Drop requirement that ChannelKeys expose delayed_payment_basepoint
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
2 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
3 //! on-chain output which is theirs.
4
5 use bitcoin::blockdata::transaction::{Transaction, OutPoint, TxOut};
6 use bitcoin::blockdata::script::{Script, Builder};
7 use bitcoin::blockdata::opcodes;
8 use bitcoin::network::constants::Network;
9 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
10 use bitcoin::util::bip143;
11
12 use bitcoin::hashes::{Hash, HashEngine};
13 use bitcoin::hashes::sha256::HashEngine as Sha256State;
14 use bitcoin::hashes::sha256::Hash as Sha256;
15 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
16 use bitcoin::hash_types::WPubkeyHash;
17
18 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
19 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
20 use bitcoin::secp256k1;
21
22 use util::byte_utils;
23 use util::ser::{Writeable, Writer, Readable};
24
25 use ln::chan_utils;
26 use ln::chan_utils::{TxCreationKeys, HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, LocalCommitmentTransaction};
27 use ln::msgs;
28
29 use std::sync::atomic::{AtomicUsize, Ordering};
30 use std::io::Error;
31 use ln::msgs::DecodeError;
32
33 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
34 /// claim at any point in the future) an event is generated which you must track and be able to
35 /// spend on-chain. The information needed to do this is provided in this enum, including the
36 /// outpoint describing which txid and output index is available, the full output which exists at
37 /// that txid/index, and any keys or other information required to sign.
38 #[derive(Clone, PartialEq)]
39 pub enum SpendableOutputDescriptor {
40         /// An output to a script which was provided via KeysInterface, thus you should already know
41         /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
42         /// script_pubkey as it appears in the output.
43         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
44         /// on-chain using the payment preimage or after it has timed out.
45         StaticOutput {
46                 /// The outpoint which is spendable
47                 outpoint: OutPoint,
48                 /// The output which is referenced by the given outpoint.
49                 output: TxOut,
50         },
51         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
52         ///
53         /// The witness in the spending input should be:
54         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
55         ///
56         /// Note that the nSequence field in the spending input must be set to to_self_delay
57         /// (which means the transaction is not broadcastable until at least to_self_delay
58         /// blocks after the outpoint confirms).
59         ///
60         /// These are generally the result of a "revocable" output to us, spendable only by us unless
61         /// it is an output from an old state which we broadcast (which should never happen).
62         ///
63         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
64         /// local delayed_payment_base_key (ie the private key which corresponds to the pubkey in
65         /// ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
66         /// chan_utils::derive_private_key. The public key can be generated without the secret key
67         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
68         /// ChannelKeys::pubkeys().
69         ///
70         /// To derive the remote_revocation_pubkey provided here (which is used in the witness
71         /// script generation), you must pass the remote revocation_basepoint (which appears in the
72         /// call to ChannelKeys::set_remote_channel_pubkeys) and the provided per_commitment point
73         /// to chan_utils::derive_public_revocation_key.
74         ///
75         /// The witness script which is hashed and included in the output script_pubkey may be
76         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
77         /// (derived as above), and the to_self_delay contained here to
78         /// chan_utils::get_revokeable_redeemscript.
79         //
80         // TODO: we need to expose utility methods in KeyManager to do all the relevant derivation.
81         DynamicOutputP2WSH {
82                 /// The outpoint which is spendable
83                 outpoint: OutPoint,
84                 /// Per commitment point to derive delayed_payment_key by key holder
85                 per_commitment_point: PublicKey,
86                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
87                 /// the witness_script.
88                 to_self_delay: u16,
89                 /// The output which is referenced by the given outpoint
90                 output: TxOut,
91                 /// The channel keys state used to proceed to derivation of signing key. Must
92                 /// be pass to KeysInterface::derive_channel_keys.
