085a2f87154b1b5a09c9cd9a32757bf8f164dc49
[rust-lightning] / lightning / src / chain / keysinterface.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! keysinterface provides keys into rust-lightning and defines some useful enums which describe
11 //! spendable on-chain outputs which the user owns and is responsible for using just as any other
12 //! on-chain output which is theirs.
13
14 use bitcoin::blockdata::transaction::{Transaction, TxOut, SigHashType};
15 use bitcoin::blockdata::script::{Script, Builder};
16 use bitcoin::blockdata::opcodes;
17 use bitcoin::network::constants::Network;
18 use bitcoin::util::bip32::{ExtendedPrivKey, ExtendedPubKey, ChildNumber};
19 use bitcoin::util::bip143;
20
21 use bitcoin::hashes::{Hash, HashEngine};
22 use bitcoin::hashes::sha256::HashEngine as Sha256State;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
25 use bitcoin::hash_types::WPubkeyHash;
26
27 use bitcoin::secp256k1::key::{SecretKey, PublicKey};
28 use bitcoin::secp256k1::{Secp256k1, Signature, Signing};
29 use bitcoin::secp256k1;
30
31 use util::byte_utils;
32 use util::ser::{Writeable, Writer, Readable};
33
34 use chain::transaction::OutPoint;
35 use ln::chan_utils;
36 use ln::chan_utils::{HTLCOutputInCommitment, make_funding_redeemscript, ChannelPublicKeys, HolderCommitmentTransaction, ChannelTransactionParameters, CommitmentTransaction};
37 use ln::msgs::UnsignedChannelAnnouncement;
38
39 use std::sync::atomic::{AtomicUsize, Ordering};
40 use std::io::Error;
41 use ln::msgs::DecodeError;
42
43 /// When on-chain outputs are created by rust-lightning (which our counterparty is not able to
44 /// claim at any point in the future) an event is generated which you must track and be able to
45 /// spend on-chain. The information needed to do this is provided in this enum, including the
46 /// outpoint describing which txid and output index is available, the full output which exists at
47 /// that txid/index, and any keys or other information required to sign.
48 #[derive(Clone, Debug, PartialEq)]
49 pub enum SpendableOutputDescriptor {
50         /// An output to a script which was provided via KeysInterface, thus you should already know
51         /// how to spend it. No keys are provided as rust-lightning was never given any keys - only the
52         /// script_pubkey as it appears in the output.
53         /// These may include outputs from a transaction punishing our counterparty or claiming an HTLC
54         /// on-chain using the payment preimage or after it has timed out.
55         StaticOutput {
56                 /// The outpoint which is spendable
57                 outpoint: OutPoint,
58                 /// The output which is referenced by the given outpoint.
59                 output: TxOut,
60         },
61         /// An output to a P2WSH script which can be spent with a single signature after a CSV delay.
62         ///
63         /// The witness in the spending input should be:
64         /// <BIP 143 signature> <empty vector> (MINIMALIF standard rule) <provided witnessScript>
65         ///
66         /// Note that the nSequence field in the spending input must be set to to_self_delay
67         /// (which means the transaction is not broadcastable until at least to_self_delay
68         /// blocks after the outpoint confirms).
69         ///
70         /// These are generally the result of a "revocable" output to us, spendable only by us unless
71         /// it is an output from an old state which we broadcast (which should never happen).
72         ///
73         /// To derive the delayed_payment key which is used to sign for this input, you must pass the
74         /// holder delayed_payment_base_key (ie the private key which corresponds to the pubkey in
75         /// ChannelKeys::pubkeys().delayed_payment_basepoint) and the provided per_commitment_point to
76         /// chan_utils::derive_private_key. The public key can be generated without the secret key
77         /// using chan_utils::derive_public_key and only the delayed_payment_basepoint which appears in
78         /// ChannelKeys::pubkeys().
79         ///
80         /// To derive the revocation_pubkey provided here (which is used in the witness
81         /// script generation), you must pass the counterparty revocation_basepoint (which appears in the
82         /// call to ChannelKeys::ready_channel) and the provided per_commitment point
83         /// to chan_utils::derive_public_revocation_key.
84         ///
85         /// The witness script which is hashed and included in the output script_pubkey may be
86         /// regenerated by passing the revocation_pubkey (derived as above), our delayed_payment pubkey
87         /// (derived as above), and the to_self_delay contained here to
88         /// chan_utils::get_revokeable_redeemscript.
89         //
90         // TODO: we need to expose utility methods in KeyManager to do all the relevant derivation.
91         DynamicOutputP2WSH {
92                 /// The outpoint which is spendable
93                 outpoint: OutPoint,
94                 /// Per commitment point to derive delayed_payment_key by key holder
95                 per_commitment_point: PublicKey,
96                 /// The nSequence value which must be set in the spending input to satisfy the OP_CSV in
97                 /// the witness_script.
98                 to_self_delay: u16,
99                 /// The output which is referenced by the given outpoint
100                 output: TxOut,
101                 /// The channel keys state used to proceed to derivation of signing key. Must
102                 /// be pass to KeysInterface::derive_channel_keys.
