_signer(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1164                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
1165                 assert!(child_ix <= core::u32::MAX as usize);
1166                 let mut id = [0; 32];
1167                 id[0..8].copy_from_slice(&byte_utils::be64_to_array(child_ix as u64));
1168                 id[8..16].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_nanos as u64));
1169                 id[16..24].copy_from_slice(&byte_utils::be64_to_array(self.starting_time_secs));
1170                 self.derive_channel_keys(channel_value_satoshis, &id)
1171         }
1172
1173         fn get_secure_random_bytes(&self) -> [u8; 32] {
1174                 let mut sha = self.rand_bytes_unique_start.clone();
1175
1176                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
1177                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
1178                 sha.input(&child_privkey.private_key[..]);
1179
1180                 sha.input(b"Unique Secure Random Bytes Salt");
1181                 Sha256::from_engine(sha).into_inner()
1182         }
1183
1184         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1185                 InMemorySigner::read(&mut io::Cursor::new(reader), self.node_secret.clone())
1186         }
1187
1188         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1189                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1190                 let secret = match recipient {
1191                         Recipient::Node => self.get_node_secret(Recipient::Node)?,
1192                         Recipient::PhantomNode => return Err(()),
1193                 };
1194                 Ok(self.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1195         }
1196 }
1197
1198 /// Similar to [`KeysManager`], but allows the node using this struct to receive phantom node
1199 /// payments.
1200 ///
1201 /// A phantom node payment is a payment made to a phantom invoice, which is an invoice that can be
1202 /// paid to one of multiple nodes. This works because we encode the invoice route hints such that
1203 /// LDK will recognize an incoming payment as destined for a phantom node, and collect the payment
1204 /// itself without ever needing to forward to this fake node.
1205 ///
1206 /// Phantom node payments are useful for load balancing between multiple LDK nodes. They also
1207 /// provide some fault tolerance, because payers will automatically retry paying other provided
1208 /// nodes in the case that one node goes down.
1209 ///
1210 /// Note that multi-path payments are not supported in phantom invoices for security reasons.
1211 //  In the hypothetical case that we did support MPP phantom payments, there would be no way for
1212 //  nodes to know when the full payment has been received (and the preimage can be released) without
1213 //  significantly compromising on our safety guarantees. I.e., if we expose the ability for the user
1214 //  to tell LDK when the preimage can be released, we open ourselves to attacks where the preimage
1215 //  is released too early.
1216 //
1217 /// Switching between this struct and [`KeysManager`] will invalidate any previously issued
1218 /// invoices and attempts to pay previous invoices will fail.
1219 pub struct PhantomKeysManager {
1220         inner: KeysManager,
1221         inbound_payment_key: KeyMaterial,
1222         phantom_secret: SecretKey,
1223 }
1224
1225 impl KeysInterface for PhantomKeysManager {
1226         type Signer = InMemorySigner;
1227
1228         fn get_node_secret(&self, recipient: Recipient) -> Result<SecretKey, ()> {
1229                 match recipient {
1230                         Recipient::Node => self.inner.get_node_secret(Recipient::Node),
1231                         Recipient::PhantomNode => Ok(self.phantom_secret.clone()),
1232                 }
1233         }
1234
1235         fn ecdh(&self, recipient: Recipient, other_key: &PublicKey, tweak: Option<&[u8; 32]>) -> Result<SharedSecret, ()> {
1236                 let mut node_secret = self.get_node_secret(recipient)?;
1237                 if let Some(tweak) = tweak {
1238                         node_secret = node_secret.mul_tweak(&Scalar::from_be_bytes(*tweak).unwrap()).map_err(|_| ())?;
1239                 }
1240                 Ok(SharedSecret::new(other_key, &node_secret))
1241         }
1242
1243         fn get_inbound_payment_key_material(&self) -> KeyMaterial {
1244                 self.inbound_payment_key.clone()
1245         }
1246
1247         fn get_destination_script(&self) -> Script {
1248                 self.inner.get_destination_script()
1249         }
1250
1251         fn get_shutdown_scriptpubkey(&self) -> ShutdownScript {
1252                 self.inner.get_shutdown_scriptpubkey()
1253         }
1254
1255         fn get_channel_signer(&self, inbound: bool, channel_value_satoshis: u64) -> Self::Signer {
1256                 self.inner.get_channel_signer(inbound, channel_value_satoshis)
1257         }
1258
1259         fn get_secure_random_bytes(&self) -> [u8; 32] {
1260                 self.inner.get_secure_random_bytes()
1261         }
1262
1263         fn read_chan_signer(&self, reader: &[u8]) -> Result<Self::Signer, DecodeError> {
1264                 self.inner.read_chan_signer(reader)
1265         }
1266
1267         fn sign_invoice(&self, hrp_bytes: &[u8], invoice_data: &[u5], recipient: Recipient) -> Result<RecoverableSignature, ()> {
1268                 let preimage = construct_invoice_preimage(&hrp_bytes, &invoice_data);
1269                 let secret = self.get_node_secret(recipient)?;
1270                 Ok(self.inner.secp_ctx.sign_ecdsa_recoverable(&hash_to_message!(&Sha256::hash(&preimage)), &secret))
1271         }
1272 }
1273
1274 impl PhantomKeysManager {
1275         /// Constructs a `PhantomKeysManager` given a 32-byte seed and an additional `cross_node_seed`
1276         /// that is shared across all nodes that intend to participate in [phantom node payments] together.
1277         ///
1278         /// See [`KeysManager::new`] for more information on `seed`, `starting_time_secs`, and
1279         /// `starting_time_nanos`.
1280         ///
1281         /// `cross_node_seed` must be the same across all phantom payment-receiving nodes and also the
1282         /// same across restarts, or else inbound payments may fail.
1283         ///
1284         /// [phantom node payments]: PhantomKeysManager
1285         pub fn new(seed: &[u8; 32], starting_time_secs: u64, starting_time_nanos: u32, cross_node_seed: &[u8; 32]) -> Self {
1286                 let inner = KeysManager::new(seed, starting_time_secs, starting_time_nanos);
1287                 let (inbound_key, phantom_key) = hkdf_extract_expand_twice(b"LDK Inbound and Phantom Payment Key Expansion", cross_node_seed);
1288                 Self {
1289                         inner,
1290                         inbound_payment_key: KeyMaterial(inbound_key),
1291                         phantom_secret: SecretKey::from_slice(&phantom_key).unwrap(),
1292                 }
1293         }
1294
1295         /// See [`KeysManager::spend_spendable_outputs`] for documentation on this method.
1296         pub fn spend_spendable_outputs<C: Signing>(&self, descriptors: &[&SpendableOutputDescriptor], outputs: Vec<TxOut>, change_destination_script: Script, feerate_sat_per_1000_weight: u32, secp_ctx: &Secp256k1<C>) -> Result<Transaction, ()> {
1297                 self.inner.spend_spendable_outputs(descriptors, outputs, change_destination_script, feerate_sat_per_1000_weight, secp_ctx)
1298         }
1299
1300         /// See [`KeysManager::derive_channel_keys`] for documentation on this method.
1301         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params: &[u8; 32]) -> InMemorySigner {
1302                 self.inner.derive_channel_keys(channel_value_satoshis, params)
1303         }
1304 }
1305
1306 // Ensure that BaseSign can have a vtable
1307 #[test]
1308 pub fn dyn_sign() {
1309         let _signer: Box<dyn BaseSign>;
1310 }