93                 key_derivation_params: (u64, u64),
94                 /// The remote_revocation_pubkey used to derive witnessScript
95                 remote_revocation_pubkey: PublicKey
96         },
97         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
98         /// corresponds to the public key in ChannelKeys::pubkeys().payment_point).
99         /// The witness in the spending input, is, thus, simply:
100         /// <BIP 143 signature> <payment key>
101         ///
102         /// These are generally the result of our counterparty having broadcast the current state,
103         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
104         StaticOutputRemotePayment {
105                 /// The outpoint which is spendable
106                 outpoint: OutPoint,
107                 /// The output which is reference by the given outpoint
108                 output: TxOut,
109                 /// The channel keys state used to proceed to derivation of signing key. Must
110                 /// be pass to KeysInterface::derive_channel_keys.
111                 key_derivation_params: (u64, u64),
112         }
113 }
114
115 impl Writeable for SpendableOutputDescriptor {
116         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
117                 match self {
118                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
119                                 0u8.write(writer)?;
120                                 outpoint.write(writer)?;
121                                 output.write(writer)?;
122                         },
123                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref key_derivation_params, ref remote_revocation_pubkey } => {
124                                 1u8.write(writer)?;
125                                 outpoint.write(writer)?;
126                                 per_commitment_point.write(writer)?;
127                                 to_self_delay.write(writer)?;
128                                 output.write(writer)?;
129                                 key_derivation_params.0.write(writer)?;
130                                 key_derivation_params.1.write(writer)?;
131                                 remote_revocation_pubkey.write(writer)?;
132                         },
133                         &SpendableOutputDescriptor::StaticOutputRemotePayment { ref outpoint, ref output, ref key_derivation_params } => {
134                                 2u8.write(writer)?;
135                                 outpoint.write(writer)?;
136                                 output.write(writer)?;
137                                 key_derivation_params.0.write(writer)?;
138                                 key_derivation_params.1.write(writer)?;
139                         },
140                 }
141                 Ok(())
142         }
143 }
144
145 impl Readable for SpendableOutputDescriptor {
146         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
147                 match Readable::read(reader)? {
148                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
149                                 outpoint: Readable::read(reader)?,
150                                 output: Readable::read(reader)?,
151                         }),
152                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
153                                 outpoint: Readable::read(reader)?,
154                                 per_commitment_point: Readable::read(reader)?,
155                                 to_self_delay: Readable::read(reader)?,
156                                 output: Readable::read(reader)?,
157                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
158                                 remote_revocation_pubkey: Readable::read(reader)?,
159                         }),
160                         2u8 => Ok(SpendableOutputDescriptor::StaticOutputRemotePayment {
161                                 outpoint: Readable::read(reader)?,
162                                 output: Readable::read(reader)?,
163                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
164                         }),
165                         _ => Err(DecodeError::InvalidValue),
166                 }
167         }
168 }
169
170 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
171 ///
172 /// Signing services could be implemented on a hardware wallet. In this case,
173 /// the current ChannelKeys would be a front-end on top of a communication
174 /// channel connected to your secure device and lightning key material wouldn't
175 /// reside on a hot server. Nevertheless, a this deployment would still need
176 /// to trust the ChannelManager to avoid loss of funds as this latest component
177 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
178 ///
179 /// A more secure iteration would be to use hashlock (or payment points) to pair
180 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
181 /// at the price of more state and computation on the hardware wallet side. In the future,
182 /// we are looking forward to design such interface.
183 ///
184 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
185 /// to act, as liveness and breach reply correctness are always going to be hard requirements
186 /// of LN security model, orthogonal of key management issues.
187 ///
188 /// If you're implementing a custom signer, you almost certainly want to implement
189 /// Readable/Writable to serialize out a unique reference to this set of keys so
190 /// that you can serialize the full ChannelManager object.
191 ///
192 // (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
193 // to the possibility of reentrancy issues by calling the user's code during our deserialization
194 // routine).