103                 key_derivation_params: (u64, u64),
104                 /// The revocation_pubkey used to derive witnessScript
105                 revocation_pubkey: PublicKey
106         },
107         /// An output to a P2WPKH, spendable exclusively by our payment key (ie the private key which
108         /// corresponds to the public key in ChannelKeys::pubkeys().payment_point).
109         /// The witness in the spending input, is, thus, simply:
110         /// <BIP 143 signature> <payment key>
111         ///
112         /// These are generally the result of our counterparty having broadcast the current state,
113         /// allowing us to claim the non-HTLC-encumbered outputs immediately.
114         StaticOutputCounterpartyPayment {
115                 /// The outpoint which is spendable
116                 outpoint: OutPoint,
117                 /// The output which is reference by the given outpoint
118                 output: TxOut,
119                 /// The channel keys state used to proceed to derivation of signing key. Must
120                 /// be pass to KeysInterface::derive_channel_keys.
121                 key_derivation_params: (u64, u64),
122         }
123 }
124
125 impl Writeable for SpendableOutputDescriptor {
126         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
127                 match self {
128                         &SpendableOutputDescriptor::StaticOutput { ref outpoint, ref output } => {
129                                 0u8.write(writer)?;
130                                 outpoint.write(writer)?;
131                                 output.write(writer)?;
132                         },
133                         &SpendableOutputDescriptor::DynamicOutputP2WSH { ref outpoint, ref per_commitment_point, ref to_self_delay, ref output, ref key_derivation_params, ref revocation_pubkey } => {
134                                 1u8.write(writer)?;
135                                 outpoint.write(writer)?;
136                                 per_commitment_point.write(writer)?;
137                                 to_self_delay.write(writer)?;
138                                 output.write(writer)?;
139                                 key_derivation_params.0.write(writer)?;
140                                 key_derivation_params.1.write(writer)?;
141                                 revocation_pubkey.write(writer)?;
142                         },
143                         &SpendableOutputDescriptor::StaticOutputCounterpartyPayment { ref outpoint, ref output, ref key_derivation_params } => {
144                                 2u8.write(writer)?;
145                                 outpoint.write(writer)?;
146                                 output.write(writer)?;
147                                 key_derivation_params.0.write(writer)?;
148                                 key_derivation_params.1.write(writer)?;
149                         },
150                 }
151                 Ok(())
152         }
153 }
154
155 impl Readable for SpendableOutputDescriptor {
156         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
157                 match Readable::read(reader)? {
158                         0u8 => Ok(SpendableOutputDescriptor::StaticOutput {
159                                 outpoint: Readable::read(reader)?,
160                                 output: Readable::read(reader)?,
161                         }),
162                         1u8 => Ok(SpendableOutputDescriptor::DynamicOutputP2WSH {
163                                 outpoint: Readable::read(reader)?,
164                                 per_commitment_point: Readable::read(reader)?,
165                                 to_self_delay: Readable::read(reader)?,
166                                 output: Readable::read(reader)?,
167                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
168                                 revocation_pubkey: Readable::read(reader)?,
169                         }),
170                         2u8 => Ok(SpendableOutputDescriptor::StaticOutputCounterpartyPayment {
171                                 outpoint: Readable::read(reader)?,
172                                 output: Readable::read(reader)?,
173                                 key_derivation_params: (Readable::read(reader)?, Readable::read(reader)?),
174                         }),
175                         _ => Err(DecodeError::InvalidValue),
176                 }
177         }
178 }
179
180 /// Set of lightning keys needed to operate a channel as described in BOLT 3.
181 ///
182 /// Signing services could be implemented on a hardware wallet. In this case,
183 /// the current ChannelKeys would be a front-end on top of a communication
184 /// channel connected to your secure device and lightning key material wouldn't
185 /// reside on a hot server. Nevertheless, a this deployment would still need
186 /// to trust the ChannelManager to avoid loss of funds as this latest component
187 /// could ask to sign commitment transaction with HTLCs paying to attacker pubkeys.
188 ///
189 /// A more secure iteration would be to use hashlock (or payment points) to pair
190 /// invoice/incoming HTLCs with outgoing HTLCs to implement a no-trust-ChannelManager
191 /// at the price of more state and computation on the hardware wallet side. In the future,
192 /// we are looking forward to design such interface.
193 ///
194 /// In any case, ChannelMonitor or fallback watchtowers are always going to be trusted
195 /// to act, as liveness and breach reply correctness are always going to be hard requirements
196 /// of LN security model, orthogonal of key management issues.
197 ///
198 /// If you're implementing a custom signer, you almost certainly want to implement
199 /// Readable/Writable to serialize out a unique reference to this set of keys so
200 /// that you can serialize the full ChannelManager object.
201 ///
202 // (TODO: We shouldn't require that, and should have an API to get them at deser time, due mostly
203 // to the possibility of reentrancy issues by calling the user's code during our deserialization
204 // routine).
205 // TODO: We should remove Clone by instead requesting a new ChannelKeys copy when we create
206 // ChannelMonitors instead of expecting to clone the one out of the Channel into the monitors.
207 pub trait ChannelKeys : Send+Clone {
208         /// Gets the per-commitment point for a specific commitment number
209         ///
210         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
211         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey;
212         /// Gets the commitment secret for a specific commitment number as part of the revocation process
213         ///
214         /// An external signer implementation should error here if the commitment was already signed
215         /// and should refuse to sign it in the future.
216         ///
217         /// May be called more than once for the same index.
218         ///
219         /// Note that the commitment number starts at (1 << 48) - 1 and counts backwards.
220         /// TODO: return a Result so we can signal a validation error
221         fn release_commitment_secret(&self, idx: u64) -> [u8; 32];
222         /// Gets the holder's channel public keys and basepoints
223         fn pubkeys(&self) -> &ChannelPublicKeys;
224         /// Gets arbitrary identifiers describing the set of keys which are provided back to you in
225         /// some SpendableOutputDescriptor types. These should be sufficient to identify this
226         /// ChannelKeys object uniquely and lookup or re-derive its keys.
227         fn key_derivation_params(&self) -> (u64, u64);
228
229         /// Create a signature for a counterparty's commitment transaction and associated HTLC transactions.
230         ///
231         /// Note that if signing fails or is rejected, the channel will be force-closed.
232         //
233         // TODO: Document the things someone using this interface should enforce before signing.
234         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()>;
235
236         /// Create a signature for a holder's commitment transaction. This will only ever be called with
237         /// the same commitment_tx (or a copy thereof), though there are currently no guarantees
238         /// that it will not be called multiple times.
239         /// An external signer implementation should check that the commitment has not been revoked.
240         //
241         // TODO: Document the things someone using this interface should enforce before signing.
242         fn sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
243
244         /// Same as sign_holder_commitment, but exists only for tests to get access to holder commitment
245         /// transactions which will be broadcasted later, after the channel has moved on to a newer
246         /// state. Thus, needs its own method as sign_holder_commitment may enforce that we only ever
247         /// get called once.
248         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
249         fn unsafe_sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
250
251         /// Create a signature for each HTLC transaction spending a holder's commitment transaction.
252         ///
253         /// Unlike sign_holder_commitment, this may be called multiple times with *different*
254         /// commitment_tx values. While this will never be called with a revoked
255         /// commitment_tx, it is possible that it is called with the second-latest
256         /// commitment_tx (only if we haven't yet revoked it) if some watchtower/secondary
257         /// ChannelMonitor decided to broadcast before it had been updated to the latest.
258         ///
259         /// Either an Err should be returned, or a Vec with one entry for each HTLC which exists in
260         /// commitment_tx.
261         fn sign_holder_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Signature>, ()>;
262
263         /// Create a signature for the given input in a transaction spending an HTLC or commitment
264         /// transaction output when our counterparty broadcasts an old state.
265         ///
266         /// A justice transaction may claim multiples outputs at the same time if timelocks are
267         /// similar, but only a signature for the input at index `input` should be signed for here.
268         /// It may be called multiples time for same output(s) if a fee-bump is needed with regards
269         /// to an upcoming timelock expiration.
270         ///
271         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
272         ///
273         /// per_commitment_key is revocation secret which was provided by our counterparty when they
274         /// revoked the state which they eventually broadcast. It's not a _holder_ secret key and does
275         /// not allow the spending of any funds by itself (you need our holder revocation_secret to do
276         /// so).
277         ///
278         /// htlc holds HTLC elements (hash, timelock) if the output being spent is a HTLC output, thus
279         /// changing the format of the witness script (which is committed to in the BIP 143
280         /// signatures).
281         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
282
283         /// Create a signature for a claiming transaction for a HTLC output on a counterparty's commitment
284         /// transaction, either offered or received.
285         ///
286         /// Such a transaction may claim multiples offered outputs at same time if we know the
287         /// preimage for each when we create it, but only the input at index `input` should be
288         /// signed for here. It may be called multiple times for same output(s) if a fee-bump is
289         /// needed with regards to an upcoming timelock expiration.
290         ///
291         /// Witness_script is either a offered or received script as defined in BOLT3 for HTLC
292         /// outputs.
293         ///
294         /// Amount is value of the output spent by this input, committed to in the BIP 143 signature.
295         ///
296         /// Per_commitment_point is the dynamic point corresponding to the channel state
297         /// detected onchain. It has been generated by our counterparty and is used to derive
298         /// channel state keys, which are then included in the witness script and committed to in the
299         /// BIP 143 signature.
300         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
301
302         /// Create a signature for a (proposed) closing transaction.
303         ///
304         /// Note that, due to rounding, there may be one "missing" satoshi, and either party may have
305         /// chosen to forgo their output as dust.
306         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
307
308         /// Signs a channel announcement message with our funding key, proving it comes from one
309         /// of the channel participants.
310         ///
311         /// Note that if this fails or is rejected, the channel will not be publicly announced and
312         /// our counterparty may (though likely will not) close the channel on us for violating the
313         /// protocol.
314         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()>;
315
316         /// Set the counterparty static channel data, including basepoints,
317         /// counterparty_selected/holder_selected_contest_delay and funding outpoint.
318         /// This is done as soon as the funding outpoint is known.  Since these are static channel data,
319         /// they MUST NOT be allowed to change to different values once set.