195 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
196 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
197 pub trait ChannelKeys : Send+Clone {
198         /// Gets the local htlc secret key used in commitment tx htlc outputs
199         fn htlc_base_key<'a>(&'a self) -> &'a SecretKey;
200         /// Gets the commitment seed
201         fn commitment_seed<'a>(&'a self) -> &'a [u8; 32];
202         /// Gets the local channel public keys and basepoints
203         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys;
204         /// Gets arbitrary identifiers describing the set of keys which are provided back to you in
205         /// some SpendableOutputDescriptor types. These should be sufficient to identify this
206         /// ChannelKeys object uniquely and lookup or re-derive its keys.
207         fn key_derivation_params(&self) -> (u64, u64);
208
209         /// Create a signature for a remote commitment transaction and associated HTLC transactions.
210         ///
211         /// Note that if signing fails or is rejected, the channel will be force-closed.
212         //
213         // TODO: Document the things someone using this interface should enforce before signing.
214         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
215         // making the callee generate it via some util function we expose)!
216         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
217
218         /// Create a signature for a local commitment transaction. This will only ever be called with
219         /// the same local_commitment_tx (or a copy thereof), though there are currently no guarantees
220         /// that it will not be called multiple times.
221         //
222         // TODO: Document the things someone using this interface should enforce before signing.
223         // TODO: Add more input vars to enable better checking (preferably removing commitment_tx and
224         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
225
226         /// Same as sign_local_commitment, but exists only for tests to get access to local commitment
227         /// transactions which will be broadcasted later, after the channel has moved on to a newer
228         /// state. Thus, needs its own method as sign_local_commitment may enforce that we only ever
229         /// get called once.
230         #[cfg(test)]
231         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
232
233         /// Create a signature for each HTLC transaction spending a local commitment transaction.
234         ///
235         /// Unlike sign_local_commitment, this may be called multiple times with *different*
236         /// local_commitment_tx values. While this will never be called with a revoked
237         /// local_commitment_tx, it is possible that it is called with the second-latest
238         /// local_commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
239         /// ChannelMonitor decided to broadcast before it had been updated to the latest.
240         ///
241         /// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
242         /// local_commitment_tx. For those HTLCs which have transaction_output_index set to None
243         /// (implying they were considered dust at the time the commitment transaction was negotiated),
244         /// a corresponding None should be included in the return value. All other positions in the
245         /// return value must contain a signature.
246         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()>;
247
248         /// Create a signature for the given input in a transaction spending an HTLC or commitment
249         /// transaction output when our counterparty broadcasts an old state.
250         ///
251         /// A justice transaction may claim multiples outputs at the same time if timelocks are
252         /// similar, but only a signature for the input at index `input` should be signed for here.
253         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
254         /// to an upcoming timelock expiration.
255         ///
256         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
257         ///
258         /// per_commitment_key is revocation secret which was provided by our counterparty when they
259         /// revoked the state which they eventually broadcast. It's not a _local_ secret key and does
260         /// not allow the spending of any funds by itself (you need our local revocation_secret to do
261         /// so).
262         ///
263         /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
264         /// changing the format of the witness script (which is committed to in the BIP 143
265         /// signatures).
266         ///
267         /// on_remote_tx_csv is the relative lock-time that that our counterparty would have to set on
268         /// their transaction were they to spend the same output. It is included in the witness script
269         /// and thus committed to in the BIP 143 signature.
270         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, on_remote_tx_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
271
272         /// Create a signature for a claiming transaction for a HTLC output on a remote commitment
273         /// transaction, either offered or received.
274         ///
275         /// Such a transaction may claim multiples offered outputs at same time if we know the
276         /// preimage for each when we create it, but only the input at index `input` should be
277         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
278         /// needed with regards to an upcoming timelock expiration.
279         ///
280         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
281         /// outputs.