320         ///
321         /// channel_parameters.is_populated() MUST be true.
322         ///
323         /// We bind holder_selected_contest_delay late here for API convenience.
324         ///
325         /// Will be called before any signatures are applied.
326         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters);
327 }
328
329 /// A trait to describe an object which can get user secrets and key material.
330 pub trait KeysInterface: Send + Sync {
331         /// A type which implements ChannelKeys which will be returned by get_channel_keys.
332         type ChanKeySigner : ChannelKeys;
333
334         /// Get node secret key (aka node_id or network_key)
335         fn get_node_secret(&self) -> SecretKey;
336         /// Get destination redeemScript to encumber static protocol exit points.
337         fn get_destination_script(&self) -> Script;
338         /// Get shutdown_pubkey to use as PublicKey at channel closure
339         fn get_shutdown_pubkey(&self) -> PublicKey;
340         /// Get a new set of ChannelKeys for per-channel secrets. These MUST be unique even if you
341         /// restarted with some stale data!
342         fn get_channel_keys(&self, inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner;
343         /// Gets a unique, cryptographically-secure, random 32 byte value. This is used for encrypting
344         /// onion packets and for temporary channel IDs. There is no requirement that these be
345         /// persisted anywhere, though they must be unique across restarts.
346         fn get_secure_random_bytes(&self) -> [u8; 32];
347 }
348
349 #[derive(Clone)]
350 /// A simple implementation of ChannelKeys that just keeps the private keys in memory.
351 ///
352 /// This implementation performs no policy checks and is insufficient by itself as
353 /// a secure external signer.
354 pub struct InMemoryChannelKeys {
355         /// Private key of anchor tx
356         pub funding_key: SecretKey,
357         /// Holder secret key for blinded revocation pubkey
358         pub revocation_base_key: SecretKey,
359         /// Holder secret key used for our balance in counterparty-broadcasted commitment transactions
360         pub payment_key: SecretKey,
361         /// Holder secret key used in HTLC tx
362         pub delayed_payment_base_key: SecretKey,
363         /// Holder htlc secret key used in commitment tx htlc outputs
364         pub htlc_base_key: SecretKey,
365         /// Commitment seed
366         pub commitment_seed: [u8; 32],
367         /// Holder public keys and basepoints
368         pub(crate) holder_channel_pubkeys: ChannelPublicKeys,
369         /// Counterparty public keys and counterparty/holder selected_contest_delay, populated on channel acceptance
370         channel_parameters: Option<ChannelTransactionParameters>,
371         /// The total value of this channel
372         channel_value_satoshis: u64,
373         /// Key derivation parameters
374         key_derivation_params: (u64, u64),
375 }
376
377 impl InMemoryChannelKeys {
378         /// Create a new InMemoryChannelKeys
379         pub fn new<C: Signing>(
380                 secp_ctx: &Secp256k1<C>,
381                 funding_key: SecretKey,
382                 revocation_base_key: SecretKey,
383                 payment_key: SecretKey,
384                 delayed_payment_base_key: SecretKey,
385                 htlc_base_key: SecretKey,
386                 commitment_seed: [u8; 32],
387                 channel_value_satoshis: u64,
388                 key_derivation_params: (u64, u64)) -> InMemoryChannelKeys {
389                 let holder_channel_pubkeys =
390                         InMemoryChannelKeys::make_holder_keys(secp_ctx, &funding_key, &revocation_base_key,
391                                                              &payment_key, &delayed_payment_base_key,
392                                                              &htlc_base_key);
393                 InMemoryChannelKeys {
394                         funding_key,
395                         revocation_base_key,
396                         payment_key,
397                         delayed_payment_base_key,
398                         htlc_base_key,
399                         commitment_seed,
400                         channel_value_satoshis,
401                         holder_channel_pubkeys,
402                         channel_parameters: None,
403                         key_derivation_params,
404                 }
405         }
406
407         fn make_holder_keys<C: Signing>(secp_ctx: &Secp256k1<C>,
408                                        funding_key: &SecretKey,
409                                        revocation_base_key: &SecretKey,
410                                        payment_key: &SecretKey,
411                                        delayed_payment_base_key: &SecretKey,
412                                        htlc_base_key: &SecretKey) -> ChannelPublicKeys {
413                 let from_secret = |s: &SecretKey| PublicKey::from_secret_key(secp_ctx, s);
414                 ChannelPublicKeys {
415                         funding_pubkey: from_secret(&funding_key),
416                         revocation_basepoint: from_secret(&revocation_base_key),
417                         payment_point: from_secret(&payment_key),
418                         delayed_payment_basepoint: from_secret(&delayed_payment_base_key),
419                         htlc_basepoint: from_secret(&htlc_base_key),
420                 }
421         }
422
423         /// Counterparty pubkeys.
424         /// Will panic if ready_channel wasn't called.
425         pub fn counterparty_pubkeys(&self) -> &ChannelPublicKeys { &self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().pubkeys }
426
427         /// The contest_delay value specified by our counterparty and applied on holder-broadcastable
428         /// transactions, ie the amount of time that we have to wait to recover our funds if we
429         /// broadcast a transaction.
430         /// Will panic if ready_channel wasn't called.
431         pub fn counterparty_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().counterparty_parameters.as_ref().unwrap().selected_contest_delay }
432
433         /// The contest_delay value specified by us and applied on transactions broadcastable
434         /// by our counterparty, ie the amount of time that they have to wait to recover their funds
435         /// if they broadcast a transaction.
436         /// Will panic if ready_channel wasn't called.
437         pub fn holder_selected_contest_delay(&self) -> u16 { self.get_channel_parameters().holder_selected_contest_delay }
438
439         /// Whether the holder is the initiator
440         /// Will panic if ready_channel wasn't called.
441         pub fn is_outbound(&self) -> bool { self.get_channel_parameters().is_outbound_from_holder }
442
443         /// Funding outpoint
444         /// Will panic if ready_channel wasn't called.
445         pub fn funding_outpoint(&self) -> &OutPoint { self.get_channel_parameters().funding_outpoint.as_ref().unwrap() }
446
447         /// Obtain a ChannelTransactionParameters for this channel, to be used when verifying or
448         /// building transactions.
449         ///
450         /// Will panic if ready_channel wasn't called.
451         pub fn get_channel_parameters(&self) -> &ChannelTransactionParameters {
452                 self.channel_parameters.as_ref().unwrap()
453         }
454 }
455
456 impl ChannelKeys for InMemoryChannelKeys {
457         fn get_per_commitment_point<T: secp256k1::Signing + secp256k1::Verification>(&self, idx: u64, secp_ctx: &Secp256k1<T>) -> PublicKey {
458                 let commitment_secret = SecretKey::from_slice(&chan_utils::build_commitment_secret(&self.commitment_seed, idx)).unwrap();
459                 PublicKey::from_secret_key(secp_ctx, &commitment_secret)
460         }
461
462         fn release_commitment_secret(&self, idx: u64) -> [u8; 32] {
463                 chan_utils::build_commitment_secret(&self.commitment_seed, idx)
464         }
465
466         fn pubkeys(&self) -> &ChannelPublicKeys { &self.holder_channel_pubkeys }
467         fn key_derivation_params(&self) -> (u64, u64) { self.key_derivation_params }
468
469         fn sign_counterparty_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &CommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<(Signature, Vec<Signature>), ()> {
470                 let trusted_tx = commitment_tx.trust();
471                 let keys = trusted_tx.keys();
472
473                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
474                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
475
476                 let built_tx = trusted_tx.built_transaction();
477                 let commitment_sig = built_tx.sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx);
478                 let commitment_txid = built_tx.txid;
479
480                 let mut htlc_sigs = Vec::with_capacity(commitment_tx.htlcs().len());
481                 for htlc in commitment_tx.htlcs() {
482                         let htlc_tx = chan_utils::build_htlc_transaction(&commitment_txid, commitment_tx.feerate_per_kw(), self.holder_selected_contest_delay(), htlc, &keys.broadcaster_delayed_payment_key, &keys.revocation_key);
483                         let htlc_redeemscript = chan_utils::get_htlc_redeemscript(&htlc, &keys);
484                         let htlc_sighash = hash_to_message!(&bip143::SigHashCache::new(&htlc_tx).signature_hash(0, &htlc_redeemscript, htlc.amount_msat / 1000, SigHashType::All)[..]);
485                         let holder_htlc_key = match chan_utils::derive_private_key(&secp_ctx, &keys.per_commitment_point, &self.htlc_base_key) {
486                                 Ok(s) => s,
487                                 Err(_) => return Err(()),
488                         };
489                         htlc_sigs.push(secp_ctx.sign(&htlc_sighash, &holder_htlc_key));
490                 }
491
492                 Ok((commitment_sig, htlc_sigs))
493         }
494
495         fn sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
496                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
497                 let funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
498                 let sig = commitment_tx.trust().built_transaction().sign(&self.funding_key, &funding_redeemscript, self.channel_value_satoshis, secp_ctx);
499                 Ok(sig)
500         }
501
502         #[cfg(any(test,feature = "unsafe_revoked_tx_signing"))]
503         fn unsafe_sign_holder_commitment<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
504                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
505                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
506                 Ok(commitment_tx.trust().built_transaction().sign(&self.funding_key, &channel_funding_redeemscript, self.channel_value_satoshis, secp_ctx))
507         }
508
509         fn sign_holder_commitment_htlc_transactions<T: secp256k1::Signing + secp256k1::Verification>(&self, commitment_tx: &HolderCommitmentTransaction, secp_ctx: &Secp256k1<T>) -> Result<Vec<Signature>, ()> {
510                 let channel_parameters = self.get_channel_parameters();
511                 let trusted_tx = commitment_tx.trust();
512                 trusted_tx.get_htlc_sigs(&self.htlc_base_key, &channel_parameters.as_holder_broadcastable(), secp_ctx)
513         }
514
515         fn sign_justice_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, justice_tx: &Transaction, input: usize, amount: u64, per_commitment_key: &SecretKey, htlc: &Option<HTLCOutputInCommitment>, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
516                 let revocation_key = match chan_utils::derive_private_revocation_key(&secp_ctx, &per_commitment_key, &self.revocation_base_key) {
517                         Ok(revocation_key) => revocation_key,
518                         Err(_) => return Err(())
519                 };
520                 let per_commitment_point = PublicKey::from_secret_key(secp_ctx, &per_commitment_key);
521                 let revocation_pubkey = match chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
522                         Ok(revocation_pubkey) => revocation_pubkey,
523                         Err(_) => return Err(())
524                 };
525                 let witness_script = if let &Some(ref htlc) = htlc {
526                         let counterparty_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