282         ///
283         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
284         ///
285         /// Per_commitment_point is the dynamic point corresponding to the channel state
286         /// detected onchain. It has been generated by our counterparty and is used to derive
287         /// channel state keys, which are then included in the witness script and committed to in the
288         /// BIP 143 signature.
289         fn sign_remote_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
290
291         /// Create a signature for a (proposed) closing transaction.
292         ///
293         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
294         /// chosen to forgo their output as dust.
295         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
296
297         /// Signs a channel announcement message with our funding key, proving it comes from one
298         /// of the channel participants.
299         ///
300         /// Note that if this fails or is rejected, the channel will not be publicly announced and
301         /// our counterparty may (though likely will not) close the channel on us for violating the
302         /// protocol.
303         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
304
305         /// Set the remote channel basepoints.  This is done immediately on incoming channels
306         /// and as soon as the channel is accepted on outgoing channels.
307         ///
308         /// Will be called before any signatures are applied.
309         fn set_remote_channel_pubkeys(&mut self, channel_points: &ChannelPublicKeys);
310 }
311
312 /// A trait to describe an object which can get user secrets and key material.
313 pub trait KeysInterface: Send + Sync {
314         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
315         type ChanKeySigner : ChannelKeys;
316
317         /// Get node secret key (aka node_id or network_key)
318         fn get_node_secret(&self) -> SecretKey;
319         /// Get destination redeemScript to encumber static protocol exit points.
320         fn get_destination_script(&self) -> Script;
321         /// Get shutdown_pubkey to use as PublicKey at channel closure
322         fn get_shutdown_pubkey(&self) -> PublicKey;
323         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
324         /// restarted with some stale data!
325         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
326         /// Get a secret and PRNG seed for constructing an onion packet
327         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]);
328         /// Get a unique temporary channel id. Channels will be referred to by this until the funding
329         /// transaction is created, at which point they will use the outpoint in the funding
330         /// transaction.
331         fn get_channel_id(&self) -> [u8; 32];
332 }
333
334 #[derive(Clone)]
335 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
336 pub struct InMemoryChannelKeys {
337         /// Private key of anchor tx
338         pub funding_key: SecretKey,
339         /// Local secret key for blinded revocation pubkey
340         pub revocation_base_key: SecretKey,
341         /// Local secret key used for our balance in remote-broadcasted commitment transactions
342         pub payment_key: SecretKey,
343         /// Local secret key used in HTLC tx
344         pub delayed_payment_base_key: SecretKey,
345         /// Local htlc secret key used in commitment tx htlc outputs
346         pub htlc_base_key: SecretKey,
347         /// Commitment seed
348         pub commitment_seed: [u8; 32],
349         /// Local public keys and basepoints
350         pub(crate) local_channel_pubkeys: ChannelPublicKeys,
351         /// Remote public keys and base points
352         pub(crate) remote_channel_pubkeys: Option<ChannelPublicKeys>,
353         /// The total value of this channel
354         channel_value_satoshis: u64,
355         /// Key derivation parameters
356         key_derivation_params: (u64, u64),
357 }
358
359 impl InMemoryChannelKeys {
360         /// Create a new InMemoryChannelKeys
361         pub fn new<C: Signing>(
362                 secp_ctx: &Secp256k1<C>,
363                 funding_key: SecretKey,
364                 revocation_base_key: SecretKey,
365                 payment_key: SecretKey,
366                 delayed_payment_base_key: SecretKey,
367                 htlc_base_key: SecretKey,
368                 commitment_seed: [u8; 32],
369                 channel_value_satoshis: u64,
370                 key_derivation_params: (u64, u64)) -> InMemoryChannelKeys {
371                 let local_channel_pubkeys =
372                         InMemoryChannelKeys::make_local_keys(secp_ctx, &funding_key, &revocation_base_key,
373                                                              &payment_key, &delayed_payment_base_key,
374                                                              &htlc_base_key);
375                 InMemoryChannelKeys {
376                         funding_key,
377                         revocation_base_key,
378                         payment_key,
379                         delayed_payment_base_key,
380                         htlc_base_key,
381                         commitment_seed,
382                         channel_value_satoshis,
383                         local_channel_pubkeys,
384                         remote_channel_pubkeys: None,
385                         key_derivation_params,
386                 }
387         }
388
389         fn make_local_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
390                                        funding_key: &SecretKey,
391                                        revocation_base_key: &SecretKey,
392                                        payment_key: &SecretKey,
393                                        delayed_payment_base_key: &SecretKey,
394                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