527                                 Ok(counterparty_htlcpubkey) => counterparty_htlcpubkey,
528                                 Err(_) => return Err(())
529                         };
530                         let holder_htlcpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
531                                 Ok(holder_htlcpubkey) => holder_htlcpubkey,
532                                 Err(_) => return Err(())
533                         };
534                         chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &holder_htlcpubkey, &revocation_pubkey)
535                 } else {
536                         let counterparty_delayedpubkey = match chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().delayed_payment_basepoint) {
537                                 Ok(counterparty_delayedpubkey) => counterparty_delayedpubkey,
538                                 Err(_) => return Err(())
539                         };
540                         chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.holder_selected_contest_delay(), &counterparty_delayedpubkey)
541                 };
542                 let mut sighash_parts = bip143::SigHashCache::new(justice_tx);
543                 let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
544                 return Ok(secp_ctx.sign(&sighash, &revocation_key))
545         }
546
547         fn sign_counterparty_htlc_transaction<T: secp256k1::Signing + secp256k1::Verification>(&self, htlc_tx: &Transaction, input: usize, amount: u64, per_commitment_point: &PublicKey, htlc: &HTLCOutputInCommitment, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
548                 if let Ok(htlc_key) = chan_utils::derive_private_key(&secp_ctx, &per_commitment_point, &self.htlc_base_key) {
549                         let witness_script = if let Ok(revocation_pubkey) = chan_utils::derive_public_revocation_key(&secp_ctx, &per_commitment_point, &self.pubkeys().revocation_basepoint) {
550                                 if let Ok(counterparty_htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.counterparty_pubkeys().htlc_basepoint) {
551                                         if let Ok(htlcpubkey) = chan_utils::derive_public_key(&secp_ctx, &per_commitment_point, &self.pubkeys().htlc_basepoint) {
552                                                 chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &counterparty_htlcpubkey, &htlcpubkey, &revocation_pubkey)
553                                         } else { return Err(()) }
554                                 } else { return Err(()) }
555                         } else { return Err(()) };
556                         let mut sighash_parts = bip143::SigHashCache::new(htlc_tx);
557                         let sighash = hash_to_message!(&sighash_parts.signature_hash(input, &witness_script, amount, SigHashType::All)[..]);
558                         return Ok(secp_ctx.sign(&sighash, &htlc_key))
559                 }
560                 Err(())
561         }
562
563         fn sign_closing_transaction<T: secp256k1::Signing>(&self, closing_tx: &Transaction, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
564                 if closing_tx.input.len() != 1 { return Err(()); }
565                 if closing_tx.input[0].witness.len() != 0 { return Err(()); }
566                 if closing_tx.output.len() > 2 { return Err(()); }
567
568                 let funding_pubkey = PublicKey::from_secret_key(secp_ctx, &self.funding_key);
569                 let channel_funding_redeemscript = make_funding_redeemscript(&funding_pubkey, &self.counterparty_pubkeys().funding_pubkey);
570
571                 let sighash = hash_to_message!(&bip143::SigHashCache::new(closing_tx)
572                         .signature_hash(0, &channel_funding_redeemscript, self.channel_value_satoshis, SigHashType::All)[..]);
573                 Ok(secp_ctx.sign(&sighash, &self.funding_key))
574         }
575
576         fn sign_channel_announcement<T: secp256k1::Signing>(&self, msg: &UnsignedChannelAnnouncement, secp_ctx: &Secp256k1<T>) -> Result<Signature, ()> {
577                 let msghash = hash_to_message!(&Sha256dHash::hash(&msg.encode()[..])[..]);
578                 Ok(secp_ctx.sign(&msghash, &self.funding_key))
579         }
580
581         fn ready_channel(&mut self, channel_parameters: &ChannelTransactionParameters) {
582                 assert!(self.channel_parameters.is_none(), "Acceptance already noted");
583                 assert!(channel_parameters.is_populated(), "Channel parameters must be fully populated");
584                 self.channel_parameters = Some(channel_parameters.clone());
585         }
586 }
587
588 impl Writeable for InMemoryChannelKeys {
589         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
590                 self.funding_key.write(writer)?;
591                 self.revocation_base_key.write(writer)?;
592                 self.payment_key.write(writer)?;
593                 self.delayed_payment_base_key.write(writer)?;
594                 self.htlc_base_key.write(writer)?;
595                 self.commitment_seed.write(writer)?;
596                 self.channel_parameters.write(writer)?;
597                 self.channel_value_satoshis.write(writer)?;
598                 self.key_derivation_params.0.write(writer)?;
599                 self.key_derivation_params.1.write(writer)?;
600
601                 Ok(())
602         }
603 }
604
605 impl Readable for InMemoryChannelKeys {
606         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
607                 let funding_key = Readable::read(reader)?;
608                 let revocation_base_key = Readable::read(reader)?;
609                 let payment_key = Readable::read(reader)?;
610                 let delayed_payment_base_key = Readable::read(reader)?;
611                 let htlc_base_key = Readable::read(reader)?;
612                 let commitment_seed = Readable::read(reader)?;
613                 let counterparty_channel_data = Readable::read(reader)?;
614                 let channel_value_satoshis = Readable::read(reader)?;
615                 let secp_ctx = Secp256k1::signing_only();
616                 let holder_channel_pubkeys =
617                         InMemoryChannelKeys::make_holder_keys(&secp_ctx, &funding_key, &revocation_base_key,
618                                                              &payment_key, &delayed_payment_base_key,
619                                                              &htlc_base_key);
620                 let params_1 = Readable::read(reader)?;