395                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
396                 ChannelPublicKeys {
397                         funding_pubkey: from_secret(&funding_key),
398                         revocation_basepoint: from_secret(&revocation_base_key),
399                         payment_point: from_secret(&payment_key),
400                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
401                         htlc_basepoint: from_secret(&htlc_base_key),
402                 }
403         }
404
405         fn remote_pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { self.remote_channel_pubkeys.as_ref().unwrap() }
406 }
407
408 impl ChannelKeys for InMemoryChannelKeys {
409         fn htlc_base_key(&self) -> &SecretKey { &self.htlc_base_key }
410         fn commitment_seed(&self) -> &[u8; 32] { &self.commitment_seed }
411         fn pubkeys<'a>(&'a self) -> &'a ChannelPublicKeys { &self.local_channel_pubkeys }
412         fn key_derivation_params(&self) -> (u64, u64) { self.key_derivation_params }
413
414         fn sign_remote_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, feerate_per_kw: u64, commitment_tx: &Transaction, keys: &TxCreationKeys, htlcs: &[&HTLCOutputInCommitment], to_self_delay: u16, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
415                 if commitment_tx.input.len() != 1 { return Err(()); }
416
417                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
418                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
419                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
420
421                 let commitment_sighash = hash_to_message!(&bip143::SighashComponents::new(&commitment_tx).sighash_all(&commitment_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
422                 let commitment_sig = secp_ctx.sign(&commitment_sighash, &self.funding_key);
423
424                 let commitment_txid = commitment_tx.txid();
425
426                 let mut htlc_sigs = Vec::with_capacity(htlcs.len());
427                 for ref htlc in htlcs {
428                         if let Some(_) = htlc.transaction_output_index {
429                                 let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, feerate_per_kw, to_self_delay, htlc, &keys.a_delayed_payment_key, &keys.revocation_key);
430                                 let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
431                                 let htlc_sighash = hash_to_message!(&bip143::SighashComponents::new(&htlc_tx).sighash_all(&htlc_tx.input[0], &htlc_redeemscript, htlc.amount_msat / 1000)[..]);
432                                 let our_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
433                                         Ok(s) => s,
434                                         Err(_) => return Err(()),
435                                 };
436                                 htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &our_htlc_key));
437                         }
438                 }
439
440                 Ok((commitment_sig, htlc_sigs))
441         }
442
443         fn sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
444                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
445                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
446                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
447
448                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
449         }
450
451         #[cfg(test)]
452         fn unsafe_sign_local_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
453                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
454                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
455                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
456
457                 Ok(local_commitment_tx.get_local_sig(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
458         }
459
460         fn sign_local_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, local_commitment_tx: &LocalCommitmentTransaction, local_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Vec<Option<Signature>>, ()> {
461                 local_commitment_tx.get_htlc_sigs(&self.htlc_base_key, local_csv, secp_ctx)
462         }
463
464         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, on_remote_tx_csv: u16, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
465                 let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
466                         Ok(revocation_key) => revocation_key,
467                         Err(_) => return Err(())
468                 };
469                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
470                 let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
471                         Ok(revocation_pubkey) => revocation_pubkey,
472                         Err(_) => return Err(())
473                 };
474                 let witness_script = if let &Some(ref htlc) = htlc {
475                         let remote_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().htlc_basepoint) {
476                                 Ok(remote_htlcpubkey) => remote_htlcpubkey,
477                                 Err(_) => return Err(())
478                         };
479                         let local_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
480                                 Ok(local_htlcpubkey) => local_htlcpubkey,
481                                 Err(_) => return Err(())
482                         };
483                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &remote_htlcpubkey, &local_htlcpubkey, &revocation_pubkey)
484                 } else {
485                         let remote_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().delayed_payment_basepoint) {