621                 let params_2 = Readable::read(reader)?;
622
623                 Ok(InMemoryChannelKeys {
624                         funding_key,
625                         revocation_base_key,
626                         payment_key,
627                         delayed_payment_base_key,
628                         htlc_base_key,
629                         commitment_seed,
630                         channel_value_satoshis,
631                         holder_channel_pubkeys,
632                         channel_parameters: counterparty_channel_data,
633                         key_derivation_params: (params_1, params_2),
634                 })
635         }
636 }
637
638 /// Simple KeysInterface implementor that takes a 32-byte seed for use as a BIP 32 extended key
639 /// and derives keys from that.
640 ///
641 /// Your node_id is seed/0'
642 /// ChannelMonitor closes may use seed/1'
643 /// Cooperative closes may use seed/2'
644 /// The two close keys may be needed to claim on-chain funds!
645 pub struct KeysManager {
646         secp_ctx: Secp256k1<secp256k1::SignOnly>,
647         node_secret: SecretKey,
648         destination_script: Script,
649         shutdown_pubkey: PublicKey,
650         channel_master_key: ExtendedPrivKey,
651         channel_child_index: AtomicUsize,
652         rand_bytes_master_key: ExtendedPrivKey,
653         rand_bytes_child_index: AtomicUsize,
654
655         seed: [u8; 32],
656         starting_time_secs: u64,
657         starting_time_nanos: u32,
658 }
659
660 impl KeysManager {
661         /// Constructs a KeysManager from a 32-byte seed. If the seed is in some way biased (eg your
662         /// CSRNG is busted) this may panic (but more importantly, you will possibly lose funds).
663         /// starting_time isn't strictly required to actually be a time, but it must absolutely,
664         /// without a doubt, be unique to this instance. ie if you start multiple times with the same
665         /// seed, starting_time must be unique to each run. Thus, the easiest way to achieve this is to
666         /// simply use the current time (with very high precision).
667         ///
668         /// The seed MUST be backed up safely prior to use so that the keys can be re-created, however,
669         /// obviously, starting_time should be unique every time you reload the library - it is only
670         /// used to generate new ephemeral key data (which will be stored by the individual channel if
671         /// necessary).
672         ///
673         /// Note that the seed is required to recover certain on-chain funds independent of
674         /// ChannelMonitor data, though a current copy of ChannelMonitor data is also required for any
675         /// channel, and some on-chain during-closing funds.
676         ///
677         /// Note that until the 0.1 release there is no guarantee of backward compatibility between
678         /// versions. Once the library is more fully supported, the docs will be updated to include a
679         /// detailed description of the guarantee.
680         pub fn new(seed: &[u8; 32], network: Network, starting_time_secs: u64, starting_time_nanos: u32) -> Self {
681                 let secp_ctx = Secp256k1::signing_only();
682                 match ExtendedPrivKey::new_master(network.clone(), seed) {
683                         Ok(master_key) => {
684                                 let node_secret = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(0).unwrap()).expect("Your RNG is busted").private_key.key;
685                                 let destination_script = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(1).unwrap()) {
686                                         Ok(destination_key) => {
687                                                 let wpubkey_hash = WPubkeyHash::hash(&ExtendedPubKey::from_private(&secp_ctx, &destination_key).public_key.to_bytes());
688                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
689                                                               .push_slice(&wpubkey_hash.into_inner())
690                                                               .into_script()
691                                         },
692                                         Err(_) => panic!("Your RNG is busted"),
693                                 };
694                                 let shutdown_pubkey = match master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(2).unwrap()) {
695                                         Ok(shutdown_key) => ExtendedPubKey::from_private(&secp_ctx, &shutdown_key).public_key.key,
696                                         Err(_) => panic!("Your RNG is busted"),
697                                 };
698                                 let channel_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(3).unwrap()).expect("Your RNG is busted");
699                                 let rand_bytes_master_key = master_key.ckd_priv(&secp_ctx, ChildNumber::from_hardened_idx(4).unwrap()).expect("Your RNG is busted");
700
701                                 KeysManager {
702                                         secp_ctx,
703                                         node_secret,
704                                         destination_script,
705                                         shutdown_pubkey,
706                                         channel_master_key,
707                                         channel_child_index: AtomicUsize::new(0),
708                                         rand_bytes_master_key,
709                                         rand_bytes_child_index: AtomicUsize::new(0),
710
711                                         seed: *seed,
712                                         starting_time_secs,
713                                         starting_time_nanos,
714                                 }
715                         },
716                         Err(_) => panic!("Your rng is busted"),
717                 }
718         }
719         fn derive_unique_start(&self) -> Sha256State {
720                 let mut unique_start = Sha256::engine();
721                 unique_start.input(&byte_utils::be64_to_array(self.starting_time_secs));
722                 unique_start.input(&byte_utils::be32_to_array(self.starting_time_nanos));
723                 unique_start.input(&self.seed);
724                 unique_start
725         }
726         /// Derive an old set of ChannelKeys for per-channel secrets based on a key derivation
727         /// parameters.
728         /// Key derivation parameters are accessible through a per-channel secrets
729         /// ChannelKeys::key_derivation_params and is provided inside DynamicOuputP2WSH in case of
730         /// onchain output detection for which a corresponding delayed_payment_key must be derived.
731         pub fn derive_channel_keys(&self, channel_value_satoshis: u64, params_1: u64, params_2: u64) -> InMemoryChannelKeys {
732                 let chan_id = ((params_1 & 0xFFFF_FFFF_0000_0000) >> 32) as u32;
733                 let mut unique_start = Sha256::engine();
734                 unique_start.input(&byte_utils::be64_to_array(params_2));
735                 unique_start.input(&byte_utils::be32_to_array(params_1 as u32));
736                 unique_start.input(&self.seed);
737
738                 // We only seriously intend to rely on the channel_master_key for true secure
739                 // entropy, everything else just ensures uniqueness. We rely on the unique_start (ie
740                 // starting_time provided in the constructor) to be unique.
741                 let child_privkey = self.channel_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(chan_id).expect("key space exhausted")).expect("Your RNG is busted");
742                 unique_start.input(&child_privkey.private_key.key[..]);
743
744                 let seed = Sha256::from_engine(unique_start).into_inner();
745
746                 let commitment_seed = {
747                         let mut sha = Sha256::engine();
748                         sha.input(&seed);
749                         sha.input(&b"commitment seed"[..]);
750                         Sha256::from_engine(sha).into_inner()
751                 };
752                 macro_rules! key_step {
753                         ($info: expr, $prev_key: expr) => {{
754                                 let mut sha = Sha256::engine();
755                                 sha.input(&seed);
756                                 sha.input(&$prev_key[..]);
757                                 sha.input(&$info[..]);
758                                 SecretKey::from_slice(&Sha256::from_engine(sha).into_inner()).expect("SHA-256 is busted")
759                         }}
760                 }
761                 let funding_key = key_step!(b"funding key", commitment_seed);
762                 let revocation_base_key = key_step!(b"revocation base key", funding_key);
763                 let payment_key = key_step!(b"payment key", revocation_base_key);
764                 let delayed_payment_base_key = key_step!(b"delayed payment base key", payment_key);
765                 let htlc_base_key = key_step!(b"HTLC base key", delayed_payment_base_key);
766
767                 InMemoryChannelKeys::new(
768                         &self.secp_ctx,
769                         funding_key,
770                         revocation_base_key,
771                         payment_key,
772                         delayed_payment_base_key,
773                         htlc_base_key,
774                         commitment_seed,
775                         channel_value_satoshis,
776                         (params_1, params_2),
777                 )
778         }
779 }
780
781 impl KeysInterface for KeysManager {
782         type ChanKeySigner = InMemoryChannelKeys;
783
784         fn get_node_secret(&self) -> SecretKey {
785                 self.node_secret.clone()
786         }
787
788         fn get_destination_script(&self) -> Script {
789                 self.destination_script.clone()
790         }
791
792         fn get_shutdown_pubkey(&self) -> PublicKey {
793                 self.shutdown_pubkey.clone()
794         }
795
796         fn get_channel_keys(&self, _inbound: bool, channel_value_satoshis: u64) -> Self::ChanKeySigner {
797                 let child_ix = self.channel_child_index.fetch_add(1, Ordering::AcqRel);
798                 let ix_and_nanos: u64 = (child_ix as u64) << 32 | (self.starting_time_nanos as u64);
799                 self.derive_channel_keys(channel_value_satoshis, ix_and_nanos, self.starting_time_secs)
800         }
801
802         fn get_secure_random_bytes(&self) -> [u8; 32] {
803                 let mut sha = self.derive_unique_start();
804
805                 let child_ix = self.rand_bytes_child_index.fetch_add(1, Ordering::AcqRel);
806                 let child_privkey = self.rand_bytes_master_key.ckd_priv(&self.secp_ctx, ChildNumber::from_hardened_idx(child_ix as u32).expect("key space exhausted")).expect("Your RNG is busted");
807                 sha.input(&child_privkey.private_key.key[..]);
808
809                 sha.input(b"Unique Secure Random Bytes Salt");
810                 Sha256::from_engine(sha).into_inner()
811         }
812 }