486                                 Ok(remote_delayedpubkey) => remote_delayedpubkey,
487                                 Err(_) => return Err(())
488                         };
489                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, on_remote_tx_csv, &remote_delayedpubkey)
490                 };
491                 let sighash_parts = bip143::SighashComponents::new(&justice_tx);
492                 let sighash = hash_to_message!(&sighash_parts.sighash_all(&justice_tx.input[input], &witness_script, amount)[..]);
493                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
494         }
495
496         fn sign_remote_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
497                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
498                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
499                                 if let Ok(remote_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.remote_pubkeys().htlc_basepoint) {
500                                         if let Ok(local_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
501                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &remote_htlcpubkey, &local_htlcpubkey, &revocation_pubkey)
502                                         } else { return Err(()) }
503                                 } else { return Err(()) }
504                         } else { return Err(()) };
505                         let sighash_parts = bip143::SighashComponents::new(&htlc_tx);
506                         let sighash = hash_to_message!(&sighash_parts.sighash_all(&htlc_tx.input[input], &witness_script, amount)[..]);
507                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
508                 }
509                 Err(())
510         }
511
512         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
513                 if closing_tx.input.len() != 1 { return Err(()); }
514                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
515                 if closing_tx.output.len() > 2 { return Err(()); }
516
517                 let remote_channel_pubkeys = self.remote_channel_pubkeys.as_ref().expect("must set remote channel pubkeys before signing");
518                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
519                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &remote_channel_pubkeys.funding_pubkey);
520
521                 let sighash = hash_to_message!(&bip143::SighashComponents::new(closing_tx)
522                         .sighash_all(&closing_tx.input[0], &channel_funding_redeemscript, self.channel_value_satoshis)[..]);
523                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
524         }
525
526         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &msgs::UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
527                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
528                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
529         }
530
531         fn set_remote_channel_pubkeys(&mut self, channel_pubkeys: &ChannelPublicKeys) {
532                 assert!(self.remote_channel_pubkeys.is_none(), "Already set remote channel pubkeys");
533                 self.remote_channel_pubkeys = Some(channel_pubkeys.clone());
534         }
535 }
536
537 impl Writeable for InMemoryChannelKeys {
538         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
539                 self.funding_key.write(writer)?;
540                 self.revocation_base_key.write(writer)?;
541                 self.payment_key.write(writer)?;
542                 self.delayed_payment_base_key.write(writer)?;
543                 self.htlc_base_key.write(writer)?;
544                 self.commitment_seed.write(writer)?;
545                 self.remote_channel_pubkeys.write(writer)?;
546                 self.channel_value_satoshis.write(writer)?;
547                 self.key_derivation_params.0.write(writer)?;
548                 self.key_derivation_params.1.write(writer)?;
549
550                 Ok(())
551         }
552 }
553
554 impl Readable for InMemoryChannelKeys {
555         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
556                 let funding_key = Readable::read(reader)?;
557                 let revocation_base_key = Readable::read(reader)?;
558                 let payment_key = Readable::read(reader)?;
559                 let delayed_payment_base_key = Readable::read(reader)?;
560                 let htlc_base_key = Readable::read(reader)?;
561                 let commitment_seed = Readable::read(reader)?;
562                 let remote_channel_pubkeys = Readable::read(reader)?;
563                 let channel_value_satoshis = Readable::read(reader)?;
564                 let secp_ctx = Secp256k1::signing_only();
565                 let local_channel_pubkeys =
566                         InMemoryChannelKeys::make_local_keys(&secp_ctx, &funding_key, &revocation_base_key,
567                                                              &payment_key, &delayed_payment_base_key,
568                                                              &htlc_base_key);
569                 let params_1 = Readable::read(reader)?;
570                 let params_2 = Readable::read(reader)?;
571
572                 Ok(InMemoryChannelKeys {
573                         funding_key,
574                         revocation_base_key,
575                         payment_key,
576                         delayed_payment_base_key,
577                         htlc_base_key,
578                         commitment_seed,
579                         channel_value_satoshis,
580                         local_channel_pubkeys,
581                         remote_channel_pubkeys,
582                         key_derivation_params: (params_1, params_2),
583                 })
584         }
585 }
586
587 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
588 /// and derives keys from that.
589 ///
590 /// Your node_id is seed/0'
591 /// ChannelMonitor closes may use seed/1'
592 /// Cooperative closes may use seed/2'
593 /// The two close keys may be needed to claim on-chain funds!
594 pub struct KeysManager {
595         secp_ctx: Secp256k1<secp256k1::SignOnly>,
596         node_secret: SecretKey,
597         destination_script: Script,
598         shutdown_pubkey: PublicKey,
599         channel_master_key: ExtendedPrivKey,
600         channel_child_index: AtomicUsize,
601         session_master_key: ExtendedPrivKey,
602         session_child_index: AtomicUsize,
603         channel_id_master_key: ExtendedPrivKey,
604         channel_id_child_index: AtomicUsize,
605
606         seed: [u8; 32],
607         starting_time_secs: u64,
608         starting_time_nanos: u32,
609 }
610
611 impl KeysManager {
612         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
613         /// RNG is busted) this may panic (but more importantly, you will possibly lose funds).
614         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
615         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
616         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
617         /// simply use the current time (with very high precision).
618         ///
619         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
620         /// obviously, starting_time should be unique every time you reload the library - it is only
621         /// used to generate new ephemeral key data (which will be stored by the individual channel if
622         /// necessary).
623         ///
624         /// Note that the seed is required to recover certain on-chain funds independent of
625         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
626         /// channel, and some on-chain during-closing funds.
627         ///
628         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
629         /// versions. Once the library is more fully supported, the docs will be updated to include a
630         /// detailed description of the guarantee.
631         pub fn new(seed: &[u8; 32], network: Network, starting_time_secs: u64, starting_time_nanos: u32) -> Self {
632                 let secp_ctx = Secp256k1::signing_only();
633                 match ExtendedPrivKey::new_master(network.clone(), seed) {
634                         Ok(master_key) => {
635                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
636                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
637                                         Ok(destination_key) => {
638                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
639                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
640                                                               .push_slice(&wpubkey_hash.into_inner())
641                                                               .into_script()
642                                         },
643                                         Err(_) => panic!("Your RNG is busted"),
644                                 };
645                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
646                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
647                                         Err(_) => panic!("Your RNG is busted"),
648                                 };
649                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
650                                 let session_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
651                                 let channel_id_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(5).unwrap()).expect("Your RNG is busted");
652
653                                 KeysManager {
654                                         secp_ctx,
655                                         node_secret,
656                                         destination_script,
657                                         shutdown_pubkey,
658                                         channel_master_key,
659                                         channel_child_index: AtomicUsize::new(0),
660                                         session_master_key,
661                                         session_child_index: AtomicUsize::new(0),
662                                         channel_id_master_key,
663                                         channel_id_child_index: AtomicUsize::new(0),
664
665                                         seed: *seed,
666                                         starting_time_secs,
667                                         starting_time_nanos,
668                                 }
669                         },
670                         Err(_) => panic!("Your rng is busted"),
671                 }
672         }
673         fn derive_unique_start(&self) -> Sha256State {
674                 let mut unique_start = Sha256::engine();
675                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
676                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
677                 unique_start.input(&self.seed);
678                 unique_start
679         }
680         /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
681         /// parameters.
682         /// Key derivation parameters are accessible through a per-channel secrets
683         /// ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of
684         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
685         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params_1: u64, params_2: u64) -> InMemoryChannelKeys {
686                 let chan_id = ((params_1 & 0xFFFF_FFFF_0000_0000) >> 32) as u32;
687                 let mut unique_start = Sha256::engine();
688                 unique_start.input(&byte_utils::be64_to_array(params_2));
689                 unique_start.input(&byte_utils::be32_to_array(params_1 as u32));
690                 unique_start.input(&self.seed);
691
692                 // We only seriously intend to rely on the channel_master_key for true secure
693                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
694                 // starting_time provided in the constructor) to be unique.
695                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id).expect("key space exhausted")).expect("Your RNG is busted");
696                 unique_start.input(&child_privkey.private_key.key[..]);
697
698                 let seed = Sha256::from_engine(unique_start).into_inner();
699
700                 let commitment_seed = {
701                         let mut sha = Sha256::engine();
702                         sha.input(&seed);
703                         sha.input(&b"commitment seed"[..]);
704                         Sha256::from_engine(sha).into_inner()
705                 };
706                 macro_rules! key_step {
707                         ($info: expr, $prev_key: expr) => {{
708                                 let mut sha = Sha256::engine();
709                                 sha.input(&seed);
710                                 sha.input(&$prev_key[..]);
711                                 sha.input(&$info[..]);
712                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
713                         }}
714                 }
715                 let funding_key = key_step!(b"funding key", commitment_seed);
716                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
717                 let payment_key = key_step!(b"payment key", revocation_base_key);
718                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
719                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
720
721                 InMemoryChannelKeys::new(
722                         &self.secp_ctx,
723                         funding_key,
724                         revocation_base_key,
725                         payment_key,
726                         delayed_payment_base_key,
727                         htlc_base_key,
728                         commitment_seed,
729                         channel_value_satoshis,
730                         (params_1, params_2),
731                 )
732         }
733 }
734
735 impl KeysInterface for KeysManager {
736         type ChanKeySigner = InMemoryChannelKeys;
737
738         fn get_node_secret(&self) -> SecretKey {
739                 self.node_secret.clone()
740         }
741
742         fn get_destination_script(&self) -> Script {
743                 self.destination_script.clone()
744         }
745
746         fn get_shutdown_pubkey(&self) -> PublicKey {
747                 self.shutdown_pubkey.clone()
748         }
749
750         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> InMemoryChannelKeys {
751                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
752                 let ix_and_nanos: u64 = (child_ix as u64) << 32 | (self.starting_time_nanos as u64);
753                 self.derive_channel_keys(channel_value_satoshis, ix_and_nanos, self.starting_time_secs)
754         }
755
756         fn get_onion_rand(&self) -> (SecretKey, [u8; 32]) {
757                 let mut sha = self.derive_unique_start();
758
759                 let child_ix = self.session_child_index.fetch_add(1, Ordering::AcqRel);
760                 let child_privkey = self.session_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
761                 sha.input(&child_privkey.private_key.key[..]);
762
763                 let mut rng_seed = sha.clone();
764                 // Not exactly the most ideal construction, but the second value will get fed into
765                 // ChaCha so it is another step harder to break.
766                 rng_seed.input(b"RNG Seed Salt");
767                 sha.input(b"Session Key Salt");
768                 (SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("Your RNG is busted"),
769                 Sha256::from_engine(rng_seed).into_inner())
770         }
771
772         fn get_channel_id(&self) -> [u8; 32] {
773                 let mut sha = self.derive_unique_start();
774
775                 let child_ix = self.channel_id_child_index.fetch_add(1, Ordering::AcqRel);
776                 let child_privkey = self.channel_id_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
777                 sha.input(&child_privkey.private_key.key[..]);
778
779                 Sha256::from_engine(sha).into_inner()
780         }
781 }